STAT 341; Final Exam: Useful facts. Mar 17, 2010

1. Permutations and combinations

There are $n! = \prod_{i=1}^{n} i = 1.2.3.4...n$ permutations of n objects.

There are $\binom{n}{k} = n!/(k!(n-k)!)$ ways of choosing a given k objects from n.

2. Joint and conditional probabilities

If C and D are any events: $P(C \cup D) = P(C) + P(D) - P(C \cap D)$. The conditional probability of C given D is $P(C \mid D) = P(C \cap D) / P(D)$. C and D are independent if $P(C \cap D) = P(C).P(D)$.

3. Laws and theorems

Suppose E_1, \ldots, E_k is a partition of Ω . That is $E_i \cap E_j$ is empty, and $E_1 \cup E_2 \cup \ldots \cup E_k = \Omega$. The law of total probability states that: $P(D) = \sum_{j=1}^k P(D \cap E_j) = \sum_{j=1}^k P(D \mid E_j) P(E_j)$ Bayes' Theorem states that: $P(E_i \mid D) = P(D \mid E_i) P(E_i) / P(D)$

4. Random variables and distributions

discrete (mass) continuous (density) Probability mass/density function pmf: $P(X=x)=p_X(x)$ pdf: $f_X(x)$ Cumulative dist. func. CDF, $P(X \le x)$ $F_X(x) = \sum_{w \le x} p_X(w)$ $F_X(x) = \int_{-\infty}^x f_X(w) dw$ Joint mass/density func. of (X,Y) $p_{X,Y}(x,y) = P(X=x,Y=y)$ $f_{X,Y}(x,y)$ Marginal mass/density of X $p_X(x) = \sum_y p_{X,Y}(x,y)$ $f_X(x) = \int_{y=-\infty}^\infty f_{X,Y}(x,y) dy$ Conditional of X given Y=y $p_X(x|Y=y) = p_{X,Y}(x,y)/p_Y(y)$ $f_X(x|Y=y) = f_{X,Y}(x,y)/f_Y(y)$ Independence of X and Y $p_{X,Y}(x,y) = P(X=x)P(Y=y)$ $f_{X,Y}(x,y) = f_X(x)f_Y(y)$

5. Moments of random variables:

Expectation: $\mathrm{E}(g(X)) = \sum_{x} g(x) \; \mathrm{P}(X=x) \qquad \int_{-\infty}^{\infty} g(x) f_X(x) dx$ **provided** the sum/integral converges absolutely.

For any random variables X and Y:

Variance: $\operatorname{var}(X) = \operatorname{E}((X - E(X))^2) = \operatorname{E}(X^2) - (\operatorname{E}(X))^2$ Always: $\operatorname{E}(aX + b) = a\operatorname{E}(X) + b$, $\operatorname{E}(X + Y) = \operatorname{E}(X) + \operatorname{E}(Y)$, $\operatorname{var}(aX + b) = a^2 \operatorname{var}(X)$. If X and Y are independent: $\operatorname{var}(X + Y) = \operatorname{var}(X) + \operatorname{var}(Y)$ If $X_1, ..., X_n$ are i.i.d, $\overline{X_n} \equiv (1/n) \sum_{i=1}^n X_i$ then $\operatorname{E}(\overline{X_n}) = \operatorname{E}(X_1)$, $\operatorname{var}(\overline{X_n}) = \operatorname{var}(X_1)/n$.

6. Basics of estimation of parameter θ

- (a) An *n*-sample is a set of *n* independent data random variables, $Y_1, ..., Y_n$ all from the same distribution (i.i.d), indexed by unknown parameter(s) θ .
- (b) A statistic, T, is any function of $Y_1, ..., Y_n$.
- (c) An estimator of $g(\theta)$ is a statistic used to estimate $g(\theta)$.
- (d) The estimate of $g(\theta)$ is the value taken by the estimator in any particular instance.
- (e) The first Method of Moments (MoM) equation is $\overline{Y_n} = (1/n) \sum_{i=1}^n Y_i = E_{\theta}(Y)$.

The second equation is $(1/n)\sum_{i=1}^{n}Y_{i}^{2} = E_{\theta}(Y^{2})$. The third equation is $(1/n)\sum_{i=1}^{n}Y_{i}^{3} = E_{\theta}(Y^{3})$

The equation(s) are solved to give an estimator of θ , say W. Then the estimator of $h(\theta)$ is h(W).

7. Properties of estimators

- (a) Bias of estimator T of θ is $b_T(\theta) = E_{\theta}(T) \theta$.
- (b) MSE of estimator T of θ is $mse_{\theta}(T) = \mathrm{E}((T-\theta)^2) = \mathrm{var}_{\theta}(T) + (b_T(\theta))^2$.
- (c) An estimator T_n based on an n-sample is asymptotically unbiased if $b_{T_n}(\theta) \to 0$ as $n \to \infty$.
- (d) An estimator T_n based on an n-sample is consistent if, for all $\epsilon > 0$, $P(|T_n \theta| > \epsilon) \to 0$ as $n \to \infty$.
- (e) Chebychev's inequality: consistency and MSE are related by the fact that, for all $\epsilon > 0$,

$$P(|T_n - \theta| > \epsilon) \le E((T_n - \theta)^2)/\epsilon^2.$$

8. Likelihood, MLE, and sufficient statistics (for an *n*-sample $Y_1, ..., Y_n$ from $f_Y(y; \theta)$)

- (a) The likelihood $L(\theta)$ is the joint pdf/pmf of $Y_1, ..., Y_n$, evaluated at the observed data $y_1, ..., y_n$.
- (b) That is $L_n(\theta) = \prod_{i=1}^n f_Y(y_i; \theta)$, and the log-likelihood $\ell_n(\theta) = \log_e L_n(\theta) = \sum_{i=1}^n \log f_Y(y_i; \theta)$.
- (c) The maximum likelihood estimate (MLE) is the value of θ that maximizes the likelihood or log-likelihood.
- (d) Statistic T is sufficient, if the conditional pdf/pmf of $Y_1, ..., Y_n$ given T = t does not depend on θ .
- (e) **Factorization criterion:** T is sufficient if and only if $L_n(\theta) = b(y_1, ..., y_n).g(t; \theta)$ for b() not involving θ and g() involving $(y_1, ..., y_n)$ only through $T(y_1, ..., y_n) = t$.
- (f) **Rao-Blackwell Theorem:** if an estimator W is not a function of the sufficient statistic, T, then there is an estimator which is a function of T with same expectation as W and smaller mean square error.

9. The Cramér-Rao Lower Bound

(a) Let $Y_1, ..., Y_n$ be n-sample from pmf or pdf $f_Y(y; \theta)$, where $f_Y(y; \theta)$ can be differentiated at least twice w.r.t θ . Let T be any unbiased estimator of θ , based on $Y_1, ..., Y_n$. Then

$$\operatorname{var}(T) \geq \left\{ n \operatorname{E} \left[\left(\frac{\partial \log_e f_Y(Y; \theta)}{\partial \theta} \right)^2 \right] \right\}^{-1} = \left\{ -n \operatorname{E} \left[\left(\frac{\partial^2 \log_e f_Y(Y; \theta)}{\partial \theta^2} \right) \right] \right\}^{-1}$$

- (b) This lower bound on the variance of an unbiased estimator is the Cramér-Rao Lower Bound (CRLB).
- (c) The efficiency of an unbiased estimator T is the ratio of the CRLB to the training variance var(T).
- (d) If T is unbiased and var(T) is equal to the CRLB, then T is efficient.

10. Interval Estimation

(a) Let $Y_1, ..., Y_n$ be an n-sample from some pmf or pdf indexed by parameter θ . Let $L(Y_1, ..., Y_n)$ and $U(Y_1, ..., Y_n)$ be two functions of the data random variables, such that $L \leq U$ for all possible samples $y_1, ..., y_n$. If $P_{\theta}(L(Y_1, ..., Y_n) \leq \theta \leq U(Y_1, ..., Y_n)) = (1 - \alpha)$ for all θ

then $(L(y_1,...,y_n), U(y_1,...,y_n))$ is a $(1-\alpha)$ -level confidence interval for θ .

- (b) Confidence intervals should be based on sufficient statistics. If T is sufficient, we find L(T) and U(T) such that $L(t) \leq U(t)$ for all values t of T, and $P(L(T) \leq \theta \leq U(T)) = (1 \alpha)$.
- (c) Conventionally, we choose L(t) and U(t) such that $P(L(T) > \theta) = P(U(T) < \theta) = \alpha/2$.

11. Bayesian Estimation

- (a) In Bayesian inference a prior pdf $\pi(\theta)$ is assigned to θ .
- (b) Given an *n*-sample $Y_1, ..., Y_n$ from $f_Y(y; \theta)$, and sufficient statistic T, the posterior pdf of θ given the sample values $y_1, ..., y_n$ is the same as the posterior pdf given the value t of T.
- (c) The posterior pdf of θ is $\pi(\theta \mid T = t) = f_T(t;\theta)\pi(\theta)/\int_{\theta} f_T(t;\theta)\pi(\theta) d\theta$.
- (d) All estimates are based on the posterior pdf; this may be a point estimate such as the mean of the posterior pdf, or an interval estimate $(P(L(t) < \theta < U(t) \mid T = t) = 1 \alpha)$.

12. Standard distributions:

pmf or pdf mean variance (a) Binomial; B(n,p) $P(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \qquad np \qquad np(1-p)$ index n, parameter p k=0,1,2,...,n

(b) Geometric; Geo(p); $P(X=k) = p(1-p)^{k-1} \qquad 1/p \qquad (1-p)/p^2$ parameter $p \qquad \qquad k=1,2,3,4,....$

(c) Neg. Binomial; NegB(r,p); $P(X=k) = {k-1 \choose r-1} p^r (1-p)^{k-r} \qquad r/p \qquad r(1-p)/p^2$ index r, parameter p k=r,r+1,r+2,....

(d) Poisson; $\mathcal{P}o(\mu)$ $P(X=k) = \exp(-\mu)\mu^k/k!, \quad k=0,1,2,\dots \qquad \mu \qquad \mu$

(e) Uniform on (a, b); U(a, b); $f_X(x) = 1/(b-a)$, a < x < b $(b+a)/2 (b-a)^2/12$

(f) Normal, $N(\mu, \sigma^2)$ $f_X(x) = (1/\sqrt{2\pi\sigma^2}) \exp(-(x-\mu)^2/2\sigma^2)$ μ σ^2

(g) Exponential, $\mathcal{E}(\lambda)$ $f_X(x) = \lambda \exp(-\lambda x)$ $1/\lambda$ $1/\lambda^2$

rate parameter λ $0 \le x < \infty$

(h) Gamma, $G(\alpha, \lambda)$ $f_X(x) = \lambda^{\alpha} x^{\alpha - 1} \exp(-\lambda x) / \Gamma(\alpha) \qquad \alpha / \lambda \qquad \alpha / \lambda^2$ shape α , rate λ $0 \le x < \infty$

Shape α , rate λ $0 \le x < \infty$ (j) Beta Be(r,s) $f_X(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)}x^{r-1}(1-x)^{s-1} \qquad r/(r+s)$ $0 \le x \le 1$

Note: $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} \exp(-x) dx$ $\Gamma(\alpha) = (\alpha-1)\Gamma(\alpha-1)$, and $\Gamma(n) = (n-1)!$ for integer n.

13. Moment generating functions: $M_X(t) = E(\exp(tX))$

mgf note

(a) Binomial; B(n,p) $(q+pz)^n$ where q=1-p and $z\equiv \exp(t)$

(b) Geometric; Geo(p); pz/(1-qz) where q=1-p and $z\equiv \exp(t)$

(c) Neg. Binomial; NegB(r, p); $(pz/(1-qz))^r$ where q=1-p and $z\equiv \exp(t)$

(d) Poisson; $\mathcal{P}o(\mu)$ $\exp(\mu(z-1))$ where $z \equiv \exp(t)$

(g) Exponential, $\mathcal{E}(\lambda)$ $\lambda/(\lambda-t)$ provided $t<\lambda$

(h) Gamma, $G(\alpha, \lambda)$ $(\lambda/(\lambda - t))^{\alpha}$ provided $t < \lambda$

(i) Z^2 where $Z \sim N(0,1)$ $(\frac{1}{2}/(\frac{1}{2}-t))^{1/2}$ provided $t < \frac{1}{2}$

On this page will book	l be Normal and	Chi-squared t	ables copied f	rom Pages 85	2 and 856 in t	$ ext{the text}$