STAT 341 ; Final Exam: Useful facts. Mar 17, 2010

1. Permutations and combinations

There are n! = [[;-;¢ = 1.2.3.4....n permutations of n objects.

There are ( : ) = nl/(k!(n — k)!) ways of choosing a given k objects from n.

2. Joint and conditional probabilities

If C and D are any events: P(CUD) = P(C) + P(D) — P(CNOD).
The conditional probability of C given D is P(C'| D) = P(C(D) / P(D).
C and D are independent if P(CN D) = P(C).P(D).

3. Laws and theorems
Suppose Ef1, ..., E} is a partition of ). That is F; (| E; is empty, and By JE2U...UE, = Q.

The law of total probability states that: P(D) = Y'_ P(DNE;) = YV, P(D|E;) P(E))

Bayes’ Theorem states that: P(E; | D) = P(D | E;) P(E;)/P(D)

4. Random variables and distributions

discrete (mass) continuous (density)

Probability mass/density function pmf: P(X =) = px(z) pdf: fx(x)
Cumulative dist. func. CDF, P(X < z) Fx(x) =3 <. px(w) Fx(z) = [* fx(w)dw
Joint mass/density func. of (X,Y") pxy(z,y) =P(X =2,Y =y) fxy(z,y)
Marginal mass/density of X px(x) = Zypxy(a:, Y) fx(x) = fy__oo fxy(z,y)dy
Conditional of X given Y =y px (Y =y) =pxy(@,y)/py(y) [fx@Y =y) = fxy(z,y)/fr ()
Independence of X and Y pxy(z,y) =P(X =2)P(Y =vy) fxy(z,y) = fx(x)fy(y)

5. Moments of random variables:
Expectation: E(g(X))=>,9() P(X =x) 20 9(x) fx (x)da
provided the sum/integral converges absolutely.

For any random variables X and Y:

Variance:  var(X) = E((X — E(X))?) = E(X?) — (E(X))?

Always: E(aX +b) = aB(X) + b, EX+Y) = E(X) + E(Y), var(aX +b) = a? var(X).
If X and Y are independent: var(X +Y) = var(X) + var(Y)
If X1,..., X, are i.i.d, X;, = (1/n) 31, X; then E(X,,) = E(X1), var(X,,) = var(X1)/n.

6. Basics of estimation of parameter 6

(a) An n-sample is a set of n independent data random variables, Y7, ..., Y, all from the same distribution
(i.i.d), indexed by unknown parameter(s) 6.

(b) A statistic, T, is any function of Y7, ..., Y,,.

(c) An estimator of g(0) is a statistic used to estimate g(0).

(d) The estimate of g(f) is the value taken by the estimator in any particular instance.

(e) The first Method of Moments (MoM) equation is Y,, = (1/n)> 1" ,Y; = Ey(Y).

The second equation is (1/n) Y% ;Y2 = E»(Y?). The third equation is (1/n) 31, Y2 = E¢(Y?).....
The equation(s) are solved to give an estimator of 6, say W. Then the estimator of h(0) is h(WW).



7. Properties of estimators
(a) Bias of estimator T of 0 is br(0) = Ey(T') — 6.
(b) MSE of estimator T of 0 is mseg(T) = E((T —0)?) = vary(T) + (br(6)).
(c¢) An estimator T}, based on an n-sample is asymptotically unbiased if by, (0) — 0 as n — oo.
(d) An estimator 7T, based on an n-sample is consistent if, for all e > 0, P(|T,, — 0| > €¢) — 0asn — oo.
(e) Chebychev’s inequality: consistency and MSE are related by the fact that, for all € > 0,
P(|T, — 0] > ¢) < E((T, —0)?)/e.

8. Likelihood, MLE, and sufficient statistics (for an n-sample Y7, ..., Y,, from fy(y;6))
(a) The likelihood L(6) is the joint pdf/pmf of Y1, ..., Y,, evaluated at the observed data yi, ..., yn.
(b) That is L,(0) = [1i-; fv(v:;0), and the log-likelihood ¢,,(6) = log, L,(8) = >, log fy (v 0).
(¢) The maximum likelihood estimate (MLE) is the value of § that maximizes the likelihood or log-likelihood.
(d) Statistic T is sufficient, if the conditional pdf/pmf of Y7, ...,Y,, given T' =t does not depend on 6.
(e) Factorization criterion: 7T is sufficient if and only if L, (0) = b(y1, ..., yn).g(t; 0)
for b() not involving # and ¢() involving (yi, ..., yn) only through T'(y1,...,yn) = t.
(f) Rao-Blackwell Theorem: if an estimator W is not a function of the sufficient statistic, 7', then there is

an estimator which is a function of 7" with same expectation as W and smaller mean square error.

9. The Cramér-Rao Lower Bound
(a) Let Y7, ..., Y, be n-sample from pmf or pdf fy(y;6), where fy () can be differentiated at least twice w.r.t
0. Let T be any unbiased estimator of 8, based on Y7, ...,Y,,. Then

var(T) > {nE l(W)?} _ {—nE [(3210&6];2/(1/;9))]}

(b) This lower bound on the variance of an unbiased estimator is the Cramér-Rao Lower Bound (CRLB).
(c) The efficiency of an unbiased estimator 7' is the ratio of the CRLB to the the variance var(T).
(d) If T' is unbiased and var(7") is equal to the CRLB, then T is efficient.

10. Interval Estimation

(a) Let Y1,...,Y,, be an n-sample from some pmf or pdf indexed by parameter 6. Let L(Y1,...,Y;) and
U(Y1,...,Yy) be two functions of the data random variables, such that L < U for all possible samples y1, ..., Yn.
If Py(L(Y1,....Yn) <0 <U(Y1,...Y,) = (1—«) forall

then (L(y1, .-, Yn), U(y1,...,yn)) is a (1 — a)-level confidence interval for 6.

(b) Confidence intervals should be based on sufficient statistics. If T" is sufficient, we find L(T") and U(T') such
that L(t) < U(t) for all values t of T', and P(L(T) <0 <U(T)) = (1 — ).

(¢) Conventionally, we choose L(t) and U(t) such that P(L(T) > 0) = P(U(T) < 6) = «/2.

11. Bayesian Estimation

(a) In Bayesian inference a prior pdf 7(0) is assigned to 6.

(b) Given an m-sample Y7, ..., Y, from fy(y;0), and sufficient statistic 7', the posterior pdf of 6 given the
sample values y1, ..., y, is the same as the posterior pdf given the value t of T'.

(c) The posterior pdf of @ is 7(0 | T' =t) = fr(t;0)m(8)/ [, fr(t;0)n(6) db.

(d) All estimates are based on the posterior pdf; this may be a point estimate such as the mean of the posterior
pdf, or an interval estimate (P(L(t) <8 <U(t) | T =1t) = 1—«).



12. Standard distributions:

pmf or pdf
(a) Binomial; B(n, p) P(X =k) = ( Z ) (1 — p)nk
index n, parameter p k=0,1,2,....n
(b) Geometric; Geo(p); P(X =k) = p(1—p)k!
parameter p k=1,2,3,4,......
L k—1 .
(c) Neg. Binomial; NegB(r,p); P(X=k) = ( ) )p"’(l —p)r
r—
index r, parameter p k=r,r+1,7r+2,...
(d) Poisson; Po(u) P(X =k) = exp(—u)u*/k!, k=0,1,2,...
(e) Uniform on (a,b); U(a, b); fx(x)=1/(b—a), a<z<b
(£) Normal, Ny, 0%) Fx() = (1/V3707) exp(—(z — )2 /20%)
(g) Exponential, £(\) fx(x) = Nexp(—Ax)
rate parameter A 0<z <@
(h) Gamma, G(a, ) fx(x) = 22 Lexp(—Az)/T'(a)
shape «, rate A 0< 2 <00
(j) Beta Be(r, s) Fx(@) = et = 2yt
r>0,s>0 0<zx<1
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Note: I'(a) = [° 2% ! exp(—z)dzx INa)=(a—1I'(a—1), and I'(n) = (n — 1)! for integer n.

13. Moment generating functions: Mx(t) = E(exp(tX))

mgf note
(a) Binomial; B(n,p) (g+p2)" where g =1—pand z =
(b) Geometric; Geo(p); pz/(1—qz) wheregq=1—pandz=
(c) Neg. Binomial; NegB(r,p); (pz/(1—¢q 2))" whereg=1—pand z =
(d) Poisson; Po(u) exp(pu(z — 1)) where z = exp(t)
(g) Exponential, £(\) A (A —1t) provided t < A
(h) Gamma, G(«, \) (AN (A=1)~ provided t < A
(i) Z2 where Z ~ N(0,1) (3/(3 - t))1/? provided ¢t < %

exp(t)
exp(t)
exp(t)



On this page will be Normal and Chi-squared tables copied from Pages 852 and 856 in the text
book



