
Lecture 22: The Normal distribution: Kelly 6.2

(There is no lecture 21; Nov 18 was Midterm-2)

22.1 Standardizing random variables

Recall E(aY + b) = aE(Y ) + b, var(aY + b) = a2var(Y ).

Suppose Y is a discrete or continuous random variable with E(Y ) = µ and var(Y ) = σ2. Let Z = (Y − µ)/σ.

Then E(Z) = (E(Y ) − µ)/σ = (µ − µ)/σ = 0, and var(Z) = (1/σ)2var(Y ) = σ2/σ2 = 1.

22.2 Location and scale parameters

A location parameter a shifts a probability density: the pdf is a function of (x−a). For example, we can shift

a uniform U(0, 1) pdf to a uniform U(a, a + 1) pdf.

A scale parameter stretches (or shrinks) a probability density. For example, to transform a Uniform U(0, 1)

density to a Uniform U(a, b), we shift by a and scale by (b − a).

Another example of a scale parameter is the rate parameter of an exponential random variable. If we measure

waiting times in minutes instead of hours, we still have an exponential shape to the pdf, but the rate per

minute is 60 times less than the rate per hour.

22.3 The Normal probability density, parameters µ and σ2: N(µ, σ2)

fX(x) =
1√

2πσ2
exp(−(x − µ)2

2σ2
) −∞ < x < ∞

P (X ∈ Bx) =

∫

Bx

1√
2πσ2

exp(−(x − µ)2

2σ2
) dx

Let z = (x − µ)/σ, dz = dx/σ, Bz = {(x − µ)/σ; x ∈ Bx}

P (Z = (X − µ)/σ ∈ Bz) =

∫

Bz

1√
2πσ2

exp(−z2

2
) σ dz

=

∫

Bz

1√
2π

exp(−z2

2
) dz
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That is fZ(z) is a Normal probability density with parameters 0 and 1.

Also, µ is a location parameter, σ is a scale parameter.
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Above: Normal pdfs at different

scales (values of σ).

Left: Normal pdfs at different lo-

cations (values of µ).

22.4 The standard Normal probability density

A random variable Z with p.d.f fZ(z) = 1√
2π

exp(− z2

2 ) on −∞ < z < ∞ is a standard Normal random

variable.

E(Z) =
∫ ∞
−∞ zfZ(z)dz = 0 since fZ(−z) = fZ(z).

So var(Z) = E(Z2) =
∫ ∞
−∞ z2fZ(z)dz. In fact E(Z2) = 1 (not proved).

Now Z = (X − µ)/σ or X = µ + σZ, so for the general Normal N(µ, σ2) random variable with parameters µ

and σ2, E(X) = µ and var(X) = σ2.
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Lecture 23: Normal approximation to the Binomial; Kelly 6.4

23.1: Stirling’s formula

For large n, n! is approximately nn+ 1

2 e−n
√

2π. Let k = np, then

(
n

k
) =

n!

k!(n − k)!
=

n!

(np)!(n(1 − p))!

≈ nn+ 1

2 e−n
√

2π

(np)np+ 1

2 e−np
√

2π(n(1 − p))n(1−p)+ 1

2 e−n(1−p)
√

2π

=
nn+ 1

2

(np)np+ 1

2 (n(1 − p))n(1−p)+ 1

2

√
2π

=
1√
2π

1
√

np(1 − p)

1

pnp(1 − p)n(1−p)

23.2: Standardizing the binomial probabilities

Suppose X has the Binomial Bin(n, p) p.m.f.

Then E(X) = np, var(X) = np(1 − p).

So if Z = (X − np)/(np(1 − p)), then E(Z) = 0, var(Z) = 1.

23.3: The DeMoivre-Laplace limit theorem

(a) For a Bin(n, p) random variable X, the p.m.f. is largest at k ≈ np: P (X = k) = (
n

k
)pk(1 − p)n−k.

So for n large and k = np we have

P (X = np) =
1√
2π

1
√

np(1 − p)

1

pnp(1 − p)n(1−p)
pnp (1 − p)n(1−p) =

1√
2π

1
√

np(1 − p)

But this is also the value of the maximum pdf of a Normal random variable with mean µ = np and variance

σ2 = np(1 − p).

(b) As X increases from k to k + 1, Z = (X − np)/
√

np(1 − p) increases from z to z + δ where

z = (k − np)/
√

np(1 − p) and δ = 1/
√

np(1 − p). (Note np(1 − p) = 1/δ2.) For a Normal N(np, 1/δ2) pdf;

fY (k + 1)

fY (k)
=

δ√
2π

exp(−δ2(k − np + 1)2/2)

δ√
2π

exp(−δ2(k − np)2/2)
=

exp(−δ2((z/δ) + 1)2/2)

exp(−δ2(z/δ)2/2)
= exp(−zδ − δ2/2) ≈ (1 − δz)

(c) But
P (X = (k + 1))

P (X = k)
=

(
n

k + 1
)pk+1(1 − p)n−k−1

(
n

k
)pk(1 − p)n−k

=

(

n − k

k + 1

) (

p

1 − p

)

=

(

n(1 − p) − z/δ

np + (z/δ) + 1

) (

p

1 − p

)

=
np(1 − p) − zp/δ

np(1 − p) + (1 − p)z/δ + (1 − p)
≈ 1 − δzp

1 + δz(1 − p)

≈ (1 − δzp)(1 − δz(1 − p)) = (1 − δzp − δz(1 − p)) = (1 − δz)

23.4: A preview of the Central Limit Theorem

Recall that Bin(n, p) is sum of n independent Bernoulli, each with mean p and variance p(1 − p).

Suppose, Y1, ..., Yn are independent, with the same distribution, each with mean µ and variance σ2, and

Tn =
∑n

i=1 Yi. Then E(Tn) = nµ and var(Tn) = nσ2.

T ∗
n = (Tn − nµ)/(

√
n σ) has mean 0 and variance 1.

Subject to some conditions, the same result holds for Tn as for the Bin(n, p). That is T ∗
n has approx. a

N(0, 1) pdf. This is the Central Limit Theorem.
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Lecture 24: Using the Normal approximation

24.1: Using the Normal probability table

The table in Kelly, Appendix C, P.601, is of the usual form for the probabilities for a N(0,1) standard Normal

distribution. It gives P (Z ≤ x) for values of x from 0 up. This probability is denoted Φ(x).

For negative x, P (Z ≤ x) = P (Z ≥ −x) = 1 − P (Z ≤ −x).

(Note that since Z is a continuous random variable, P (Z < x) = P (Z ≤ x)).

24.2: The continuity correction

(a) When approximating P (X = k) for a binomial X by a Normal Y , we must consider

P (k − 1
2 < Y ≤ k + 1/2). We need area under the curve.

(b) Hence when we approximate P (a ≤ X ≤ b) we should use P (a − 1
2 < Y < b + 1

2).

(c) However, for large n and a reasonable range of Y it makes almost no difference. Recall when X is increased

by 1, Z is increased by δ = 1/
√

np(1 − p).

24.3 Approximating discrete Binomial with continuous Normal

(c) Example: suppose X is Bin(30, 2/3). E(X) = 20, var(X) = 30 × (1/3) × (2/3) = 20/3.

Compute the probability 14 ≤ X ≤ 18

(i) Exactly, using the Binomial probabilities:
∑18

k=14 P (X = k). Answer 0.2689.

(ii) Using the Normal approx, with the range 14 to 18 for X:

Z = (14 − 20)/
√

20/3 = −2.32 to Z = (18 − 20)/
√

20/3 = −0.77. Answer: 0.2105.

(iii) Using the Normal approx, with the range 13.5 to 18.5 for X:

Z = (13.5 − 20)/
√

20/3 = −2.517 to Z = (18.5 − 20)/
√

20/3 = −0.5809. Answer: 0.2747.

For general a, b: P (a < Z ≤ b) = Φ(b) − Φ(a).

24.4: Mendel’s experiments

Mendel did many experiments of the form of the one with the red/white flowers. He crossed red-flowered

plants with white-flowered plants, so he knew the red-flowered offspring were of RW type. These are known

as the F1 or hybrids. He then crossed these with each other, and expected to get red and white flowers in the

ratio 3:1. Here are four examples:

a) 253 F1 producing 7324 seeds: 5474 round, 1850 wrinkled: ratio 2.96:1

b) 258 F1 producing 8023 seeds: 6022 yellow, 2001 green: ratio 3.01:1.

c) 929 F2; 705 red flowers, 224 white flowers: ratio 3.15:1.

d) 580 F2: 428 green pods, 152 yellow pods: ratio 2.82:1

24.5 Are Mendel’s results too good?

There has been much debate as to whether Mendel’s results are “too good” – too close to the 3:1 ratio.

Note the larger samples for characteristics that can be observed at the seed stage. These give the ratios closest

to 3:1. This is as expected: var(X) = np(1 − p) but var(X/n) = var(X)/n2 = p(1 − p)/n which decreases

as n increases. Are we too close? Recall Z = (X − np)/
√

np(1 − p) is approx N(0,1). Here p = 3/4:

a) Za = (5474−7324×0.75)/
√

7324 × 3/16 = −0.5127, P (−0.5127 < Z ≤ 0.5127) = 2Φ(0.5127)−1 = 0.39.

b) Zb = (6022−8023×0.75)/
√

8023 × 3/16 = 0.1225, P (−0.1225 < Z ≤ 0.1225) = 2Φ(0.1225)−1 = 0.097.

c) Zc = (705−929×0.75)/
√

929 × 3/16 = 0.6251, P (−0.6251 < Z ≤ 0.06251) = 2Φ(0.6251)−1 = 0.468.

d) Zd = (428−580×0.75)/
√

580 × 3/16 = −0.6712, P (−0.6712 < Z ≤ 0.6712) = 2Φ(0.6712)−1 = 0.498.

So far, with these experiments, there seems no reason to think Mendel’s results are “too good”.
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Lecture 25: More examples from Mendel’s experiments

25.1 Combining the experiments

The fact that these involve different characteristics does not stop us combining them. They are all independent

Bernoulli trials with p = 0.75.

We have 7324 + 8023 + 929 + 580 = 16856 trials with 5474 + 6022 + 705 + 428 = 12629 “successes”. Z =

(12629− 16856× 0.75)/
√

16856 ∗ 3/16 = − 0.2312. P (−0.2312 < Z ≤ 0.2312) = 2Φ(0.2312)− 1 = 0.183.

Alternatively, we can combine the Z-values: we could do this even if they came from Bernoulli trials with

different p. Here: Za + Zb + Zc + Zd = −0.5127 + 0.1225 + 0.6251 − 0.6712 = − 0.4363.

This would be a Normal with mean 0 but variance 4 (why?). So we must standardize it:

Z∗ = −0.4363/2 = −0.2182, P (−0.2182 < Z ≤ 0.2182) = 2Φ(0.2182) − 1 = 0.173.

So again, either way, here there is no evidence of the results being “too good”. However, when a large number

of Mendel’s other results are also grouped together, overall, they do look a bit “too good”.

25.2 Mendel’s experiment: continued

Now Mendel wanted to show not just the 3:1 red:white ratio, but also the 1:2:1 for RR : RW : WW . So he

needed to find which of his red-flowered F2 plants were RR and which were RW . To do this he selfed his

red-flowered F2 pea plants: that is, the parents were RR giving RR × RR or RW giving RW × RW .

In order to tell whether the parent was RW , Mendel grew up 10 offspring, and if all were red he said the

plant bred true. Note, under Mendel’s hypothesis P (RR | red) = 1/3.

Mendel reported his result: from 600 F2 he found 201 bred true. Assuming 1/3 should breed true, is this result

too close to 1/3? Note if p = 1/3, E(X) = 200, var(X) = 600 × 1/3 × 2/3 = 400/3.

(i) Without the correction (considering X = 199, 200, 201) show the probability of being this close is about

6.5%. (Z = ±0.08660).

(ii) With the correction (198.5 < X < 201.5) show the probability of being this close is a bit over 10%

(Z = ±0.12990).

(Here the continuity correction makes enough difference that is might affect our belief about whether Mendel’s

results are “too good”).

25.3 Mendel’s mistake:

Recall that each offspring of an RW × RW mating is white with probability 1/4.

(i) For each RW × RW mating, what is the probability Mendel mis-called it as RR × RR?

Answer: (3/4)10 = 0.0563.

(ii) If the frequency of RR parents is 1/3 and RW is 2/3, what is the overall probability that all 10 offspring

plants are red? Answer: (1/3) + (2/3) × 0.0563 = 0.371.

25.4 Probability of being close to 0.371

So now the p of Mendel’s Binomial should have been p = 0.371. E(X) = 222.6, var(X) = 140.01, st.dev =

11.83. Now we need the probability that Mendel’s reported count of 201 would be this far off.

(i) With no correction: X ≤ 201, Z < −1.825 or Z > 1.825. Answer: about 6.8%.

(ii) With correction: X ≤ 201.5, Z < −1.783 or Z > 1.783. Answer: about 7.4%.

(iii) Or maybe we should ask, this far off in direction of his assumed 1/3, Asnwers: 3.4% and 3.7%.

Either Mendel was, for once, quite unlucky or else his result is too close to what he may have expected, and

too far from what he should have found.
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