Lecture 16: Mean and variance of random variables: Kelly 4.1-4.3

16.1: Expected value of a random variable: the mean

(i) Discrete case

If X is discrete with p.m.f. P(X =) = p(z) > 0 for x € X, the expected value of X denoted E(X) is
E(X) = > ,cx p(z), provided this sum exists and is finite.

(ii) Continuous case

If X is continuous with p.d.f. f(x), f(z) > 0 for —co < z < oo. the expected value of X denoted E(X) is
E(X) = [ xf(z) dx, provided this integral exists and is finite. (Note f(z) dz ~ P(zx < X < xz+dz).)
16.2: Expected value of a function of a random variable

(i) Discrete case

Now if X takes values x;, the values taken by Y = g(X) are g(z;), but several z; may have the same g(z;).

PY=y) = > pl&) so

iig(zi)=y
E(9(X)) = Y yP(Y=y) = Z(y p(wn) =D
Y Y i:g(z;)=y v o

(ii) Continuous case (not proved)
For a continuous random variable E(¢(X) = [ g(z) f(z) dz.

(iii) An important property (proved for discrete random variables):

E(g1(X)+ g2(X)) = D (q1(@) + g2(2)p(x) = > 01(z) pla) + > g2(@)p(z) = E(g1(X)) + E(g2(X))

T

(iv) A simple property

E(aX +b) = Z(a$+b)p(w) = a Z:U p(z) + pr(x) =aBEX) + 0
(v) Note: The same results (ii) and (iii) holds for continuous random variables.
16.3: The variance of a random variable
(i) Definition: If E(X) = u, var(X) = E(X — p)?
Since (z — u)? > 0 for every z, the definition shows var(X) > 0.
(ii) Property 1: using 16.2 (ii) we have
var(X) = BE(X —p)? = B(X?2 —2uX + p?) = B(X?) —2uE(X) + p? = B(X?) —2uxpu + u?
= B(X?)—p? = E(X?) — (E(X))2. (This is usually the easiest way to compute var(X).)

(iii) Property 2: using 16.2 (ii) we have

var(aX +b) = E((aX +b—au—0)?) = E(a*(X — p)?) = a®E(X —p)?) = a’var(X).
16.4 One example: the mean and variance of a Poisson random variable P(X = z) = e *\"/z!.
The mean: E(X) = Y% jxe™\/z! = Y00 2e 2 \/z! = e AT AT (z—1)! = e et = A
Then: E(X(X — 1)) = Y2 jx(r — e A\¥/z! = e N2, 0 2/(z—2)! = e M2 = A2
So then var(X) = E(X?) — (E(X))? = E(X(X —1)) + E(X) = (E(X))? = M2 +X1-)2 = )\



Lecture 17: More expectations. Summing independent random variables

(Here we take the simplest case of two discrete random variables, but the results are true in general.)
17.1 Independent random variables

Let X and Y be two discrete random variables defined on the same sample space. (e.g. € is outcomes of

tosses of two dice; X is the sum of the two values, Y is the maximum of the two values.)
Suppose X takes values x;, ¢ = 1,2, ..., and Y takes values y;, j=1,2,3,....
Let P(X =x; N'Y =y;) = pij. Note 32,3 ";pij = 1.
Also P(X =) = >, P(X =z N Y =y;) = >.pij
and P(Y =y;) = 3, P(X =2 NY =y;) = ¥;py.
Also note that events of interest are of the form (X = z; N Y = y;); all other statements about X and Y
derive from these.
Definition: Random variables X and Y are independent if
pij = PX =2, NY=y;) = P(X=u1;) x P(Y =y;) for all ¢ and j.
17.2 Expectation of the sum (Note: this does not require independence.)

The set of possible values of X +Y is the set of all 2; + y; for all 7 and j:
EX+Y) = ZZ($i+yj)P(X =z NY =y;) = Zzﬂfipij + Zzyjpzj
i g i i
= D (@) piy) + Dy py) = Y wPX=z)+ Y yPY =y;)
J J i i J

i

= E(X) + E(Y) Expectation of sum is sum of expectations: always.

17.3 Expectation of the product: independence case

In general: E(XY) = >, Zj vy, P(X =2; N Y =y;) = ¥, Zj Ty Dij -
If X and Y are independent then

BQXY) = Y X wwpy = YD awP(X =a)P(Y = y)

— <Z z;P(X = x¢)> (Z y; P(Y = yj)) = E(X)E(Y).

17.4 Variance of the sum: independence case

var(X +Y) = E(X +Y)?) — (E(X +Y))?
E(X+Y)?) = EX?2+2XY +Y?) = E(X?) +2E(XY)+E(Y?
(E(X +Y))? (E(X) +E(Y))* = (E(X))?+2E(X)E(Y) + (E(Y))?
var(X +Y) = var(X) + 2(E(XY)-EX)E(Y)) + var(Y)

If X and Y are independent, E(XY) = E(X).E(Y). Then:
var(X +Y) = var(X) + var(Y)

For independent random variables, the variance of the sum is the sum of the variances.
Note 1: If we can sum 2, we can sum any finite number: X +Y +27 = (X +Y) + Z.
Note 2: The converse of 17.3, 17.4 is NOT true.

We can have E(XY) = E(X).E(Y), but X and Y NOT independent.



Lecture 18: The Bernoulli process, and associated random variables (Kelly 1.4)
18.1: The process
0010001100100000001001O0 0 1:Each trialis success (1) or not (0).

X1 XoX3Xy.... ...X95...: Each X; is 0 or 1.

......... Toeeo oo oo Tigee o oo Tisere oo oo Togeee e oo Toge: Ty = X1+ + X,

- Y-y --Yy-——————— Ys ——-Ys— — -V Y, is rth inter-arrival time

...... Wi oo . WoWs.. Wy o oo oo oo W W LW, W W, is total waiting time to rth 1.
The Bernoulli process is defined by X; independent, with P(X; =1) = p and P(X; =0) = (1 — p).

T, = X1+ ...+ X, is number of successes (i.e. 1s) in first n trials.

Y, is the inter-arrival time: number of trials from (r — 1)th success to r th.

W, = Y1+ Y5+ ... 4 Y, is number of trials to r th. success.

Y = Y, —1: number of failures (0) before next success (1).

Wy = Y+ ...+ Y number of failures (0) before r th success. Note: W, > n if and only if T,, < r.
18.2: Bernoulli and Binomial random variables

(i) X; is Bernoulli(p). P(X; =1) =p, P(X; =0) = (1 —p).

E(X;) =px1 4+ (1-p)x0 =p

E(X?) = px12 + (1-p) x 0% = p,sovar(X;) = E(X?) - (E(X;))? = p—p* = p(1 —p).

T, = X1 + ... + X, is Binomial (n,p).

The probability of each sequence of k 1’s and (n — k) 0’s is p*(1 — p)"* and there are ( Z ) such sequences.

P(T,=k) = ()@ —p)"*

Expectations always add: see 16.2. E(T},) = E(X1) + ...+ E(X,) = p+p+..+p = np.

The variances also add because the trials are independent:

var(T,) = var(X;1) + ... +var(X,) = np(l—p).

18.3: Geometric and Negative Binomial random variables

Y, are independent, and have Geometric (p) distribution: P(Y = k) = (1 — p)*~1p, for k =1,2,3, .....
EY) = Sk -p)*lp=p/(1-(1~-p)* = 1/p.

EY(Y -1)) = 2p(1-p)/01-(1-p))° = 2(1-p)/p*.

Sovar(Y) = EY(Y —1)+Y) - (E(Y))? = 2(1—-p)/p*) +1/p—1/p* = (1 —p)/p? (see “note”).
Y* = (Y -1),PY*=k) = (1—p)kp, for k=0,1,2,3....

EY)) = EY)—-1 = (1—-p)/p, var(Y*) = var(Y); see 16.2,16.3.

Note: 3, 2" = 1/(1—-2),s0 Y, ra" 1 = &

i - 1/(1_1.)27 ZTT(T_ 1)3:7472 - %(1_1$)2 = 2/(1-1’)3
W, =Y1 + ... + Y,. Expectations add, so E(W,) = r/p.
Again the variances add, because the intervals Y; are independent: var(W,) = r(1 —p)/p>.

k—1

P(W, = k) = P(r—1 successes in k—1 trials, and then success) = ( ) )(1—p)k_7"p7"_1p fork=r,r+1,....
r—

wy = W, —r, E(W}) =EW,) —r, var(W}) = var(W,)

r

(1—p)rp =1p

k—1
P(W} =k) = P(r — 1 successes in r + k — 1 trials, and then success) = ( T )

r—1
for k=0,1,2,3...



Lecture 19: Examples of Binomial, Geometric and Negative Binomials

A hypothetical story:

Mendel crossed two plants that were red-flowered, but each had one white-flowered parent. He therefore knew
that each offspring plant would have white flowers with probability 1/4, independently of all the others. He
planted one offspring seed each morning, and they all grew, and each one flowered the exact same number of

days after planting. The first one flowered on June 1, 1865.

1. By June 20, 20 plants had flowered.

(a) How many of these plants are expected to have white flowers?
(b) What is the variance of the number of white-flowered plants?
(c) What is the probability that 5 of the plants had white flowers?

2. On June 8th, Mendel saw that the plant newly flowered that day had white flowers.
(a) What is the expected date of the next white-flowered plant?

(b) What is the probability that the next white-flowered plant flowers June 15 or later?
(c) What is the probability the next white-flowered plant flowers on June 137

3. On June 8th, Mendel saw that the plant newly flowered that day had white flowers.

a) What is the expected number of red flowers flowering before the next white-flowered plant?
) What is the variance of this number?

(

(b
(c) What is the probability this number is at least 37
(

d) Mendel’s assistant reminds him that the plant flowering on June 7 also had white flowers, and says
that therefore by “the law of averages” they will probably have to wait longer than four days for the next
white-flowered plant. What does Mendel say?

4. On June 8th, Mendel saw that the plant newly flowered that day had white flowers.
(a) What is the expected date of flowering of the 5 th white-flowered plant after the one on June 87
(b) What is the probability the 5 th white-flowered plant after the one on June 8 flowers on June 287



Lecture 20: Poisson random variables: approximation to Binomial

20.1 Reminder of facts about the Poisson distribution

(i) From 11.3: P(X =j) = e /4!, for j=0,1,2,3,....

(ii) From 16.4: E(X) = = Z?’;Oje_A)\j/j! = 275 je AN /5l = e A\ > 521 N7H(G=1D! = e her = A
Then: B(X(X —1)) = Y20 —1e N /jl = e NEXR,N72/(j—2)! = e ?A%er = A2

So then var(X) = E(X?) - (E(X))? = E(X(X -1)) + E(X)—(E(X))?2 = X2+)X-)%2 = )\

(iii) Useful model for numbers of things (accidents, hurricanes, centenarians, errors, customers, judicial vacan-
cies, ....), when there are a very large number of opportunities for the “thing” but each has small probability.
(iv) In these examples, the expected number of accidents, errors, judicial vacancies is “moderate” (E(X) = A).
Typically A is between 1 and 20. However, there is no hard upper bound.

20.2 Reminder of facts about the Binomial distribution
(i) From 11.3: P(T=3) = (" )pP(1 —p)"7, for j =0,1,2,....n.
J

(ii) But also from 18.2, T = X;+ Xa2+...+ X, where X; are Bernoulli(p); P(X; =1) =p, P(X; =0) =1—p.
Then E(X;) = p and var(X;) = p(1 —p), so E(T") = np and var(T)) = np(1l — p).

Note, to sum the variances we are using the independence of the X;.

(iii) Model for number of times something happens in n independent trials (coin tosses, red-flowered offspring
pea-plants, Danes speaking German....) when the probability of the “thing” happening on each trial is p.
(iv) In these examples, p is “moderate” (0.25, 0.5, ..... ) and n also usually “moderate” (10 coin tosses, grow
30 pea plants, ...). There is a hard upper bound (n) on the value of X.

20.3 Poisson approximation to the Binomial

(i) Let X be a Binomial (Bin(n,p)) random variable, and Y a Poisson random variable with parameter \.

“ moderate”. Then we can match

(ii) Suppose n gets large, and p gets small in such a way that np remains
up the means: E(X) = np = A = E(Y).
(iii) Now var(X) = np(l—p) = A1 —-p) = A = var(¥).
n! . - n! A\ A\

() In fact, P(X=j) = lspl(l=p) = ol <n> (1 - n)
nn—1..(n—j+1)1 A

o alao
20.4 Back to the class data on birthdays Sample 1: n = 31, 2 pairs, 1 trio. Sample 2: n = 31, 2 pairs.

Combined: n = 62, 6 pairs, 1 trio.

(i) Actual probability of no pairs in 31: 365 x 364 x ..... x 335/(365)3! = 0.2695. For 62 birthdays, probability
of no pairs is 0.004. So it is not surprising we had pairs, but how many pairs should we get?
APPROXIMATION: m = 31 x 30/2 = 465 not-quite-independent pairs, each pair probability p = 1/365.

\ = 465/365 = 1.274, P(X = 0) = 0.2797. P(X = 1) = 1.274 x 0.2797 = 0.3653.

P(X>2) = 1-P(X=0)—P(X=1) = 0.364. So it was not surprising to get 2 pairs.

(i) What about the trio in sample 1?7 Now m = 31 x 30 x 29/6 = 4495 trios, each with probability
p = 1/365% = 7.5 x 1075. So approximate by Poisson with mean A\ = 4495p = 0.0337. Now P(X =
0) = exp(—0.0337) = 0.967. So it was quite surprising to see a trio in a sample size 31 (about 3% chance).
(iii) What about a trio in the combined set of 62 birthdays? Now m = 62 x 61 x 60/6 = 37820 trios, so
A = 37820/365% = 0.284, and exp(—0.284) = 0.75, so the chance of getting at least 1 trio on the set of 62
is about 25%.

)>J(1—)\/n)” ~ 1;!)\jexp(—)\) _ Py =



