
Lecture 13: limits of probabilities of nested events Kelly 2.5

13.1 The collection of all events

For (finte or) countable Ω, events are all subsets of Ω, but this does not work for Ω = ℜ.

More generally, Ω is event, E an event ⇒ Ec an event, and E1, E2, ...... events ⇒
⋃∞

i=1 an event.

(Such collections, closed under complements and countable unions, are called σ-fields: Kelly 1.3.)

Note Φ = Ωc is an event, and
⋂

Ei = (
⋃

Ec
i )

c are then also events.

13.2 The events on ℜ generated by sets (−∞, b] for all real b.

(i) First, for a < b, (−∞, a]c
⋂

(−∞, b] = (a, b] so we have the half-left-open intervals.

(ii) Next,
⋃

n(a, b − 1
n ] = (a, b) so we have the open intervals.

(iii) Next,
⋂

n(a − 1
n , b] = [a, b] so we have the closed intervals.

(iv) Next, if a = b in (iii), we have isolated points {b}.

(v) Finally, taking countable unions of these, we have all countable sets.

Sets generated by countable unions and intersections of intervals, are the Borel sets (Kelly 1.3), and make up

the set of events for a real-valued (discrete or continuous) random variable.

13.3 Increasing and decreasing nested sets

(i) A1, A2, , A3, .... are nested increasing sets if A1 ⊂ A2 ⊂ A3 ⊂ ..... Then
⋃n

1 Ai = An and
⋂n

1 Ai = A1.

(ii) A1, A2, , A3, .... are nested decreasing sets if A1 ⊃ A2 ⊃ A3 ⊃ ..... Then
⋃n

1 Ai = A1 and
⋂n

1 Ai = An.

Examples: Kelly 2.5.1, 2.5.2

1. Increasing: An = (−∞, x − 1
n ]. limn→∞ An = (−∞, x).

2. Decreasing: An = (−∞, x + 1
n) or An = (−∞, x + 1

n ]. limn→∞ An = (−∞, x].

3. Decreasing: An is event of no successes in n tries. Then limn→∞ An is event of no success ever.

13.4 Nested sets theorem; Kelly 2.5.3, 2.5.8

Theorem: Let A1, A2, .... be any events in Ω.

(i) If A1 ⊂ A2 ⊂ A3 ⊂ ...., P (A1
⋃

A2
⋃

A3.....) = limn→∞ P (An) .

(ii) If A1 ⊃ A2 ⊃ A3 ⊃ ...., P (A1
⋂

A2
⋂

A3.....) = limn→∞ P (An) .

Proof: (i) Let Bi = Ai ∩ Ac
i−1; Then Bi are disjoint and B1

⋃
B2

⋃
...

⋃
Bn = A1

⋃
A2

⋃
...

⋃
An, so

P (A1
⋃

A2
⋃

A3.....) = P (B1
⋃

B2
⋃

B3.....) =
∑∞

1 P (Bi) = limn→∞(
∑n

1 P (Bi)

= limn→∞ P (B1
⋃

B2
⋃

....
⋃

Bn) = limn→∞ P (An).

(ii) Let Di = Ac
i , so from (i) P (D1

⋃
D2

⋃
D3.....) = limn→∞ P (Dn) .

But P (D1
⋃

D2
⋃

D3.....) = P ((A1
⋂

A2
⋂

...)c) = 1 − P (A1
⋂

A2
⋂

....)

and limn→∞ P (Dn) = limn→∞(1 − P (An)) = 1 − limn→∞ P (An).

13.5 Examples; Kelly 2.5.4 etc.

(i) In independent trials, with probability of success p > 0, eventually we have success with probability 1,

since if An is event of no successes in n tries, P (An) = (1 − p)n −→ 0.

(ii) Let the probability of success on try k be pk. Let Dn = Ac
n be event of success by try n. Then

P (Dn) ≤
∑n

k=1 pk. If pk decrease fast (e.g. pk = 0.1/n2) then limP (Dn) < 1; eventual success is not certain.

(iii) Increasing: For any random variable X; P (X < a) = limP (X ≤ (a − 1
n)).

Increasing: For any random variable X; P (X > a) = limP (X > (a + 1
n)).

Decreasing: For any random variable X; P (X ≤ a) = limP (X ≤ (a + 1
n) = limP (X < (a + 1

n)).

Decreasing: For any random variable X; P (X ≥ a) = limP (X ≥ (a − 1
n) = limP (X > (a − 1

n)).
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Lecture 14: Cumulative distribution functions Kelly 3.2

14.1 (i) Definition: For any random variable X, the cumulative distribution function is defined as

FX(x) = P (X ≤ x) for −∞ < x < ∞.

(ii) For a discrete random variable with pmf pX(x), FX(b) =
∑

x≤b pX(x).

(iii) For a continuous random variable with pdf fX(x), FX(b) =
∫ b
−∞ fX(x)dx.

(iv) For all random variables, P (a < X ≤ b) = F (b) − F (a)

because {X ≤ b} = {X ≤ a} ∪ {a < X ≤ b} and {X ≤ a} ∩ {a < X ≤ b} = Φ (empty set).

14.2 Properties:

(i) FX is a non-decreasing function: if a < b, then FX(a) ≤ FX(b), because {X ≤ a} ⊂ {X ≤ b}.

(ii) limb→∞ FX(b) = 1, because for any increasing sequence bn → ∞, n = 1, 2, 3, ...,

Ω = {X < ∞} = ∪{X ≤ bn}, so 1 = P (Ω) = limn→∞ P (X ≤ bn) = limn→∞ FX(bn).

(iii) limb→−∞ FX(b) = 0, because for any decreasing sequence bn → −∞, n = 1, 2, 3, ...,

Φ = {X = −∞} = ∩{X ≤ bn}, so 0 = P (Φ) = limn→∞ P (X ≤ bn) = limn→∞ FX(bn).

(iv) FX is right-continuous. That is, for any b and any decreasing sequence bn, n = 1, 2, 3, ..., with bn → b as

n → ∞, limn→∞ FX(bn) = FX(b), because {X ≤ b} = ∩ {X ≤ bn}.

Note P (X ≤ b) = P (X < b) + P (X = b), and P (X < b) = limx→b− F (x).

If X is discrete, with P (X = b) > 0, FX will be discontinuous at x = b.

14.3 Case of continuous random variables:

For discrete random variables, FX(x) is just a set of flat (constant) pieces, with jumps in amount P (X = xi)

at each possible value xi of X. This is not very useful.

For continuous random variables, the cdf is very useful!

FX(x) = P (X ≤ x) =

∫ x

−∞

fX(w)dw so
dFX(x)

dx
= fX(x).

That is, we get the pdf by differentiating the cdf: the cdf is often easier to consider.

Example: scaling an exponential random variable.

Suppose fX(x) = λe−λx on x ≥ 0, and let Y = aX (a > 0). What is the pdf of Y ?

First, Fx(x) =

∫ x

0
λe−λwdw = [−e−λw]x0 = 1 − e−λx on x ≥ 0.

Now, FY (y) = P (Y ≤ y) = P (aX ≤ y) = P (X ≤ y/a) = FX(y/a) = (1 − eλy/a),

so fY (y) = F ′
Y (y) =

d

dy
(1 − e−λy/a) = (λ/a)e−(λ/a)y on y ≥ 0.

That is Y is an exponential random variable with parameter λ/a.

14.4 Using the cdf to consider functions of random variables (Kelly 5.2)

Using the cdf is often the easiest way to consider functions of a random variable.

Example: Suppose X is Uniform U(0,1). What is the pdf of Y = X3?

fX(x) = 1, 0 ≤ x ≤ 1; FX(x) = x, 0 ≤ x ≤ 1

FY (y) = P (Y ≤ y) = P (X3 ≤ y) = P (X ≤ y1/3) = FX(y1/3) = y1/3, 0 ≤ y ≤ 1

fY (y) =
d

dy
FY (y) = (1/3)y−2/3 0 ≤ y ≤ 1

2



Lecture 15: Conditional probability for random variables

15.1 Conditioning a discrete random variable

Recall P (X = x) is just an event, and P (X ∈ B) =
∑

x∈B P (X = x).

So P (X ∈ C | X ∈ B) = P (X ∈ B
⋂

C)/P (X ∈ B).

Also P (X = x | X ∈ B) = P (X = x)/P (X ∈ B), provided x ∈ B.

15.2 Examples of conditioning a discrete random variable

(i) If X is Poisson, parameter 1: P (X = x) = e−11x/x! = e−1/x!, P (X ≥ 2) = 1 − e−1 − e−1,

and P (X = x | X ≥ 2) = (e−1/x!)/(1 − 2e−1), for x = 2, 3, 4, ....

(ii) If X is Bin(11,0.5): P (X even) = 1/2 and P (X = x | X even) = 2P (X = x) if x is even, 0 otherwise.

(iii) The forgetting property of the Geometric Distribution

Suppose on each try the probability of “success” is p. Let X be the number of failures before a “success” is

achieved. Then P (X = x) = (1 − p)x.p for x = 0, 1, 2, 3, ...... (Geometric distribution).

P (X ≥ k) = P (first k are failures) = (1 − p)k (or P (X ≥ k) =
∑∞

x=k(1 − p)x.p = same thing).

P (X ≥ k + ℓ | X ≥ ℓ) = P (X ≥ k + ℓ)/P (X ≥ ℓ) = (1 − p)k+ℓ/(1 − p)ℓ = (1 − p)k = P (X ≥ k).

15.3 Conditioning a continuous random variable

Recall X ∈ B is an event and P (X ∈ B) =
∫
x∈B fX(x)dx.

So P (X ∈ C|X ∈ B) = P (X ∈ B ∩ C)/P (X ∈ B) =
∫
B∩C f(x)dx/

∫
B f(x)dx

15.4 Examples of conditioning a continuous random variable

(i) Example of a Uniform random variable Suppose X has p.d.f. f(x) = 1, 0 ≤ x ≤ 1.

P (X > 0.6 | X ≤ 0.8) = P (0.6 < X ≤ 0.8)/P (X ≤ 0.8) = 0.2/0.8 = 0.25.

(ii) Example for an exponential random variable

Suppose X has p.d.f. f(x) = 0.5e−0.5x on 0 < x < ∞: F (x) =
∫ x f(w)dw = 1 − e−0.5x.

So P (X ≤ 6 | X > 2) = P (2 < X ≤ 6)/P (X > 2) = (e−1 − e−3)/e−1 = (1 − e−2) ≈ 6/7.

(iii) The forgetting property of the exponential.

Suppose X has p.d.f. f(x) = λ exp(−λx), 0 < x < ∞.

Note FX(a) = P (X ≤ a) =
∫ a
0 f(x) dx = (1 − exp(−λa)), so P (X > a) = exp(−λa). Consider

P (X > a + b | X > a) = P (X > a + b)/P (X > a) = exp(−λ(a + b))/ exp(−λa) = exp(−λb) = P (X > b).

15.5 Approximating discrete by continuous distributions

Note the geometric and exponential distributions both have the “forgetting” property.

In fact, geometric is just a discrete version of the exponential.

Consider a r.v. T with geometric distribution with p = 0.02 and also T with an exponential with rate

parameter λ = 0.02.

(i)Compare P (T ≥ 50) under the two models.

(ii) Repeat for p = 0.001 (geometric) and λ = 0.001 (exponential).

(iii) Using either model (p or λ = 0.02), what is P (T ≥ 100 | T ≥ 50)?

(iv) Using either model (p or λ = 0.02), what is P (T ≤ 50 | T ≤ 100)?

(v) In (i) is it better to compare P (T > 49.5)? Why? (Actually not, but it could be?)
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