Lecture 13: limits of probabilities of nested events Kelly 2.5

13.1 The collection of all events

For (finte or) countable Ω , events are all subsets of Ω , but this does not work for $\Omega = \Re$.

More generally, Ω is event, E an event $\Rightarrow E^c$ an event, and E_1, E_2, \dots events $\Rightarrow \bigcup_{i=1}^{\infty}$ an event.

(Such collections, closed under complements and countable unions, are called σ -fields: Kelly 1.3.)

Note $\Phi = \Omega^c$ is an event, and $\bigcap E_i = (\bigcup E_i^c)^c$ are then also events.

13.2 The events on \Re generated by sets $(-\infty, b]$ for all real b.

(i) First, for a < b, $(-\infty, a]^c \cap (-\infty, b] = (a, b]$ so we have the half-left-open intervals.

(ii) Next, $\bigcup_n (a, b - \frac{1}{n}] = (a, b)$ so we have the open intervals.

(iii) Next, $\bigcap_n (a - \frac{1}{n}, b] = [a, b]$ so we have the closed intervals.

(iv) Next, if a = b in (iii), we have isolated points $\{b\}$.

(v) Finally, taking countable unions of these, we have all countable sets.

Sets generated by countable unions and intersections of intervals, are the *Borel sets* (Kelly 1.3), and make up the set of events for a real-valued (discrete or continuous) random variable.

13.3 Increasing and decreasing nested sets

(i) A_1, A_2, A_3, \dots are nested increasing sets if $A_1 \subset A_2 \subset A_3 \subset \dots$. Then $\bigcup_{i=1}^n A_i = A_n$ and $\bigcap_{i=1}^n A_i = A_1$.

(ii) A_1, A_2, A_3, \dots are nested decreasing sets if $A_1 \supset A_2 \supset A_3 \supset \dots$. Then $\bigcup_1^n A_i = A_1$ and $\bigcap_1^n A_i = A_n$.

Examples: Kelly 2.5.1, 2.5.2

1. Increasing: $A_n = (-\infty, x - \frac{1}{n}]$. $\lim_{n \to \infty} A_n = (-\infty, x)$.

2. Decreasing: $A_n = (-\infty, x + \frac{1}{n})$ or $A_n = (-\infty, x + \frac{1}{n}]$. $\lim_{n \to \infty} A_n = (-\infty, x]$.

3. Decreasing: A_n is event of no successes in n tries. Then $\lim_{n\to\infty} A_n$ is event of no success ever.

13.4 Nested sets theorem; Kelly 2.5.3, 2.5.8

Theorem: Let A_1, A_2, \ldots be any events in Ω .

(i) If $A_1 \subset A_2 \subset A_3 \subset \dots, P(A_1 \bigcup A_2 \bigcup A_3,\dots) = \lim_{n \to \infty} P(A_n)$.

(ii) If $A_1 \supset A_2 \supset A_3 \supset \dots, P(A_1 \bigcap A_2 \bigcap A_3....) = \lim_{n \to \infty} P(A_n)$.

Proof: (i) Let $B_i = A_i \cap A_{i-1}^c$; Then B_i are disjoint and $B_1 \bigcup B_2 \bigcup ... \bigcup B_n = A_1 \bigcup A_2 \bigcup ... \bigcup A_n$, so $P(A_1 \bigcup A_2 \bigcup A_3....) = P(B_1 \bigcup B_2 \bigcup B_3....) = \sum_{i=1}^{\infty} P(B_i) = \lim_{n \to \infty} (\sum_{i=1}^{n} P(B_i)$

 $= \lim_{n \to \infty} P(B_1 \bigcup B_2 \bigcup \dots \bigcup B_n) = \lim_{n \to \infty} P(A_n).$

(ii) Let $D_i = A_i^c$, so from (i) $P(D_1 \bigcup D_2 \bigcup D_3....) = \lim_{n \to \infty} P(D_n)$.

But $P(D_1 \cup D_2 \cup D_3....) = P((A_1 \cap A_2 \cap ...)^c) = 1 - P(A_1 \cap A_2 \cap ...)$

and $\lim_{n\to\infty} P(D_n) = \lim_{n\to\infty} (1 - P(A_n)) = 1 - \lim_{n\to\infty} P(A_n).$

13.5 Examples; Kelly 2.5.4 etc.

(i) In independent trials, with probability of success p > 0, eventually we have success with probability 1, since if A_n is event of no successes in n tries, $P(A_n) = (1-p)^n \longrightarrow 0$.

(ii) Let the probability of success on try k be p_k . Let $D_n = A_n^c$ be event of success by try n. Then $P(D_n) \leq \sum_{k=1}^n p_k$. If p_k decrease fast (e.g. $p_k = 0.1/n^2$) then $\lim P(D_n) < 1$; eventual success is not certain. (iii) Increasing: For any random variable X; $P(X < a) = \lim P(X \leq (a - \frac{1}{n}))$.

Increasing: For any random variable X; $P(X > a) = \lim P(X > (a + \frac{1}{n}))$. Decreasing: For any random variable X; $P(X \le a) = \lim P(X \le (a + \frac{1}{n}) = \lim P(X < (a + \frac{1}{n})))$. Decreasing: For any random variable X; $P(X \ge a) = \lim P(X \ge (a - \frac{1}{n}) = \lim P(X > (a - \frac{1}{n})))$.

Lecture 14: Cumulative distribution functions Kelly 3.2

14.1 (i) Definition: For any random variable X, the *cumulative distribution function* is defined as

$$F_X(x) = P(X \le x) \text{ for } -\infty < x < \infty.$$

(ii) For a discrete random variable with pmf $p_X(x)$, $F_X(b) = \sum_{x \le b} p_X(x)$.

(iii) For a continuous random variable with pdf $f_X(x)$, $F_X(b) = \int_{-\infty}^b f_X(x) dx$.

(iv) For all random variables, $P(a < X \le b) = F(b) - F(a)$

because $\{X \le b\} = \{X \le a\} \cup \{a < X \le b\}$ and $\{X \le a\} \cap \{a < X \le b\} = \Phi$ (empty set).

14.2 Properties:

(i) F_X is a non-decreasing function: if a < b, then $F_X(a) \le F_X(b)$, because $\{X \le a\} \subset \{X \le b\}$.

(ii) $\lim_{b\to\infty} F_X(b) = 1$, because for any increasing sequence $b_n \to \infty$, n = 1, 2, 3, ...,

$$\Omega = \{X < \infty\} = \bigcup \{X \le b_n\}, \text{ so } 1 = P(\Omega) = \lim_{n \to \infty} P(X \le b_n) = \lim_{n \to \infty} F_X(b_n).$$

(iii) $\lim_{b\to\infty} F_X(b) = 0$, because for any decreasing sequence $b_n \to -\infty$, n = 1, 2, 3, ...,

 $\Phi = \{X = -\infty\} = \cap \{X \le b_n\}, \text{ so } 0 = P(\Phi) = \lim_{n \to \infty} P(X \le b_n) = \lim_{n \to \infty} F_X(b_n).$

(iv) F_X is right-continuous. That is, for any b and any decreasing sequence b_n , n = 1, 2, 3, ..., with $b_n \to b$ as $n \to \infty$, $\lim_{n\to\infty} F_X(b_n) = F_X(b)$, because $\{X \le b\} = \cap \{X \le b_n\}$.

Note $P(X \le b) = P(X \le b) + P(X = b)$, and $P(X \le b) = \lim_{x \to b^-} F(x)$.

If X is discrete, with P(X = b) > 0, F_X will be discontinuous at x = b.

14.3 Case of continuous random variables:

For discrete random variables, $F_X(x)$ is just a set of flat (constant) pieces, with jumps in amount $P(X = x_i)$ at each possible value x_i of X. This is not very useful.

For continuous random variables, the cdf is very useful!

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(w) dw$$
 so $\frac{dF_X(x)}{dx} = f_X(x)$.

That is, we get the pdf by differentiating the cdf: the cdf is often easier to consider.

Example: scaling an exponential random variable.

Suppose $f_X(x) = \lambda e^{-\lambda x}$ on $x \ge 0$, and let Y = aX (a > 0). What is the pdf of Y?

First,
$$F_x(x) = \int_0^x \lambda e^{-\lambda w} dw = [-e^{-\lambda w}]_0^x = 1 - e^{-\lambda x}$$
 on $x \ge 0$.
Now, $F_Y(y) = P(Y \le y) = P(aX \le y) = P(X \le y/a) = F_X(y/a) = (1 - e^{\lambda y/a})$,
so $f_Y(y) = F'_Y(y) = \frac{d}{dy}(1 - e^{-\lambda y/a}) = (\lambda/a)e^{-(\lambda/a)y}$ on $y \ge 0$.

That is Y is an exponential random variable with parameter λ/a .

14.4 Using the cdf to consider functions of random variables (Kelly 5.2)

Using the cdf is often the easiest way to consider functions of a random variable. Example: Suppose X is Uniform U(0,1). What is the pdf of $Y = X^3$?

$$f_X(x) = 1, \ 0 \le x \le 1; \quad F_X(x) = x, \ 0 \le x \le 1$$

$$F_Y(y) = P(Y \le y) = P(X^3 \le y) = P(X \le y^{1/3}) = F_X(y^{1/3}) = y^{1/3}, \ 0 \le y \le 1$$

$$f_Y(y) = \frac{d}{dy} F_Y(y) = (1/3)y^{-2/3} \ 0 \le y \le 1$$

Lecture 15: Conditional probability for random variables

15.1 Conditioning a discrete random variable

Recall P(X = x) is just an event, and $P(X \in B) = \sum_{x \in B} P(X = x)$. So $P(X \in C \mid X \in B) = P(X \in B \cap C)/P(X \in B)$. Also $P(X = x \mid X \in B) = P(X = x)/P(X \in B)$, provided $x \in B$.

15.2 Examples of conditioning a discrete random variable

(i) If X is Poisson, parameter 1: $P(X = x) = e^{-1}1^x/x! = e^{-1}/x!$, $P(X \ge 2) = 1 - e^{-1} - e^{-1}$, and $P(X = x \mid X \ge 2) = (e^{-1}/x!)/(1 - 2e^{-1})$, for x = 2, 3, 4, ...

(ii) If X is Bin(11,0.5):
$$P(X \text{ even}) = 1/2$$
 and $P(X = x \mid X \text{ even}) = 2P(X = x)$ if x is even, 0 otherwise.

(iii) The forgetting property of the Geometric Distribution

Suppose on each try the probability of "success" is p. Let X be the number of failures before a "success" is achieved. Then $P(X = x) = (1 - p)^x p$ for $x = 0, 1, 2, 3, \dots$ (Geometric distribution).

 $\begin{aligned} P(X \ge k) &= P(\text{first } k \text{ are failures}) = (1-p)^k \text{ (or } P(X \ge k) = \sum_{x=k}^{\infty} (1-p)^x p = \text{ same thing}). \\ P(X \ge k+\ell \mid X \ge \ell) &= P(X \ge k+\ell)/P(X \ge \ell) = (1-p)^{k+\ell}/(1-p)^\ell = (1-p)^k = P(X \ge k). \end{aligned}$

15.3 Conditioning a continuous random variable

Recall $X \in B$ is an event and $P(X \in B) = \int_{x \in B} f_X(x) dx$. So $P(X \in C | X \in B) = P(X \in B \cap C) / P(X \in B) = \int_{B \cap C} f(x) dx / \int_B f(x) dx$

15.4 Examples of conditioning a continuous random variable

(i) Example of a Uniform random variable Suppose X has p.d.f. $f(x) = 1, 0 \le x \le 1$.

 $P(X > 0.6 \mid X \le 0.8) = P(0.6 < X \le 0.8) / P(X \le 0.8) = 0.2/0.8 = 0.25.$

(ii) Example for an exponential random variable

Suppose X has p.d.f.
$$f(x) = 0.5e^{-0.5x}$$
 on $0 < x < \infty$: $F(x) = \int^x f(w)dw = 1 - e^{-0.5x}$.

So $P(X \le 6 \mid X > 2) = P(2 < X \le 6) / P(X > 2) = (e^{-1} - e^{-3}) / e^{-1} = (1 - e^{-2}) \approx 6/7.$

(iii) The **forgetting property** of the exponential.

Suppose X has p.d.f. $f(x) = \lambda \exp(-\lambda x), \quad 0 < x < \infty.$

Note $F_X(a) = P(X \le a) = \int_0^a f(x) \, dx = (1 - \exp(-\lambda a))$, so $P(X > a) = \exp(-\lambda a)$. Consider $P(X > a + b \mid X > a) = P(X > a + b)/P(X > a) = \exp(-\lambda(a + b))/\exp(-\lambda a) = \exp(-\lambda b) = P(X > b)$.

15.5 Approximating discrete by continuous distributions

Note the geometric and exponential distributions both have the "forgetting" property.

In fact, geometric is just a discrete version of the exponential.

Consider a r.v. T with geometric distribution with p = 0.02 and also T with an exponential with rate parameter $\lambda = 0.02$.

(i)Compare $P(T \ge 50)$ under the two models.

(ii) Repeat for p = 0.001 (geometric) and $\lambda = 0.001$ (exponential).

(iii) Using either model (p or $\lambda = 0.02$), what is $P(T \ge 100 \mid T \ge 50)$?

(iv) Using either model (p or $\lambda = 0.02$), what is $P(T \le 50 \mid T \le 100)$?

(v) In (i) is it better to compare P(T > 49.5)? Why? (Actually not, but it could be?)