Lecture 11: Discrete random variables Kelly 1.2.8, 3.1 (There are no notes for lecture 10: Midterm-1)

11.1 Definitions and examples

(i) **Definition:** A random variable X is a real-valued function on the sample space.

(ii) Example: the number of heads in 10 tosses of a fair coin.

- (iii) Example: the number of children of blood-type A out of n, from marriages of $AB \times O$ parents.
- (iv) Example: the number of red pea plants out of n, from crosses of $RW \times RW$ pea plants.

(v) Example: the number of red fish, in sampling k fish without replacement, from a pond in which there are N fish of which n are red.

(vi) Example: the number of traffic accidents in a large city in a year.

11.2: Discrete Random variables

- (i) **Definition:** A random variable X is *discrete* if it can take only a discrete set of values.
- (ii) Example (ii) above: X takes a value in $\mathcal{X} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$
- (iii) Example (iii) above: X takes a value in $\mathcal{X} = \{0, 1, 2, ..., n\}$.
- (iv) Example (iv) above: ditto.
- (v) Example (v) above: X takes values in $\mathcal{X} = \{\max(0, k+n-N), \dots, \min(k, n)\}.$
- (vi) Example (vi) above: X takes values in $\mathcal{X} = \{0, 1, 2, ..\} = \{0\} \cup \mathcal{Z}_+$.

11.3 Probability mass function

(i) **Definition:** The probability mass function (p.m.f.) of a discrete random variable X is the set of probabilities P(X = x) for each of the values $x \in \mathcal{X}$ that X can take.

(ii) Example (ii):
$$P(X = x) = {\binom{10}{x}} (1/2)^{10}$$
 for $x = 0, 1, 2, ...10$.

(iii) Example (iii):
$$P(X = x) = \binom{n}{x} (1/2)^n$$
 for $x = 0, 1, 2, ...n$.

(iv) Example (iv):
$$P(X = x) = \binom{n}{x} (3/4)^x (1/4)^{n-x}$$
 for $x = 0, 1, 2, ..., n$

- (v) Example (v): $P(X = x) = \binom{n}{x} \binom{N-n}{k-x} / \binom{N}{k}$ for $x = \max(0, k+n-N), \dots, \min(k, n).$
- (vi) Example (vi): $P(X = x) = \exp(-\lambda)\lambda^{x}/x!$ for x = 0, 1, 2, 3, 4...

11.4 Properties of probability mass functions

(i) $P(X = x) \ge 0$ for each $x \in \mathcal{X}$. (For discrete random variables, in fact P(X = x) > 0 for each $x \in \mathcal{X}$.)

- (ii) $\sum_{x} P(X = x) = 1$ where the sum is over all $x \in \mathcal{X}$.
- (iii) Events $\{X = x\}$ for each x are disjoint: $P(X \in B) = \sum_{x \in B} P(X = x)$.

11.5 Names of some standard probability mass functions

(i) Binomial: Examples (ii), (iii), and (iv) are Binomial random variables, Bin(n,p), with index n and parameter p = (1/2), (1/2) and (3/4) respectively.

(ii) Bernoulli; If n = 1, examples (iii) and (iv) are Bernoulli random variables, Bernoulli(p).

(iii) *Multinomial:* If there are more that two types (for example, number of each of types A, B, AB and O in sample size n from a population) then we have a Multinomial random variable.

- (iv) Hypergeometric: In example (v), X is a Hypergeometric random variable.
- (v) Poisson: In example (vi), X is a Poisson random variable, with parameter λ , $\mathcal{P}o(\lambda)$.

Lecture 12: Continuous random variables Kelly 1.3, 3.1

12.1 Definitions and examples

(i) **Definition:** A continuous random variable X is one that takes values in $(-\infty, \infty)$. That is, in principle: some values may be impossible.

(ii) Example: A random number between a and b: values in the interval (a, b).

(iii) Example: The waiting time until the bus arrives: values in $(0, \infty)$.

(iv) Example: The height of an individual, relative to the population average: values in $(-\infty, +\infty)$ (in principle).

12.2 The probability density function: definition and basic properties.

(i) **Definition:** The probability density function (p.d.f.) of a continuous random variable X is a non-negative function f defined for all values x in $(-\infty, \infty)$ such that for any subset B for which $X \in B$ is an event

$$P(X \in B) = \int_B f(x) \, dx$$

(ii) In fact, events can be made up of unions and intersections of intervals of the form (a, b]:

$$P(X \in (a, b]) = P(a < X \le b) = \int_{a}^{b} f(x) dx$$

(iii) Note the value at the boundary does not matter:

$$P(X = a) = \int_{a}^{a} f(x) dx = 0$$
 for any continuous random variable.

(iv) Note: f(x) = 0 is possible for some x-values (see the p.m.f).

For example, if $X \ge 0$ (as in the waiting-time example), f(x) = 0, if x < 0.

(v) X takes some value in $(-\infty, \infty)$ so

$$1 = P(-\infty < X < \infty) = \int_{-\infty}^{\infty} f(x) dx$$

(vi) The cumulative distribution function of X is

$$F(x) = P(-\infty < X \le x) = \int_{-\infty}^{x} f(z) dz$$

12.3 Examples: of the probability density function

(i) In general: any non-negative real-valued function f on the real line such that $\int_{-\infty}^{\infty} f(x) dx = 1$. (ii) Example (ii) above: Uniform p.d.f. U(a, b).

$$f(x) = \frac{1}{(b-a)}$$
 for $a \le x \le b$ and $f(x) = 0$ otherwise.

(iii) Example (iii) above: Exponential p.d.f (with rate parameter λ): $\mathcal{E}(\lambda)$.

 $f(x) = \lambda \exp(-\lambda x)$ for $x \ge 0$ and f(x) = 0 if x < 0.

(iv) Example (iv) above: Normal p.d.f (with parameters μ and σ^2): $N(\mu, \sigma^2)$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
 for $-\infty < x < \infty$.