
Lecture 4: More counting examples; Kelly 1.2, A.4

4.1 Binomial counts and Stirling’s formula

(i) Suppose there are N equiprobable outcomes in Ω.

Suppose event E is true for R of these outcomes. Then P (E) = R/N .

(ii) An AB parent and an O parent can have an A child or a B child.

Suppose they have n children: there are 2n possible sequences of A and B children.

Assume these are equiprobable. (In fact, they are.)

(
n

k
) of these sequences have k A children. P (k A children out of n) = (

n

k
)/2n.

(iii) n! can be approximated for large n by
√

2πnn+ 1

2 e−n. Also (
n

k
) is largest when k ≈ n/2.

Then, for large n, (
n

n/2
) =

n!

(n/2)!(n/2)!
≈

√
2πnn+ 1

2 e−n

√
2π(n/2)(n/2)+ 1

2 e−(n/2) ×
√

2π(n/2)(n/2)+ 1

2 e−(n/2)

= (1/
√

2π)2n+1nn+ 1

2
−(n/2)− 1

2
−(n/2)− 1

2 = (1/
√

2π)(2/
√

n)2n

Or P ((n/2) A children out of n) = (
n

n/2
)(

1

2
)n = 1/

√

2π(n/4)

This result will have meaning later when we discuss approximating Binomial probabilities by the Normal

probability distribution.

4.2 The binomial theorem; Kelly A.4.7

(x + y)n =
n

∑

k=0

(
n

k
)xkyn−k

Note in each bracket we choose x or y. There are 2n sequences.

The number of sequences in which there are k choices of x is (
n

k
), and each has value xkyn−k.

The case of 4.1 (ii) is a special case when x = y = 1
2 .

An alternative proof is by induction using result of 2.2 (iv).

4.3 Sampling with and without replacement (Kelly 1.2, P. 23)

(i) Draw 3 cards from 52-card pack. E = {draw at least one face card}. Note Ec (no face card) is easier.

With replacement: P (no face card) = (40 × 40 × 40)/(52 × 52 × 52) = 0.455.

P (at least 1 face card) = 1 − 0.455 = 0.545.

Without replacement: P (no face card) = (40 × 39 × 38)/(52 × 51) × 50) = 0.447.

(ii) The birthday problem: ignore Feb 29, and assume other days equiprobable.

In k people, E is event that at least 2 share a birthday. Ec is the event that all bithdays are different.

P (Ec) = 365.364.363.362......(365 − k + 1) / 365.365.365.....365 = 365! / (365 − k)! × (1/365)k

k = 2, P (E) = 1/365; k = 23, P (E) ≈ 0.5; k = 45, P (E) = 0.94.

(iii) Hypergeometric probabilities: N fish in a pond; n are red, N − n are blue.

Sample k fish without replacement. What is the probability x are red?

Total number of outcomes is (
N

k
). Number of ways of choosing the x red fish is (

n

x
), and the (k − x blue

fish is (
N − n

k − x
). Probability is (

n

x
)× (

N − n

k − x
) / (

N

k
)
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Lecture 5: Conditional probability and independence Kelly 2.2, 2.4

5.1 Conditional probability (Kelly 2.2)

(i) Idea: revise probabilities in light of restrictions or partial information.

(ii) Definition: probability of D given E is P (D | E) = P (D ∩ E)/P (E), provided P (E) > 0.

(iii) Example: Our AB and O parents have three children.

Ω = {AAA, AAB, ABA, ABB, BAA, BAB, BBA, BBB} and these are equiprobable (1/8 each).

Let D be at least 2 A children: P (D) = 4/8 = 1/2. Note also P (first child is A) = 4/8 = 1/2.

P (D | first child is A) = P (D ∩ first child is A)/P (first child is A) = (3/8)/(4/8) = 3/4.

5.2 The chain rule (Kelly 2.2.10, 2.2.11) If P (E1 ∩ E2 ∩ ... ∩ En) > 0,

P (E1 ∩ E2 ∩ ... ∩ En) = P (E1).P (E2|E1).P (E3 | E1 ∩ E2)....P (En | E1 ∩ E2 ∩ ...... ∩ En)

To prove, just write it out:

P (E1).P (E2|E1).P (E3 | E1 ∩ E2)....P (En | E1 ∩ E2 ∩ ...... ∩ En) =

P (E1)
P (E2 ∩ E1)

P (E1)

P (E3 ∩ E2 ∩ E1)

P (E2 ∩ E1)
... ...

P (En ∩ ... ∩ E3 ∩ E2 ∩ E1)

P (En−1 ∩ .. ∩ E2 ∩ E1)

This looks messy, but in fact we have already used it in examples of sampling without replacement.

Example: No face card in 3 cards, when sampling without replacement. (40/52).(39/51).(38/50).

5.3 Bayes’ formula: Kelly 2.3

Assume P (D) and P (E) are both > 0. Then, by definition,

P (D | E) P (E) = P (D ∩ E) = P (E | D) P (D) or P (D | E) = P (E | D) P (D) / P (E)

Note also, from the law of total probability, we could compute P (E) as

P (E) = P (E ∩ D) + P (E ∩ Dc) = P (E|D)P (D) + P (E | Dc)(1 − P (D))

Example: P (first child is A | D ≡ “at least 2A children”)

= P (D | first is A)P (first is A)/P (D) = (3/4) × (1/2) / (1/2) = 3/4.

For better examples see Lecture 6: P (D|A) = P (A|D) ONLY BECAUSE P (D) = P (A).

5.4 Independent events (Kelly 2.4)

(i) Definition: E and F are independent if P (E ∩ F ) = P (E) × P (F ).

(ii) Interpretation: Knowing F happens does not affect the probability of E: P (E|F ) = P (E).

(iii) If E and F are independent, P (E ∪ F ) = P (E) + P (F ) − P (E).P (F ) so

P (Ec ∩ F c) = 1 − P (E ∪ F ) = 1 − P (E) − P (F ) + P (E).P (F ) = (1 − P (E)).(1 − P (F )) = P (Ec).P (F c).

That is Ec and F c are independent. (So are Ec and F, and E and F c).

Example: P (A) = 0.36, P (B) = 0.2, P (AB) = 0.08, P (O) = 0.36. P (have antigen A) = P (A) + P (AB) =

0.44, P (have antigen B) = P (B) + P (AB) = 0.28.

0.44 × 0.28 = 0.1232 6= 0.08 = P (AB): Having antigen A is NOT independent of having antigen B.

P (have antigen A | have antigen B) = P (AB)/P (have antigen B) = 0.08/0.28 = 0.286

< 0.44 = P (have antigen A)

Knowing a person has the B antigen decreases the probability they have the A antigen.
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Lecture 6: Probability Examples

6.1 More conditional probabilities

(i) Mendel discovered that every pea plant has two factors or alleles for flower color: R (red) and W (white).

Each plant has RR or RW and is red, or WW and is white.

We cross two plants which we know are RW . The offspring plants are independent and each is RR, RW or

WW with probabilities 1/4, 1/2, 1/4.

What is the probability an offspring is RR, given it is red.

Answer: P (red) = 3/4, P (RR ∩ red) = P (RR) = 1/4, so P (RR | red) = (1/4)/(3/4) = 1/3.

(ii) Testing for a rare disease (Kelly: Exx 2.3.7)

Suppose we have a quite effective test, so P (+ | disease) = 0.99, and test is quite accurate, so P (+ | no disease) =

0.02). Now suppose the frequency of the disease is 0.001.

P (+ test result) = P (+ | disease)P (disease) + P (+ | no disease)P (no disease)

= 0.99 × 0.001 + 0.02 × (1 − 0.001) = 0.00099 + 0.0198 = 0.02097

P (disease | +) = P (+ | disease)P (disease)/P (+) = 0.99 × 0.001/0.02097 = 0.047

Less than 5% of people testing positive actually have the disease!

The probability of spots given measles is large: the probability of measles given spots is small.

The probability of 4 legs given elephant close to 1: the probability of elephant given 4 legs is close to 0.

6.2 Updating with more information

(i) Allele frequencies in a population of pea plants.

Suppose the R allele has frequency 0.3, and W 0.7, and the types of the two alleles in an individual are

independent. What is the probability a red-flowered pea-plant is RR?

Solution: By independence, P (RR) = 0.3 × 0.3 = 0.09, P (WW ) = 0.7 × 0.7 = 0.49,

P (RW ) = 1 − 0.09 − 0.49 = 0.42.

Overall P (red) = P (RR) + P (RW ) = 0.09 + 0.42 = 0.51,

so then P (RR | red) = P (RR ∩ red)/P (red) = 0.09/0.51 = 0.176.

(ii) The red pea plant is crossed to a white one (WW ). The first offspring has red flowers. What now is the

probability the red parent plant is RR?

Solution: P (red offspring | RR parent) = 1, P (red offspring | RW parent) = (1/2).

P (red offspring) = P (red offspring | RR)P (RR) + P (red offspring | RW )P (RW )

= 1 × 0.176 + (1/2)(1 − 0.176) = 0.588.

P (red parent is RR | red offspring) = P (red offspring | red parent is RR)×P (red parent is RR)/P (red offspring)

= 1 × 0.176/0.588 = 0.299 ≈ 0.3.

6.3 Independent events

(i) Back to the two RW parent pea plants of 6.1 (i):

Each offspring is red with probability 3/4, and white with probability 1/4, and the colors of offspring pea

plants are independent. We grow up 10 offspring.

What is the probability all 10 are red: answer (3/4)10 = 0.0563

What is the probability of at least one red: answer 1 − P (all white) = 1 − (1/4)10 = 0.9999.
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