Lecture 4: More counting examples; Kelly 1.2, A.4

4.1 Binomial counts and Stirling’s formula

(i) Suppose there are N equiprobable outcomes in .

Suppose event E is true for R of these outcomes. Then P(E) = R/N.

(ii) An AB parent and an O parent can have an A child or a B child.

Suppose they have n children: there are 2™ possible sequences of A and B children.

Assume these are equiprobable. (In fact, they are.)

( Z ) of these sequences have k A children.  P(k A children out of n) = ( Z ) /2"

(iii) n! can be approximated for large n by 2" t3e". Also ( Z ) is largest when k ~ n/2.

Then, for large n, ( n ) _ n! N o tien

n/2 (n/2)!(n/2)! \/27r(n/2)("/2)+%e*(”/2) X 27T(n/2)(”/2)+%6*(”/2)
= (1/Vem)2ntipnta—/)—5=(/2D=3 = (1/y/27)(2/Vn)2"

n

Or P((n/2) A children out of n) = ( o )(%)n = 1/,/2n(n/4)

This result will have meaning later when we discuss approximating Binomial probabilities by the Normal
probability distribution.

4.2 The binomial theorem; Kelly A.4.7 noo.

k=0
Note in each bracket we choose x or y. There are 2" sequences.

n
The number of sequences in which there are k choices of z is ( . ), and each has value z¥y" .

=

The case of 4.1 (ii) is a special case when z =y = 3.
An alternative proof is by induction using result of 2.2 (iv).
4.3 Sampling with and without replacement (Kelly 1.2, P. 23)
(i) Draw 3 cards from 52-card pack. E = {draw at least one face card}. Note E° (no face card) is easier.
With replacement: P(no face card) = (40 x 40 x 40)/(52 x 52 x 52) = 0.455.
P(at least 1 face card) = 1 — 0.455 = 0.545.
Without replacement: P(no face card) = (40 x 39 x 38)/(52 x 51) x 50) = 0.447.
(ii) The birthday problem: ignore Feb 29, and assume other days equiprobable.
In k people, E is event that at least 2 share a birthday. E°¢ is the event that all bithdays are different.
P(E°) = 365.364.363.362......(365 — k + 1) / 365.365.365.....365 = 365! / (365 — k)! x (1/365)F
k=2, P(E)=1/365; k =23, P(E) ~ 0.5; k = 45, P(E) = 0.94.
(iii) Hypergeometric probabilities: N fish in a pond; n are red, N — n are blue.
Sample k fish without replacement. What is the probability x are red?

N
Total number of outcomes is ( . ) Number of ways of choosing the z red fish is ( " ), and the (k — x blue
x
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Lecture 5: Conditional probability and independence Kelly 2.2, 2.4

5.1 Conditional probability (Kelly 2.2)

(i) Idea: revise probabilities in light of restrictions or partial information.

(ii) Definition: probability of D given E is P(D | E) = P(DNE)/P(E), provided P(E) > 0.
(iii) Example: Our AB and O parents have three children.

Q0 = {AAA AAB,ABA,ABB,BAA, BAB, BBA, BBB} and these are equiprobable (1/8 each).
Let D be at least 2 A children: P(D) = 4/8 = 1/2. Note also P(first child is A) =4/8 =1/2.
P(D | first child is A) = P(D N first child is A)/P(first child is A) = (3/8)/(4/8) = 3/4.
5.2 The chain rule (Kelly 2.2.10, 2.2.11) If P(E; N E2N..NE,) > 0,

P(E1 NEyN..N En) = P(El)P(EQ‘El)P(Eg | EiN EQ)P(En | EiNnEyn... N En)
To prove, just write it out:

P(El).P(E2|E1).P(E3 | Ey ﬂEQ)....P(En ‘ EiNEyn.... ﬂEn) =
P(EgﬂEl)P(EgﬂEgﬂEl) P(Enﬂ...ﬂEgﬂEgﬂEl)

P(E) P(Ey) P(E;NE) T P(EpoiN . N EyNEY)

This looks messy, but in fact we have already used it in examples of sampling without replacement.
Example: No face card in 3 cards, when sampling without replacement. (40/52).(39/51).(38/50).
5.3 Bayes’ formula: Kelly 2.3

Assume P(D) and P(FE) are both > 0. Then, by definition,

P(D|FE)P(E) = P(DNE) = P(E|D)P(D) or P(D|FE) = P(E|D)P(D)/P(E)
Note also, from the law of total probability, we could compute P(E) as
P(E) = P(EnD)+P(END°) = P(E|D)P(D) + P(E| D(1—- P(D))

Example: P(first child is A | D = “at least 2A children”)

= P(D | first is A)P(first is A)/P(D) = (3/4) x (1/2) / (1/2) = 3/4.
For better examples see Lecture 6: P(D]|A) = P(A|D) ONLY BECAUSE P(D) = P(A).
5.4 Independent events (Kelly 2.4)
(i) Definition: E and F' are independent if P(ENF) = P(E) x P(F).
(i) Interpretation: Knowing F' happens does not affect the probability of E: P(E|F) = P(E).
(iii) If E and F are independent, P(E U F) = P(E) + P(F) — P(E).P(F) so
P(E‘NF°)=1-P(EUF)=1—-P(FE)—P(F)+ P(E).P(F) = (1-P(FE)).(1-P(F)) = P(E°).P(F°).
That is £ and F* are independent. (So are E° and F, and E and F°).
Example: P(A) = 0.36, P(B) = 0.2, P(AB) = 0.08, P(O) = 0.36. P(have antigen A) = P(A) + P(AB) =
0.44, P(have antigen B) = P(B) + P(AB) = 0.28.
0.44 x 0.28 = 0.1232 # 0.08 = P(AB): Having antigen A is NOT independent of having antigen B.
P(have antigen A | have antigen B) = P(AB)/P(have antigen B) = 0.08/0.28 = 0.286

< 0.44 = P(have antigen A)
Knowing a person has the B antigen decreases the probability they have the A antigen.



Lecture 6: Probability Examples

6.1 More conditional probabilities

(i) Mendel discovered that every pea plant has two factors or alleles for flower color: R (red) and W (white).
Each plant has RR or RW and is red, or WW and is white.

We cross two plants which we know are RW. The offspring plants are independent and each is RR, RW or
WW with probabilities 1/4, 1/2, 1/4.

What is the probability an offspring is RR, given it is red.

Answer: P(red) = 3/4, P(RRNred) = P(RR) =1/4, so P(RR | red) = (1/4)/(3/4) = 1/3.

(ii) Testing for a rare disease (Kelly: Exx 2.3.7)

Suppose we have a quite effective test, so P(+ | disease) = 0.99, and test is quite accurate, so P(+ | no disease) =

0.02). Now suppose the frequency of the disease is 0.001.

P(+ test result) = P(+ | disease)P(disease) + P(+ | no disease)P(no disease)
= 0.99 x 0.001 +0.02 x (1 —0.001) = 0.00099 + 0.0198 = 0.02097
P(disease | +) = P(+ | disease)P(disease)/P(+) = 0.99 x 0.001/0.02097 = 0.047

Less than 5% of people testing positive actually have the disease!
The probability of spots given measles is large: the probability of measles given spots is small.
The probability of 4 legs given elephant close to 1: the probability of elephant given 4 legs is close to 0.
6.2 Updating with more information
(i) Allele frequencies in a population of pea plants.
Suppose the R allele has frequency 0.3, and W 0.7, and the types of the two alleles in an individual are
independent. What is the probability a red-flowered pea-plant is RR?
Solution: By independence, P(RR) = 0.3 x 0.3 = 0.09, PWW) = 0.7 x 0.7 = 0.49,
P(RW) = 1-0.09—0.49 = 0.42.
Overall P(red) = P(RR) + P(RW) = 0.09 + 0.42 = 0.51,
so then P(RR | red) = P(RRNred)/P(red) = 0.09/0.51 = 0.176.
(ii) The red pea plant is crossed to a white one (WW). The first offspring has red flowers. What now is the
probability the red parent plant is RR?
Solution: P(red offspring | RR parent) = 1, P(red offspring | RW parent) = (1/2).
P(red offspring) = P(red offspring | RR)P(RR) + P(red offspring | RW)P(RW)
= 1x0.176 + (1/2)(1 — 0.176) = 0.588.
P(red parent is RR | red offspring) = P(red offspring | red parent is RR)x P(red parent is RR)/P(red offspring)
= 1x0.176/0.588 = 0.299 ~ 0.3.
6.3 Independent events
(i) Back to the two RW parent pea plants of 6.1 (i):
Each offspring is red with probability 3/4, and white with probability 1/4, and the colors of offspring pea
plants are independent. We grow up 10 offspring.
What is the probability all 10 are red: answer (3/4)1© = 0.0563
What is the probability of at least one red: answer 1 — P(all white) = 1— (1/4)!1° = 0.9999.



