
Lecture 1: Sample spaces and events: Kelly 1.1, 1.2

1.1 Sample spaces

The sample space Ω is the set of all possible outcomes of an experiment.

One and only one outcome can occur.

1.2 Examples

(i) Child is boy or girl: Ω = {boy, girl}

(ii) Toss of one die: Ω = {1, 2, 3, 4, 5, 6}

(iii) Number of traffic accidents: Ω = {0, 1, 2, 3, 4, ....} = {0} ∪ Z+.

(iv) Time waiting for the bus: Ω = (0,∞) = ℜ+, the positive half line.

1.3 Events

Any subset E of Ω is a event.

(The book says this: it is OK for countable sample spaces, but an oversimplification for a space like ℜ+.)

1.4 Combining events

(i) If E is an event, not-E (the complement of E: written Ec) is an event.

(ii) If E is an event and F is an event, then “E and/or F” is an event. “E and/or F” is written E ∪ F .

(iii) If E1, E2, .... are events then E1 ∪ E2 ∪ E3.... is an event. (Countable unions.)

(iv) If E is an event and F is an event, then “E and F” is an event. “E and F” is written E ∩ F .

(v) If E1, E2, .... are events then E1 ∩ E2 ∩ E3.... is an event. (Countable intersections.)

1.5 More events:

(i) The empty set Φ is an event: so Ω = Φc is an event.

If E ∩ F = Φ, E and F are disjoint also known as mutually exclusive.

(ii) E and Ec are disjoint events: E ∪ Ec = Ω, E ∩ Ec = Φ.

(iii) Events E1, E2 .....Ek are mutually exclusive if Ei ∩ Ej = Φ for all pairs (i, j) (i, j = 1, ..., k, i 6= j).

(iv) Events E1, E2 .....Ek are exhaustive if E1 ∪ E2 ∪ .... ∪ Ek = Ω.

(v) If Ω is discrete, the elements of Ω are a set of mutually exclusive and exhaustive events.

1.6 A genetic example: The ABO blood types.

We can be blood type A, B, AB or O.

Let our “experiment” be finding the blood types of two children in a family.

Then Ω = {(i, j); i, j = A, B, AB, O}.

Let E1 be the first child is type A. Let E2 be the first child is type O.

Let E3 be the second child is type B.

Let E4 be at least one child is type A. Let E5 be at most one child is type A.

Let E6 be the two children have the same blood type.

Let E7 be the two children have different blood types.

Which pairs of events are complements?

Which pairs of events are disjoint?

Which pair of events is mutually exclusive and exhaustive?

What is the intersection of E4 and E5?
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Lecture 2: Permutations and combinations: Kelly 1.1, 1.2, 2.1

2.1 Basic principle of counting

If an experiment has k steps, and if earlier choices do NOT limit later ones, then if step-1 can be done in n1

ways, step-2 in n2 ways, ... step-k in nk ways,

then there are n1 × n2 × ... × nk possible outcomes for (step-1, ..., step-k).

Corollary: There are 2k subsets of a set size k.

Proof: Each element i, i = 1, ..., k can be chosen, or not: ni = 2, i = 1, ..., k.

So total possible is 2 × 2 × .... × 2 = 2k.

Note: for proper (not Ω), non-empty (not Φ) subsets, there are 2k − 2.

2.2 Permutations and combinations

(i) The number of ways of ordering n distinct objects is n(n − 1)(n − 2)....3.2.1 = n! (n-factorial).

(ii) The number of ways of choosing k distinct objects, in order, from n is n(n−1)....(n−k+1) = n!/(n−k)!.

(iii) If we do not care about the order in which the k objects are selected, there are k! selections that give the

same combination.

That is there are n!/((n − k)!k!) distinct combinations: this is often written nCk or (
n

k
).

(iv) A useful formula:

(
n

k
) = (

n − 1

k − 1
) + (

n − 1

k
)

Consider the number of choices that do and do not contain the particular object “1”.

2.3 Multinomial combinations

Number of ways of arranging n1 objects type-1, n2 objects type-2, ... nk objects type-k,

where n1 + n2 + .. + nk = n:

Choose the n1 positions for type 1: (
n

n1

) = n!/(n1!(n − n1)!).

Now out of the remaining (n − n1) positions choose n2 for type-2:

number of ways = (
n − n1

n2

) = (n − n1)!/(n2!(n − n1 − n2)!). etc. ...

Total number of ways is

n!

n1!(n − n1)!

(n − n1)!

n2!(n − n1 − n2)!

(n − n1 − n2)!

n3!(n − n1 − n2 − n3)!
...

(n − n1 − n2 − ... − nk−1)!

nk!0!
=

n!

n1! n2!....nk!

Example: Twelve students go to donate blood: 5 are type A, 2 are type B, one is AB, and 4 are type O.

How many different orderings of the types of blood in the 12 blood donation tubes are there?

Answer: 12!/(5! × 2! × 1! × 4!) = (12.11.10.9.8.7.6)/(2.4.3.2) = 12.11.10.9.7 = 914, 760.
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Lecture 3: Probabilities of Events: Kelly 1.2, 2.1

3.1 Probability axioms

For each event E we assume we can assign a number P (E) which satisfies the following three axioms:

(i) P (E) ≥ 0 for every event E.

(ii) P (Ω) = 1

(iii) If E1, E2, .... are mutually exclusive P (E1 ∪ E2 ∪ E3 ∪ ....) = P (E1) + P (E2) + P (E3) + .....

Note: for a countable sample space, each outcome (element of Ω) has a probability, and each even is a union

of outcomes, with probability the sum of the probabilities of the outcomes.

3.2 Probability interpretation as a limiting frequency

A useful interpretation of P (E) is that it is the proportion of times an outcome in E occurs in a large number

of repetitions of the same experiment with outcomes in the sample space Ω.

Example: Sampling an individual from a very large population.

Ω = {A, B, AB, O}.

P (A) can be interpreted as the proportion of A blood-type individuals in the population. If we repeat the

sampling of an individual again, and again, the proportion of times we observe the individual to have blood

type A is P (A).

For the USA population, roughly, P (A) = 0.36, P (B) = 0.20, P (AB) = 0.08, and P (O) = 0.36.

P (antigen A on red blood cells) = P ({A} ∪ {AB}) = P (A) + P (AB) = 0.44 for this example.

3.3 Basic probability formulae

(i) Ω = E ∪ Ec, E ∩ Ec = Φ, so P (Ec) + P (E) = P (Ω) = 1, or P (Ec) = 1 − P (E).

This also shows P (E) ≤ 1, since all probabilities are non-negative.

(ii) E ∪ F = E ∪ (Ec ∩ F ), so P (E ∪ F ) = P (E) + P (Ec ∩ F ).

So P (E ∪ F ) + P (E ∩ F ) = P (E) + P (Ec ∩ F ) + P (E ∩ F ) = P (E) + P (F ),

or P (E ∪ F ) = P (E) + P (F ) − P (E ∩ F ).

3.4 Two important probability formulae

(i) Law of total probability

Suppose E1, E2, ...., form a partition of Ω.

That is, E1, E2, ... are mutually exclusive and exhaustive.

That is, Ei ∩ Ej = Φ (disjoint), and Ω = E1 ∪ E2 ∪ ....

Then for any event F , F = ∪i (F ∩ Ei), P (F ) =
∑

i P (F ∩ Ei).

Special case: if Ei is ith outcome in a countable Ω, F ∩ Ei = Ei or F ∩ Ei = Φ, and P (F ) =
∑

i∈F P (Ei).

(ii) The inclusion and exclusion formula

P (D ∪ E) = P (D) + P (E) − P (D ∩ E).

P (C ∪ D ∪ E) = P (C) + P (D) + P (E) − P (C ∩ D) − P (D ∩ E) − P (C ∩ E) + P (C ∩ D ∩ E).

P (E1 ∪ E2 ∪ ... ∪ Ek) = P (E1) + P (E2) + ...P (Ek)

−P (E1 ∩ E2) − all the other 2-way

+P (E1 ∩ E2 ∩ E3) + all the other 3-way

−P (E1 ∩ E2 ∩ E3 ∩ E4) − all the other 4-way

...... ± P (E1 ∩ E2 ∩ .... ∩ Ek).
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