1.				
German	English (E)			(a) $P(E \cup G) = 1 - P(E^c \cap G^c) = 0.5.$
(G)	Yes	No		(b) $P(E \cap G) = P(E) + P(G) - P(E \cup G)$
Yes			0.3	0.3 + 0.4 - 0.5 = 0.2.
No		0.5	0.7	(c) No E and G are not independent because
	0.4	0.6	1.0	$P(E) \times P(G) = 0.12$ but $P(E \cap G) = 0.2$.

2. (a) The number of ways of choosing 5 out of 8 is $\binom{8}{5} = 8 \times 7 \times 6/(3 \times 2 \times 1) = 56.$

(b) If Joe invites neither Fred nor Anna he must choose 5 out of the other 6. Then there are just $\begin{pmatrix} 6\\5 \end{pmatrix} = 6$ choices.

(c) If Joe invites both Fred and Anna, then he must choose another 3 out of the other 6, so the number of choices is $\begin{pmatrix} 6\\3 \end{pmatrix} = 6 \times 5 \times 4/(3 \times 2 \times 1) = 20.$

3. (a) In a population 25% of people are type bb, 50% are type bg, and the remaining 25% have grey eyes. Let B_0 be the event Sarah has brown eyes, bb is event Sarah is type bb, and bg is event Sarah is type bg.

$$P(bb \mid B_0) = 0.25/(0.25 + 0.5) = 1/3$$

(b) Sarah marries Paul, who has grey eyes. Their first child has brown eyes: event B_1 .

$$P(bb \cap B_0 \cap B_1) = P(B_1 \mid bb \cap B_0)P(bb \cap B_0) = 1 \times P(bb) = P(bb) = 0.25$$

 $P(bg \cap B_0 \cap B_1) = P(B_1 \mid bg \cap B_0)P(bg \cap B_0) = 0.5 \times P(bg) = 0.5 \times 0.5 = 0.25.$

So $P(bb \mid B_0 \cap B_1) = 0.25/(0.25 + 0.25) = 1/2.$

(c) Sarah and Paul's second child also has brown eyes: event B_2 .

 $\begin{aligned} P(bb \cap B_0 \cap B_1 \cap B_2) &= P(B_1 \cap B_2 \mid bb \cap B_0)P(bb \cap B_0) = 1 \times 1 \times P(bb) = P(bb) = 0.25 \\ P(bg \cap B_0 \cap B_1 \cap B_2) &= P(B_1 \cap B_2 \mid bg \cap B_0)P(bg \cap B_0) = 0.5 \times 0.5 \times P(bg) = 0.5 \times 0.5 \times 0.5 \times 0.5 = 0.125. \\ \text{So } P(bb \mid B_0 \cap B_1 \cap B_2) &= 0.25/(0.25 + 0.125) = 2/3. \end{aligned}$

(d) Sarah and Paul's third child has grey eyes; event G_3 .

Sarah can no longer be of type bb: she must be bg.

$$P(bb \mid B_0 \cap B_1 \cap B_2 \cap G_3) = 0.$$

	ea	ch eve	ent	combined events			updated prob	
	bb	bg	grey	bb	bg	grey	bb	$\mathbf{b}\mathbf{g}$
Popn	0.25	0.5	0.25					
B_0	1	1	0	0.25	0.5	0	1/3	2/3
B_1	1	0.5		0.25	0.25		1/2	1/2
B_2	1	0.5		0.25	0.125		2/3	1/3
G_3	0	0.5		0	0.0625		0	1