Justify your answers briefly.

1. (12 points total; 3 points each part)

In a student cafeteria, Burgers can be ordered with a variety of extras. In fact, 40% of the Burger orders include cheese, and 30% include bacon, but 40% of the orders are for a Burger with neither cheese nor bacon.

	Cheese (C)		
	Yes	No	
Bacon (B) Yes	0.1	0.2	$\mathbf{0 . 3}$
No		$\mathbf{0 . 4}$	
	$\mathbf{0 . 4}$	0.6	

(a) $P\left(C^{c}\right)=1-0.4=0.6, P\left(B \cap C^{c}\right)=0.6-0.4=0.2$,

$$
P(B \cap C)=0.3-0.2=0.1
$$

(b)No, not independent:
$0.1=P(B \cap C) \neq P(B) . P(C)=0.3 \times 0.4=0.12$
(c) $P(B \mid C)=P(B \cap C) / P(C)=0.1 / 0.4=0.25$
(d) $P(C \mid B)=P(B \cap C) / P(B)=0.1 / 0.3=0.33$
2. (8 points total; 4 points each part)

There are 8 balls in an urn: 2 are blue, 2 are white, and 4 are red.
Three balls are to be selected at random from the urn.
(a) With replacement: on each draw $P(W)=P(B)=2 / 8=1 / 4$ and $P(R)=1 / 2$.

Probability all three draws are same color is

$$
P(R R R)+P(W W W)+P(B B B)=\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{4}\right)^{3}+\left(\frac{1}{4}\right)^{3}=(1 / 8)+(1 / 32)=5 / 32
$$

(b) Without replacement, the only way all three can be the same color is if all three are red.

$$
P(R R R)=(4 / 8) \times(3 / 7) \times(2 / 6)=1 / 14
$$

3. (16 points: 4 points each part)

In a certain large population, families have 1,2 , or 3 kids with probabilities $3 / 16,1 / 4$ and $9 / 16$, respectively. Note that a kid chosen randomly from a family size $1,2,3$ is the youngest in their family with probabilities $1,1 / 2$ and $1 / 3$, respectively. A random family is selected for a special sales promotion.
(a) By law of total probablity, probability kid is youngest is

$$
1 \times(3 / 16)+(1 / 4) \times(1 / 2)+(1 / 3) \times(9 / 16)=(3+2+3) / 16=1 / 2
$$

(b) Conditional probabilities for eldest are $1,1 / 2$ and $1 / 3$, just as for youngest. So this probability is also (1/2).
(A few read this as probability kid is eldest given kid in (a) is youngest - this is harder, answer $3 / 8$, but if done right I accepted it.)
(c) By Bayes theorem, probabilities are

$$
1 \times(3 / 16) /(1 / 2),(1 / 2) \times(1 / 4) /(1 / 2) \text { and }(1 / 3) \times(9 / 16) /(1 / 2) \text { or } 3 / 8,1 / 4 \text { and } 3 / 8
$$

(d) A random kid is chosen from the same family. (This choice is "with replacement": the same kid could be chosen again.) Again the kid chosen is the youngest in his/her family.
Using Bayes theorem again with updated probabilities: the numerators of the updated probabilities are $1 \times(3 / 8),(1 / 2) \times(1 / 4)$ and $(1 / 3) \times(3 / 8)$, and sum of these is $(3 / 8)+(1 / 8)+(1 / 8)=5 / 8$, for updated probabilties of $1 \times(3 / 8) /(5 / 8),(1 / 2) \times(1 / 4) /(5 / 8)$ and $(1 / 3) \times(3 / 8) /(5 / 8)$, or $3 / 5,1 / 5$ and $1 / 5$.
(Note if we do all details of the computations $P\left(Y_{2} \mid Y_{1}\right)=5 / 8, P\left(Y_{1} \cap Y_{2}\right)=5 / 16$ - be careful.)

