7. STATISTICAL INFERENCE: FPP Ch 21,23,26,27 7.1 CONFIDENCE INTERVALS

• We select ^a sample (subset) from the population

We compute a <u>statistic</u> based on the sample, to estimate the population parameter.

• We can use ^a percentage in ^a sample to estimate ^a percentage in ^a population.

• We can use ^a sample average to estimate ^a population mean.

• But there is always <u>chance error</u>.

• We know the percentage or fraction (average of "0" and "1" counts), or ^a sample average, will, for large samples, have the normal distribution shape.

• We can use the normal distribution to figure the chances that our sample average is within some amount of the true value: that is, that the chance error is smaller than some amount.

• We construct a <u>confidence interval</u> from our sample.

• For example, ^a 95% confidence interval covers the true value in 95% of repetitions of the sampling process.

• NOTE 1: the chances are in the sampling, not in the true value.

• NOTE 2: sampling from ^a large population (without replacement) is just like sampling from ^a box (with replacement).

7.2 CONFIDENCE INTERVAL FOR A PERCENTAGE

• Suppose we want to estimate the percentage of households in ^a very large city with incomes over \$50K.

• We take ^a sample of households: this is like sampling from ^a box of "0" and "1", but we do not know the fraction of "1"s.

• We observe the percentage of households is our sample with incomes over \$50K. This is our estimate of the population percentage – or the fraction of "1"s in the box.

• The expected value (EV) of our estimate is the true population percentage.

• The SE is $\sqrt{\text{fraction of 1} \times \text{fraction of 0}}/\sqrt{\text{sample size}}$

• But we do not know the fraction of "1"s: use the sample fraction in the SE formula, to get an estimated SE.

- Now we know (sample-value EV)/SE is like ^a z-score. We know it is between -2 and $+2$, with 95% chance.
- So the interval from (observed- $2\times$ SE) to (observed $+ 2 \times SE$) is a 95% confidence interval for the true population percentage.

• That is, for 95% of samples the confidence interval will include the true value.

• The chances are in the sampling, not in the true value.

Blank page for your notes

4

7.3 EXAMPLE

Blank page for your notes

• We take ^a random sample of 1000 households from our city.

We find ⁴⁰⁰ (40% or fraction 0.4) have incomes over \$50K per year.

• We estimate that 40% of households in the city have incomes over \$50K per year, but we also want to know how accurate our estimate is likely to be.

• We estimate the SE for this percentage:

 $\sqrt{0.4 \times 0.6}/\sqrt{1000}$ = 0.49/31.62 = 0.015 or 1.5%

• Our 95% confidence interval is

from (40-2 $\times1.5)$ to (40 $+$ 2 $\times1.5),$ or from 37% to 43%.

• Our 68% confidence interval is from 38.5% to 41.5%

• If ^a large number of people take samples, and construct a confidence interval in this way, then 95% of the 95% confidence intervals will cover the true value.

• In polls, our 95% confidence interval is often stated as 40% plus-or-minus 3 percentage points.

7.4 CONFIDENCE INTERVAL FOR A POPULATION MEAN

• Now we want ^a confidence interval for ^a population mean – for example, mean household income in the city.

• Our estimate is the sample average: for example, for 1000 sampled households, as above, suppose \$48K.

• The SE for the sample average is $(SD \text{ of box}) / \sqrt{\text{sample size}}$

• But we do not know SD of the population (or box). So use SD of the sample, as an estimate – for example \$15K.

• Estimated SE is $15,000/\sqrt{1000} = 470

• The 95% confidence interval for the mean household income in the city is from 48,000-2 \times 470 to 48,000 $+$ 2 \times 470, or \$47,060 to \$48,940.

• Note again the randomness is in the sample: 95% of intervals constructed from samples in this way will cover the true value.

• We do not know which 95%: we do not know whether our particular interval does or doesn't.

• Note we are NOT measuring the spread of household incomes in the city: we are measuring our uncertainty about the MEAN household income in the city.

7.5 OVERVIEW OF INFERENCE

• Population has some histogram of values, but we do not know it.

• Histogram for ^a simple random sample of subjects should be "somewhat like" the population histogram. NOTE: these histograms are NOT bell-shaped.

• So we use the sample values to estimate the population values

Use the sample percent over \$50K to estimate population percent of households over \$50K.

Use the sample mean to estimate population mean.

• But we need to know the size of the chance error.

• So we need an SE, but we do not know the population SD needed to compute it.

• So we use the sample SD to approximate the population SD.

• Then we can figure the relevant SE.

• Then we can figure z-score, confidence intervals or Pvalues using this estimated SE.

7.6 WHICH SE ?

Blank page for your notes

• If ^a question specifies the SD, we can use it to compute an SE.

• We than then use the SE to compute z-scores and chances.

CONFIDENCE INTERVAL

• If we are constructing ^a confidence interval, we must use the sample SD to compute an estimated SE.

• We then use this estimated SE in computing the confidence interval.

HYPOTHESIS TESTING: (next page)

• If ^a hypothesis specifies the SD, then use the hypothesized value to compute an SE.

• If the hypothesis specifies only ^a mean, not an SD, then again use the sample SD to compute an estimated SE.

• To test ^a hypothesis, we compute ^a z-score, and hence get the chance of observing something as-or-more extreme if the null hypothesis is true (the P-value).

7.7 HYPOTHESES AND SIGNIFICANCE TESTS

• A hypothesis is ^a statement about ^a population value, or chance process. For example:

This is ^a fair coin.

 40% of households have incomes over $\$50\mathrm{K}.$

Mean household income in this city is \$48K.

• Our data (tosses of coin, incomes in sample of households) then tell us whether we can reject this null hypothesis.

• For example, if we see 370 households in our sample of 1000 (that is 37%) can we reject that the percentage in the population is $40\%.$

• That is, is the difference we see significant or could it have just happened by chance?

• We consider whether our results could happen "by chance" if the null hypothesis is true.

• If the null hypothesis is true, the EV for the percentage of households is 40% and the SE is 1.5% (see 7.3).

• So our z-score would be $(37 - 40)/1.5 = -2$.

• The chance of getting ^a z-score at least as big as this (in size) is only 5%.

• We say the significance level is 5% (P=0.05). This means, if the null hypothesis is true the chance of being this far out (or further) is only 5%.

• Small significance levels are evidence against the null hypothesis.

7.8 TESTING A GIVEN VALUE OF A PERCENTAGE

- Question: Is this ^a fair coin?
- Null hypothesis: this is ^a fair coin.
- Data: the percentage of heads in N tosses.
- If the null hypothesis is true, the EV is 50% or 0.5 and ${\bf the \,\, SE\,\, is \,\, \sqrt{(0.5)\times(0.5)}/\sqrt{N} \,\,} = \,\, 0.5/\sqrt{N})$

• The significance level (P-value) measures the chance of getting ^a value at least as far from the EV as observed, if the null hypothesis is true.

• If we toss ^a fair coin 50 times, the chance we get more than 54% heads or less than 46% heads is quite large (48.4%). If we see 54% heads we cannot reject that the coin is fair.

• If we toss ^a fair coin 500 times, the chance we get more than 54% heads or less than 46% heads is only 7%. If we see 54% heads we might suspect the coin is not fair.

• If we toss ^a fair coin 5000 times, the chance we

get more than 54% heads or less than 46% heads is practically 0. If we see 54% heads we will reject that the coin is not fair.

• Recall the Law of Averages.

Rest of this page for your notes

7.9 TESTING A GIVEN VALUE OF A MEAN

- Question: Is the mean height of women 65 inches?
- Hypothesis: The mean height of women is 65 inches.
- Data: heights of sample of women from the population Avg of these heights; SD of these heights.
- EV for sample average ⁼ population (or box) mean $\rm SE$ for sample average = $\rm (SD$ of box)/ $\sqrt{\rm sample\ size}$
- But we do not know the SD of the box, so we estimate it by the SD of the sample.
- If hypothesis is true: z -score = (sample avg 65)/SE.
- Example, sample 100 women: sample average= 64.5 inches, sample SD=3 inches. $\text{Estimated SE for sample average} = 3/\sqrt{100} = 0.3"$

z-score $=(64.5$ - $65)/0.3=1.67$ $\text{From FPP A-105: between-area}=90\%$ Significance level (P-value) $= 10\%$

• This one, we likely would not reject the null hypothesis.

- Suppose same sample avg and SD, but 500 women. $\text{Estimated SE} = 3/\sqrt{500} = 0.134$ z-score $=(64.5\hbox{-}65)/0.134 = 3.72$ From FPP A-105: between-area $=99.98\%$ Significance level (P-value) = $0.02\% = 0.0002$.
- CLEARLY, now we reject the hypothesis.

• NOTE: 64.5 inches seems close to 65 inches.

Most women differ from the mean by more than 0.5"

But our sample contains both taller and shorter women: the sample average should be very close to the population mean.

• The SE tells us how close.

Rest of this page for your notes

7.10 THE SE OF A DIFFERENCE

Blank page for your notes

• Often we are interested in differences: in height between fathers and sons in income between men and women retirees in percentage of polio cases among vaccinated and

controls

• We know the SE for each sample average or percentage. What is the SE for the difference?

• It is larger than each SE, because there is chance error in both averages or percentages.

• If is smaller than the sum of the SE's: chance errors average out ^a bit.

• In fact,

 $\text{SE of difference} = \sqrt{(\text{first SE})^2 ~+~(\text{second SE})^2}$

• Example:

Sample 100 men aged 50-65, avg height $= 70$ inches, $SD = 4$ inches Sample 200 men aged 20-35, avg height $= 72$ inches, $SD = 4.25$ inches $\text{First SE} = 4/\sqrt{100} = 0.4 \text{ inches}.$ ${\rm Second\,\,SE} = 4.25/\sqrt{200} = 0.3\,\, {\rm inches}.$ ${\bf SE~of~difference} = \sqrt{(0.3)^2 + (0.4)^2} = {\bf 0.5}.$

• Observed difference $= 2$ inches $= 4$ SE. VERY HIGHLY SIGNIFICANT

• We reject the hypothesis the means are equal.

• In fact, we can get ^a z-score, and ^a P-value for testing whether two population means are equal.

Example: Is there ^a difference in mean incomes of male and female retirees?

Null hypothesis: there is no difference.

• Again, we do not know the SD of the box (or population values), so we use the sample SD to estimate it.

• Example: in units of \$1000:

 500 male retirees, mean income $50,$ $SD = 8$ 400 female retirees, mean income $=49,\,{\rm SD}=6$

- For men: SE = 8 $/\sqrt{500} = 0.36$ (or \$360) $\text{For women: SE} = \frac{6}{\sqrt{400}} = 0.30 \text{ (or } $300)$ SE of difference $=\sqrt{(0.36)^2+(0.30)^2}=$ ${\bf 0.469}$
- \bullet z-score $=((50\text{-}49)$ -0)/ $0.469 = 2.13$ Significance level (or P-value) is 0.035 or 3.5%

• We reject the null hypothesis of no difference, since the P-value is less than 5%, but only just.

• A 95% confidence for the difference is $\$1000 \pm 2 \times \$$ 469 or $\$62$ to $\$1938.$

• Note, we are not testing which gender has higher income, only whether there is ^a difference. (In FPP: this is ^a two-sided test. We will do ONLY two-sided tests.)

7.12 THE HOMEOPATHY STUDY 9 TESTING MEAN DIFFERENCES: LAB 1 RESULTS

- • Of Treatment vs Control:
- For the Treatment: mean $= 7.94, SD = 3.28$ For the Controls mean = $7.13,\,{\rm SD}=3.55$
- $\text{} \bullet \text{ SE (Trt)} = 3.28/\sqrt{20} = 0.73, \, \text{SE(Cnt)} = 0.79,$ $\mathrm{SE}\;(\mathrm{diff})=\sqrt{0.73^2+0.79^2}=1.08.$
- $\rm Z = (7.94$ -7.13) $/1.08 = 0.75$: NO significant difference.
- • Over time: First half vs Last half:
- For the first 20, mean $= 5.24$, SD $= 1.91$ For the last 20, mean=9.84, $SD = 2.98$
- \bullet SE (First) = 0.43, SE(second) = 0.67, SE(diff) = 0.80
- $\rm Z=(9.84$ -5.24)/0.80 = 5.75: <code>HIGHLY</code> SIGNIFICANT
- • Of Treatment vs Control: correcting for time:

• Recall the analysts adjusted for time by fitting ^a curve (5.11). We can test for treatment effects, corrected for time, by testing the RESIDUALS from the fitted curve.

- For the time-adj Treatment: mean $=$ -0.50, SD $= 2.56$. For the time-adj Controls: mean $= 0.08, SD = 1.08$.
- \bullet SE(adj-Trt) = 0.57, SE(adj-Cnt) = 0.24, $SE(diff) = 0.62$. $Z = (0.57 - 0.24)/0.62 = 0.53$ STILL NOT SIGNIFICANT: The time-effect is real, but it apparently did not mask ^a small treatment effect.

7.13 TESTING EQUALITY OF PROPORTIONS

• The Boston School of Public Health birth defects and childhood leukaemia study, Woburn MA, 1976-1982. Women drinking well water: 414. Birth defects 16. Women not drinking this water: 228. Birth defects 3.

• Does toxic waste in the well cause birth defects? Null hypothesis: the rates of birth defects are equal.

• For 414 women drinking water from well: $\text{Fraction} = 16/414 = 0.039 = 3.9\%.$ $SE = \sqrt{0.039 \times 0.961}/\sqrt{414} = 0.0095$

• For 228 women not drinking this water: $\text{Fraction} = 3/228 = 0.013 = 1.3\%.$ $SE = \sqrt{0.013 \times 0.987}/\sqrt{228} = 0.0075$

• Observed difference in percentage $= 3.9$ - $1.3 = 2.6\%$ ${\rm SE~of~difference} = \sqrt{(0.0095)^2 + (0.0075)^2} = \textbf{0.0121} = \textbf{1.2}\%$

- 95% confidence interval for difference is $(2.6 \pm 2 \times 1.2)$ or 0.2% to 5%, which does not contain 0.
- \bullet z-score $=(2.6$ -0) $/1.2 = 2.17.$ Significance (or P-value) = $(100 - 97)\% = 3\% = 0.03$. We reject the null hypothesis.

• This is firm evidence of ^a difference. It does NOT prove that toxic waste is cause. But this was careful study, with many other factors controlled for.