
A SHORT TABLE OF THE NORMAL DISTRIBUTION

Z	Area
	(percent)
0.0	0
0.1	8
0.2	16
0.33	25
0.50	38
0.58	44
0.67	50
0.75	55
1.00	68
1.25	79
1.50	87
1.65	90
1.75	92
2.00	95
2.25	98
3.00	99.7

Some useful formulas for this exam:

For regression of y on x, with correlation coefficient r:

RMS error =
$$\sqrt{1 - r^2} \times (SD \text{ of y}).$$

For a number of draws, with replacement, from any "box":

EV of sum = (number of draws) \times (box average)

EV of average = (EV of sum)/(number of draws) = box average.

SE of sum = $\sqrt{\text{number of draws}} \times \text{(SD of box)}$

SE of average = (SE of sum)/(number of draws) = (SD of box)/ $\sqrt{\text{number of draws}}$

For a "box" with tickets of 0's and 1's:

The sum is the number (or count) of 1's in the draws made.

The average is the proportion of 1's in the draws made.

Box average = (fraction of 1)

SD of box = $\sqrt{\text{fraction of } 0 \times \text{fraction of } 1}$

If two chance outcomes have standard errors SE1 and SE2, then the standard error (SE) for the difference is:

SE for difference =
$$\sqrt{(SE1)^2 + (SE2)^2}$$
.