A SHORT TABLE OF THE NORMAL DISTRIBUTION

\mathbf{z}	Area
	(percent)
0.0	0
0.1	8
0.2	16
0.4	30
0.50	38
0.58	44
0.67	50
0.80	58
1.00	68
1.25	79
1.50	87
1.65	90
1.75	92
2.00	95
2.25	98
3.00	99.7

HERE WILL BE A PICTURE OF THE NORMAL CURVE WITH SHADED MIDDLE AREA, JUST AS IN FPP ON PAGE A-105.

Some useful formulas for this quiz:

For a "box" with tickets of 0's and 1's:

Box average = (fraction of 1)

SD of box = $\sqrt{\text{fraction of } 0 \times \text{fraction of } 1}$

For a number of draws, with replacement, from any "box":

EV of sum = (number of draws) \times (box average)

 $EV ext{ of average} = (EV ext{ of sum})/(\text{number of draws}) = \text{box average}.$

SE of sum = $\sqrt{\text{number of draws}} \times \text{(SD of box)}$

SE of average = (SE of sum)/(number of draws) = (SD of box)/ $\sqrt{\text{number of draws}}$

For a "box" with tickets of 0's and 1's:

The sum is the count of 1's in the draws made.

The average is the proportion of 1's in the draws made.

Also: $\sqrt{0.2 \times 0.8} = 0.4$, $\sqrt{100} = 10$.