
7. STATISTICAL INFERENCE: FPP Ch 21,23,26,27

7.1 CONFIDENCE INTERVALS

• We select a sample (subset) from the population

We compute a statistic based on the sample, to

estimate the population parameter.

• We can use a proportion in a sample to estimate a

proportion in a population.

• We can use a sample average to estimate a population

mean.

• But there is always chance error.

• We know the proportion (average of “0” and “1”

counts), or a sample average, will, for large samples,

have the normal distribution shape.

• We can use the normal distribution to figure the

chances that our sample average is within some amount

of the true value: that is, that the chance error is smaller

than some amount.

• We construct a confidence interval from our sample.

• For example, a 95% confidence interval covers the true

value in 95% of repetitions of the sampling process.

• NOTE 1: the chances are in the sampling, not in the

true value.

• NOTE 2: sampling from a large population (without

replacement) is just like sampling from a box (with

replacement).
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7.2 CONFIDENCE INTERVAL FOR A PROPORTION

• Suppose we want to estimate the proportion of

households in a very large city with incomes over $50K.

• We take a sample of households: this is like sampling

from a box of “0” and “1”, but we do not know the

fraction of “1”s.

• We observe the proportion of households is our sample

with incomes over $50K. This is our estimate of the

population proportion – or the fraction of “1”s in the

box.

• The expected value (EV) of our estimate is the true

population proportion.

• The SE is
√

fraction of 1 × fraction of 0/
√

sample size

• But we do not know the fraction of “1”s: use

the sample proportion in the SE formula, to get an

estimated SE.

• Now we know (sample-value - EV)/SE is like a z-score.

We know it is between -2 and +2, with 95% chance.

• So the interval from (observed- 2×SE) to (observed

+ 2×SE) is a 95% confidence interval for the true

population proportion.

• That is, for 95% of samples the confidence interval will

include the true value.

• The chances are in the sampling, not in the true value.
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7.3 EXAMPLE

• We take a random sample of 1000 households from our

city.

We find 400 (40%) have incomes over $50K per year.

• We estimate that 40% of households in the city have

incomes over $50K per year, but we also want to know

how accurate our estimate is likely to be.

• We estimate the SE for this proportion:√
0.4 × 0.6/

√
1000 = 0.49/31.62 = 0.015 or 1.5%

• Our 95% confidence interval is

from (40-2×1.5) to (40 + 2×1.5), or from 37% to 43%.

• Our 68% confidence interval is from 38.5% to 41.5%

• If a large number of people take samples, and construct

a confidence interval in this way, then 95% of the 95%

confidence intervals will cover the true value.

• In polls, our 95% confidence interval is often stated as

40% plus-or-minus 3 percentage points.
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7.4 CONFIDENCE INTERVAL FOR A POPULATION MEAN

• Now we want a confidence interval for a population

mean – for example, mean household income in the city.

• Our estimate is the sample average: for example, for

1000 sampled households, as above, suppose $48K.

• The SE for the sample average is

(SD of box)/
√

sample size

• But we do not know SD of the population (or box).

So use SD of the sample, as an estimate – for example

$15K.

• Estimated SE is 15,000/
√

1000 = $470

• The 95% confidence interval for the mean household

income in the city is from 48,000-2×470 to 48,000 + 2×
470, or $47,060 to $48,940.

• Note again the randomness is in the sample: 95% of

intervals constructed from samples in this way will cover

the true value.

• We do not know which 95%: we do not know whether

our particular interval does or doesn’t.

• Note we are NOT measuring the spread of household

incomes in the city: we are measuring our uncertainty

about the MEAN household income in the city.
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7.5 OVERVIEW OF INFERENCE

• Population has some histogram of values, but we do

not know it.

• Histogram for a simple random sample of subjects

should be “somewhat like” the population histogram.

NOTE: these histograms are NOT bell-shaped.

• So we use the sample values to estimate the population

values

Use the sample percent over $50K to estimate

population percent of households over $50K.

Use the sample mean to estimate population mean.

• But we need to know the size of the chance error.

• So we need an SE, but we do not know the population

SD needed to compute it.

• So we use the sample SD to approximate the

population SD.

• Then we can figure the relevant SE.

• Then we can figure z-score, confidence intervals or P-

values using this estimated SE.
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7.6 WHICH SE ?

• If a question specifies the SD, we can use it to compute

an SE.

• We than then use the SE to compute z-scores and

chances.

CONFIDENCE INTERVAL

• If we are constructing a confidence interval, we must

use the sample SD to compute an estimated SE.

• We then use this estimated SE in computing the

confidence interval.

HYPOTHESIS TESTING:

• If a hypothesis specifies the SD, then use the

hypothesized value to compute an SE.

• If the hypothesis specified only a mean, not an SD,

then again use the sample SD to compute an estimated

SE.

• To test a hypothesis, we compute a z-score, and

hence get the chance of observing something as-or-more

extreme if the null hypothesis is true (the P-value).
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7.7 HYPOTHESES AND SIGNIFICANCE TESTS

• A hypothesis is a statement about a population value,

or chance process. For example:

This is a fair coin.

40% of households have incomes over $50K.

Mean household income in this city is $48K.

• Our data (tosses of coin, incomes in sample of

households) then tell us whether we can reject this

null hypothesis.

• For example, if we see 370 households in our sample

of 1000 (that is 37%) can we reject that the proportion

in the population is 40%.

• That is, is the difference we see significant or could it

have just happened by chance?

• We consider whether our results could happen “by

chance” if the null hypothesis is true.

• If the null hypothesis is true, the EV for the proportion

of households is 40% and the SE is 1.5% (see 7.3).

• So our z-score would be (37 -40)/1.5 = -2.

• The chance of getting a z-score at least as big as this

(in size) is only 5%.

• We say the significance level is 5% (P=0.05).

This means, if the null hypothesis is true the chance

of being this far out (or further) is only 5%.

• Small significance levels are evidence against the null

hypothesis.
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7.8 TESTING A GIVEN VALUE OF A PROPORTION

• Question: Is this a fair coin?

• Null hypothesis: this is a fair coin.

• Data: the proportion of heads in N tosses.

• If the null hypothesis is true, the EV is 50% and the

SE is
√

(1/2) × (1/2)/
√

N = 1/(2 ×
√

N)

N=50 N=500 N=5000

SE=0.071=7.1% SE=0.022=2.2% SE=0.007=0.7%

obsved z-score signif z-score signif z-score signif

50% 0 100% 0 100% 0 100%

48% -0.28 78% -0.9 37% -2.8 0.5%

54% +0.56 48.4% 1.82 7% +5.6 ≈0

60% +1.40 16% 4.54 0.001% — —

36% -1.97 5% — — — —

30% -2.81 0.5% — — — —

• The significance level (P-value) measures the chance of

getting a value at least as far from the EV as observed,

if the null hypothesis is true.

• If we toss a fair coin 50 times, the chance we get more

than 54% heads or less than 46% heads is quite large

(48.4%). If we see 54% heads we cannot reject that the

coin is fair.

• If we toss a fair coin 500 times, the chance we get more

than 54% heads or less than 46% heads is only 7%. If

we see 54% heads we might suspect the coin is not fair.

• If we toss a fair coin 5000 times, the chance we
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get more than 54% heads or less than 46% heads is

practically 0. If we see 54% heads we will reject that

the coin is not fair.

• Recall the Law of Averages.
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7.9 TESTING A GIVEN VALUE OF A MEAN

• Question: Is the mean height of women 65 inches?

• Hypothesis: The mean height of women is 65 inches.

• Data: heights of sample of women from the population

Avg of these heights; SD of these heights.

• EV for sample average = population (or box) mean

SE for sample average = (SD of box)/
√

sample size

• But we do not know the SD of the box, so we estimate

it by the SD of the sample.

• If hypothesis is true: z-score = (sample avg - 65)/SE.

• Example, sample 100 women:

sample average= 64.5 inches, sample SD=3 inches.

Estimated SE for sample average = 3/
√

100 = 0.3”

z-score = (64.5 - 65)/0.3 = 1.67

From FPP A-105: between-area = 90%

Significance level (P-value) = 10%

• This one, we likely would not reject the null

hypothesis.

• Suppose same sample avg and SD, but 500 women.

Estimated SE = 3/
√

500 = 0.134

z-score = (64.5-65)/0.134 = 3.72

From FPP A-105: between-area = 99.98%

Significance level (P-value) = 0.02 % = 0.0002.

• CLEARLY, now we reject the hypothesis.

17

• NOTE: 64.5 inches seems close to 65 inches.

Most women differ from the mean by more than 0.5”

But our sample contains both taller and shorter

women: the sample average should be very close to the

population mean.

• The SE tells us how close.
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7.10 THE SE OF A DIFFERENCE

• Often we are interested in differences:

in height between fathers and sons

in income between men and women retirees

in proportion of polio cases among vaccinated and

controls

• We know the SE for each sample average or

proportion. What is the SE for the difference?

• It is larger than each SE, because there is chance error

in both averages or proportions.

• If is smaller than the sum of the SE’s: chance errors

average out a bit.

• In fact,

SE of difference =
√

(first SE )2 + (second SE)2

• Example:

Sample 100 men aged 50-65,

avg height = 70 inches, SD = 4 inches

Sample 200 men aged 20-35,

avg height = 72 inches, SD = 4.25 inches

First SE = 4/
√

100 = 0.4 inches.

Second SE = 4.25/
√

200 = 0.3 inches.

SE of difference =
√

(0.3)2 + (0.4)4 = 0.5.

• Observed difference = 2 inches = 4 SE.

VERY HIGHLY SIGNIFICANT

• We reject the hypothesis the means are equal.
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7.11 TESTING EQUALITY OF PROPORTIONS

• The Boston School of Public Health birth defects and

childhood leukaemia study, Woburn MA, 1976-1982.

Women drinking well water: 414. Birth defects 16.

Women not drinking this water: 228. Birth defects 3.

• Does toxic waste in the well cause birth defects?

Null hypothesis: the rates of birth defects are equal.

• For 414 women drinking water from well:

Proportion = 16/414 = 0.039 = 3.9%.

SE =
√

0.039 × 0.961/
√

414 = 0.0095

• For 228 women not drinking this water:

Proportion = 3/228 = 0.013 = 1.3%.

SE =
√

0.013 × 0.987/
√

228 = 0.0075

• Observed difference in proportion = 0.039-0.013 =

0.026 = 2.6%

SE of difference =
√

(0.0095)2 + (0.0075)2 = 0.0121 = 1.2%

• 95% confidence interval for difference is

(0.026 ± 2×0.012) or 0.002 to 0.050, which does not

contain 0.

• z-score = 0.026 /0.012 = 2.17.

Significance (or P-value) = (100 -97)% = 3 % =0.03.

We reject the null hypothesis.

• This is firm evidence of a difference.

It does NOT prove that toxic waste is cause.

But this was careful study, with many other factors

controlled for.
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7.12 TESTING EQUALITY OF MEANS

• Exactly the same approach gives us a test of whether

two population means are equal.

Example: Is there a difference in mean incomes of

male and female retirees?

Null hypothesis: there is no difference.

• Again, we do not know the SD of the box (or

population values), so we use the sample SD to estimate

it.

• Example: in units of $1000:

500 male retirees, mean income 50, SD = 8

400 female retirees, mean income = 49, SD = 6

• For men: SE = 8 /
√

500 = 0.36 (or $360)

For women: SE = 6/
√

400 = 0.30 (or $300)

SE of difference =
√

(0.36)2 + (0.30)2 = 0.469

• z-score = (50-49)/0.469 = 2.13

Significance level (or P-value) is 0.035 or 3.5%

• Again, we reject the null hypothesis of no difference,

since the P-value is less than 5%, but only just.

• A 95% confidence for the difference is

$1000 ± 2× $ 469 or $62 to $1938.

• Note, we are not testing which gender has higher

income, only whether there is a difference.
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7.13 THE HOMEOPATHY STUDY 9

TESTING MEAN DIFFERENCES: LAB 1 RESULTS

• • • Of Treatment vs Control:

• For the Treatment: mean = 7.94, SD = 3.28

For the Controls mean = 7.13, SD = 3.55

• SE (Trt) = 3.28/
√

20 = 0.73, SE(Cnt) = 0.79,

SE (diff) =
√

0.732 + 0.792 = 1.08.

Z = (7.94 -7.13)/1.08 = 0.75: NO significant difference.

• • • Over time: First half vs Last half:

• For the first 20, mean = 5.24, SD = 1.91

For the last 20, mean=9.84, SD = 2.98

• SE (First) = 0.43, SE(second) = 0.67, SE(diff) = 0.80

Z = (9.84 -5.24)/0.80 = 5.75: HIGHLY SIGNIFICANT

• • • Of Treatment vs Control: correcting for time:

• Recall the analysts adjusted for time by fitting a curve

(5.11). We can test for treatment effects, corrected for

time, by testing the RESIDUALS from the fitted curve.

• For the time-adj Treatment: mean = -0.50, SD = 2.56.

For the time-adj Controls: mean = 0.08, SD = 1.08.

• SE(adj-Trt) = 0.57, SE(adj-Cnt) = 0.24,

SE(diff) = 0.62. Z = (0.57 - 0.24)/0.62 = 0.53

STILL NOT SIGNIFICANT: The time-effect is real, but

it apparently did not mask a small treatment effect.
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