- We select a sample (subset) from the population

We compute a statistic based on the sample, to estimate the population parameter.

- We can use a proportion in a sample to estimate a proportion in a population.
- We can use a sample average to estimate a population mean.
- But there is always chance error.
- We know the proportion (average of " 0 " and " 1 " counts), or a sample average, will, for large samples, have the normal distribution shape.
- We can use the normal distribution to figure the chances that our sample average is within some amount of the true value: that is, that the chance error is smaller than some amount.
- We construct a confidence interval from our sample.
- For example, a 95% confidence interval covers the true value in 95% of repetitions of the sampling process.
- NOTE 1: the chances are in the sampling, not in the true value.
- NOTE 2: sampling from a large population (without replacement) is just like sampling from a box (with replacement).

7.2 CONFIDENCE INTERVAL FOR A PROPORTION

- Suppose we want to estimate the proportion of households in a very large city with incomes over $\$ 50 \mathrm{~K}$.
- We take a sample of households: this is like sampling from a box of " 0 " and " 1 ", but we do not know the fraction of " 1 "s.
- We observe the proportion of households is our sample with incomes over $\$ 50 \mathrm{~K}$. This is our estimate of the population proportion - or the fraction of " 1 "s in the box.
- The expected value (EV) of our estimate is the true population proportion.
- The $S E$ is $\sqrt{\text { fraction of } 1 \times \text { fraction of } 0} / \sqrt{\text { sample size }}$
- But we do not know the fraction of "1"s: use the sample proportion in the SE formula, to get an estimated SE.
- Now we know (sample-value - EV)/SE is like a z-score.

We know it is between -2 and +2 , with 95% chance.

- So the interval from (observed- $2 \times S E$) to (observed $+2 \times \mathrm{SE}$) is a 95% confidence interval for the true population proportion.
- That is, for 95% of samples the confidence interval will include the true value.
- The chances are in the sampling, not in the true value.
- We take a random sample of 1000 households from our city.

We find 400 (40%) have incomes over $\$ 50 \mathrm{~K}$ per year.

- We estimate that 40% of households in the city have incomes over $\$ 50 \mathrm{~K}$ per year, but we also want to know how accurate our estimate is likely to be.
- We estimate the SE for this proportion:

$$
\sqrt{0.4 \times 0.6} / \sqrt{1000}=0.49 / 31.62=0.015 \text { or } 1.5 \%
$$

- Our 95% confidence interval is
from ($40-2 \times 1.5$) to $(40+2 \times 1.5)$, or from 37% to 43%.
- Our 68% confidence interval is from 38.5% to 41.5%
- If a large number of people take samples, and construct a confidence interval in this way, then 95% of the 95% confidence intervals will cover the true value.
- In polls, our 95% confidence interval is often stated as 40% plus-or-minus 3 percentage points.

7.4 CONFIDENCE INTERVAL FOR A POPULATION MEAN

- Now we want a confidence interval for a population mean - for example, mean household income in the city.
- Our estimate is the sample average: for example, for 1000 sampled households, as above, suppose $\$ 48 \mathrm{~K}$.
- The SE for the sample average is
(SD of box) $/ \sqrt{\text { sample size }}$
- But we do not know SD of the population (or box). So use SD of the sample, as an estimate - for example $\$ 15 \mathrm{~K}$.
- Estimated SE is $15,000 / \sqrt{1000}=\$ 470$
- The 95% confidence interval for the mean household income in the city is from $48,000-2 \times 470$ to $48,000+2 \times$ 470 , or $\$ 47,060$ to $\$ 48,940$.
- Note again the randomness is in the sample: 95% of intervals constructed from samples in this way will cover the true value.
- We do not know which 95\%: we do not know whether our particular interval does or doesn't.
- Note we are NOT measuring the spread of household incomes in the city: we are measuring our uncertainty about the MEAN household income in the city.

7.5 OVERVIEW OF INFERENCE

- Population has some histogram of values, but we do not know it.
- Histogram for a simple random sample of subjects should be "somewhat like" the population histogram. NOTE: these histograms are NOT bell-shaped.
- So we use the sample values to estimate the population values

Use the sample percent over $\$ 50 \mathrm{~K}$ to estimate population percent of households over $\$ 50 \mathrm{~K}$.

Use the sample mean to estimate population mean.

- But we need to know the size of the chance error.
- So we need an SE, but we do not know the population SD needed to compute it.
- So we use the sample SD to approximate the population SD.
- Then we can figure the relevant SE.
- Then we can figure z-score, confidence intervals or Pvalues using this estimated SE.
- If a question specifies the SD , we can use it to compute an SE.
- We than then use the SE to compute z-scores and chances.

CONFIDENCE INTERVAL

- If we are constructing a confidence interval, we must use the sample SD to compute an estimated SE.
- We then use this estimated SE in computing the confidence interval.

HYPOTHESIS TESTING:

- If a hypothesis specifies the SD, then use the hypothesized value to compute an SE.
- If the hypothesis specified only a mean, not an SD, then again use the sample SD to compute an estimated SE.
- To test a hypothesis, we compute a z-score, and hence get the chance of observing something as-or-more extreme if the null hypothesis is true (the P -value).
- A hypothesis is a statement about a population value, or chance process. For example:

This is a fair coin.
40% of households have incomes over $\$ 50 \mathrm{~K}$.
Mean household income in this city is $\$ 48 \mathrm{~K}$.

- Our data (tosses of coin, incomes in sample of households) then tell us whether we can reject this null hypothesis.
- For example, if we see 370 households in our sample of 1000 (that is 37%) can we reject that the proportion in the population is 40%.
- That is, is the difference we see significant or could it have just happened by chance?
- We consider whether our results could happen "by chance" if the null hypothesis is true.
- If the null hypothesis is true, the EV for the proportion of households is 40% and the SE is 1.5% (see 7.3).
- So our z -score would be (37-40)/1.5 = $\mathbf{- 2}$.
- The chance of getting a z-score at least as big as this (in size) is only 5%.
- We say the significance level is $5 \% ~(~ P=0.05)$.

This means, if the null hypothesis is true the chance of being this far out (or further) is only 5%.

- Small significance levels are evidence against the null hypothesis.

7.8 TESTING A GIVEN VALUE OF A PROPORTION

- Question: Is this a fair coin?
- Null hypothesis: this is a fair coin.
- Data: the proportion of heads in N tosses.
- If the null hypothesis is true, the EV is 50% and the SE is $\sqrt{(1 / 2) \times(1 / 2)} / \sqrt{N}=1 /(2 \times \sqrt{N})$

	$\mathrm{N}=50$		$\mathrm{~N}=500$		$\mathrm{~N}=5000$	
	SE=0.071=7.1\%		SE=0.022=2.2\%		SE=0.007=0.7\%	
obsved	z-score	signif	z-score	signif	z-score	signif
50%	0	100%	0	100%	0	100%
48%	-0.28	78%	-0.9	37%	-2.8	0.5%
54%	+0.56	48.4%	1.82	7%	+5.6	≈ 0
60%	+1.40	16%	4.54	0.001%	-	-
36%	-1.97	5%	-	-	-	-
30%	-2.81	0.5%	-	-	-	-

- The significance level (P -value) measures the chance of getting a value at least as far from the EV as observed, if the null hypothesis is true.
- If we toss a fair coin 50 times, the chance we get more than 54% heads or less than 46% heads is quite large (48.4%). If we see 54% heads we cannot reject that the coin is fair.
- If we toss a fair coin 500 times, the chance we get more than 54% heads or less than 46% heads is only 7%. If we see 54% heads we might suspect the coin is not fair.
- If we toss a fair coin 5000 times, the chance we
get more than 54% heads or less than 46% heads is practically 0 . If we see 54% heads we will reject that the coin is not fair.
- Recall the Law of Averages.

Rest of this page for your notes

7.9 TESTING A GIVEN VALUE OF A MEAN

- Question: Is the mean height of women 65 inches?
- Hypothesis: The mean height of women is 65 inches.
- Data: heights of sample of women from the population Avg of these heights; SD of these heights.
- EV for sample average $=$ population (or box) mean SE for sample average $=(\mathrm{SD}$ of box $) / \sqrt{\text { sample size }}$
- But we do not know the SD of the box, so we estimate it by the SD of the sample.
- If hypothesis is true: z -score $=($ sample avg -65$) /$ SE.
- Example, sample 100 women:
sample average $=64.5$ inches, sample $\mathrm{SD}=3$ inches.
Estimated SE for sample average $=3 / \sqrt{100}=0.3$ "
z -score $=(64.5-65) / 0.3=1.67$
From FPP A-105: between-area $=90 \%$
Significance level (P -value) $=10 \%$
- This one, we likely would not reject the null hypothesis.
- Suppose same sample avg and SD, but 500 women.

Estimated $\mathrm{SE}=3 / \sqrt{500}=0.134$
z-score $=(64.5-65) / 0.134=3.72$
From FPP A-105: between-area $=99.98 \%$
Significance level $(\mathrm{P}$-value $)=0.02 \%=0.0002$.

- CLEARLY, now we reject the hypothesis.
- NOTE: 64.5 inches seems close to 65 inches.

Most women differ from the mean by more than 0.5 " But our sample contains both taller and shorter women: the sample average should be very close to the population mean.

- The SE tells us how close.

Rest of this page for your notes

- Often we are interested in differences:
in height between fathers and sons
in income between men and women retirees
in proportion of polio cases among vaccinated and controls
- We know the SE for each sample average or
proportion. What is the SE for the difference?
- It is larger than each SE, because there is chance error
in both averages or proportions.
- If is smaller than the sum of the SE's: chance errors average out a bit.
- In fact,

SE of difference $=\sqrt{(\text { first SE })^{2}+(\text { second SE })^{2}}$

- Example:

Sample 100 men aged 50-65,
avg height $=70$ inches, $\mathrm{SD}=4$ inches
Sample 200 men aged 20-35,
avg height $=72$ inches, $\mathrm{SD}=4.25$ inches
First $\mathrm{SE}=4 / \sqrt{100}=0.4$ inches.
Second $\mathrm{SE}=4.25 / \sqrt{200}=0.3$ inches.
SE of difference $=\sqrt{(0.3)^{2}+(0.4)^{4}}=\mathbf{0 . 5}$.

- Observed difference $=2$ inches $=4 \mathrm{SE}$.

VERY HIGHLY SIGNIFICANT

- We reject the hypothesis the means are equal.
- The Boston School of Public Health birth defects and childhood leukaemia study, Woburn MA, 1976-1982.
Women drinking well water: 414. Birth defects 16.
Women not drinking this water: 228. Birth defects 3.
- Does toxic waste in the well cause birth defects?

Null hypothesis: the rates of birth defects are equal.

- For 414 women drinking water from well:

Proportion $=16 / 414=0.039=3.9 \%$.
$\mathrm{SE}=\sqrt{0.039 \times 0.961} / \sqrt{414}=0.0095$

- For 228 women not drinking this water:

Proportion $=3 / 228=0.013=1.3 \%$.
$\mathrm{SE}=\sqrt{0.013 \times 0.987} / \sqrt{228}=0.0075$

- Observed difference in proportion $=0.039-0.013=$ $0.026=2.6 \%$
SE of difference $=\sqrt{(0.0095)^{2}+(0.0075)^{2}}=0.0121=1.2 \%$
- 95% confidence interval for difference is
($0.026 \pm 2 \times 0.012$) or 0.002 to 0.050 , which does not contain 0 .
- z -score $=0.026 / 0.012=2.17$.

Significance $($ or P-value $)=(100-97) \%=3 \%=0.03$.
We reject the null hypothesis.

- This is firm evidence of a difference.

It does NOT prove that toxic waste is cause.
But this was careful study, with many other factors controlled for.

7.12 TESTING EQUALITY OF MEANS

- Exactly the same approach gives us a test of whether two population means are equal.

Example: Is there a difference in mean incomes of male and female retirees?

Null hypothesis: there is no difference.

- Again, we do not know the SD of the box (or population values), so we use the sample SD to estimate it.
- Example: in units of $\$ 1000$:

500 male retirees, mean income $50, \mathrm{SD}=8$
400 female retirees, mean income $=49, \mathrm{SD}=6$

- For men: $\mathrm{SE}=8 / \sqrt{500}=0.36$ (or $\$ 360$)

For women: $\mathrm{SE}=6 / \sqrt{400}=0.30$ (or $\$ 300$)
SE of difference $=\sqrt{(0.36)^{2}+(0.30)^{2}}=\mathbf{0 . 4 6 9}$

- z-score $=(50-49) / 0.469=2.13$

Significance level (or P-value) is 0.035 or 3.5%

- Again, we reject the null hypothesis of no difference, since the P -value is less than 5%, but only just.
- A 95% confidence for the difference is $\$ 1000 \pm 2 \times \$ 469$ or $\$ 62$ to $\$ 1938$.
- Note, we are not testing which gender has higher income, only whether there is a difference.

TESTING MEAN DIFFERENCES: LAB 1 RESULTS

- . - Of Treatment vs Control:
- For the Treatment: mean $=7.94, \mathrm{SD}=3.28$

For the Controls mean $=7.13, \mathrm{SD}=3.55$

- $\mathrm{SE}($ Trt $)=3.28 / \sqrt{20}=0.73, \mathrm{SE}(\mathrm{Cnt})=0.79$, $\mathrm{SE}(\mathrm{diff})=\sqrt{0.73^{2}+0.79^{2}}=1.08$.
$\mathrm{Z}=(7.94-7.13) / 1.08=0.75$: NO significant difference.
- . O Over time: First half vs Last half:
- For the first 20 , mean $=5.24, \mathrm{SD}=1.91$

For the last 20 , mean $=9.84, \mathrm{SD}=2.98$

- $\mathrm{SE}($ First $)=0.43, \mathrm{SE}($ second $)=0.67, \mathrm{SE}($ diff $)=0.80$ $\mathrm{Z}=(9.84-5.24) / 0.80=5.75:$ HIGHLY SIGNIFICANT
- . Of Treatment vs Control: correcting for time:
- Recall the analysts adjusted for time by fitting a curve (5.11). We can test for treatment effects, corrected for time, by testing the RESIDUALS from the fitted curve.
- For the time-adj Treatment: mean $=-0.50, \mathrm{SD}=2.56$.

For the time-adj Controls: mean $=0.08, \mathrm{SD}=1.08$.
$-\mathrm{SE}($ adj-Trt $)=0.57, \mathrm{SE}($ adj-Cnt $)=0.24$,
$\mathrm{SE}($ diff $)=0.62 . \mathrm{Z}=(0.57-0.24) / 0.62=0.53$
STILL NOT SIGNIFICANT: The time-effect is real, but it apparently did not mask a small treatment effect.

