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Although there have been several mathematical formulations of multilocus
segregation, multilocus gene identity by descent in pedigrees has been little
considered. Here we present a computationally feasible algorithm for the
computation of two-locus kinship for individuals between whom there may be
multiple complex relationships, and use it to investigate patterns of two-locus
gene identity by descent for some standard relationships. We also present an
explicit formula, which is used to discuss the determinants of two-locus identity
and the relationship to three-locus identity by descent. With the current
increasing density of information on individual genomes available from DNA
polymorphisms, gene identity at linked loci has practical importance. Procedures
for the estimation of relationships between individuals on the basis of genetic data
will have increased flexibility to discriminate wider classes of genealogical
relationship where information on multiple linked loci can be employed. Gene
identity by descent at linked loci is also a key aspect of mapping rare recessive
diseases from data on inbred individuals.

Keywords: gene identity by descent; multilocus kinship; recursive computation;
complex pedigrees.

1. Introduction

THERE have been several mathematical formulations of multilocus segregation,
originating with the paper of Geiringer (1944). Karlin & Lieberman (1979)
consider the recombination process and resulting gametic distributions. Holgate
(1981) formalizes the gametic outputs in the framework of genetic algebras.
Christiansen (1987) considers these gametic outputs with a view to analysis of
population linkage disequilibria. However, multilocus gene identity by descent in
pedigrees has been little considered, although Weir & Cockerham (1969) and
Cockerham & Weir (1977) gave some analysis of simple systems. One reason for
this has been the computational complexity of the problem: Denniston (1975)
enumerated the many possible states of gene identity between two individuals at
two loci. Another reason may have been the absence of data that could require
consideration of linked loci. However, with the advent of DNA polymorphism
data and the increasing density of information on individual genomes, this is no
longer the case. Both in the estimation of genealogical relationships from genetic
data (Thompson & Meagher, 1987) and in the linkage analysis of recessive
diseases (Lander & Botstein, 1987), data at multiple tightly linked loci may soon
become the rule rather than the exception, and multilocus kinship is a key
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262 E. A. THOMPSON

component of any assessment of statistical information in both these areas of
inference. This paper presents an algorithm for computation of two-locus (in
principle, multilocus) kinship and investigates the properties of this function of
recombination between loci for some specific genealogical relationships. We then
consider the general form of multilocus kinship, and its pedigree determinants,
giving examples of genealogical relationships with identical two-locus kinship, but
distinct three-locus kinship functions.

2. A recursive algorithm for two-locus kinship

The first objective is to present a computationally feasible algorithm for the
computation of two-locus kinship:

ky(B, C) = Pr (gametes segregating from each of B and C carry
genes identical-by-descent at both of two loci, between which (1)
the recombination fraction is r).

Genes are identical by descent (IBD) if they are copies of the same ancestral gene
received via repeated segregations from some common ancestor within the
defined pedigree of B and C. The same ancestor need not provide the alleles at
both of the two loci, although, if linkage is very tight (r very small), identity by
descent at both loci will tend to result from a single ancestral chromosome
carrying both alleles. For example, in Fig. 1, B and C could provide chromo-
somes IBD at locus L from A, and at locus J from A,, but only if a
recombination occurred in both parents M; and M, of B and C. For tight linkage,
the chance that the IBD chromosome is a copy of a chromosome in either 4, or
A, is much greater.

Consider first the two well-known methods of computation of kinship

coefficients at a single locus:
k1(B, C) = Pr (homologous genes segregating from B and C are IBD). (2)

This kinship coefficient is accepted as the best overall measure of the closeness of
a genealogical relationship between two individuals. Wright (1922) gave the

Fic. 1. An example pedigree, showing the ancestral paths which contribute to kinship between the
two individuals B and C.
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classic formula ’
ki(B, O) = 2 )"+ f(A)]. (3)
p(A)

Here summation is over all common ancestors A and all paths p(A) from B up via
child—parent links to A and down via parent—child links to C not passing twice
through any individual. The power m(p(A)) is the number of links on the path,
and f(A) is the inbreeding coefficient of the common ancestor A, the factor
i[1 +f(A)] being the probability that A will pass on IBD genes to two offspring.
For future reference, it is convenient to think of m(p(A)) as being m(p(A)) —
2+ 2, the two links from common ancestor to two (necessarily distinct) offspring
being omitted from the count (but contributing its separate factor 3[1 + f(A)], but
the two segregations from the final individuals B and C each contributing a factor.
Again, in Fig. 1, there are two ancestors, A; and A,, each providing one path,
each of length 5: the kinship k,(B, C) is 35. Equation (3) was much used in early

 Joop-tracing’ methods for the computation of inbreeding and kinship (see, for
- example, Stevens, 1975), but such methods become infeasible on large and

complex pedigrees. With the advent of recursive programming languages the
following equations have become the standard computational approach:

kB, C)=k,(C, B), v (4a)
ki(B, B)=3[1+f(B)], - (4b)
f(B)=ki(M, F), ' (4c)
where M and F are the parents of B, and
ki(B, C) = 3[k:i(M, C) + k:(F, C)], (4d)
provided B is not C, nor an ancestor of C, and
f(B)=k(B, C)=0 (4e)

for a founder individual B, not an ancestor of C. These equations provide a
complete set which can be applied recursively up a pedigree until founders are
encountered. These equations can be intuitively justified. Kinship is symmetric
(equation (4a)). In the case of two genes segregating from B (equation (4b)),
these are the same gene (and hence immediately IBD) with probability 3 and are
the two different genes in B also with probability 3. These two genes are then the
maternal and paternal genes of B, or a gene from M and a gene from F, and
hence IBD with probability k;(M, F) also, by definition f(B), the inbreeding
coefficient of B (equation (4c)). For equation (4d), the gene segregating from B is
with probability 4 the gene received from his mother M, and with probability 3
the one received from his father, F.

Karigl (1981) extended equation (4) to the case of simultaneous gene identity
between homologous genes segregating from a set of individuals, and Thompson
(1983a) introduced ‘recursive descent probabilities’ that enable one to compute
the probability that a set of genes chosen one each from a set of individuals all
descend from a hypothesized ancestral set. However, these extensions considered
only homologous genes—genes at a single locus. We now extend the same
equation (4) to gene identity at two loci.
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Define now the probability
kZ(J(A(i), B(i)); L(C(k.), D(’)))
that two genes at locus J segregating from individuals A and B to their ith and jth
offspring, respectively, are IBD and two genes at locus L segregating from
individuals C and D to their kth and [th offspring, respectively, are also IBD.
Note that, in addition to labelling individuals, we must now also index the
different segregations from each offspring in the current pedigree, in order that
when we expand recursively we can identify those genes corresponding to a single
gamete (or offspring chromosome) from those transmitted to different offspring.

Then the two-locus kinship between two individuals G and H, or the two-locus
inbreeding coefficient of their offspring, is

kz(](G(l), H(l));L(G(l), H(l))), (5)
the probability that the offspring carries IBD genes both at J and at L. The
explicit notation of J and L in the probability k, is unnecessary, but we retain it

for greater clarity. Note first that, by symmetry between the individuals in a pair
and between the two loci,

ka(J(A, B); L(C, D)) =kx(J(B, A); L(C, D)) = ko(J(C, D); L(A, B)), (6)
where now we assume the segregation (or gamete) indicator is incorporated into
the label for each individual. We may thus rearrange the arguments at any stage
so that a given one of the up-to-four individuals is the first argument for locus J,
and, if an argument for both loci, is also the first argument for locus L. This will
enable us to summarize our recursions in just five equations. 1

Assume throughout that A is not B, C, or D, nor an ancestor of any of them,
and that M and F are the parents of A. The relationships or identities between
individuals B, C, and D are irrelevant, and we again assume that each of these
labels incorporates a segregation indicator. For clarity, we make the segregation
indicators for the individual A explicit and use an indicator superscript (A) on the

- parent individuals M and F to indicate gametes to A. Then, where only one locus
involves A, we have

k(J(A©, B); L(C, D)) = 3[ko(J(M™, B); L(C, D)) + ko(J(F, B); L(C, D))],
- | | (7)
ka(J(A®, A®); L(C, D)) = 3[k:(C, D) + kep(J (M, F); L(C, D))], (8)
while, for a gamete from A,
ko(J(AD, B); L(AD, ©)) .
= {1 =N[kMD, B); LMD, ) + k(J(F®, B); LFW, C))]
+ [l (J(M™, B); LY, C)) + ky(J(F, BY; L(M™, C))]}, (9a)
whereas, for different segregations at the two loci,
ko(J(AW, B); L(A®, ©))
= [k (J (M, B); LM, C)) + ko(J(F, B); L(F™, C))
+k(J(M™, B); L(FY, C)) + ky(J(F®, B); LM, C))] (9b)
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For a gamete, plus an additional one-locus segregation from A,
k(J(AD, A®); L(A®M, D)) = i[k:i(M, D) + ky(F, D)
+ I (J(MD, FOY; LM™, D)) + ko (J(MW, F); L(FY, D))], (10)
while, for two complete gametes,
kZ(J(A(l), A(z));L(A(l), A(Z))) =
2(1 — Py (M, F)+ R[1 + kx(J(MW, F®); LMW, F“%Y)]. (11)

We have boundary values for a founder A of, respectively, 0, 3k.(C, D), 0, 0,
and R, where R = £[r* + (1 — r)?] for the five equations (7)—(11). These equations
all derive from the same straightforward consideration of segregation probabil-
ities as does the more familiar equation (4).

Equation (7)——A gene chosen from A at a single locus derives with probability
1 from M and 3 from F.

Equation (8)——If two genes segregate 1ndependently from A at locus J, they are
copies of the same gene with probability 3 and are copies of the two genes in A,
and hence one from M and one from F, also with probability 3. Note that our
recursive computation of two-locus kinship will never involve an expansion for
the same gamete at the same locus, although were we to consider a term as
k,(J(AD, AD); L(C, D)), the expansion would be immediate, since the two
genes indicated at locus L are necessarily IBD.

Equation (9)—For a single gamete segregating from A, the genes at 1001 J and
L will both derive from M or both from F if there is no recombination (each
possibility having probability 3(1—r)), and from M at locus J and from F at locus
L, or vice versa, if there is a recombination (each possibility having probability
ir): this is the case for equation (9a). On the other hand, for two separate
gametes, we have the analogous gene origins in M and F, but independent
segregation (equation (9b)). Alternatively, equation (9b) may be regarded as two
separate applications of equation (7); both would, of course, have to be
completed before proceeding further up the pedigree, since we cannot expand
from M or F while A remains in the expression.

Equation (10)—If genes segregate from A twice at locus J, once in combmatlon
with a gene at locus L, then r cancels from the possibilities. With probability 3 the
two genes at locus J are copies of the same gene (and hence already IBD), and
then with probability 3 the gene at L derives from M or F each with probability 3.
Alternatively, the two genes from A at locus J are genes from M and from F,
while again the gene at L derives from either M or F, providing the second two
terms of equation (10).

Equation (11)—Finally, equation (11) covers the case of two gametes from A.
If one is recombinant and not the other (probability 2r(1 —-r)), then at one locus
the two genes are IBD and at the other locus they derive from M and F and are
IBD with probability k;(M, F). If both chromosomes are recombinant or both
not (probability 2R), then with probability 3 the genes at each locus are copies of
the same parental gene and with probability 3 we have genes from M and from F
at both loci. Again, if different gametes from A are indicated
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(ko(L(AD; A®); J(AD, AD)), for example), we can apply the recursions (7) or

(9a) to the separate segregations. As in the case of equation (9b), all expansions

of A’s segregations must be completed before proceeding further up the pedigree.
As a check, it is worth noting that, when r =0,

k>(J(A, B); L(A, B)) = k(A, B)

and the above equations reduce to the single-locus equations (4). Also, when
1
r=sz,

kz(J(A) B); L(C» D)) = kl(AJ B)kl(c: D)

and equations (7)-(11) give the products of two independent single-locus
recursions. Note again that, for the present problem, we are not concerned that
the genes at loci J and L should derive from the same ancestral chromosome,
although we could also derive very similar equations for this case. In practice,
where linkage is tight, and/or there are few inbreeding loops, it will often be the
case that, where genes at both loci are IBD, they will in fact all derive from the
same ancestral chromosome, but this is not necessary. Note also that, instead of
gene identity probabilities, we could very similarly consider gene descent
probabilities, specifying founder genes at locus J and at locus L from which
descent is to be considered. Just as the single-locus gene-descent equations of
Thompson (1983b) are generalizations of the single-locus gene-identity equations
of Karigl (1981), the analogous multilocus generalization can be derived here.
However, we do not pursue this as there seems to be no immediate practical
application.

Although some of the above equations involve a fourfold branching recursion,
they are simple to implement and computationally feasible even on large and
complex genealogies. In computing two-locus kinship k,(J(A4, B); L(A, B)),
additional symmetry allows a further reduction of the problem, by combining
identical terms among the parents of A and B (Table 1). Routines that trim and
reorder the individuals in a pedigree to avoid lengthy unnecessary parts of the
recursion, similar to those used in recursive formulae for descent probabilities
(Thompson, 1986), can also increase the size and complexity of the pedigree on
which computation is feasible. In spite of the greater complexity of the equations
owing to the genes being at two loci, it seems that computation is feasible on any
pedigree on which any other fourfold gene identity can be computed.

Note also that the formulae extend (in principle) to more loci, Ly, L,, . . ., L,.
For example, we might wish to consider an s-locus expression

ky(Ly(A, By); Lo(A, By);. .. ; Ly(A, By)),

where again the individual label A is assumed to include a segregation indicator,
and thus a single s-locus gamete from A is implied. For any individual A who is
not the same as or an ancestor of any other individual in the current function, we
can express the s-locus kinship &, as a weighted average of the multilocus kinships
between the other individuals and the two parents M and F of A, the weights
being simply the multilocus segregation probabilities, that is, the probabilities
with which the relevant genes segregating from A originate from M and F. For
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the above particular case, provided A is distinct from all the B; (who need not be
distinct) and not an ancestor of any of them, we would have

ks(L](Ay B)) LZ(AJ B2)> e 7LS(A) Bs)) =
> [Pr (gamete from A has parent origins A)

X ks(Ll(ély By); Ly(6,, By); . . . 5 Ly(6;, Bs))], (12)

where each 6; (j=1,...,s)is M or F as the gene at locus j originates from M
and F, and summation is over all vectors of length s with components M or F.
However, this expansion may involve 2° distinct terms, and, for s >2, general
implementation does not seem to be practicable.

3. Examples of gene identity by descent at two linked loci

At a single locus, many distinct genealogical relationships have the same
kinship coefficient. The sum over paths of powers of 3 (equation (3)) can achieve
a specified dyadic rational in many different combinations. For a single locus,
distinct genealogical relationships between two individuals can provide, not only
the same kinship coefficient, but the same probabilities for patterns of gene
identity by descent between the two unordered pairs of genes of the two
individuals, and hence the same pairwise genotype and phenotype distributions.
An example is the set of pairwise relationships grandparent—grandchild, uncle—
niece, and half-sib. These three relationships can never be distinguished on the
basis of genetic data at independent loci, for, regardless of the characteristics of a
locus in terms of allele frequencies and the relationship between genotype and
phenotype, all three provide identical pairwise phenotype distributions. On the
other hand, it is known that these three pairwise relationships are, in principle,
distinguishable on the basis of data at linked loci, since the probabilities that the
pair have a gene in common at both loci are functions of the recombination
fraction r that differ between the relationships (see, for example, Thompson
1986).

It is therefore of interest to consider two-locus kinship between relationships
with the same one-locus kinship, and in particular we consider the six relation-
ships between non-inbred individuals which all have kinship coefficient . These
are

(a) great-grandparent—great-grandchild,

(b) half-uncle-half-niece,

(c) first cousins,

(d) double half first cousins,

(e) quadruple second cousins (paired sibship exchange),
(f) quadruple second cousins (cyclic sibship exchange).

The pedigrees of these six relationships are shown in Fig. 2, and the graphs of

their two-locus kinship, as functions of the recombination fraction r, are shown in
Fig. 3.
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S— ,,,WW

FiG. 2. Six relationships with single-locus kinship 0-0625: (a) great-grandparent and great-grandchild;
(b) half-uncle and half-niece; (c) first cousins; (d) double half first cousins; (e) quadruple second
cousins (exchange type); (f) quadruple second cousins (cyclic type).

0.07

0.06 -

0.05 -

0.04 - “

0.03 -

Two-locus kinship

0.02 - -

0.01

0.0 | ! !
0.0 0.1 0.2 0.3 0.4 0.5

Recombination fraction

FIG. 3. Two-locus kinship as a function of recombination fraction, for the six relationships (a)—(f)
of Fig. 2. The curves are in monotone decreasing order, with (a) giving the maximal values for each
"-value and (f) the minimum.
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We note that the functions are all distinct and non-intersecting on 0 <r <1,
Not only does a greater multiplicity of ancestral loops lower the two-locus
kinship, but the pattern of joining of these loops affects the result. Thus, there is
even distinction between the two types of quadruple second cousin. The fact that
relationships are distinguished ensures their identifiability on the basis of data at
pairs of linked loci. Of course, the difference is not large, and many pairs of
highly informative loci would be required to discriminate reliably between the
two types of quadruple second cousins, but, with the increasing density of DNA
polymorphisms mapped in plant and animal genomes, such data are potentially
available.

The other current practical application of two-locus kinship is in the mapping of
rare recessive diseases on the basis of data on affected inbred individuals. The
idea underlying that analysis is that the individuals will (likely) have IBD genes at
the disease locus, so that the probabilities for the genotype at a linked marker
locus will depend on the recombination fraction r, enabling r to be estimated or
linkage inferred. This idea was originally considered by Smith (1953) and has
been discussed in intervening years (Suarez et al., 1978), but until recently the
power of the method was considered too slight for it to be practically relevant.

Lander & Botstein (1987) point out that multilocus DNA variants may provide
sufficient polymorphism for linkage to be established by this method. In their
analysis, Lander & Botstein consider multiple linked loci in linkage equilibrium,
but the key to the method is the degree of marker polymorphism which this
assumption provides. They consider individuals with a specific inbreeding
coefficient, the parents being first cousins or second cousins. However, the
function of recombination that, given an affected individual, determines the
genotype distribution at the linked marker locus is not merely the kinship of the
parents (or inbreeding of the offspring), but the two-locus kinship coefficient.
Generally, the smaller the two-locus kinship, the lesser the power of the method
(Walters, 1988).

To consider how far multiple ancestral loops can reduce two-locus kinship, we
consider the case of a Hutterite sibship in which an offspring individual is affected
by two very rare recessive disorders (Lowry et al., 1985). The genealogy of this
genetic isolate has been traced back 11 generations to a set of about 70 founders.
Of these, 55 are ancestors of the sibship in question, in which the offspring have
inbreeding coefficient 0-099. The parents of the sibship are quadruple second
cousins (of the paired exchange type), a regularity of ancestral relationship which
is rare, even in this population of multiple sibship exchanges and preferred
second-cousin marriages. Over 1000 ancestral paths connecting the parents of the
individuals have been traced; the cousin relationships between the parents as
given by the recursive ‘rels’ routine of Thomas (1987) is given in Table 2.

Figure 4 shows the two-locus kinship between the parents of this sibship, when
the genealogy is trimmed at a specified number of generations before the present,
from four (the quadruple second-cousin relationship) to ten (the maximum depth
of known relationship). Of course, as more ancestral loops are included, any
kinship coefficient between the parents increases, but for intermediate recom-
bination fractions the two-locus kinship increases relatively less. Note that, for
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TaBLE 2
The relationships between the parents of a cer-
tain Hutterite individual. The number of full-
and half-cousin relationships of each degree,
and each level of removal, are given. For
example, the couple are sixth cousins once
removed 126 full times and 24 half times. Their
primary relationship is four full times (i.e.
quadruple) second cousins. The total number of
ancestral paths is twice 496 plus 42, or 1034

Full Half  Degree Removal
4 0 2 0
2 0 3 0
4 0 3 1
4 0 4 0
2 0 4 1
16 4 5 0
22 4 5 1
14 8 6 0
126 24 6 1
44 0 6 2
118 0 7 0
124 0 7 1
16 2 8 0

496 42
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FiG. 4. Two-locus kinship as a function of recombination fraction, for the pedigree of a certain
Hutterite individual, when the pedigree is trimmed at 4, 5, 6, 7, 8, and 10 generations before the
present. The curves are in monotone increasing order, with the 4-generation trim giving the minimum
values and 10 the maximum. The 4-generation trim is also the curve (e) of Fig. 3 and for comparison
the curve (b) of Fig. 3 (for half-uncle-half-niece) is also shown (broken line).
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trimming at seven generations’ depth (which includes 95% of the total known
inbreeding), the two-locus kinship is below that for a half-uncle~half-niece
relationship over the range r = 0-1-0-35. The lower part of this range, at least, is
- important for linkage analysis where DNA polymorphisms at recombination
fractions in the range 0-1-0-2 are still considered closely linked (Botstein et al.,
1980).

4. Relationships with identical two-locus and three-locus identity

Given the power of linked loci to resolve relationships which are not
identifiable from data at unlinked loci, we may ask what the determinants of
two-locus kinship are, and what distinct genealogical relationships will remain
indistinguishable. To answer this, we return to the Wright formula for the kinship
coefficient (equation (3)) and extend this to multiple loci. For any number of loci,

Ly, ..., L,, and ordered s-tuples of ancestral paths, from one individual up to a
common ancestor and down to the other,

Pf (gametes from the two individuals are IBD at Ly, ..., L)=-

>, Pr(gametes are IBD at Ljviapath p;; j=1,...,5). (13)

(P1r--sPs)

In particular, for two loci,

Pr (gametes from two individuals are IBD at locus J and at locus L) =

> Pr(gametes are IBD at J via path p and IBD at L via path q),
(P, q)
where ancestral paths p and g are defined as for the single-locus case. Considering
the terms in this sum for which the original ancestor A at the head of path p is the
same as that for path g, we have the probability

(%)n(p)+n(q)—c(p,q)(1 _ r)c(nq)-i(p,q)rf(p,q)RA(r’ f, h(r)), (14)

where c(p, q) is the number of parent—offspring links common to the two paths,
n(p) is the number in p, n(q) the number in ¢, and j(p, ¢) the number of joins in
the two paths, with the factor R, being given below. In the count of links, we do
not include the two segregations from the common ancestor A at the head of the
path, but we do include the two segregations from the final individuals (see
equation (3) and notes following). The rationale for formula (14) and the path
counts is shown in Fig. 5. Where the paths are separate, each segregation
contributes, as for a single locus, the factor 3, this being the probability that the
‘right’ gene is passed on. Path p has n(p) — c(p, q) such separate links, while
path g has n(q) — c¢(p, g). Where the paths have a segregation in common, we
require the ‘right’ pair of genes received from the parent to be passed to the
offspring. Thus, where the paths proceed together from grandparent to parent to
child, there must be no recombination, and we have a factor 3(1=r). On the
other hand, where the paths join in the parent, to obtain the gene from each
locus via the different paths, recombination is necessary, and we have the factor
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P4 P2

Join: p1,p2

Common:ps,p2 | (1— ry/2

1/2

P2 P+

FiG. 5. The pattern of segregations on two paths, p; and p,, showing the probability of events
required for descent of requisite genes at two loci.

3r. Finally, where two chromosomes segregate independently from the same
common ancestor A, we have an additional factor which gives the probability that
the two offspring of A share genes at both loci:

Ru(r, f, h(r)) = [1=2f + R(DIR(r, 0, 0) + , (15)

where f is the inbreeding coefficient of A, h(r) his two-locus inbreeding, and
R(r, 0, 0) is the previous parameter R = 4[r* + (1 — r)?]. If paths p and g are via
different common ancestors A, and A, at the heads of the paths, the factor R, is
modified to be

Gl +FA)D G +F(ADD,

the probability that the two offspring of each of the two ancestors receive the
same gene at the locus applicable to that path. This is the only change to
equation (14).

Note that, when r=0, we have contributions only from paths p =g,
j(p, ) =0, and c¢(p, q) =n(p) =n(q), and then h =f and R, = 3[1 + f(A)] also.
The formula then reduces to the single-locus kinship (equation (3)). When r =3,
on the other hand, the double summation factorizes, h = f R, =3[+ f(A)]}7
and we have separate summations over p and g giving the square of this
single-locus formula.

We may similarly obtain the contributing factors for the s~locus case (equation
(13)). Any segregation or pedigree link will be common to some subset of the
paths. Where paths for a subset § of the s-loci have a common link, the factor
contributed to the term of the sum (13) expresses transmission of this locus subset
without recombination. Where two paths for sets of loct S5, and S, join, the
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FIG. 6. Two pedigrees showing pairs of individuals between whom there is equal genomic kinship.

contribution is the multilocus segregation probability that, in a chromosome from
the offspring, the loci S; derive from the maternal gamete and the loci S, from the
paternal gamete. (Note that, since individuals have only two parents, only two
sets of paths can join at a segregation.) We return to this below for the case of
three loci.

Thus, for two loci, any relationship for which the numbers of ancestral paths,
the numbers n(p), n(q), j(p, q), and c(p, q), are the same will have the same
two-locus kinship. Conversely, equation (14) shows that indeed two-locus kinship
will distinguish between standard relationships often considered to have the same
degree of closeness, since these are obtained precisely by varying the number of
ancestors and paths in a (single-locus) compensating manner: the example of the
six regular relationships of kinship & considered in the previous section is no
special case. On the other hand, the two relationships of Fig. 6 have the same
two-locus kinship. However, this example is extreme: the two pedigrees show the
same s-locus kinship, for all s, or the same genomic kinship. Regardless of the set
of loci within the genome that are considered, chromosomes from the individuals
have identical similarities. They are, however, distinct genealogies, and in terms
of the pairwise genotypes of the individuals they are distinguishable: in the first
case, B is inbred; in the second, he is not. Since there are relationships with
identical (single-locus) kinship but different two-locus kinship, a more interesting
question is whether there are relationships of identical two-locus kinship,
distinguished by three loci, and so on.

Extension of the above formulation in terms of joins and separations in
ancestral paths show that this is indeed possible. The simplest examples found, of
kinships distinct at three loci but not at two, involve the three-path template
shown in Fig. 7. Here, by ‘transferring’ a segregation from one path segment to
another, we achieve a second set of three paths, showing the same pairwise
matrix of links and links in common (Table 3). Additionally, every pair of distinct
paths join once, and the (non-inbred) common ancestor at the head of every path
(or path pair) contributes the same factor to the sum. Thus, we have the same
two-locus kinship, as has been validated numerically using the recursive algo-
rithm. We may question why such a pair of pedigrees are distinguished by three
loci, since there is but a single set of three paths. However, for three loci, locus
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FIG. 7. A pedigree template, showing how equal two-locus kinship, but distinct three-locus kinship,
may be obtained. If the values of y and s are interchanged (s, y=1), and x, u, and ¢ remain fixed,
the two-locus kinship is unchanged if x =¢ An example set of values and resulting path lengths is

given in Table 3.

order, and thence the order of joining of paths, is significant. Suppose the
chromosomal order of three loci is Ly, L,, L; and the order of joining of paths is
P1, P2, P3- Consider the cases under the two pedigrees where L, is taken via p;. If
L, is taken via p, and L; via ps, the order of joining of paths requires first a
recombinant between L, and L, and then one between L, and L;. However, if L,
is taken via path p; and L; via path p,, we require first a recombinant between L,
and L,, and then a double recombinant when the path (ps) for L, joins (Table 3).

TaBLE 3
Path lengths and path sections in common for the pedigree template of Fig. 7

Pedigree 1 Pedigree II
General case s=u=1lx=t=y=2 u=y=1x=s=1=12
D1 P> Ps P 2 Ds P1 P2 Ps
p1 Xx+ts+2 s+2 2 5 3 2 6 4 2
p, s+2 sHu+y+2  y+2 3 6 4 4 6 3
D3 2 y+2 y+it+2 2 4 6 2 3 5

Note that, in both these pedigrees, the paths p, and p, join above the link of length s, and the pair are
then joined by p; below this link. On the other hand, in the matrix of link lengths in common, the

roles of p, and p, are interchanged between the two pedigrees.
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. TaBLE 4
FPaths sections and path lengths in common for the pedigree template of Fig. 8

General case
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These two triples thus provide different contributions in terms of the recom-
bination fractions. Since, under the interchange between the two pedigrees, p,
translates to p; in terms of path lengths and links in common, but the order of
joining of the paths remains p,, p,, ps, three-locus kinship is different on the two
pedigrees. -

Another example is shown in Fig. 8 and Table 4. This example is of interest in
that, under the interchange of links between two levels in the pedigree, no
ancestral path changes in length: we do not have the interchange of paths that is a
feature of the Fig. 7 template. Each row of the two matrices of path segments in
common contains the same numbers, and each pair of paths joins once, providing
for equal two-locus kinship. (Again, this has been validated by the recursive
algorithm.) Again, however, under the interchange of links, the order of joining
of analogous paths is changed, and three-locus kinship is thus also changed. This
pedigree is of interest also in that in two respects it demonstrates that pedigrees
are very special graphs. First, and most important, individuals have only two
parents. The length of the segment marked w is thus at least 1: only two (sets of)
paths can join at a time. This makes balancing the numbers of links in common a
more complex task, since the three-way symmetry between the paths is lost.
Secondly, sex must be assignable on a true pedigree. Note it is impossible,
therefore, that A mates with B, who mates with C, who mates with A. Thus,
some, at least, of the lengths of the arcs labelled i, j, k, I, m, or n must be greater
than 1. The numbers in our example (Table 4) have been derived with these
constraints in mind, although they are not the only possibilities.

FiG. 8. A more complex pedigree, exhibiting a similar phenomenon to that of Fig. 7, but without
change of any total path lengths. If each of a, b, and c is increased by a specific amount, and each of
X, y, and z decreased by the same amount, other link fengths remaining unchanged, then, provided

x+tw=z, atw=c, b=c, and x =y, the two-locus kinship is unchanged. For specific example
values and path lengths, see Table 4.
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5, Conclusions

With the increasing density of information on individual genomes, provided by
data on DNA polymorphisms, gene identity by descent at linked loci becomes of
practical importance. The facility to compute and analyse patterns of two-locus
kinship in complex pedigrees provides a new tool for examining the properties of
statistical procedures for the analysis of both current and potential data. A very
recent example is provided by Weeks & Lange (1988), who use multilocus

kinships at r = 3 to provide a test of departure from independent segregation. Of

course, at r = 3, gene identities at the different loci are independent. The present
suggested methodology shows that it is unnecessary to consider only the two
extremes of complete linkage and free recombination: analysis for arbitrary
degrees of linkage is possible

That two-locus analysis is an essential generalization of single-locus analysis
because of the phenomenom of linkage is well acknowledged. That three-locus
analysis carries an additional dimension is less widely appreciated in area of
applications, although the critical relevance of locus order arises also in other
problems of linkage analysis when we consider more ‘than two loci jointly (see,
for example, Thompson, 1984). While this feature of the problem makes it
intrinsically more difficult to ‘balance’ sets of paths to achieve equal multilocus
kinship, there seems no reason to suppose this impossible. While it is tempting to
conjecture that ‘three-locus kinship-equivalence implies genomic Kinship-
equivalence’ (a mathematical geneticists’ analogue of the now classic ‘period
three implies chaos’ of bifurcation theory), this seems unlikely. Rather, it seems
that, in a similar manner, but with more complex pedigrees, it should always be
possible to construct relationships which have identical s-locus kinship, but are
distinguished by (s + 1)-locus kinship. ’
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