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Project 4: Resolving complex traits through inferred coancestry of genome segments

Abstract

The overall objective is the development of methods for the enhanced detection and resolution of genes con-
tributing to complex quantitative genetic traits observed in individuals not known to be related. The approach
will be through using dense SNP marker data for the detection and estimation of segments of gene identity by
descent (ibd) shared among sets of individuals. Locus-specific inferred ibd among individuals will be analyzed
in conjunction with their phenotypic similarities and differences, in order to detect and resolve causal loci. We
will develop and assess hidden Markov models (HMM) and methods for detection of ibd genome segments
between pairs of members of populations from dense SNP data or sequence variants. We will assess the
effects on performance of our methods of linkage disequilibrium, data error and copy-number variants, and the
efficacy of prior haplotype imputation, data cleaning, and screening for regions of allelic similarity. We will ex-
tend our models and methods to the inference of ibd among larger sets of chromosomes using both HMM and
coalescent models, and develop Markov chain Monte Carlo methods for sampling of ibd genome segments,
conditional on dense SNP marker or sequence variant data in candidate gene regions. We will develop and
assess methods for analyzing trait data on individuals conditional on the patterns of ibd genome segments
inferred among them, by assessing location-specific levels and regional chromosomal extent of ibd segments
among sampled chromosomes in relation to quantitative trait values. We will assess our methods and com-
pare with alternative approaches, by first testing methods in simulated population structures, where latent ibd
is known, but in which founder haplotypes are provided by real-data population samples. Then, in real data
sets available to us, where latent ibd is unknown, we will compare results of our methods with those of other
approaches developed both within the P01 group and elsewhere. We will develop software implementing our
methods, and document, distribute and support this software.
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Specific Aims
The overall objective is the development of methods for the enhanced detection and resolution of genes con-
tributing to complex quantitative genetic traits. The approach will be through using dense SNP marker data
for the detection and estimation of segments of gene identity by descent (ibd) shared among sets of individ-
uals. These individuals are members of a population, but any relationships among them are not close and
pedigree relationships are unknown. Locus-specific inferred coancestry among individuals will be analyzed in
conjunction with their phenotypic similarities and differences, in order to detect and resolve causal loci.

1. Inference of pairwise ibd between individuals in populations
We will develop and assess hidden Markov models (HMM) and methods for detection of ibd genome segments
between pairs of members of populations by: • improvement and extension of preliminary models and methods
for inference of ibd at marker locations from dense SNP genotype data, including methods for parameter
estimation and tuning: • assessment of the effects of population subdivision and admixture, and of resulting
allele frequency and local haplotype heterogeneity: • assessment of the effects of linkage disequilibrium (LD)
on ibd inference, and of the efficacy of prior haplotype imputation: • assessment of the effects of data error
and copy-number variants, and the efficacy of prior data cleaning, and of prior screening for regions of allelic
similarity.
2. Inference of ibd among larger sets of chromosomes

We will develop and assess Markov chain Monte Carlo (MCMC) methods for sampling of ibd genome seg-
ments, conditional on dense SNP marker or sequence variant data in candidate gene regions, on collections
of haplotypes in a population by: • extension of the ibd models of (1) above, to provide models of ibd among
collections of chromosomes; • development of MCMC methods to sample segments of ibd under population-
based ibd models, conditional on dense SNP or sequence variant data; • development of MCMC-based meth-
ods for parameter estimation including modeling and parameter estimation for data error; • development of
MCMC methods based on the ancestral recombination graph (ARG), and comparison of results under the ibd
and ARG approaches; • investigation of inclusion of LD into Monte Carlo based methods of ibd inference.

3. From inferred ibd segments to trait data analysis
We will develop and assess methods for analyzing trait data on individuals conditional on the patterns of ibd
genome segments inferred among them, by development of: • methods assessing location-specific levels and
regional chromosomal extent of ibd segments among sampled chromosomes in relation to trait value; • meth-
ods of genomic control using genome-wide levels of ibd inferred in the same set of sampled chromosomes;
• model-based methods of analysis of quantitative trait data, computing trait data likelihoods given ibd inferred
or sampled conditionally on marker data; • methods that translate measures of uncertainty in the inferred ibd
among population members to measures of confidence in resulting trait inferences.

4. Methods testing, assessment and comparison
We will assess our methods and compare with alternative approaches, by: • testing methods on our simulated
population structures, where latent ibd is known, but in which founder haplotypes are provided by real-data
population samples; • testing ibd inference methods on real data sets available to us, where latent ibd is
unknown, comparing results with those of other approaches both within the P01 group and elsewhere;
• testing ibd inference methods and consequent trait-data analyses on quantitative traits constructed within real
SNP marker haplotypes; • use data available under the Program Project to assess trait-analysis methods on
gene expression profiles relative to ibd inferred from sequence variants in candidate gene regions, comparing
results with those of other approaches developed by the P01 group.

5. Software development
We will extend and enhance our preliminary IBD Haplo software, by • implementation of programs and meth-
ods developed under (1)-(3) using both R-packages and C; • insure compatibility of input and output formats
with other software of the Program Project; • documentation, distribution and support of the software; • devel-
opment of web-based tutorial materials and examples.
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1 Significance

There have been two fundamentally different study designs available for the detection of genetic linkage, using
information on a genomic array of DNA markers. One uses known pedigree relationships among sampled
individuals, and the other samples individuals of unknown relationship. The former is based on correlated
inheritance patterns within pedigrees, and the latter is based on association between marker genotypes and
trait phenotypes among unrelated individuals. However, while very large population-based designs are yielding
results (Wellcome Trust Case Control Consortium 2007), it is becoming well recognized that the individuals of
a case-control study are never truly ”unrelated”, and that relationships among individuals, whether known or
unknown, are key in the analysis of phenotypic information in order to resolve complex genetic traits (Visscher
et al. 2008; Yang et al. 2011).

Gene identity by descent (ibd) (Cotterman 1940) provides the fundamental framework for the analysis of
phenotypic data on individuals. It is the descent of segments of DNA from common ancestors to extant
individuals that provides for all genetically mediated phenotypic similarities, since such ibd genome has high
probability of being of the same allelic type. The allelic associations maintained by linkage and resulting in
linkage disequilibrium (LD) are likewise a result of coancestry. Conversely, modern genetic marker data, such
as dense SNP data, permits the detection of segments of DNA shared ibd among extant individuals. The
power of ibd detection lies in the fact that ibd segments in remote relatives are rare but not short (Donnelly
1983). Thus, for remote relatives, separated perhaps by 20 to 40 meioses, ibd genome segments are easily
detected, and are typically much longer that the extent of LD present in the population.

Over the last five years, there has been a dramatic increase in the genomic density of genetic marker data.
On a genome-wide scale there are data for ∼10M SNP markers (The 1000 Genomes Project Consortium
2010), while in targeted candidate regions and even for whole exomes sequence data are becoming increas-
ingly available (Ng et al. 2009). These data are available on ever-increasing numbers of individuals both in
disease studies and in population samples (Novembre et al. 2008). Such data challenge current statistical
and computational methodologies, but also present new opportunities. In particular, using dense informative
marker data, accurate estimates of segments of genome shared ibd among sampled individuals have become
computationally feasible and statistically practical.

Inference of ibd has typically been restricted to pairs of individuals (Purcell et al. 2007; Browning and Browning
2010), or even to pairs of haplotypes (Leutenegger et al. 2003; Browning 2008). In order to gain the full power
of an ibd approach it is necessary to consider the joint patterns of ibd among sampled haplotypes in a given
region of the genome. When ibd patterns are clear, joint ibd can be constructed from pairwise inferences.
Where there is uncertainty, methods that can deal directly with multiple chromosomes have an advantage.
Previous approaches to joint analysis of allelic associations over multiple chromosomes have modeled latent
ancestral similarities (Scheet and Stephens 2006) or taken a coalescent approach (Zöllner and Pritchard
2005). Our proposed approach that models directly the ibd pattern among multiple chromosomes or individuals
has both computational and statistical advantages.

Analyses of population data have used allelic and haplotypic associations to assess evidence for genes as-
sociated with disease. However, these associations are reflections of ibd among individuals of the study, and
the extent of ibd, both among individuals and along the chromosome, provides more direct evidence for in-
volvement of genes in contributing to a trait. Haplotypic associations often require selection of variants to
characterize a region, while all variants may be used in the assessment of ibd. Allelic association approaches
have significant difficulties with rare variants (Dickson et al. 2010), but sharing of rare variants and haplotypes
provides powerful evidence of ibd, and, within a causal locus, different rare variants may be shared by case
subsets, allowing an ibd approach to implicate the locus where an association approach can not. The combi-
nation of close and remote relatives, through inferred ibd, has the potential to provide both linkage detection
power and resolution for complex traits.

This project complements and is complemented by the other projects of this Program Project proposal. As
for the other three methodological projects, this project addresses the problems of “relatedness” in resolving
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genes affecting complex quantitative traits, using using dense genetic marker data on individuals not known to
share coancestry. In any large sample of individuals, there is necessarily significant structure, due to demo-
graphic diversity, heterogeneous ethnicity and cryptic relatedness. Together with data available through the
Wellcome Trust Case Control Consortium (2007) and the NIH GENEVA studies (Weir; Project 1), the cohort-
based data to be generated by Gibson (Project 3) on sequence variants and quantitative gene expression in
96 genes will provide an invaluable resource for the development of methods that can be used to quantify the
genetic architecture of complex traits in diverse populations.

The projects of Weir (Project 1) and Visscher (Project 5) both consider relatedness and structure in a genome-
wide average sense, considering the impact of this relatedness on “missing heritability” and in resolving gene-
gene and gene-environments interactions and regulatory effects. This project (Project 4) and that of Browning
(Project 2) focus on coancestry of chromosome segments; while such segments may exist genome-wide, the
measure of any particular instance is specific to the local genome region. Their focus is on using inferred
coancestry (ibd) as a means of addressing allelic and local haplotypic heterogeneity at underlying quantitative
trait loci associated with disease. While Browning (Project 2) has focused on modeling population-level LD to
improve ibd inference, this project (Project 4) focuses more directly on modeling and inference of ibd in a set
of individuals; these two approaches are strongly complementary. All four methodological groups will develop
software implementing their different approaches. Through the synergistic interactions of these groups, and
in collaboration with the Computational Core, we expect the emergence of publicly available software that can
address many aspects of resolving the genetic architecture of complex quantitative traits from individual data
from diverse structured populations.

2 Innovation
It has long been understood that gene identity by descent (ibd) underlies all genetically mediated patterns of
phenotypic similarity among related individuals (Cotterman 1940). However, methods of genetic association
analysis have focused on allelic correlations, and, apart from pairwise ibd used in regression and variance
component approaches (Haseman and Elston 1972; Almasy and Blangero 1998), the methods of genetic
linkage analysis have typically not focused directly on gene ibd. A major innovation of our work, both in
pedigrees and in populations, is the focus on ibd not only at specific marker locations, but across the genome.
Once patterns of joint patterns of ibd are known, the marker data and any information on relationships among
individuals observed for a phenotype of interest are no longer needed in subsequent trait analyses.

While Thompson may be best known for her work in the analysis of genetic data on pedigree structures
(Thompson 2000), she has a long record of working in the area of joint patterns of gene ibd among relatives
(Thompson 1974), likelihood estimation of relationships from genetic marker data (Thompson 1975a), and in-
ference of the coancestry structure among populations (Thompson 1975b). More recently she has considered
allelic associations or linkage disequilibrium (LD) in populations in terms of population coancestry (Thompson
and Neel 1997). With students, she has incorporated coancestry into LD mapping (Graham and Thompson
1998), analysed extent of segments of genome shared ibd between remote relatives (Donnelly 1983; Chap-
man and Thompson 2003), investigated the effects of population growth and subdivision on the distribution of
such segments (Chapman and Thompson 2002), and developed methods for inference of ibd within individuals
whose parents are not known to share coancestry (Leutenegger et al. 2003).

The standard paradigm, both in pedigrees and in populations, has been to evaluate test statistics at marker
positions, even where marker data are used jointly (for example, as haplotypes) in the computation of these
test statistics. As marker data become ever denser, this is no longer practical. A major advantage of working
in terms of the ibd is that the patterns of ibd among sampled individuals remains constant over many markers.
Only where there is a change in ibd is it necessary to re-evaluate linkage evidence. In the pedigree context, we
have developed methods to store these ibd graphs by chromosome segment rather than by marker (Koepke
and Thompson 2010), together with IBDgraph software to identify ibd graphs and their chromosomal extent.
The IBDgraph software can equally be applied to patterns of ibd inferred from population genetic marker data,
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greatly increasing efficiency of trait-data analyses.

An additional shift in genetic data analyses in recent years has been towards increasingly complex traits. Use
of quantitative trait measures and inclusion of covariate information increase power of linkage detection (Wijs-
man and Amos 1997), but more complex models raise issues of model estimation and sensitivity. Again, the
use of marker data to first inform patterns of gene ibd among individuals, and then to analyze trait data condi-
tional on these ibd patterns provides a major advantage. A single analysis of marker data, stored compactly
as inferred ibd patterns across the genome, can be used for multiple test locations, multiple trait models, and
for multiple traits observed on the same set of individuals.

Finally, both in pedigrees and in populations, there has been a shift from exact computation of probabilities,
likelihoods, and test statistics, towards Monte Carlo estimates of these, either for computational feasibility
(Thompson 2000) or to integrate across diverse information (Stephens and Balding 2009). Typically statistics
are averaged to provide an expectation or posterior probability. However, there is additional information beyond
an average in a set of Monte Carlo realizations, of, for example, the across-chromosome ibd graphs. The
distribution of latent p-values derived from these realizations provides measures not only of the strength of
the evidence, but also the uncertainty in that measure (Thompson and Geyer 2007). This approach has been
applied in the pedigree context (Thompson 2008b) to assess uncertainty in lod-score evidence for linkage.
The same approach can be applied to marker-based realizations of ibd in the population paradigm.

3 Approach

The definition of identity by descent (ibd) has been discussed since the early work of Sewall Wright, who
considered both correlations between uniting gametes and probabilities of descent of these gametes from
a common ancestor, these being equivalent in the case of an idealized infinite population (Wright 1922).
However, in real populations the reference population may depend on the purpose of the analysis, and both
correlations relative to an extant population and probabilities of coancestry have an important role in the
analysis of genetic variation (see Wright (1969), Chapter 12).

In the pedigree context, ibd is normally defined relative to the founders of the pedigree, but even here the issue
of the base population can arise. For example, it may happen that subsets of a collection of pedigrees derive
from clearly different ethnic backgrounds, and there is clear within-subset haplotypic coancestry between
pedigrees (Edwards et al. 2008). When pedigrees are placed in their population context, and the possibility
of unknown relationships among the pedigrees is entertained, the definition of a “founder” of a pedigree is no
longer clear.

In the population context, Powell et al. (2010) have recently argued that in large-scale association studies the
primary use of ibd is to impute allelic types at unobserved markers, and that then a definition of relatedness
relative to the extant population is preferred. However, missing marker imputation is far from the only purpose
of ibd inference. Coancestry resulting in ibd segments of genome in current individuals can aid haplotype
imputation (Kong et al. 2008) and detect aspects of population structure not found by other methods (Browning
and Browning 2010). Moreover, where there is heterogeneity of variants within a causal locus, an ibd approach
can detect excess segments of ibd sharing associated with a trait, automatically combining the groups of
individuals who share the local haplotype of each variant. Marker-based allelic associations are proving a
powerful tool in the estimation of relatedness and consequent trait associations (see Yang et al. (2011) and
Visscher; Project 5). Inference of the chromosomal extent of ibd segments provides an additional dimension
to such inferences, not dependent on the precise SNP markers observed and polymorphic in a data set.

While the exact base population for the definition of ibd may be unclear, ibd segments inherited intact from a
common ancestor can often be detected. This is because ibd segments in remote relatives are rare but not
short (Donnelly 1983). More precisely, for a pair of individuals separated by k+1 meioses, the probability of ibd
at any genome location is 2−k and the probability of sharing any of an autosomal genome length L Morgans
is approximately 1 − exp(−k2−kL). However, any ibd segment is of length order k−1 Morgans. For example,
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for k = 20, the probability of sharing any autosomal genome segment is about 10−3, but if such a segment
exists its expected length is 0.05 Morgans, or about 5 × 106 base pairs (5 Mbp). Thus, for remote relatives
ibd genome segments are easily detected, and are typically much longer that the extent of LD present in the
population. In case populations, or populations ascertained for extreme values of a quantitative trait, such ibd
segments have increased probability of occurring at causal loci (Thompson 1997).

3.1 Models and inference of ibd for pairs of individuals

A hidden Markov model (HMM) for the inference of segments of ibd between the two chromosomes of an
individuals was presented by Leutenegger et al. (2003). The latent state of ibd or non-ibd switches according
to a Markov process such that the pointwise probability of ibd is β and the expected length of an ibd segment is
1/α(1−β). The data model is of Hardy-Weinberg genotype frequencies in non-ibd segments. In ibd segments,
the two alleles should be of the same allelic type, and of type Ai with probability qi, the population frequency.
However, in order that a rare mistyping should not preclude an ibd segment, we mix a fraction (1 − ε) of
this required homozygous distribution with a small fraction ε of the Hardy-Weinberg frequencies. Inclusion
of an “error” model such as this is important in any HMM; the data should serve to reweight probabilities of
latent state but should not preclude them. However, inferences are usually robust to the exact form of the
“error” model (see Section 4). Given marker data, allele frequencies, and parameter values, a standard HMM
computation provides the conditional probability of the ibd state at all locations across the genome. Browning
(2008) extended this model to allow for the linkage disequilibrium (LD) that arises when markers are dense,
but assumed that phase was known, and did not allow for mistyping.

In fact, data come as genotypes of individuals, and in analyzing ibd between individuals one must consider
at least their four chromosomes. In developing the PLINK software, Purcell et al. (2007) presented an HMM
for inference of ibd between two individuals. However, their model did not allow for LD, nor for mistyping.
Moreover, their ibd model assumes that there is no ibd between the two chromosomes within an individual,
and the data-model presented assumes that observation of a given allele decreases the probability of the
subsequent allele being of that same allelic type. Albrechtsen et al. (2009) extended the model to allow for
pairwise LD, and Browning and Browning (2010) used their general BEAGLE LD model, but their ibd model
was limited to 2 states at any location: any-ibd or no-ibd among the four chromosomes. While the work of
Browning (Project 2) is focused on LD, using the powerful BEAGLE model and software, this project focuses
instead on models for ibd segments resulting from coancestry of chromosomes and individuals.

An ibd model founded in population genetics is that of Balding and Nichols (1994) who used the Ewens
sampling formula (ESF) as a model for the partition of n homologous genes into k ibd groups. The ESF is
normally given in the form (Ewens 1972; Tavare and Ewens 1997)

πn(a1, ..., an) = (Γ(θ)θkn!)/Γ(θ + n))
n∏

j=1

(jajaj !)
−1 (1)

where ai is the number of ibd subsets of size i, so that n =
∑

i iai and k =
∑

i ai. This one-parameter
model assumes only exchangeability of the chromosomes. In particular, the probability of ibd between the two
chromosomes within an individual is the same as between chromosomes in different individuals. The number
k of subgroups is a sufficient statistic for θ (Ewens 1972), which is thus (inversely) related to the population
level of ibd. Specifically, β = π2(0, 1) = 1/(1 + θ) is the kinship coefficient, the marginal probability of ibd
between a pair of chromosomes. Equation (1) is easily reparametrized in terms of β.

Thompson (2008a) developed a model for ibd across the genome that has the ESF (equation (1)) as the
marginal ibd model among n = 4 chromosomes, and has one additional rate parameter α for changes in ibd
state. Parametrization in terms of the pointwise pairwise probability of ibd (β) and a single rate parameter
(α) controlling expected lengths of ibd segments, permits appropriate choice of these parameter values for
specific applications. The model for changes in ibd state allows single chromosomes to join or disassociate
from larger ibd groups, but unfortunately does not allow all transitions in ibd state that occur in reality. A very
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simple but unrealistic model would be that potential changes in ibd state occur along the chromosome at rate
α, and that at such points a new (possible unchanged) state is sampled according to (1). This model has the
advantage that all state changes are possible, but transition probabilities are far from those realized by any
population model when n > 2. In preliminary analyses (see Section 4), we have used a mixture of these two
models with a fraction (1− δ) for the model of Thompson (2008a) and δ of the simple unrealistic model.

We have studied ibd inference for pairs in individuals, under this augmented ibd-model, using a data-model
that is a direct generalization to four chromosomes of that of Leutenegger et al. (2003). We have developed
HMM software, IBD Haplo, and have undertaken an extensive study to investigate the potential and limitations
of this approach to inference of ibd. A brief summary of some of the results of this study are given in Section 4.
Using a simulated population descent but with real-data haplotypes, with a SNP density of about 50 per Mbp,
we find that with haplotypic data we can reliably detect ibd segments down to 0.5 Mbp, and with unphased
genotypic data down to 1 Mbp. An important recent advance in our software is that it permits the use of
partially phased data, improving performance in chromosome regions where phase can be estimated.

We propose more extensive testing and assessment of inference of ibd segments under this 4-chromosome
model using IBD Haplo, particularly in admixed and structured populations. We propose comparison of direct
use of unphased data, with prior use of haplotype imputation (Browning: Project 2), and assessment of both
the ease and the importance of prior phasing as a function of the level of LD. With phased data, we propose
comparison of pairwise analysis of chromosomes, with joint analysis of sets of 4, in terms of computational
and statistical efficiency.

As commented above, Browning (Project 2) focuses on powerful LD-modeling in the inference of ibd segments,
whereas this project focuses on more realistic population-genetic based ibd modeling. Fitting a good LD model
requires large numbers of individuals (Browning 2006), but in large cohort populations the ibd may be of simple
form. In smaller or more heterogeneous populations, it may be impossible to fit a good LD model, and more
complex patterns of interrelatedness, and hence ibd, may arise. It is not computationally practical to include
both model aspects in large-scale applications (either genome-wide or involving many individuals), but it is
important to assess the impact of the simplifying assumptions made. We propose extensive comparison of
our full ibd-model no-LD approach, with the general LD but 2-state ibd of Browning and Browning (2010).

HMM computations are rapid for the 15 states of latent ibd among four chromosomes (or 9 between two
genotypes); for example, a large chromosome analysis of 45 pairs of individuals requires only a few seconds
CPU. However, genome-wide analysis of all pairs from a large case-control cohort becomes prohibitive, and
prior screening becomes necessary. One simple screen involves copy-number-variant (CNV) detection (Itsara
et al. 2009). We will extend our current IBD Haplo tests of CNV detection to assess the impact and efficiency
of prior screening for homozygous segments, incorporating intensity data to distinguish ibd segments from
chromosomal aberrations (See Laurie: Project 1). More generally, screening for high levels of allelic similarity
across a region may increase efficiency of ibd detection, but the resulting biases must be assessed.

3.2 Models for ibd among multiple chromosomes

While pairwise analysis is well suited to genome-wide analysis, inference of the joint patterns of ibd among
a set of chromosomes is a more powerful approach, particularly where there is uncertainty in the inference.
However the number of possible ibd states at any genome location increases very rapidly with the number of
chromosomes (Nadot and Vayssiex 1973), and HMM methods and genome-wide analysis become computa-
tionally infeasible. Instead, we propose Markov chain Monte Carlo (MCMC) methods to sample ibd patterns
among a set of chromosomes, over small genomic regions, for example regions of sequence variation in
the exons of a candidate gene (Gibson: Project 3). An additional advantage of the MCMC approach is that
incorporating LD by importance sampling reweighting may be feasible (Thompson 2011a).

As before, equation (1) provides the prior distribution on the numbers aj of ibd groups of size j in a set of
n chromosomes. Since for a given (a1, ..., an), the aj groups of size j may be permuted and the j elements
of each of the aj groups of size j may be permuted, the number of unordered labeled partitions with given
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(a1, ..., an) is n!/
∏

j(j!)
ajaj !. Hence the probability of each unordered labeled partition z of the n chromosomes

is (Ewens 1972)

πn(z) = πn(a1, ..., an)
∏
j

(j!)ajaj !/n! = (Γ(θ)θk/Γ(θ + n))
∏
j

Γ(j)aj (2)

Again, also, we require a model of changing ibd state along a chromosome that maintains the marginal dis-
tribution (2). Although the model of Thompson (2008a) can be extended to any number of chromosomes, n,
and retains its Markov property when applied to reduced genotypic ibd states among a set of n/2 diploid indi-
viduals (Thompson 2009), it becomes increasingly restrictive for larger sets of chromosomes. Chaozhi Zheng,
the postdoctoral researcher in Thompson’s current group, has recently proposed a better model, based on
the Chinese Restaurant Problem distribution (Tavare and Ewens 1997). To model transitions from a current
ibd state, first a supplementary chromosome is proposed as a singleton with probability θ/(θ + n), and to join
each group of size j with probability j/(θ + n). Then, one of the n + 1 chromosomes is selected for deletion,
and, if not deleted, the supplementary chromosome is given the identity of the deleted chromosome. Under
this model any one chromosome is permitted to move among groups, which provides a much wider class
of permitted transitions along the chromosome, and a much better fit to transitions realized in our simulated
population (see Section 4).

The data model of our current IBD Haplo software is also easily generalized, with different ibd groups having
independent allelic types and alleles within an ibd group having high probability of being observed as the same
allelic type, but again allowing mistyping with some probability ε. We have initiated the development of MCMC
sampling of latent ibd state, among sets of 10 and 20 chromosomes given SNP or sequence variants, for
example for 100 SNPs over 100 kbp, but much further development is needed. We propose to enhance these
MCMC sampling methods, and to develop software. We propose to test the performance of this approach,
and to assess the balance of increased information from larger sets of chromosomes against the increased
computational complexity. We will compare the accuracy of MCMC estimates based on 10 or 20 chromosomes
with the results of exact HMM computations on subsets of size 4.

For our HMM 15-state ibd model, we have not estimated HMM parameters, but have instead focused on
robustness to parameter values (see Section 4.4). An advantage of an MCMC approach is that parameters
of the model can also be sampled, using a Bayesian approach (Stephens and Balding 2009). We propose
to sample not only the latent ibd state but also the parameters θ of the ESF, α relating to rate changes in ibd
and thus to recombination, and ε the data error rate. We will develop appropriate priors for these parameters,
and sample their posterior distributions given SNP or sequence variants, and compare prior and posterior
distributions to assess performance of the MCMC and information in the data about these parameters.

Assessment of accuracy of inferences also requires development. For four chromosomes, with 15 states of ibd
we can hope to recover the correct state. For 12 chromosomes, with over 4×106 ibd states, this is impractical.

Suppose {{1, 4, 5}, {2}, {3, 6, 7}, {8, 11, 12}, {9, 10}} is the true state.
Then {{1, 4, 5}, {11, 8, 12}, {3, 7, 6}, {9, 10}, {2}} is also the true state,
and {{1, 4, 5}, {2, 3, 6, 7}, {8, 11}, {9, 10, 12}} is a 2-step change,
but {{1}, {4, 5}, {2, 3, 6, 7}, {8, 9, 11}, {10, 12}} requires more steps.

Determination of all states with 1 or 2 steps or a given state is feasible, and so this level of accuracy can
be assessed, but it is as yet unclear whether this level of accuracy can be achieved with real data in real
population cohorts.

An alternative approach to the coancestry of a sample of chromosomes at any locus is through the coalescent,
which, considered across the genome, becomes the ancestral recombination graph or ARG (Hudson 1991).
The ibd of the current chromosomes can be specified relative to any past time point; lineages that have
coalesced by that time point are ibd, and the ibd partition of the chromosomes may be specified as before.
A problem inherent in the ibd approach is the choice of reference population or ancestral time-point t, when
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combined with the model assumption that DNA segments that are not ibd relative to this timepoint are of
independent allelic type. The coalescent framework relative to time t provides a natural ibd definition, with
earlier time-points corresponding to higher population ibd values. However, the allelic types at that ancestral
time-point t are not independent, due to their earlier coalescent ancestry.

This problem becomes acute in an MCMC approach, where parameter θ is sampled, rather than being fixed
from external information on the degree of relatedness in the population. In this case the time-point t and
hence the value of θ is essentially not identifiable. An interesting solution has been proposed by Dr. Chaozhi
Zheng. The coalescent back to some time-point t is used to define the ibd partition, but the allelic types
at that reference time point are not assumed independent. Instead, integration over the earlier coalescent
ancestry provides a joint distribution on the allelic types in distinct lineages at time t; in essence we now
have an informative prior on θ based on this earlier coalescent ancestry. We plan to implement and test this
proposal, to see whether MCMC sampling of parameters will then provide appropriate posterior distribution of
the parameters, and assess any improvement of estimates of ibd segments in the sample.

Rather than model the ibd process, one could also adopt a fully coalescent approach, and consider the latent
ARG of the sample. Just as the ibd process along a chromosome is well approximated by the Markov process
described above, the ARG has also a Markov approximation (McVean and Cardin 2005), which defines the
sequence of coalescents of the sample along a chromosome. As in the case of the ibd model, the Markov
approximation provides an accurate, computationally feasible, prior distribution, although MCMC methods
sampling the ARG are computationally much more complex that those for the ibd partitions (Kuhner et al.
2000).

However there are significant differences between the probability distributions underlying the ARG and ESF
frameworks. First, consider a point in the genome, and the coalescent of the sample at that point. Given the
number k of lineages relative to time t, the distribution of the partition of the chromosomes into k groups is as
for ESF (equation (1)), since this is a function only of the exchangeability of the chromosomes. However, the
distribution of k differs, with that of the ESF having greater variance. Since ESF provides only a prior, to be
used in inference given the sample, this greater variance may not be a significant drawback.

There is a greater difficulty in assessing discrepancies in ibd partitions under the two models. Consider, for
example the two ibd partitions {{1, 2, 6, 7}, {3, 4, 9}, {5, 8, 10}} and {{1, 2, 6, 7}, {3, 4, 5, 8, 9, 10}}.
Under a coalescent framework these two states differ only in a single coalescent event joining the two groups
{3, 4, 9} and {5, 8, 10}. Under the ibd model, these states differ by three transitions, since each chromosome
or lineage changes ibd group as a singleton event.

We propose to develop MCMC sampling methods for ARG framework as well as for the ESF framework,
and to compare the two frameworks in their ability to detect segments of coancestry among the sampled
chromosomes of case-control studies in candidate gene regions. We also propose to investigate incorporating
LD into our models via importance sampling reweighting of MCMC realizations (Thompson 2011a).

3.3 The ibd graph and trait data analyses

A major challenge in genome-wide association studies is allelic heterogeneity at a causal locus, particularly
where the relevant allelic variants are rare (Dickson et al. 2010). Methods of grouping variants and haplotypes
have been proposed (Li and Leal 2008; Madsen and Browning 2009; Price et al. 2010), but these poorly-
tagged and rarely-seen variants remain a major challenge. An advantage of an approach based on ibd is that
it automatically integrates across all allelic variation; ibd provides a framework for haplotypic risks, not geared
to specific alleles. This approach also combines information across extended haplotypes (say, of order 105 bp);
again, ibd segments are rare but not short (Donnelly 1983). Even where only small numbers of cases share
any particular haplotype, their likely ibd can be inferred, and excess ibd among cases, relative to controls and
relative to other genomic regions, can provide strong evidence of a locus contributing to a trait.

We propose to use location-specific ibd as a signal for linkage. We have developed use of the ibd-graph
(Thompson 2011b) to specify ibd among individuals observed for a trait. At any genome location this graph
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has labeled edges, each edge denoting a specific observed individual’s qualitative or quantitative trait value,
and unlabeled nodes representing ibd sharing among the edges (individual phenotypes) that impinge on the
node (see Figure 1). In a population sample, there will typically be little ibd and the graph will consist of many
unconnected edges (not shown in Figure 1), but in a case sample in the neighborhood of causal loci, there will
be connections due to shared coancestry. As implemented in our IBDgraph software, the ibd-graph is defined
not only at each genome location, but collectively over the chromosome, with base-pair or marker indexing
(Koepke and Thompson 2010). Any feature of the graph (for example, ibd of a set of individuals) has a validity
range of markers over which it extends. The IBDgraph software permits efficient querying and identification of
ibd graph features and their validity ranges.

Figure 1: Example ibd graph at one genome location. Edges
are labeled with the quantitative trait values of the individual
represented by that edge. Unlabeled nodes show genome
sharing among individuals. Only individuals sharing genome
are shown. The ibd graph is a sufficient statistic for trait data
analysis conditional on inferred ibd
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Consider first the assessment of ibd for a binary trait, for example in a case-control study. While associa-
tion studies may try to match cases and controls for their population background, and for their level of inter-
relatedness, this often proves impossible. Heterogeneity of populations, and ascertainment of case samples,
may often lead to higher levels of relatedness among cases than among controls. It is therefore important
to use genomic control (Devlin et al. 2001). That is, the levels of ibd inferred in specific genome regions
should be compared, not between cases and controls, but among cases relative to the values for the same
individuals for other genomic regions. For this purpose it will be important to have fast and accurate estimates
of genomewide levels of ibd such as are provided by the methods of Weir (Project 1) and Visscher (Project
5). Note also that we do not propose that ibd-based methods should replace those of allelic association, but
rather that the strength of ibd-based methods to integrate across allelic heterogeneity should provide clear
evidence of genomic regions of interest. More detailed investigation of the precise allelic variants shared ibd
can then follow.

For quantitative traits, phenotypic similarities among relatives are typically modeled via a variance component
model (Almasy and Blangero 1998), using pairwise location-specific ibd probabilities, together with other her-
itable (polygenic) random effects and non-heritable (covariate) fixed effects. There are two drawbacks to this
model. First, higher-order ibd among individuals can provide much more power. The sharing of genome ibd
among multiple cases is a strong indicator that cannot be captured by a pairwise variance-component model.
Second, the model is pointwise over the genome; the chromosomal extent of ibd sharing among a collection
of individuals also provides valuable information about the localization and resolution of causal loci. Shared
genome in different regions of a gene among different case subsets may be an indicator of allelic heterogene-
ity in a causal gene. We propose to develop models and methods for the analysis of quantitative trait data,
including expression data (Gibson: Project 3), that use the framework of ibd inferred jointly among individuals
from genetic marker (SNP or sequence) data observed in population samples.

In a model-based approach, once ibd is inferred from marker data, the marker data are no longer relevant,
and the trait contribution of any genome location can be assessed (Thompson 2011b). We propose to model
trait data Y conditional on ibd, and to use realizations of ibd conditional on marker data M , in a Monte Carlo
likelihood approach:

P(Y |M) =
∑

P(Y | ibd)P (ibd |M)

We will use the methods developed in 3.1 and 3.2 above to provide realizations of the ibd-graph among
observed individuals, and then obtain the likelihood contributions from each realized ibd-graph. Monte Carlo
realization of ibd has not only computational advantages, but also provides measures of uncertainty. Where
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ibd is more uncertain, there will be more variability among ibd graphs. Each realized ibd graph gives rise
to a measure of evidence for particular genome regions to be implicated – e.g. a p-value. The distribution
of p-values over realized latent ibd graphs is a latent (or fuzzy) p-value (Thompson and Geyer 2007), and
can be used to assess the degree of certainty that the marker data provide in associating a phenotype with
some chromosomal region. In developing tests of ibd-based measures of evidence for linkage, we propose
to develop the latent-p-value approach to assess the statistical significance of findings implicating specific
chromosome regions.

3.4 Model testing and assessment

Initial tests of methods will be on on simulated population ancestry structures, both from our population (Sec-
tion 4) and under the coalescent (Section 3.2). Our simulation program permits realizations of populations
of varying size and depth of generations. We have preferred this approach of simulating full population de-
scent or sample coalescent ancestry to earlier approaches (Thompson 2009; Browning and Browning 2010)
where ibd is artificially constructed by transferring segments of genome between individuals. Much of the
uncertainty in ibd inference is around change-points in the the latent ibd state (preliminary results; not shown).
Artificial transfer of segments for testing purposes likely creates artificially clear change-points in the result-
ing ibd inferences. Real-data haplotypes will be imposed on the resulting ibd structures; for this purpose the
data available through the Program Project will provide a much greater variety of levels of LD and admixture
structure to assess our methods than do our preliminary data of Section 4.

Pairwise (4-chromosome) analyses of ibd (Section 3.1) are quick and efficient and can be carried out on a
genome-wide scale. Here we will use GENEVA and HapMap SNP data available to the Program Project.
The data-cleaning, CNV detection, and other procedures developed under the GENEVA project (Laurie et al.
2010) will be used to pre-process data for maximal efficiency. We will use these data first on our simulated
populations in which the ibd imposed by the simulation is known, and later in real-data analyses in which we
do not impose any ibd beyond that unknown and naturally occurring.

Joint analysis of multiple chromosomes (Section 3.2) is computationally intensive, particularly if LD is to be
incorporated, and thus better suited to detailed analysis of candidate gene regions. First, we will use dense
SNP data from specific gene regions for preliminary testing, but we will move rapidly to the data on sequence
variants developed by Gibson (Project 3).

For our testing of trait loci detection through inferred ibd (Section 3.3) we will again initially work with data in
which the answer is known, either from prior studies (Wellcome Trust Case Control Consortium 2007) or by
generating trait data from SNPs or haplotypes within our HapMap or GENEVA maker data. Our longer-term
goal will be to apply these methods to the 96 quantitative expression traits generated by Gibson (Project 3)
relating these traits to sequence variation in the relevant genes.

3.5 Software development

Our preliminary IBD Haplo software has been released (Section 4), but requires much further development.
We propose to improve this software, based in the HMM model of Section 3.1, and to provide documentation
and tutorial examples. When all pairs of a set of individuals are analyzed using many 1000s of SNP markers,
both input and output of IBD Haplo are large. We propose to write a R package containing functions to create
input files in required format, and to sort and summarize output files in various ways. We will also develop and
distribute software implementing the MCMC methods of Section 3.2. While the MCMC process is much more
complex, the ESF (equation (1)), the transition matrix construction, and the data and error models, are shared
by the two approaches. We hope to combine these approaches in a single software package. It is unclear
how central our IBDGraph software (also released 2010), will be to the analysis of the sparse ibd-graphs of
population data Section 3.3, but to the extent it is useful, we propose to include that functionality in our new
package also.
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Of equal importance will be compatibility with the software of other projects, especially the well-developed
BEAGLE software (Browning; Project 2). We propose to work with other project researchers, and through the
Computational Core, to ensure that data files can be easily transferred between softwares, and that analysis
outputs have shared formats providing for easy comparison, For the large array-oriented input and output files,
we will adopt the NetCDF format used by Weir (Project 1) and other researchers. Overall, we will work to
insure a coherent package that complements other capabilities.

3.6 Timeline

The three methodological components of this project will develop broadly in parallel, with student research
associate Chris Glazner taking the lead in development of HMM-based models and methods (Section 3.1),
postdoctoral researcher Dr. Chaozhi Zheng leading the development of Bayesian MCMC-based methods
(Section 3.2) and the PI Thompson further developing ibd-based approaches to linkage detection and trait-data
analysis (Section 3.3), as well as mentoring the research associates. Testing first on simulated or constructed
data will follow (Years 2-3), and then application to real data sets (years 3-5) available to and through the
Program Project. Software will be developed by these researchers, and integrated into a package with the
assistance of research scientist Dr. Steven Lewis; final development of the documented software package will
be in years 3-5 of the program, although specific programs should be released sooner.

4 Preliminary Studies: ibd estimation in sets of 4 chromosomes.

4.1 Background

Under an ARRA Competitive Supplement (funded 9/30/2009-9/29/2011) to our ongoing R37 GM046255 grant,
we have been investigating methods for the estimation of gene ibd among individuals sampled from a popula-
tion. The goal of that research is to combine within-pedigree inference of genome shared ibd among known
relatives with between-pedigree inference of genome shared ibd due to more remote unknown relationships.
We have shown that combination of between- and within-pedigree ibd can increase both the power to detect
genetic linkage and the degree of resolution of loci contributing to a quantitative trait. Additionally, within-
pedigree information on phase of sampled individuals contributes substantially to the accurate estimation of
between-pedigree ibd (Glazner et al. 2010).

Under R37 GM046255 we will continue to develop ibd-based methods for the detection and resolution of loci
contributing to complex oligogenic quantitative traits, using data on known pedigrees (Thompson 2011b), and
will incorporate developments made under the ARRA-funded supplement. However, the population-based
methods we have initiated show great promise also for analysis of data in case-control studies and other
studies of individuals not known to be related, particularly in populations where the degree of relatedness in
the sample is substantial due to population structure, admixture, or history, or due to the sample ascertainment.
We propose therefore to further develop and test these methods in the context of population data, as described
in Section 3 above.

We here provide a brief summary of our results relating to ibd estimation from population data.

4.2 The test data, analysis models, and software

In our studies of performance of methods, we have used a simulated population of 7,000 diploid individuals
(3,500 male; 3,500 female) generating the descent of a chromosome, typically 140×106 bp (140 Mbp) over
200 generations. This provides a broad range of ibd patterns among samples of chromosomes from the final
generation, with ibd segment lengths ranging from a few bp to 3 Mbp. The pointwise probability of ibd between
a pair of chromosomes is about 1.5%, and the pointwise probability of no ibd in a set of 4 chromosomes is
about 90%. Along each set of 4 chromosomes, there are typically about 40 changes in ibd state. Although
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at any point in the genome only 90 to 100 founder genomes survive in the 200th generation, over the 140
Mbp chromosome 2,345 founder genomes are represented and as many as 1,400 founder genomes can be
represented in a sample of only 10 individuals (20 chromosomes).

Using data from the Framingham study (FHS) (Cupples et al. 2009) we gathered a pool of 1917 real-data SNP
haplotypes. Given the pedigree relationships specified none of these share coancestry. Discarding SNPs with
significant missing data or minor allele frequencies less than 5%, we retain about 7,000 SNPs over 140 Mbp
(50 SNPs per Mbp, on average). In a sample of 10 individuals (20 chromosomes), a unique haplotype from
the pool is assigned randomly to each represented founder, to construct the SNP data on the 20-chromosome
set. This process is repeated as needed.

We have implemented software (IBD Haplo) to estimate latent ibd among sets of four chromosomes using a
hidden Markov model (HMM). The model for the latent ibd, either for the 15 states of ibd among 4 phased
chromosomes or for the 9 states among two (unphased) genotypes, is that developed by Thompson (2008a),
augmented to allow, with small probability, transitions not permitted under the simple model (Thompson 2009).
There are three parameters of the ibd process, the pointwise pairwise probability of ibd, β, the rate of change
of ibd pattern along the chromosome, α, and the probability δ with which which “non-standard” transitions are
selected. The data model assumes SNP allele frequencies equal to those in our chromosome pool, and allows
for typing error (probability ε). The data analysis model does not incorporate LD.

For given values of the parameters β, α, δ and ε, our IBD Haplo software analyzes sets of four chromosomes,
or pairs of genotypes. The first version of IBD Haplo was released to the web in 2009, and an improved
version was released in Fall 2010 (www.stat.washington.edu/thompson/Genepi/pangaea.shtml).

4.3 Example results; LD is a reflection of ibd

Using the IBD Haplo software, we estimated ibd among sets of 4 chromosomes in pairs of individuals. Typi-
cally, we run all 45 pairs in sets of 10 individuals. At each marker, a calling threshold of 90% was used to call
an ibd state (including the state of no-ibd). When using the FHS pool of chromosomes, we estimated the state
of no-ibd in only 78% of calls, although our simulated descent gave this state over 90% of the chromosome.
Although this excess ibd is a false-positive in the framework of our simulated population, it is real in that it is
true ibd resulting from cryptic relatedness or LD in the FHS chromosome pool. To assess this we fit an LD
model using BEAGLE (Browning 2006), and generated a new chromosome pool with the same markers and
marker locations using the fitted BEAGLE model. Very similar results were obtained, indicating the issue is
likely one of the high degree of LD in this population. We then produced chromosome pools with reduced
LD by random elimination of some of the split-nodes of the BEAGLE model. The following results are for one
such case, in which LD extending over more than 5 markers (∼ 0.1 Mbp) is reduced. With this level of LD,
89% of calls were for the no-ibd state. The “false-positive” rate decreases with decreasing LD, but for real-data
situations is hard to estimate; our real-data pool of “unrelated” haplotypes undoubtedly contains many ibd
segments.

The data were analyzed both as phased haplotypes and as a pair of genotypes. First considering ibd detection,
we considered the proportion of markers in each ibd segment that called any state of ibd (Figure 2 (left)). Using
haplotypic data, in segment lengths of at least 0.5 Mbp, 85% of markers gave the ibd call, and in segments at
least 1 Mbp almost 100% of markers did so. Genotypic data are less powerful: recall our analysis model does
not incorporate any LD information. The corresponding proportions of markers calling ibd in 0.5 and 1 Mbp
segments were 60% and 85%. Although some small segments (less than 0.1 Mbp) were detected, many were
missed. Interestingly, using haplotypic data, for segments over 0.5 Mbp, the results were little changed when
considering calling the correct ibd state (Figure 2 (right)), although a few segments over 2 Mbp were called for
the wrong state by up to 25% of markers in the segment. Small segments (less than 0.2 Mpb) are often called
for the wrong ibd state, even where ibd is detected. Genotypic data were more prone to calling incorrect ibd
states, due to the phase uncertainties. The proportions of markers calling the correct ibd state in segments
lengths 0.5 and 1 Mbp are reduced to 40% and 75%.
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Figure 2: Curved fitted to ∼900 ibd segments among all 45 pairs in a sample of 10 individuals,
analysed both as haplotypes (4 chromosomes) and as genotypes (2 individuals). The left figure
shows, by length of segment, the proportion of markers calling any ibd state, and the right figure
shows the proportion calling the correct ibd state. A 90% probability was required to call an ibd state.

4.4 Testing model robustness and goodness of fit

Although Leutenegger et al. (2003) developed an EM algorithm for estimation of the HMM parameters (our
α and β), we have not attempted this for our more complex model, but have instead undertaken analyses of
robustness to parameter values, including allele frequencies. As is well known, for ibd inference based on
few markers (and hence for small segments) there can be high sensitivity to allele frequencies (Ott 1992).
However, we find this sensitivity is much reduced in larger segments. When the prior probability of ibd, β, is
increased, obviously more ibd is called, but overall the segments of ibd detected were very robust to changes
in β, and also to values of the rate parameter α for values giving a 10-fold range of prior expected lengths of
ibd segments of 0.2 to 2 Mbp. With regard to the error parameter ε, it is important to allow for error, so that
a single discrepant marker does not preclude an ibd region, but, as in other relationship inference (Sieberts
et al. 2002), the precise error model and level assumed has little impact.

Most recently, we have studied the goodness of fit of actual and inferred transitions in ibd state to our model
assumptions. While the model of Thompson (2008a) captures most realized transitions well, and provides a
good prior model for the analysis of data on sets of 4 chromosomes, some transitions are not permitted; it is
necessary to allow for these transitions by δ > 0. On the other hand, the model component with proportion δ
has no population genetic basis, and allows far too many transitions that do not occur in reality, for example
from no-ibd to all-4-ibd between two close markers. Following these results we are considering both how small
δ can be chosen, and also developing alternate models, as detailed in Section 3.2.

4.5 Software development

Our IBD Haplo software, version 2.0 released Fall 2010, continues to improve, with input from users else-
where as well as from within the group. Recognizing the advantage of phased data, as described above, our
most recent version allows for partially phased data, so that phase information can be used in regions of the
chromosome where phase is clear.

The IBD Haplo program, because under development, has idiosyncratic input and it produces large output
files. To assist colleagues we have written scripts to generate the input files to analyze, for example, all pairs
among a set of individuals. To process output, we use R. Functions summarize inferred ibd call patterns in
various ways, specify ibd segments, provide distributions of lengths, and so on. These functions are being put
into an R-package, which will be released with the next version of IBD Haplo.
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