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2 PROJECT PROGRESS REPORT; 12/2007-5/2011

2.1 Summary of previous specific aims

The overall objective remains the development of techniques for the analysis of the genetic basis of complex
familial traits, with the current focus toward methods of analysis that can make effective use of increasingly
available genomic data including dense SNP markers and DNA sequence variants. The aims include: 1)
the further development of Markov chain Monte Carlo (MCMC) methods for realization of descent patterns
in pedigrees jointly across multiple genome locations and conditional on multilocus marker data, 2) new
approaches to using realized descent patterns in the joint linkage and segregation analysis of complex
genetic traits; 3) development of methods for assessment of statistical significance of linkage findings, using
the empirical MCMC-generated distribution of gene descent; 4) development of methods for inference and
use of gene descent patterns in pedigrees accommodating marker model and data uncertainty, including
typing error, linkage diseqilibrium, and allele frequency uncertainty; 5) comparison of the new approaches
with existing methodology through appropriate simulation studies and the analysis of sample real data sets;
and 6) development, documentation, and support of our publicly available MORGAN software, together with
additional related software, to enable broad use of our methods in the analysis of complex traits on general
pedigrees.

Additionally, under an ARRA competitive supplement (9/2009-9/2011), we are extending methods for
inference of ibd among remotely related individuals whose pedigrees are unknown, and developing methods
for combining the ibd inferred within pedigrees with ibd inferred among pedigrees.

2.2 Importance of the research and of findings

Family-based designs remain important in the study of complex traits for several reasons. (1) Although modern
dense genotyping and sequencing technologies can nominate disease risk variants, a standard step used to
help prioritize the large number of variants is demonstration of cosegregation, or evidence for linkage, with the
trait of interest in a pedigree. (2) For risk variants with low frequency, use of large pedigrees allows efficient
sampling of the multiple copies of a variant needed to evaluate effects of such a variant. (3) Variants identified
through pedigree designs tend to have larger effects than those identified in population-based samples, leading
to easier translation to biological mechanisms. (4) Samples of pedigrees are often the first used to investigate
the genetic basis of novel phenotypes, because the relatively small samples permit collection of large numbers
of phenotypes and sometimes costly or difficult new phenotype measurements. This contrasts with large
population-based samples that rely on inexpensive and widely-available standard measures. (5) Pedigree data
are efficient, thus reducing sample size requirements. This is the consequence of Mendelian transmission,
which guarantees that genetic information propagates through the pedigree, even when some or even many
subjects in older generations are unavailable for sampling.

Many studies have a rich set of existing marker and trait data that has been collected over time and with
different scales of completeness. Many such studies also have existing biosamples in various stages of
completion/depletion. It is critical to be able to integrate these different sources of data. As new technologies
for genotyping become available that add potential additional information, it is common and useful to add such
newer genotypes to a sample. However, because of sample availability and/or cost, it is not always possible to
add genotypes from new technologies for all subjects. To maximize the use of the data from these samples,
which often also includes rich and costly phenotype information, it is useful to be able to integrate the different
sources and levels of existing data with a modest amount of newer data to maximize the information gained,
without incurring unnecessarily high costs. Development of methods that achieve this integration is a focus of
our current research.

As described more fully below, an important technical and methodological advance has been in direct use
of patterns of identity by descent (ibd) inferred from marker data, through the use of the ibd graph. This
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development of our approach provides important gains in efficiency, and also lays the framework for a more
flexible approach to analyses of complex traits. It also provides for integrating analyses at different scales both
across the genome and across subjects. By specification of descent in terms of recombination breakpoints
rather than by marker, it permits the use of modern dense marker data. By specification of shared genome in
terms of ibd rather than descent from pedigree founders, it can express coancestry on the population scale as
well as the pedigree scale. Thus, it allows for combining dense data at the population level with genomically
sparser data on pedigrees, increasing the power and resolution of our methods.

2.3 Report of research accomplished

Numbers in square brackets refer to papers resulting from this award, and are listed in section 5.1. A
reprint/preprint of each of these papers is included as Appendix material. Three major papers currently in
preparation are listed for ease of reference and cited as [P#], while project-generated software resources are
cited as [S#] and listed in section 5.2.

1 MCMC methods for sampling gene descent on pedigrees: Aim 1
The fundamental basis of our approach is the sampling of gene descent paths on pedigrees conditional

on genetic marker data, using Markov chain Monte Carlo (MCMC) methods. We have continued to improve
our MCMC algorithms [13,17], such that we can now efficiently use SNP data at a 0.5cM spacing, even on
extended pedigrees with several generations of ancestral individuals unobserved. With increasing availability
of dense SNP data and complexity of trait data, our approach has been to obtain samples of descent
conditional on marker data once only, and to use these in subsequent analysis of multiple trait models and
trait data sets. Generally, marker maps, model parameters, and data are much more firmly established than
are the corresponding elements for complex phenotypes.

Realizations of gene descent may be specified through founder genome labels (FGL) that identify the
founder origin of DNA present in each individual at each genome location of interest. At a given location, the
FGL determine the pattern of gene identity by descent (ibd) among individuals, in the form of a descent graph.
The descent graph has labeled edges that represent individuals. These edges connect nodes that represent
the two FGL genomes carried by the individuals. With many markers, the descent graph is not an efficient way
either to store ibd patterns inferred from marker data or to use in the analysis of trait data. Different descent
patterns from founders (different FGL) can give rise to the same ibd pattern among individuals observed for
trait or marker data. Different MCMC realizations often give rise to the same ibd patterns (with the same
or different FGL). Along a chromosome, the pattern of ibd can change only at recombination breakpoints in
meioses ancestral to the individuals, and hence remains constant over many markers. We have therefore
developed a version of the descent graph which we call the ibd graph [12].

Like the descent graph, the location-specific ibd graph has labeled edges that represent individuals. These
edges connect (unlabeled) nodes that represent genome carried by the individuals; individuals connecting to a
given node share DNA ibd at the given location [12,17]. Across the genome however, ibd-graphs are specified
in terms of their change-points resulting from ancestral recombination breakpoints. Hence the storage of
multiple realizations of ibd graphs, genome-wide and for multiple pedigrees, becomes practical. While genetic
markers may be available at a scale of 1 per 104 base pairs (bp), recombination breakpoints are on the scale
of 1 per 108 bp per meiosis. For example, storage of 1000 realizations of the ibd graph across a 200cM
chromosome on 31 observed individuals in one of our small test data analyses [19] requires 1.45Mb. The
same information, stored by marker for the ⇠350 markers used in the within-pedigree analyses on this data
set would require 67Mb. For the 10,188 dense markers used in the between-pedigree analyses, 2Gb would
be required. For data sets with more pedigrees, or more observed individuals, or requiring more MCMC
realizations, storage of results by marker would be prohibitive.

The compact storage of ibd graphs realized conditional of genetic marker data enables marker analyses on
a pedigree data set to be accomplished once only, and hence provides much greater efficiency and flexibility in
the subsequent analyses of trait data on the pedigrees [12]. We have implemented this approach of generating
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and storing ibd graphs in a program, gl auto, within our MORGAN-3 software [S3]. The program samples
realizations of gene descent conditional on genetic marker data, using the same improved MCMC algorithms
and sampling options as the newer versions of our MORGAN lod score programs [13,17]. Instead of using
these directly in lod-score computation, they are output in compact format and stored for subsequent analyses.

The gain in efficiency through once-only MCMC analyses of marker data is only a small part of the advantage
of the ibd-graph approach. Previous methods have computed lod-score contributions or other linkage test
statistics for each descent-graph realization at each marker. However, for analyses of trait data, only the
pattern of ibd among the individuals observed for the trait is relevant. Under a given model, for given trait data,
lod-score contributions need be computed only for each distinct ibd graph. We have developed IBDgraph
software [20], which recognizes equivalence of descent graphs in their compressed ibd-graph format, across
FGL labelings, across realizations, and across genome locations. In this way, an ibd graph may be defined
as an equivalence class of descent graphs across these dimensions. Any subsequent analysis, such as
computation of a lod-score or test statistic, depends only on the ibd graph.

The IBDgraph software has been released [S6], and is already providing major yields in linkage analyses
of data of extended pedigrees [21,23]. In some cases, computations associated with the trait-data portion of
the analysis can be be reduced by two orders of magnitude [12]. For example, in analyses of a 26-member
real-data pedigree [23], 1666 realized ibd graphs fell into only 24 equivalence classes. Over these 1666
realizations, only 24 lod-score contributions need be computed [12]. Even greater gains are obtainable in
studies on larger or more complex pedigrees where more MCMC realizations are required, since the number
of distinct ibd graphs sampled increases slowly compared to the number of realizations.

The ibd-graph approach also has significant practical importance for analyses of public-health-related
human data in terms of data confidentiality. For the marker-based MCMC, pedigree data and marker data
are required, but no trait data. The resulting ibd graphs contain no genetic data of any kind. Consequent trait-
data analyses require trait data, but pedigree information is no longer necessary. The three files (pedigree and
marker data, ibd graphs, and trait data) are linked only though fully de-identified IDs. This approach provides
the potential for easier but secure sharing of pertinent information among collaborators in large multi-site
studies of complex genetic traits.

Finally, as described in item 4 below, the ibd graph is not constrained to defined pedigrees, but can also be
used to specify segments of ibd inferred at the population level. This flexibility of scope permits the combination
of ibd within and among pedigrees, which has the potential to increase the power and resolution of linkage
analyses [18,19].

2 Using gene descent in the genetic analysis of complex traits: Aims 2 and 3
While the use of MCMC-based realizations of gene descent in the estimation of multilocus lod scores has

been well established [13], their use in testing more complex trait hypotheses is more novel. In [1], we
developed methods for exact trait-model-free linkage detection tests, and in [2] we used a likelihood approach
to test association of trait data with inheritance inferred from marker data. The methods of these two papers
have been implemented in our released MORGAN software [S1,S3]. Almost all model-based trait analyses
have assumed trait loci with only two (classes of) alleles that differentiate disease risk. The presence of
several alleles of varying effect can confound these models. In [9], an important generalization was made in
developing joint linkage and segregation analysis methods for oligogenic multiallelic traits.

The variation inherent in sampled descent patterns provides measures of uncertainty in resulting inferences,
and hence of significance of linkage findings. We investigated two general approaches. First, we developed
a trait-resimulation approach to the estimation of linkage p-values [5], and have released software for this
approach [S7]. Second, we used the variation over the sampled descent patterns to provide confidence
measures for lod scores [15] and p-values for tests that localize trait genes [4]. In the latter paper [4], we
investigated a new approach to localizing trait genes through conditioning on realizations of gene descent
at positions bounding a test region of the chromosome. The conditional tests developed can also be used
to detect additional linkage signals in the presence of previously detected causal genes, and hence provide
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an approach to oligogenic traits where linked loci may contribute to a single phenotype. This may become
increasingly important with dense haplotyping or sequencing of regions containing several trait loci.

The use of the ibd graph not only greatly improves efficiency of lod-score analyses under single trait-locus
models [21,23], but also provides an approach to efficient computation of bivariate lod-score surfaces under
models of two linked quantitative trait loci (two-QTL). Even on a large pedigree, the components of the ibd
graph are relatively small and simple [12]. Thus we have been able to develop methods for exact computation
of lod score contributions conditional jointly on the realized ibd graphs at two (or even more) linked or unlinked
genome locations, and hence determine lod scores under two-QTL models. Our earlier (2006-7) published
approaches to this two-QTL problem were either limited to small pedigrees or required extensive Monte
Carlo computation to estimate the lod-score contribution for each MCMC-realized descent pattern. On large
pedigrees, with extensive missing data, this two-level hierarchy of Monte Carlo was often computationally
intensive, and, more importantly, did not always perform well. Instead, we first use our gl auto program to
generate and store realizations of ibd graphs across the chromosome(s) conditional on the genetic marker
data. Given these ibd graphs, exact computation of two-QTL lod scores is of the same order of computational
complexity as established single QTL models. A paper is in preparation [P3].

3 Using gene descent in genotype imputation and error detection: Aims 2 and 4
A main focus of our work has been the development of our methods to meet the challenges of modern data.

Applications range from testing Hardy-Weinberg Equilibrium for data quality control of dense SNP data in
population studies [28], to using inferred gene descent for selecting individuals for next-generation sequencing
in large pedigrees [27].

As SNP marker panels become denser and next-generation sequence data becomes available, the
integration of population-based association methods and pedigree-based linkage methods provides the
benefits of both approaches in the analysis of complex traits [7]. We implemented several methods as
part of Genetic Analysis Workshop 16 (GAW16), including the option of storing MCMC-generated sampled
inheritance vectors and re-using these in subsequent analyses [6,7]. Our results demonstrated the advantages
of these stored inheritance vectors, although there remained challenges in using the very dense markers. In
addition, we found that our methods could easily handle dense markers to make inferences about ibd, and that
increased number and density of markers increased the stability of ibd estimates, and decreased the number
of pairs of subjects with high estimated kinship coefficients, especially among reportedly unrelated individuals.
We also showed that existence of ibd across reportedly independent pedigrees affects association analyses.

The GAW16 experience combined with availability and importance of increasingly dense genotype data
stimulated investigation of alternative approaches to combine pedigree and marker information. Linkage
analysis alone does not require extremely dense genotyping. In fact, very dense markers hamper estimation
of ibd graphs on pedigrees, both by increasing computation time, and by including markers that violate the
linkage equilibrium assumption that underlies the methods implemented in MORGAN. However, for analyses
that also incorporate marker-based association, allelic information is important. For example, a particular rare
variant from sequence data may explain segregation of a phenotype in a pedigree, or a particular combination
of alleles might identify a shared haplotype across pedigrees. Our strategy [24,25] involves two stages. First,
at a marker density that is appropriate for our existing MCMC methods [12,13], we use the gl auto program
to sample inheritance jointly at the positions of these framework markers. Then, we use all the available
(denser) marker data to impute alleles between the framework markers, using the jointly sampled inheritance
realizations, observed dense genotypes, and a probability-based computation marginally for each marker and
subject, with a threshold to determine whether or not to impute an allele.

We have developed preliminary software, GIGI, and have tested the imputation approach on three different
data sets consisting of 4-5 generation large pedigrees (52-95 members) with missing data in the oldest two
generations: a simulated pedigree, and two real pedigrees. All three data sets have both sparser multiallelic
STR and dense diallelic SNP markers, with more missing SNP than STR data in the older generations. In the
real data sets, accuracy was measured by masking the dense SNPs in a portion of the genotyped subjects
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prior to imputation. For a genotype call probability threshold of 80%, accuracy of imputed alleles is 95� 99%,
depending on the dataset. Accuracy is inversely related to allele frequency, increases with marker information
in the panel of markers used to sample the framework inheritance, and increases also with the number of
subjects with measured genotype data. This research has been presented at national meetings [24,25], and
a paper is in preparation [P2].

The sampling of ibd on pedigrees, first at framework markers, selected for being informative and reliable, and
then at intervening dense markers, also provides a computationally efficient approach to identifying probable
Mendelian consistent errors for the dense markers. This is important because of the paucity of reliable tools to
identify such errors in large pedigrees, coupled with the potential influence of undetected errors on subsequent
analyses. If the observed data at a non-framework SNP are inconsistent with a high proportion of realized ibd
graphs, an error is indicated. This approach has the advantage of requiring neither allele frequencies nor
an error model for the non-framework SNPs. For example, on the same simulated 52-member pedigree
used above to measure imputation accuracy, we simulated genotypes for 25,000 SNPs spaced at 0.004 cM,
with a genotyping error rate of 0.001. Of the generated errors, 88% were Mendelian consistent (MC). Using
a framework panel of markers at 0.5 cM density and a 95% threshold for the probability of error for error
detection, we identified 98% of the MC errors that are be detectable with perfect information about inheritance
at the marker position, for a positive predictive value of 86%.

The descent patterns on pedigrees inferred from framework markers can also be important in the selection
of individuals for sequencing at a candidate locus [27], by indicating which related affected individuals are most
likely to share ibd the variant that has provided the linkage signal on the pedigree.

4 Inference of ibd among pedigrees in populations: Aim 4 and ARRA
With modern genetic marker data, relationships among observed pedigree members may be readily

validated, but in an extended multi-generation pedigree, ancestral relationships may be uncertain. Even if
correct, the stated pedigree may be biased in that descent from prominent individuals may be known, but
other unknown relationships may exist among individuals specified as founders. Among smaller pedigrees
of a genetic epidemiological study, there may exist unknown ancestral relationships, particularly in study
populations where the degree of relatedness in the sample is substantial due to population structure,
admixture, or history, or due to the sample ascertainment. Modern genetic marker data permit the inference
of segments of genome shared ibd among individuals not known to be related, and hence the combination of
the power of data on known pedigrees with the resolution of population data.

Under an ARRA Competitive Supplement (funded 9/30/2009-9/29/2011) to the R37 award, we have been
investigating methods for the estimation of gene ibd among individuals sampled from a population. We have
developed a hidden Markov model (HMM) for segments of ibd among the four chromosomes of two individuals
[11], and investigated its performance using both genotypic and haplotypic SNP data [16]. More recently, we
have conducted an extensive simulation study, investigating parameter sensitivity and model performance, and
shown that with realistic data at a density of ⇠50 SNPs per cM, we can reliably detect ibd segments of length
1 cM using genotypic data, with better performance if phased haplotypes are available [26]. Thus, shared
inheritance of DNA can be detected even when the individuals are separated by up to 100 meioses.

We have implemented our methods in IBD Haplo [S4], as a separately released part of our main MORGAN-
3 package [S3]. The method is fast; for example, 500 pairs of individuals, for a chromosome of 7,000 SNP
markers, can be analyzed in under 90 seconds. However, output is large and cumbersome; for each pair, at
each marker, the probability of each of the 15 possible ibd states among the four chromosomes. We have
therefore written and released a small R-package, IBDhaploRtools [S5], to facilitate analysis of these output
files.

We have extended these methods in several ways. First we have improved the latent HMM model for
ibd among haplotypes sampled from a population, and related this model to the coalescent ancestry of the
sample [29]. Second, our HMM analysis for pairs of individuals now permits the input of data that is partly
genotypic and partly haplotypic. This is of particular importance in analyzing ibd between members of different
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pedigrees, where partial within-pedigree information on phase of sampled individuals contributes substantially
to the accurate estimation of between-pedigree ibd [26].

Finally, we are undertaking an extensive study of the effect of varying levels of linkage disequilibrium
(LD) on our ibd inferences. Specifically, since LD is itself a reflection of remote coancestry, the resolution
of ibd segments is limited to larger scales than the extent of LD. In this connection, we have developed a
novel simulation strategy, beaglesim, to generate realistic dense SNP haplotypes at varying levels of LD.
An LD model is first fit to a collection of real haplotypes with high LD, using the publicly available BEAGLE
package. Simulated haplotypes are then generated from the model, but in generating each haplotype along
the chromosome LD is “broken” with probabilities that determine the scale of resulting LD [19]. The generated
haplotypes exhibit quite realistic LD patterns, and are used to populate our simulated population samples and
pedigree founders. A paper describing these methods and studies is in preparation [P1].

With the end of the ARRA-funded project, methods for the inference and use of inferred ibd in population
samples will be pursued outside this R37 award, and therefore we do not focus on these results in this report.
However, integration of population ibd into the analysis of data on multiple pedigrees has become a major
focus of continuing research on the R37 award. We have begun to develop methods for combining within-
pedigree inference of genome shared ibd among known relatives with between-pedigree inference of genome
shared ibd due to more remote unknown relationships. We have shown that combination of between- and
within-pedigree ibd can increase both the power to detect genetic linkage and the degree of resolution of loci
contributing to a quantitative trait [18].

The ibd graph is a key feature of our approach to merging within- and between-pedigree ibd. The within-
pedigree ibd graph is first realized by MCMC, using again the gl auto program and the methods described
above [12,17]. Where two founder genomes within a pedigree are ibd due to more remote coancestry, the
corresponding genome nodes must be merged. Likewise, where ibd is inferred between genome segments
in different pedigrees, the genome nodes must again be merged. The result is a combined ibd graph over all
pedigrees; this ibd graph may then be used in lod-score computations or other trait-data analyses. The logical
constraints on merging nodes of the ibd graph are complex, and ibd inferences are probabilistic. Development
and improvement of our proposed methods is ongoing; we have implemented our procedures in new IBDmerge
software.

Preliminary results of our proposed merging procedures are immensely encouraging [18,19]. In a 44-
member, 5-generation, pedigree, we used our MCMC methods [13] to estimate lod scores for a simulated
quantitative trait using the entire pedigree and using three 3-generation subpedigrees of 12 to 14 members.
Only the 22 final-generation individuals, 6 to 8 in each subpedigree, were assumed observed for trait and
marker data. The sum of the three sub-pedigree lod scores showed loss of signal at the true trait location, and
a weaker but still clear false-positive signal in another region of the chromosome. Merging the ibd graphs on
the three subpedigrees, and computing lod scores on the resultant combined graphs, essentially recovered
the lod score computed on the whole pedigree; this full-pedigree lod score accorded closely with the lod score
given the true ibd on the pedigree. The signal at the true trait locus was restored and the false signal was
eliminated [18]. We are currently working with a much more complex 12-generation 95-member pedigree, with
multiple inbreeding loops and interconnected paths of descent. On a 200 cM artificial chromosome we have
imposed descent from various founders at various locations, and simulated quantitative trait data for several
traits, each associated with descent at some location. Using our beaglesim approach, we generated dense
SNP data at 10,188 markers across the chromosome. The final three-generation subpedigrees of sizes 11, 8
and 12 individuals are assumed observed for trait and marker data, and⇠350 markers were selected for the lod
score computations. In this instance, exact computation of lod scores on the subpedigrees is feasible, but even
MCMC lod score estimation on the entire pedigree is impractical. However, since these are simulated data, the
true descent pattern on the entire pedigree is known, and provides the true-ibd lod score. For one particular
trait selected for current testing, the subpedigrees provide only very weak signals, with the smallest presenting
an almost zero lod score. All 10,188 markers were used in our IBD Haplo program to estimate segments
of ibd between individuals from these more remotely related subpedigrees. Merging the within-pedigree and
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between-pedigree ibd using IBDmerge provided appropriate strong positive and negative signals, although
this example presents new challenges which we are developing methods to address. Uncertainty in merging
of ibd can be high, and, on this complex and artificial example, false signals arise in the merged ibd, due to the
correlated descent from several different founders at different genome locations. These methods and results
are reported in [19].

5 Application and testing of methods in the analyses of complex traits: Aim 5
Feedback between application and development of new methods is key for producing effective and useable

analysis methods. Analysis of real data with developing methods provides comparison of results obtained with
new vs. standard methods, as well as identifying challenges that need to be addressed to effectively address
the genetic basis of complex traits, to use new data types, and to interpret results. Such applications also test
usability of developing software.

We have used six different real datasets in these contexts. Four of the data sets involve psychiatric disorders:
Alzheimer disease (Alz), neurodegenerative disease (Guam), Autism (Aut) and Dyslexia (Dys). The other two
studies relate to cardiovascular disease: FCHL and the GAW16 Framingham Heart Study data (FHS). Three
applications used new methods to assist in interpretation of results. These were applications to the Dys [3],
FHS [6] and Alz [8] studies. Two of these [3, 6] for the first time carried out analysis with a single set of
realized inheritance vectors or resulting pairwise ibd estimates in conjunction with multiple, simulated trait
data sets to provide relatively fast empirical p-values for complex trait analyses. Three applications contain
extensive comparisons between our MCMC-based and standard linkage analysis methods, thus testing and
demonstrating their accuracy and computational efficiency. These were applications to FHS [6], Guam [10]
and FCHL [14].

Two applications demonstrate the efficiencies in use of classes of equivalent ibd graphs [20] for analysis
of large pedigrees [21,23], with up to 2-orders of magnitude gain in speed. Three applications identified
challenges with use of the increasingly dense marker data available, including use of both dense SNPs
[6,14,22] and modern sequence data [22], with such challenges leading to the imputation and error-detection
approaches discussed above [24,25]. Finally, two applications demonstrate the effectiveness of methods that
allow identification of inherited genomic segments that then inform selection of subjects for sequencing [21,27]
or to assist in identification of a causal locus [22].

6 Software development: Aim 6
We have continued to develop our MORGAN software, integrating new programs for linkage detection [1, 2],

new MCMC sampling methods [13], and many other computational improvements into the final (V2.9) releases
of MORGAN-2 [S1]. The MORGAN Tutorial and Examples have also been fully updated to MORGAN 2.9
[S2]; the tutorial is available online and also in several download formats. Our major effort has been in the
development, documentation, and distribution of MORGAN-3 [S3]. MORGAN-3 is now fully functional; V3.0.2
is recently released. While, for older programs, the user may detect little difference between MORGAN-2
and MORGAN-3, the underlying framework is significantly altered, since trait phenotypes are separated from
trait loci, permitting several loci to contribute to a trait, as well as other needed complexities. MORGAN-3
also has much greater capacity for handling large numbers of genetic markers, with new options for lod-score
computation. Newer methods for assessment of linkage findings [4, 15] are included only in MORGAN-3, as
also is the gl auto program for the generation of marker-based ibd graphs [12,20,21] and related programs for
use of these ibd graphs in subsequent trait-data analysis. The tutorial for MORGAN-3, including new examples
files, is in preparation for release.

As described above we have also released software tools SimSuite [S7], IBD Haplo [S4], a related R-
package, IBDHaploRtools [S5], and our IBDgraph software [20,S6] for determining equivalence of ibd graphs.
Our IBD Haplo software is also a component of MORGAN-3, facilitating the combination of population-based
and pedigree-based ibd in these trait-data analyses [18, 19]. The IBDHaploRtools package and IBDgraph
software are currently separately released, but we are working towards better interface between these tools
and MORGAN-3.
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3 Research Plan

The ibd graph approach has become central to our analysis methods, and will be the focus of continuing
research. Our marker-based MCMC sampling methods have become quite efficient, and the compact storage
of ibd graphs and the IBDgraph reduction provides for effective trait analyses. However, the potential remains
for more direct sampling of ibd graphs and the recombination break-points that cause changes in ibd along a
chromosome. We will explore this potential, and evaluate alternate methods of sampling ibd within and among
pedigrees. We will continue to develop and evaluate methods for merging between-pedigree ibd inferred from
dense markers with within-pedigree ibd sampled using sparser framework markers, and explore the potential
for using pedigree-based haplotyping to inform between-pedigree inferences. Our current IBDmerge analyses
are preliminary, and much remains to be accomplished.

Our main approach to using realized ibd in the analysis of trait data has been through the efficient
computation of lod scores [17,12] although we have also developed other tests for linkage detection [1,2]
and gene localization and resolution [4] and extended oligogenic linkage analyses [9]. An advantage of
the ibd approach in the analysis of complex traits is that it integrates over genetic heterogeneity. It permits
the detection of multiple causal loci affecting complex traits, and gains power from combining the effects
of alternative segregating causal variants within loci. In addition to continuing lod-score approaches, we
will develop more trait-mode robust test-statistics for linkage detection and resolution using the correlation
of shared segments of ibd with phenotypic similarity. We will evaluate these methods, and compare their
performance with that of direct model-based statistics.

We will continue to develop methods for combining chromosomally sparse data on many pedigree members
with chromosomally dense data that is sparse on the pedigree, with particular reference to genotype and
haplotype imputation, selection of individuals for sequencing, and for error detection. A key assumption in
these analyses, as in the initial MCMC realization of ibd graphs, is that marker allele and local haplotype
frequencies are known. We will take two general approaches to address this issue. First, for the framework
markers, we will use reweighting of MCMC realizations [17] to determine the sensitivity of ibd graphs to allele
frequencies within chromosomal regions of interest. This may be of particular importance where a rare variant
local haplotype is segregating in a pedigree. Second, we will develop statistically sound methods to combine
within-study information on frequencies of allelic and haplotypic variants with relevant publicly available data
sources such as HapMap or 1000-Genomes.

In addition testing our methods via simulation studies using publicly available data, a key focus will be the
continued testing on data from real pedigree studies, available to us through Dr. Wijsman’s collaborations.
Specifically, the four studies involving Alzheimer’s disease (Alz) [8], FCHL [14], Dyslexia (Dys) [3] and Autism
(Aut) [23] all have ongoing data collection, and all include larger pedigrees requiring MCMC analysis. Three,
(Alz, FCHL and Aut), have dense SNP genotypes and will have next-generation exome sequence data on a
subset of the individuals. Two of the studies (FCHL and Dys) have a wide range of well-defined quantitative
phenotypes. The challenges of real marker and trait data include biological and phenotypic complexity, missing
data, data error, and the need to integrate older data with that becoming newly available. These challenges
lead to significant improvements in our methods. Conversely, our methods contribute to data analyses in these
studies, providing ongoing synergistic advances.

We will continue to develop our MORGAN-3 software, implementing and releasing new methods, as well
as continuing the improvement in the underlying structure of the package, allowing for greater flexibility of
approaches, and the easier integration of data at different scales, both chromosomally and over pedigrees.
We will integrate our IBDgraph library [S6] into MORGAN-3, to provide an integrated analysis stream from
sampling the ibd graphs to the analysis of trait data. We will develop, document and release other related
software, currently in early stages of development and testing. This includes GIGI for genotype imputation
and error detection [P2], HyperLod for oligogenic trait-model likelihood computations [P3], and IBDmerge for
merging ibd-graphs among pedigrees [18,19].
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5 Progress Report Publication List

5.1 Publications resulting from this award; 2008–2011.

(i) Papers in refereed journals

1. Basu S, Di Y, and Thompson EA. (2008) Exact trait-model-free tests for linkage detection in pedigrees.
Annals of Human Genetics 72: 676–682. PMCID: PMC2574967.

2. Basu S, Stephens M, Pankow JS, and Thompson EA. (2010) A likelihood-based trait-model-free approach
to linkage detection of binary trait. Biometrics 66: 205–213. PMCID: PMC3118475.

3. Brkanac Z, Chapman NH, Igo RP Jr, Matsushita MM, Nielsen K, Berninger VW, Wijsman EM, and Raskind
WH. (2008) Genome scan of a nonword repetition phenotype in families with dyslexia: evidence for multiple
loci. Behavior Genetics 38: 462–475. PMCID: PMC2853749.

4. Di Y, and Thompson EA. (2009) Conditional tests for localizing trait genes. Human Heredity 68: 139–150.
PMCID: PMC3022037.

5. Igo RP Jr, and Wijsman EM. (2008) Empirical significance values for linkage analysis: trait simulation
using posterior model distributions from MCMC oligogenic segregation analysis. Genetic Epidemiology 32:
119-131. PMID: 17849492.

6. Marchani EE, Di Y, Choi Y, Cheung C, Su M, Boehm F, Thompson EA, and Wijsman EM. (2009) Contrasting
IBD estimators, association studies, and linkage analyses using the Framingham data. In ”Genetic Analysis
Workshop 16.” BMC Proceedings 3(Suppl 7):S102. PMCID: PMC2795873.

7. Marchani EE, Callegaro A, Daw EW, and Wijsman EM. (2009) Combining information from linkage and
association methods. Genetic Epidemiology: 33(Suppl 1): S81-S87. PMCID: PMC2910520.

8. Marchani EE, Bird TD, Steinbart EJ, Rosenthal E, Yu CE, Schellenberg GD, and Wijsman EM.
(2010) Evidence for three loci modifying age-at-onset of Alzheimer’s disease in early-onset PSEN2
families. American Journal Medical Genetics: B Neuropsychiatric Genetics 153B: 1031–1041. PMCID:
PMC3022037.

9. Rosenthal EA, and Wijsman EM. (2010) Joint linkage and segregation analysis under multiallelic trait
inheritance: Simplifying interpretations for complex traits. Genetic Epidemiology 34: 344-353, PMCID:
PMC2914272.

10. Sieh W, Choi Y, Chapman NH, Craig UK, Steinbart EJ, Rothstein JH, Oyanagi K, Garruto RM, Bird TD,
Galasko DR, Schellenberg GD, and Wijsman, EM. (2009) Identification of novel susceptibility loci for Guam
neurodegenerative disease: Challenges of genome scans in genetic isolates. Human Molecular Genetics
18: 3725–3738. PMCID: PMC2742398.

11. Thompson EA. (2008) The IBD process along four chromosomes. Theoretical Population Biology 73:
369–373. PMCID: PMC2518088.

12. Thompson EA. (2011) The structure of genetic linkage data: from LIPED to 1M SNPs. Human Heredity,
71: 88–98. (PMC journal – in progress).

13. Tong L, and Thompson EA. (2008) Multilocus lod scores in large pedigrees: Combination of exact and
approximate calculations. Human Heredity 65: 142–153. PMCID: PMC2701716.

14. Wijsman EM, Rothstein JH, Igo RP Jr, Brunzell JD, Motulsky AG, and Jarvik GP. (2010) Linkage and
association analyses identify a candidate region for apoB level on chromosome 4q32.3 in FCHL families.
Human Genetics 127: 705–719. PMCID: PMC2877194.

(ii) Published conference proceedings and book chapters

15. Thompson EA. (2008) Uncertainty in inheritance: assessing linkage evidence. Proceedings of the Joint
Statistical Meetings, Salt Lake City. Pp. 3751–3758.
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16. Thompson EA. (2009) Inferring coancestry of genome segments in populations. Invited Proceedings of
the 57th Session of the International Statistical Institute, Durban, South Africa.

17. Thompson EA. (2011) Chapter 13: MCMC in the analysis of genetic data on related individuals. In
Handbook of Markov Chain Monte Carlo S. Brooks, A. Gelman, G. Jones, and X. Meng (Eds). Chapman &
Hall/CRC Press. Pp. 345–367.

18. Thompson EA, and Glazner CG. (2011) Gene coancestry in pedigrees and populations. Contributed
Proceedings of the 58th Session of the International Statistical Institute, Dublin, Ireland.

(iii) Submitted Papers and Software Technical Report.

19. Glazner CG, and Thompson EA. (2011) Improving pedigree-based linkage analysis by estimating
coancestry among families. Statistical Applications in Genetics and Molecular Biology: submitted.

20. Koepke HA, and Thompson EA. (2010) Efficient testing operations on dynamic graph structures using
strong hash functions. Technical report No. 567, Department of Statistics, University of Washington.

21. Marchani E, and Wijsman EM. (2011) Estimation and visualization of identity-by-descent within pedigrees
simplifies interpretation of complex trait analysis. Human Heredity; submitted.

22. Rosenthal EA, Ronald J, Rothstein J, Rajagopalan R, Ranchalis J, Wolfbauer G, Albers JJ, Brunzell JD,
Motulsky AG, Reider MJ, Nickerson DA, Wijsman EM, and Jarvik GP. (2011) Linkage and association of
phospholipid transfer protein activity to LASS4. Journal of Lipid Research; submitted.

(iv) Meeting Abstracts not yet represented by submitted or published papers

23. Chapman N, Estes A, Munson J, Bernier R, Webb SJ, Rothstein J, Schellenberg G, Dawson G, and
Wijsman E. (2010) Genome-wide linkage analysis of flexibility/insistence-on-sameness in multiplex families
with Autism spectrum disorders. American Society of Human Genetics Meeting (abstract).

24. Cheung CYK, Thompson EA, and Wijsman, EM. (2010) In Silico Genotype imputation on large pedigrees.
International Genetic Epidemiology Society Meeting (abstract). Winner of Williams award for best pre-
doctoral presentation.

25. Cheung CYK, Thompson EA, and Wijsman EM. (2010) In Silico Genotype imputation on large pedigrees.
American Society of Human Genetics Meeting (abstract).

26. Glazner C, Brown MD, Cai Z, and Thompson EA. (2010) Inferring coancestry in structured populations.
West North American Region of the IBS Annual Meeting (abstract), Seattle, WA.

27. Marchani E, and Wijsman EM. (2010) Selective sequencing for efficient fine-mapping of disease loci.
American Society of Human Genetics Meeting (abstract).

28. Thompson EA. (2008) Testing Hardy Weinberg Equilibrium. Plenary Hardy-Weinberg Centenary Session:
American Society of Human Genetics, Philadelphia PA.

29. Thompson EA, and Zheng C. (2011) Modeling IBD processes along chromosomes in populations. West
North American Region of the IBS Annual Meeting (abstract), St. Luis Obispo, CA.

(v) Papers in preparation
These papers are listed here for ease of citation/description. They will be submitted in 2011.

P1. Brown MD, Glazner CG, Zheng C, and Thompson EA. Inference of coancestry in populations; assessment
of models and methods.

P2. Cheung CYK, Thompson EA, and Wijsman, EM. Genotype imputation on large pedigrees.
P3. Su M, and Thompson EA. Lodscores for oligogenic traits through use of multilocus identity by descent.
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5.2 Project-generated resources

Compressed tar files of the source code of all software developed under this award are made
available to interested researchers via the web. The website for download of our software is
http//:www.stat.washington.edu/thompson/Genepi/pangaea.shtml. A complete release history and other
software information may also be found at this site.

The following releases have been made since the start of the current award period:

S1. MORGAN 2.9: The first full release of MORGAN 2.9 (the final version of MORGAN-2) was in August
2008, and the final release was in November 2009.

S2. MORGAN 2.9 Tutorial and Examples: Tutorial and Examples for MORGAN 2.9 were updated December
2009, and a revised full update was released September 2010.

S3. MORGAN 3.0: Development of MORGAN-3 has proceeded from beta releases in March 2008 and March
2009, to the first full release in November 2009, with update versions 3.0.1 and 3.0.2 in September 2010
and April 2011, respectively.

S4. IBD Haplo 2.0; A package for ibd inference from population data. First release was in December 2009,
with version 2.0 released August 2010. See [26].

S5. IBDhaploRtools 1.1: An R-package to analyze the output of IBD Haplo; includes example data files and
tutorial. First release was in March 2011, with version 1.1 released May 2011.

S6. IBDgraph 2.0: A package to determine equivalent ibd graphs over realizations and across the
chromosome. First release was in March 2010, with version 2.0 released August 2010. See [20].

S7. SimSuite Ver 1.0: A collection of scripts, with documentation and examples, for marker or trait resimulation.
Released March 2009. See [5].
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