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1. Introduction

Identity by descent (ibd) underlies all similarities among relatives, and hence is the basis of

linkage mapping both in pedigrees (Albers et al. 2008) and in populations (Te Meerman et al. 1995).

As dense genomic marker data become increasingly available, ibd among observed individuals can be

accurately inferred. This is leading to new methods of genetic analysis of complex traits whereby ibd

is first inferred, and then trait data are analyzed conditionally on the inferred ibd (Di and Thompson

2008). In pedigrees, the pedigree structure provides a prior distribution on ibd, but for remotely

related individuals in populations pedigree relationships are unknown. The strength of methods for

inference of ibd from genomic data lie in the fact that, while remote relatives have low probability of

sharing any of their genome ibd, the lengths of ibd segments, if present, extend on average over millions

of base pairs (Donnelly 1983). In this paper we present models for inference of ibd among multiple

genomes sampled from a population, given either haplotypic (phased) or genotypic (unphased) data

on a set of individuals. For convenience we will refer to the underlying DNA as genomes, even when

considering only ibd at a single genome location, to the allelic types of the DNA as haplotypes, and

to the unphased pair of haplotypes as genotypes.

On a less dense genomic scale, Leutenegger et al. (2003) produced the first model to infer ibd

among chromosomes in populations from genetic data at multiple linked loci. Although she considered

only the two chromosomes within each individual, a key feature of her model is that it permits error

in the observations. Browning (2008) considered dense data on a genomic scale. She again only

considered pairs of chromosomes, and her model did not allow for error, but her key contribution

was the incorporation of linkage disequilibrium (LD) among the dense genetic markers upon which

inferences are to be based. Although the model of this paper could be extended to include LD

(Thompson 2008a), it is not computationally feasible (as yet) to include both LD and multiple genomes.

Also, since LD is a reflection of the coancestry we aim to infer (although at a longer time frame), it is

questionable as to whether LD should be modeled. Finally, Purcell et al. (2007) considered estimation

of ibd between two individuals, given genotypic data. However, this model also does not allow for data

error or LD, and considers only ibd between the individuals and not between the two genomes of each.

Since, in most human populations, our parents are at least as closely related to each other than each

of us is to other members of a study population, this seems an inherently undesirable constraint.

The Leutenegger model for ibd is a two-parameter Markov model for changes in ibd along a

chromosome; ibd is gained at rate g and lost at rate h, giving the first form of the two-state Markov

rate matrix Q between non-ibd (Z = 0) and ibd (Z = 1):

Q =

(

−g g

h −h

)

=

(

−αβ αβ
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)

= α(−I +

(

1

1

)

(1 − β, β)).(1)

There are two equivalent interpretations of this rate matrix in terms of population-genetic parameters α

and β. The marginal probability of ibd is β, and the relative rate of gain vs loss of ibd is g/h = β/(1−β).

The parameter α measures a rate of change in ibd status along the chromosome, and hence the

“typical length” of ibd segments. Specifically, ibd segment lengths are exponential with expected length



(α(1−β))−1. In reality, ibd is not Markov and expected segment lengths are heterogeneous, depending

on the number of meioses from the common ancestor, but our objective here is a flexible “prior” model

that will allow the data to inform the inference of ibd. An alternative interpretation of the model (1)

is given by the final expression in the equation. Here, we have a model of breakpoints, occurring

randomly and independently at rate α, and the intervals between segments are independently of type

0 (non-ibd) with probability (1−β), and of type 1 (ibd) with probability β. Both these interpretations

will be useful in developing the more general model of this paper. Finally, values of α and β are required

for data analyses. Leutenegger et al. (2003) developed an EM-algorithm for parameter estimation in

this model. However, here we regard them simply as tuning parameters, with β depending on the

overall ibd level, and α on the typical ibd segment length we wish to detect.

Next, a model for the genotypic or haplotypic data given latent ibd is required. At each locus,

allele frequencies qi of alleles Ai are assumed known: in reality they can be well estimated from

genotypic samples. The model of (Leutenegger et al. 2003) may be written

P (AiAi|Z = 0) = q2
i P (AiAi|Z = 1) = (1 − ε)qi + εP (AiAi|Z = 0)

P (AiAj |Z = 0) = 2qiqj (i < j) P (AiAj |Z = 1) = εP (AiAj |Z = 0)(2)

That is, in principle, ibd (Z = 1) implies the same allelic type and non-ibd (Z = 0) implies independent

allelic types. However a small “error” probability ε (or order 0.01) allows alleles scored as of different

types to be ibd. An advantage of this simple model is that it is easily extended to the joint probability

of a larger set of allelic types. Note the model under non-ibd (Z = 0) is of Hardy Weinberg proportions.

As a population model, this seems more satisfactory than the model of homozygote deficiency and

heterozygote excess implied by the finite-sample approach of Purcell et al. (2007).

Equations (1) and (2) define a Hidden Markov Model (HMM) for latent ibd and observed geno-

types. The standard forward-backward algorithm (Baum et al. 1970) provides the conditional prob-

ability of ibd at every location on the chromosome, given the are allelic types on the chromosomes

jointly over all loci.

In this paper, the aim is to extend the model of Leutenegger et al. (2003) to multiple genomes,

enabling the joint analysis of ibd patterns among a set of haplotypes, or within and among a set of

individuals for whom genotypic data are available. In section 2, we review the classical specification

of ibd at a single locus, relating models of labeled (ordered) haplotypes (Nadot and Vayssiex 1973) to

those of unlabeled partitions of a set (Ewens 1972). We then review the way in which the very large

numbers of ibd states among n genomes group into classes that are genotypically equivalent (Thompson

1974). In section 3, we generalize the 2-haplotype Markov model (1) to multiple genomes using the

marginal (single-locus) model of section 2. The model is developed first for labeled haplotypes, and

it is shown that the reduction to genotypically equivalent classes of states remains Markov. The data

model of equation (2) is also extended. Section 4 provides as illustrative example based on artificially

constructed ibd among HapMap chromosomes (International Hapmap Consortium 2005), and section

5 concludes the paper.

2. Single-locus model for ibd among multiple genomes

We start by reviewing the classical single-locus framework for ibd among multiple genomes. A

canonical labeling and accounting of the partitions of n genomes into ibd subsets was given by (Nadot

and Vayssiex 1973): the case of the 15 states arising for n = 4 is given in Table 1. For an unordered

set of n genomes, Balding and Nichols (1994) modeled the partition into ibd groups using the Ewens

sampling formula Ewens (1972). The partition into k sets is specified by A = (ai; i = 1, ..., n) where



ai is the number of sets of size i (k =
∑

i ai, n =
∑

i iai). Then

πn(a1, ..., an) =
n!βn−k(1 − β)k−1

(1 + β)(1 + 2β)....(1 + (n − 2)β)

n
∏

j=1

(jajaj !)
−1(3)

where β = π2(0, 1) is the probability two genomes are ibd.

State ibd states partition equilibrium equilibrium

class m1p1 m2p2 A = (a1, a2, a3, a4) state prob class probability

1 11 11 all ibd; (0,0,0,1) 6ηβ3 6ηβ3

2 11 22 two pairs; (0,2,0,0) ηβ2(1 − β) ηβ2(1 − β)

3 11 12 and 11 21 three ibd; (1,0,1,0) 2ηβ2(1 − β) 4ηβ2(1 − β)

4 11 23 one pair; (2,1,0,0) ηβ(1 − β)2 ηβ(1 − β)2

5 12 11 and 12 22 three ibd; (1,0,1,0) 2ηβ2(1 − β) 4ηβ2(1 − β)

6 12 33 one pair; (2,1,0,0) ηβ(1 − β)2 ηβ(1 − β)2

7 12 12 and 12 21 two pairs; (0,2,0,0) ηβ2((1 − β) 2ηβ2((1 − β)

8 12 13, 12 31, one pair; (2,1,0,0) ηβ(1 − β)2 4ηβ(1 − β)2

12 23 and 12 32

9 12 34 no ibd; (4,0,0,0) η(1 − β)3 η(1 − β)3

Table 1: Single-locus states of gene identity for 4 genomes

In Table 1, η = ((1 + β)(1 + 2β))−1 is the normalizing constant of the distribution (3). Note

also that different ordered states have the same unordered partition A. For example, state 4, state 6,

and the four states in class 8, all have A = (2, 1, 0, 0). The total probability given by equation (3) is

6ηβ(1 − β); each state has probability ηβ(1 − β). However, the seven states with k = 2 correspond

both to A = (0, 2, 0, 0) (state 2, and the two states of class 7) and to A = (1, 0, 1, 0) (the four states

in classes 3 and 5). For the former, π4(0, 2, 0, 0) = 3ηβ2(1 − β) and each of the three states has

probability ηβ2(1 − β), but for the latter the total probability π4(1, 0, 1, 0) = 8ηβ2(1 − β), and each

has probability 2ηβ2(1− β). For general n and k, there is no simple accounting of the numbers of ibd

states of labeled genomes (Nadot and Vayssiex 1973) corresponding to a given partition of unlabeled

genomes (Ewens 1972).

The number of ibd states among n labeled genomes increases very rapidly with n, being over

4× 106 for n = 12 (Nadot and Vayssiex 1973; Thompson 1974). However many of these ibd states are

genotypically equivalent, in the sense of providing equal probabilities of genotypic data and hence being

non-identifiable from genotypic data. This potential reduction was first considered for two individuals

(n = 4) by Cotterman (1940), but it was Jacquard (1972) who gave us the nine state classes in the now

standard form. These nine state classes are as shown in Table 1. Although for two individuals (n = 4)

we obtain a reduction only from 15 states to 9 state classes, the reduction becomes of increasing

importance as n increases. For 6 individuals (n = 12), the over 4 × 106 states fall into only 198,091

state classes (Thompson 1974).

The genotype (at a single locus) of an individual is the unordered pair of his alleles. Hence if

the n genomes are those of n/2 labeled individuals, any states which can be obtained from each other

through the interchange of the two genomes within each of a subset of the individuals are genotypically

equivalent. Thompson (1974) considered the group of transformations generated by elements Ti:

G = < T1, ...., Tn/2 >(4)

where Ti operates on the ibd states among n labeled genomes by interchanging genomes 2i− 1 and 2i;

the two genomes of individual i, i = 1, ..., n/2. Equivalence classes of states under G form the sets of

genotypically equivalent ibd states. G has 2n/2 elements, but not all equivalence classes are the same



size. Ti has no effect on a state if the two genomes of i are ibd. Also, if a subset of individuals I all

have the same two non-ibd genomes not shared by any other individuals, then
∏

i∈I Ti does not change

the state. For example,in Table 1, neither T1 nor T2 changes state 6 = (12 33), since individual 2 has

two ibd genes, and individual 2 two distinct genomes not shared with individual 2. On the other hand,

for states in group 8 both T1 and T2 are effective, creating an equivalence class of 4 states. In group

7, T1(12 12) = T2(12 12) = (12 21), and T1T2 has no effect, providing an equivalence class of size 2.

3. Genomic model for ibd among multiple genomes

We must now extend the marginal model of section 2 to a model along a chromosome. We

generalize the model (1). As in equation (1), along the genome, for each chromosome, ibd is gained at

rate g and lost at rate, with g/h = β/(1 − β), where β is the probability a pair of chromosomes are

ibd at any given location. Specifically, two types of transitions among ibd states are modeled:

(1) All pairs of singletons in states with a1 ≥ 2 become ibd at rate g. All doubletons in states with

a2 ≥ 1 become non-ibd at rate h. We note that

πn(a1, ..., an)

πn(a1 − 2, a2 + 1, a3, ..., an)
=

2

ga1(a1 − 1)
h(a2 + 1).(5)

Now there are a1(a1 −1)/2 possible pairs of singletons, all becoming ibd at rate g, and in the resulting

state a2 + 1 doubletons, each becoming non-ibd at rate h.

(2) Each singleton in a state with a1 ≥ 1 joins with an ibd group size (j − 1) ≥ 2 at rate (j − 1)g.

Each member of an ibd group size j leaves it at rate h. We note that

πn(a1, ..., an)

πn(a1 − 1, a2, ...aj−2, aj−1 − 1, aj + 1, aj+1, ...an)
=

jh

(j − 1)g

aj + 1

a1aj−1

.(6)

In this case there are a1aj−1 choices of singleton and ibd set size (j − 1), and for each the larger group

is formed at rate g, while in the resulting state there are aj + 1 ibd sets size j, and from each, each of

the j elements becomes non-ibd at rate h.

Thus, under the transitions both of equation (5) and (6), detailed balance w.r.t. πn is main-

tained. Hence πn is the unique equilibrium distribution. For the case n = 4, the transition rate matrix

under this model was given by Thompson (2008b).

The model for labeled states could be used even for genotypic data, but this would be computa-

tionally inefficient. As noted by Thompson (2008b) the 15-state Markov model for 4 genomes reduces

to a 9-state Markov model for the genotypically equivalent classes of states among an ordered pair

each of two unordered genome pairs (i.e. ibd among the four genomes of two individuals). Using the

notation of the equivalence classes under group G (equation (4)), we note that this is true for any

number of genomes under the transition model of equations (5) and (6). Under this model: (1) every

transition changes the number of ibd groups, and hence the equivalence class, (2) The sojourn time

within the state has the same distribution for every member of the class, and (3) The transition prob-

ability to a class A from class B is the same for every member b ∈ B. These conditions are sufficient to

ensure that the process on the reduces space of equivalence classes of states remains Markov. Only (3)

requires comment. It follows from the fact that for every member T of the group of transformations

G generating the equivalence classes of states A and B, and a ∈ A and b ∈ B, the transition from b

to a has the same rate as Tb to Ta. Note it is possible that Ta = a and/or Tb = b; the equivalence

classes A and B need not be the same size.

Unfortunately, for real data on individuals among whom there is substantial ibd, this model may

be insufficient. For example, in the case n = 4 suppose that at some point all four are ibd (a4 = 1),

and that the next transition event along the genome arises from an ancestral recombination event

shared in the ancestry of two of these chromosomes. The result of this shared ancestral junction is a



transition from a4 = 1 to a2 = 2, not permitted under the model of equations (5) and (6) above. To

adjust for this, we use the second form of the Leutenegger model of equation (1). If Q denotes the

Q-matrix under the model of equations (5) and (6), then we adjust Q to become:

Q† = (1 − δ)Q + δ(−I + 1π
′
n)(7)

Under Q† there are two kinds of breakpoints the first, occurring at rate (1−δ) times the previous rates

with transitions forced to occur, and the the second, at rate δ where the new state is chosen from πn()

independently of the current state (and may be that current state). In th model (7) all transitions are

possible, and choice of the mixing parameter δ can be tuned to the extent shared ancestral junctions

are suspected within the ancestral time-frame that is the focus of the analysis. This model clearly

retains the same equilibrium probabilities πn() of ibd states as the previous Q-matrix, and additionally,

since after a “breakpoint” of the second kind the new state is independent of the previous state, the

retention of the Markov property in reducing to genotypically equivalent state classes is assured.

Our model for data at a locus given the underlying ibd follows that of equation (2). In principle,

ibd haplotypes must have the same allelic type, and non-ibd ones are of independent types. As in

equation (2) this is modified to allow for error by mixing this idealized distribution with a proportion

ε of the distribution where no haplotypes are ibd. Since we do not here model LD, only the single-locus

haplotype probabilities need be specified. The model for genotypes is simply given by reducing to

the unordered pair of haplotypes within each individual. As for the model of section 1, we have a

simple HMM. The standard forward-backward algorithm (Baum et al. 1970) provides the conditional

probability of ibd at every location on the chromosome, given the are allelic types on the chromosomes

jointly over all loci.

4. Inference of IBD: an Illustrative Example

As an illustration, we take genetically realistic chromosomes, using phased HapMap SNP data

from Chromosome 19 (International Hapmap Consortium 2005) YRI (African) individuals. Markers

with minor allele frequency less than 6% are eliminated, leaving markers at any average density

of 1 per 104 base pairs. A pool of 60 chromosomes of length 108 bp (10,000 SNP markers) are then

created, retaining the SNP marker physical locations, allele frequencies, and LD patterns of the original

HapMap data.

Position (Mbp)

 

0 20 40 60 80 100

0,0,0,1 1,0,1,0 0,2,0,0 2,1,0,0 4,0,0,0

Figure 1: True ibd pattern constructed for the example

Patterns of ibd among sets of chromosomes are then artificially created. For illustration here,

we present just one set on 4 chromosomes, with a complex pattern of ibd. Every 0.5 Mbp (on average,

every 50 markers), one chromosome currently ibd to other(s) will switch to copying from one in the

pool but not currently represented in the quartet, or a singleton in the quartet will switch to copying

from a random one of the other three. Additionally some transitions between the states A = (0, 0, 0, 1)

(all ibd) and A = (0, 2, 0, 0) (two pairs ibd) are introduced. The resulting pattern among the 15 ibd

states is shown in Figure 1; all 15 states are represented multiple times in these 200 segments, although

it is only possible to show the 5 groups of unlabeled partitions. Finally errors are introduced, at a

rate of 1%, switching the SNP allelic type independently in each chromosome and at each marker.



For the analysis of these data, parameter values must be chosen. We use ε = 0.01 for the error

probability, and δ = 0.2 in equation (7), since we have constructed many transitions reflecting shared

ancestral junctions. The choice of β reflects the overall level of pairwise ibd. The marginal probabilities

of the five unlabeled state groups are given in Table 2, and the results shown in this paper are for

β = 0.3. Finally, the absolute values of h and g are determined as a function of β and δ, in such a

way that the mean length of chromosome in an ibd state is 0.5 Mbp under the model, reflecting the

data of Figure 1.

State partition number Total probability under

description A = (a1, a2, a3, a4) of states β = 0.2 β = 0.3

all ibd (0,0,0,1) 1 0.029 0.078

three ibd (1,0,1,0) 4 0.152 0.242

two pairs ibd (0,2,0.0) 3 0.057 0.091

one pair ibd (2,1,0,0) 6 0.457 0.424

no-ibd (4,0,0,0) 1 0.305 0.165

Table 2: Marginal probabilities of unlabeled state classes

The data are analyzed first as haplotypic data. The results are shown in Figure 2. At each

position across the 108 bp, the proportion of each unit height is the probability, given the marker

data, of each of the five unlabeled ibd states. At each position, the states are ordered, from bottom to

top, in order of decreasing ibd, from A = (0, 0, 0, 1) (a4 = 1; all ibd) to A = (4, 0, 0, 0) (a1 = 4; no ibd).

Finally, the true ibd pattern of Figure 1 is shown as a strip across the center, for a visual assessment

of the accuracy of the ibd inference.
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Figure 2: ibd probabilities conditional on haplotypic data

We see that most probabilities are close to 1 for some state, and to 0 for the remainder. There

are some intermediate probabilities; for example, for A = (4, 0, 0, 0) (no-ibd) and A = (2, 1, 0, 0) (one

pair ibd) at around 50 Mbp, and for A = (2, 1, 0, 0) (one pair ibd) and A = (1, 0, 1, 0) (three ibd) at

around 90 Mbp. It is of interest that these are both regions of high LD in the original chromosomes.

The regions of high ibd (the two darkest shades) are well estimated, but generally ibd is over-estimated

with some sections of no ibd (A = (4, 0, 0, 0); a1 = 4) missed entirely in the reconstruction. This can

be remedied by reducing β to 0.2 (Table 2), but the general problem of parameter tuning or estimation

remains to be addressed.

The same four haplotypes as above were then paired into two genotypes, and the data reanalyzed

as genotypic data on two individuals. The results are shown in Figure 3. Interestingly, in the case,

using the same parameter values, more non-ibd (A = (4, 0, 0, 0)) is estimated. As would be expected,

there is generally less certainty, with many more intermediate probabilities. The ibd pattern no longer



well inferred, but at least the inference of more vs less (darker vs lighter) ibd is mostly correct. Real

haplotypes from real populations will have less complex ibd patterns that those of Figure 1, but the

importance of accurate phasing or biological haplotypes is significant. In the context of inferring ibd

between small pedigrees sampled from a population, the pedigree data will provide at least partial

phase information.
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Figure 3: ibd probabilities conditional on genotypic data

One may ask whether joint analysis of multiple haplotypes performs better than multiple pair-

wise analyses. Of course, with genotypic data one has no choice but to analyze jointly the four

haplotypes underlying a pair of genotypes. Moreover, analyzing four haplotypes jointly is computa-

tionally slightly faster than 6 pairwise analyses, and if multiple pairwise analyses are performed, how

are these to be melded together? However, the question of increased power to detect ibd segments and

improved accuracy of estimation of ibd patterns remains open. As an example, we re-analyzed the four

haplotypes above in six pairwise analyses, using the same values of h and g (equation (1)) as for the

joint analysis (equations (5) and (6)), and compared the results with the six pairwise summaries of

the joint analysis (Figure 2). For reasons of space, the results are not shown. Generally, there seemed

little change in the accuracy of inferred ibd between the two haplotypes of each pair. However, it

seemed that uncertainty was better calibrated by the joint analysis. The pairwise analyses had output

ibd probabilities close to 0 or 1, even where incorrect. In regions where the data apparently suggested

an ibd pattern other than than constructed in these data, the joint analyses showed intermediate ibd

probabilities. Joint analysis also better detects regions of high LD, resulting in very short spikes

(∼ 3 − 5 × 104bp) of inferred ibd. These LD segments may reflect true more remote coancestry.

5. Conclusion

Modern dense SNP data permits detection of ibd between the chromosomes of observed individ-

uals not only in well-sampled pedigrees but also among population members not known to be related.

However, for practical purposes, flexible models with few parameters that permit the inference of, at

least, the ibd pattern among the four genomes of a pair of individuals are required, and such models

must be applicable to both (unphased) genotypic and (phased) haplotypic data.

In this paper, we have shown how the simple Markov process for ibd along a chromosome

developed by Leutenegger et al. (2003) can be extended to ibd among multiple genomes, using the

same two rate parameters of gain (g) and loss (h) of ibd. The equilibrium distribution of this Markov

model of ibd among labeled genomes corresponds to the model of Ewens (1972) for the partitions of

unlabeled genomes. An additional parameter δ (equation (7)) makes the model more flexible, and can

be used in small populations where shared ancestral recombination break-points are likely. In addition



to these three parameters of the ibd process, the data-model parameters consist only of marker allele

frequencies, for which empirical sample frequencies are used, and an “error rate” ε.

Our illustrative example shows that provided ibd segments are longer than the range of LD then

we can usually detect them, even without any explicit LD model. Phased haplotypic chromosomes

provide more accurate ibd information. In practice, if these methods are used to infer ibd among small

pedigrees sampled from a population, the family data provide a least partial phase information.

Many aspects of this approach remain to be investigated, and methods for the estimation or

automated tuning of parameters are needed. However, the results are promising for the development of

methods of analysis of complex genetic traits that use ibd inferred from dense genomic data. We have

shown that this ibd can be inferred not only within small well-sampled pedigrees, but also between

members of different pedigrees not a priori known to be related. In this way, family-based and

population-based studies can be combined to provide their complementary strengths to the genetic

mapping of complex traits.

Acknowledgment: This research was supported in part by NIH grant GM46255.

REFERENCES (RÉFERENCES)
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