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Abstract

The ability to sample latent variables using Markov
chain Monte Carlo (MCMC) has had a major impact on
computations relating to the genetic analysis of complex
traits, or traits observed on complex pedigrees. One
area in which exact likelthood computation is often
infeasible is multilocus linkage mapping. One method of
linkage analysis for rare recessive traits is homozygosity
mapping where data on affected inbred individuals are
analysed. Key to this method are the patterns of au-
tozygosity in the individuals, and MCMC provides also a
method for studying these patterns. Algorithms for the
exact computation of autozygosity probabilities on an
arbitrary pedigree very rapidly become computationally
infeasible. However, an MCMC algorithm can provide
accurate estimates in reasonable computing time, and
these probabilities can then be used to map the genes
responsible for disease.

1. Introduction

Monte Carlo likelihood is becoming increasingly used
where exact likelihood analysis 1s computationally in-
feasible. One area in which such likelihoods arise is that
of genetic mapping, where the locations in the genome
of genes influencing a given trait are to be inferred.

The elements of genetic models are straightforward:
genes exist, genes segregate (are copied) from parents to
offspring, and the types of genes carried by an individual
influence observable trait characteristics. A locus is a
specification of the position of a gene on a chromosome.
With modern molecular genetic techniques, individuals
can be typed for a wide variety of DNA markers of
known location in the genome. These DNA markers
can be chosen to be highly polymorphic; there are many
different alleles (types of genes) that an individual may
have. The genes at these DNA marker loci segregate in
a Mendelian way (Mendel, 1866); each individual has
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two genes at the locus, one a copy of a randomly chosen
one of the two in his father, and the other a copy of a
randomly chosen one in his mother. Segregation of genes
from different parents to a child, and from a parent to
different children, are independent. These simple 50/50
probabilities underlie all of genetics, but in considering
the joint segregation at several genetic loci, or the
pattern of single-locus segregations on an extended
family, computations can rapidly become very complex,
principally because not all the relevant information can
be observed.

Genetic loci, Ly, ..., Ly that index segments of DNA
on the same chromosome are “linked”; the segregations
of genes at two loci are not independent. If the maternal
gene at locus Ljp in a father segregates to a child, it
is more probable that the gene that segregates at an
adjacent locus, L;, is also the father’s maternal gene.
Similarly for the father’s paternal gene, and similarly
also for genes segregating from the mother. This de-
pendence can be expressed through the “recombination
fractions”, rp ;, between the two loci. Specifically, the
probability that genes at loci L, and L; segregating
from one parent to the child have different grandparental
origins is rp ;. In fact, the value of a recombination
fraction between two loci depends on numerous factors,
most importantly on the sex of the parent. This fact
can be incorporated into analyses, but, for simplicity, is
ignored in the current paper.

The biological phenomenon underlying recombination
is a “crossover” between the two parental chromosomes
in the formation of the offspring chromosome. There
will be a recombination between loci L, and L; if there
is an odd number of crossover events. The genetic
(map) distance between two loci is the expected number
of crossovers between them, and hence is additive
(Haldane, 1919). However, the data provide information
only on recombination frequencies between loci (Fisher,
1922). This pattern is related to map distance, but also



depends on the pattern of interference. Interference
is the name given to the biological phenomenon that
a crossover at one point on a chromosome affects the
chance that crossovers occur at other points in the
vicinity. Under an assumption of no interference,
recombination events occur along the chromosome as
a Poisson process rate 1, when the chromosome is mea-
sured in units of map distance. In practice, interference
exists, particularly where the loci are close together
and recombination fractions between them are small.
However, the amount of data required to estimate levels
and patterns of interference seldom exists in human
genetic studies. In genetic mapping, the objective is
to detect linkage, to infer locus order, and place loci
on a chromosome by estimating recombination fractions
between them.

safely be ignored.

For such purposes, interference can

Now in mapping a genetic disease, marker types
will be available for some individuals in a pedigree in
which the disease is segregating. Disease or relevant
quantitative trait data will be available also for some
members of the pedigree. However, first, not all
individuals will be observed; some will be unavailable,
particularly ancestors. Second, the genes underlying the
trait phenotypes may not be determined; for example,
for a recessive disease, two copies of the disease allele are
needed to express the trait, but those who do not express
it may have one copy of the disease allele, or none.
Third, even where single-locus marker genotypes are
observable the haplotype information is not; that 1is, it
is not known which alleles are on the same chromosome,
having been received from the same parent. One set of
single-locus genotypes (a specification of the unordered
pair of alleles at each locus) can correspond to many
different multilocus genotypes (a specification of the
alleles on each chromosome, at each of the loci). Thus
in computing a likelihood, for a given locus order and
set of recombination fractions, a huge sum over all
the possible configurations of haplotypes is required.
With the increasing availability of DNA markers there
is an increasing potential for mapping traits with more
limited trait data or more complex modes of expression.
However, more markers, and marker loci with more
alleles, and traits observable for a more limited subset of
the pedigree members, all compound the computational
difficulties, since the number of possible underlying
configurations of genes on all the relevant members of
the pedigree increases vastly.

Thus, with the increasing desire to examine multiple
markers, and markers with multiple alleles, a major
limitation of linkage analysis has become the practical
and theoretical bounds on the computational feasibility

of likelihood evaluation. There are many further aspects
of linkage analysis, and many alternative approaches to
localising the genes responsible for a genetic disease. A
much fuller description of standard statistical methods
in linkage analysis may be found in the text by Ott
(1991).

In this paper, we consider one possible approach to
the computations needed to map a rare recessive disease
from data on affected inbred individuals. We consider
only marker loci at which the types of the two genes
carried by a observed individual are known, and a
recessive disease for which it is known whether or not
an observed individual carries two copies of the disease
allele. The (multilocus) genotype G; of individual 7 is a
specification of the types of the genes on each of a pair
of chromosomes of the individual. The phenotype Y; of
1 18 a specification of the observed trait characteristics
determined by the underlying genotypes. We subsume
all the parameters of the genetic model into the parame-
ter vector 6, and use Py(-) to denote probabilities under
the model. The total set of genotypes on a pedigree is
denoted G, and of observed phenotypes Y.

2. Monte Carlo likelihood

Monte Carlo estimates of integrals or expectations
are not new, either in general (Hammersley and Hand-
scomb, 1964) or in genetic linkage analysis (Thompson
et al. 1978). However, Monte Carlo methods have only
become widely used with the explosion in use of Markov
chain Monte Carlo (MCMC) which permits simulation
from distributions known only up to a normalising
constant, and hence simulation from conditional dis-
tributions. The statistical problems involved in fitting
genetic linkage models to trait data, Y, on a set of
related individuals may be viewed as latent variable
or "missing data” problems. Were all the underlying
genetic events observable, likelihood computation and
parameter estimation would be trivial, but only trait
data (phenotypes) of some individuals are observed. We
denote the latent variables by X.

The likelihood is

L(0) = Po(Y) =) Po(Y.X) = Y Po(YIX)P4(X) (1)

Although the summation may be infeasible, we suppose

that the latent variables, X, are chosen in such a way

that each term of the expression is easily computed.
Monte Carlo estimators of likelihood ratios can be

based on
L6 B(Y) . (PY.X) .
L(60) = Poo(Y) ‘E%(PGD(Y,X) ‘ Y) @)

(Thompson and Guo, 1991), provided simulation from
the appropriate distribution is possible. Suppose X(I),




!l = 1,..., N, are realisations from Py, (X|Y) then a
Monte Carlo estimate of the likelihood ratio (2) is

_Z<P9YX))) 3)
Py, (Y, X(1))
From an importance sampling perspective, the estima-
tor (3) is efficient; for values of fy close to # the sampling
distribution mimics the shape of the integrand Py(Y, X)
of (1). Further, equation (3), through simulation at a
given fg, provides a likelithood ratio approximant, as
a function of #, in the sense of Geyer and Thompson
(1992). At least for values of # close to fg, a single
simulation provides an estimate of the local likelihood
surface.

In Monte Carlo approaches to complex problems with

many latent variables, the key is simulation conditional
upon data; that is from

Boo(X[Y) = Pyo(X,Y)/ P (Y) (4)

With well chosen latent variables X, the numerator of
this expression 1s readily evaluated, but the denominator
is
L(Bs) = Poy(Y) = 3 PayfX, Y)
X

and this summation is often infeasible. The denomi-
nator is, in fact, precisely the likelihood whose exact
evaluation is often impossible, necessitating the Monte
Carlo estimation.

Metropolis-Hastings algorithms are Markov chain
Monte Carlo methods designed to meet this need, pro-
viding realisations (approximately) from a distribution
known up to a normalising constant (Hastings, 1970).
For each X a “proposal distribution” ¢(-, X) is defined.
Then, if the process is now at X the next value is
generated as follows:

1. Generate X* from the proposal distribution ¢(-, X)
2. Compute the Hastings ratio

2(X, X*) Py, (X[ Y) _
(X7, X) Py, (X]Y)

(X, X*) Py, (Y, X¥)
q(X*, X) Py, (Y, X)

Note that A can be computed without knowledge of
Py, (Y).

3. With probability A* = min(1,A) the process moves
to X* and with probability (1 — A*) it remains at X.
The distribution (4) is an equilibrium distribution of the
Markov chain just defined. Provided ¢(-, -) is chosen so
that the chain is ergodic, running the chain provides
(after a sufficient number of steps for convergence)
realisations from the distribution (4). The algorithm of
Metropolis et al. (1953) is a special case; if ¢(X*, X) =

q(X, X*) the Hastings ratio reduces to the odds ratio of
the proposal state X* versus the current state X.

In the genetic context, the latent variables X have
normally been taken to be the underlying multilocus
genotypes (the pairs of haplotypes) carried by each in-
dividual in the pedigree. This makes for easy evaluation
of Py, (X,Y) but not for easy sampling of the large space
of possible X-values. The space of Lange and Matthysse
(1989) is even larger, including also indicators of the
grandparental origins of genes. Although local updat-
ing methods are very slow, they are convenient for
genetic analysis problems. If large changes in genotypic
configuration are proposed, the Hastings ratio can be
impossible to compute, and constraints in the feasible
genotypic patterns on pedigrees mean that almost all
proposals have zero probability.

There are various approaches to improving sampler
performance in genetic problems. Lin (1993) made great
progress towards increasing the practicality of MCMC
methods in linkage analysis, using Metropolis-coupled
samplers (Geyer, 1991), and a form of “heating” in
the Metropolis-Hastings steps to improve mixing of the
chain. Geyer and Thompson (1994) used simulated
tempering (Marinari and Parisi, 1992) to make sampling
feasible on a very large complex pedigree with many
constraints. These strategies result in a sampler that
can sample genotypes efficiently on a large pedigree.
However, for several linked markers, the huge space of
possible genotypic configurations that then arises may
render the sampler ineffective.

An alternative approach is to consider alternative
latent variables X, to produce a smaller space more
easily sampled by MCMC methods. Note that the
requirements on X are only that Py(Y,X) should be
very quickly computable. Now Pp(Y,X) is normally
computed as Pp(Y | X)Py(X). Thus any X for which
these two factors can be readily computed will suffice.
For the problem of mapping rare recessive traits from
data on inbred affected individuals, it is possible to
bypass the multilocus genotypes of unobserved individ-
uals, and use only segregation indicators as the latent
variables.

3. Homozygosity mapping.

In linkage analysis, due to uncertainties as to whether
an unaffected individual carries a disease gene, the
computational difficulties on extended pedigrees, and
the costs of typing large numbers of individuals, there
have been many approaches towards basing linkage
analyses on a small number of observed (usually af-
fected) individuals. The extreme case is homozygosity
mapping in which a rare recessive is mapped using only
marker and trait data on independent inbred affected



individuals.

It was first pointed out by Smith (1953), that in-
dividuals affected with rare recessive diseases provide
information for linkage analysis, even without any
marker or phenotype data on other relatives. For a
recessive disease, affected individuals are homozygous at
the disease locus; that is, they carry two copies of the
same allele. For a rare disease, many affected individuals
are so through being the offspring of consanguineous
marriages, and thus receiving two copies of the disease
gene identical-by-descent or aufozygous from a recent
common ancestor of the two parents. In this case, the
affected individual is likely to be homozygous also at
closely linked markers, and this homozygosity provides
evidence for linkage. Unrelated inbred individuals will
be homozygous at independent segments of the genome,
but the shared affected status of the individuals will
cause shared homozygosity in the neighbourhood of the
disease locus. The scope of homozygosity mapping,
which is simply linkage analysis using data only on
unrelated inbred affected individuals, was extended by
Lander and Botstein (1987). With a dense map of
highly polymorphic DNA markers, a small number of
affected individuals can provide substantial information
for mapping a recessive disease gene.

Linkage analysis is the analysis of cosegregation of
genes at different loci, from parents to offspring. If two
loci are tightly linked, there is a high probability that if
the individual receives a grandmaternal [grandpaternal]
allele from his mother at one locus, he will do so
also at the adjacent one, and similarly for the gene
received from his father. The key underlying events that
determine the data on the affected inbred individual are
the segregations that specify the ancestral genes that he
receives. Let m and p index the maternal and paternal
segregations to some individual. Let S,; = 0 if the
maternal allele received by the individual at locus j is
of grandmaternal origin, and S,,; = 1 otherwise, and let
Spj be similarly defined for the paternal allele. Then, at
any locus 7,

P(Spmj =0) = P(Spj =1) =

1
P(S=0) = P(Sp=1) = 5

and at two loci A and j
P(Smn = Smj) = P(Spn = 5j) = (1—rnj;)

where 73, ; is the recombination fraction between the two
loci.

Then for a given segregation ¢, the recombination
events are determined by segregation indicators .Sj;,
J = 1,..,k, where S;; is 0 or 1 as the origin of
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Figure 1: A first cousin marriage, showing segregation
indicators.

the segregating gene at locus j i1s grandmaternal or
grandpaternal, respectively. That is, we shall take the
indicators S = {S;;} as the latent variables X in the
Monte Carlo likelihood framework of section 2. Figure 1
shows the case of the offspring of a first-cousin marriage.
At any locus, the offspring individual may receive genes
autozygous from either of his parents’ common grand-
parents; there are eight relevant segregation indicators
that will specify the gene descents.

Table 1: Example of segregation array, for the
pedigree of figure 1

Segreg.: Sl 52 53 54 55 56 57 Sg
Locus

I 0 1 1 1 0 1 0 0
Lo 0 1 1 0 0 1 0 0
L3 0 1 1 0 0 1 0 1
Ly 0 1 0 0 0 1 0 1

Table 1 shows four successive patterns of values for
the eight segregation indicators of figure 1, such as
might arise along a chromosome segment, or at four loci.
In the first pattern, the paternal gene of the offspring
individual derives from his grandmother (S; = 0), and
is the paternal gene of this grandmother (S, = 1), and is
in fact the great-grandfather’s maternal gene (S5 = 0).
Likewise the final individual’s maternal gene is this same
maternal gene in his great-grandfather; the individual is
autozygous for this gene. By locus 2, S4 has become 0;
the final individual’s paternal gene is now the paternal
(Se = 1) gene of his great-grandmother. By locus 3,



Sg has become 1; this leaves the genes in the final
individual unchanged, since S3 = 1, so the grandfather’s
maternal gene is not transmitted. However, by locus 4,
Ss becomes 0; now the final individual is autozygous for
the paternal gene in his great-grandmother.

Consider now Table 1 as illustrating a possible value
of the state S at four loci being used in a genetic anal-
ysis. The prior probabilities of S are straightforward.
However, for implementation of a Metropolis algorithm,
relative values of Py, (Y, S) are required, or Py, (Y | S).
The binary indicators, S = {S;;}, of grandparental
origins of genes in each given offspring individual, at
each locus readily determine the multilocus autozygosity
patterns in the observed individual. This is done
simply by following the descent paths of genes, as in
the example described above; an efficient algorithm is
easily implemented to update these descent paths, and
hence the resulting autozygosity pattern, when a Sj;
changes. For a single observed individual, the autozy-
gosity pattern is k£ binary indicators, specifying whether
or not the S;; result in the individual having two genes
autozygous at locus j, 7 = 1,..., k. The probability of
a genotype homozygous for an allele with frequency ¢
is q? or ¢, as the individual is not/is autozygous at the
locus. The probability of a heterozygous genotype is 0
if the individual is autozygous at the locus, and is 2¢1¢3
otherwise, where ¢; and g5 are the two allele frequencies.

Table 2: Probability ratios of segregation
indicators S;;

probability ratio*
(I=rj_0)(L=r;)/rj_1r;
1 0 (L=rj_)rj/rj—a(l — 7))
0 1 ri—1(1 =) /(L —rj_1)r;
0 0 ri—iri/(L=rj—1)(1 = 1))

Sij=1_ Sij4
1 1

* P(S” =1 | S_(”))/P(S” =0 | S_(”))

T 18 the recombination frequency between Lj and Lp41.
Note also:

P(Sij =1|S_¢ij)) = P(Sij = 1| Sijj-1,5ij41)

P(Sij =0[8S_gj)) = P(Si; =0 | Sij-1,Sij+1)

S_(ij) denotes all elements of S other than S;;.

The space of S-values is also easy to sample from.
The simplest algorithm uses a Metropolis proposals to
change the grandparental origin of the gene at a random
locus in a random segregation. The probability ratio for
the proposed change in S depends only on the indicators
at adjacent loci for the same segregation (Table 2). For
example suppose the current S were that of Table 1, and
the proposal was to change Sj o from its current value
0 to 1. This would eliminate a recombination between

loci 1 and 2 (S41 = 1) giving probability ratio
(1 =r12)/r19,

but create one between loci 2 and 3 (Si3 = 0) giving
another factor

ra3/(1 — 7y 3).

This recombination ratio is then weighted by the ap-
propriate conditional probability of phenotypic obser-
vations Py, (Y | S), for current and proposed S-values.
This sampler 1s clearly irreducible: if a given pattern
of autozygosity in the observed individual is compatible
with the data, then so also is any pattern with fewer
loci at which the affected individual is autozygous and
hence homozygous.

Werner’s syndrome (WS) is a very rare recessive
genetic disease of premature aging. It has recently
been mapped to chromosome 8 using outbred affected
relatives (Goto et al., 1992), and this linkage has been
confirmed by analysis of a set of inbred affected individ-
uals (Schellenberg et al., 1992) in 21 small pedigrees of
Japanese and Caucasian origin. The frequency of the
disease allele is assumed to be 0.004. A Monte Carlo
linkage likelihood analysis of a subset of five of these
pedigrees is given by Thompson (1994); here we use just
two of the pedigrees for purposes of illustration. Two
markers were of significance in the published linkage re-
ports: D8S87 and AN K. Originally ANK and D8S87
were thought to be flanking markers, but the likely order
is now thought to be (WS, D8S87, ANK). For the
purposes of illustration only, we take the recombination
fractions between W.S and D8S87 and between D8S87
and ANK each to be 0.1; this is probably larger than
the true values, but of the correct order of magnitude.
Data and information on these markers were provided
by Dr. Ellen Wijsman (personal communication).

4. Autozygosity probabilities

In fact, for a single affected inbred individual, the data
Y at a position h on a chromosome depend on S(h) only
through Z(h), the autozygosity (I) or non-autozygosity
(N) in the inbred affected individual. Over multiple
loci, or along the chromosome continuum, these patterns
of autozygosity are themselves of interest. Although,
for a very rare recessive trait, the posterior probability
of autozygosity at the disease locus is very high, the
probability that all of a set of unrelated affected inbred
individuals are autozygous may be low. Further, the
way in which such posterior probabilities are influenced
by data on linked markers is non-trivial, for the patterns
of autozygosity along a chromosome segment follow no
simple process. Specifically, even in the absence of
interference, the process is not Markov, since it is an



--1:83 S4::--

S1::82

Figure 2: A half-sib marriage example.

aggregate process and shows the clumping phenomenon
typical of such processes (Aldous, 1989; Blossey, 1993).

Consider first the prior, disregarding data Y. The
smallest non-trivial example consists of the offspring of
a half-sib mating (figure 2). This is also the largest
example for which the space of S-values can be drawn
readily (figure 3). As one moves along the chromosome,
the process S(h) performs a random walk at rate n on
the vertices of the n-dimensional hypercube (Donnelly,
1983). Here, n = 4 and, without loss of generality,
the two vertices positioned as shown in figure 3 are
those which result in autozygosity of the inbred offspring
individual: Z(h) = T if Si(h) = Sa2(h) = 1 and
S3(h) = Sa(h). Overall, P(Z(h) = 1) = 2/16 = 0.125.
When Z(h) = I, the next jump of the random walk
will require Z(h) = N; when Z(h) = N, the next
jump results in Z(h) = I with overall probability
(2 x L +4x 1)/14 = 1/7. However, although by
symmetry Z(h) = T is a renewal point of the process,
when the process leaves Z(h) = I, the probability that
the next jump will result in a return to Z(h) = I is
3/8. The overall probability, P(Z(h) = I) can easily
be computed on even a complex pedigree; it is simply
the inbreeding coefficient of the individual. For two
loci, at given recombination fraction, the probability
of autozygosity at both loci can be computed by the
algorithm of Thompson (1988), again even on a complex
pedigree. However, due to the non-Markov pattern of
autozygosity along the chromosome, these marginal and

Figure 3: Random walk structure, corresponding to
figure 2.

Table 3: Prior autozygosity probabilities for
cousin marriage.

state Z True  Markov(®
N N N 0.8825 0.8811
N N 1 0.0264 0.0277
N I N 0.0131 0.0131
N I 1 0.0155 0.0155
I N N 0.0264 0.0277
I N 1 0.0022 0.0009
I T N 0.0155 0.0155
I 1T 1 0.0184 0.0183

(1) Results from 10° MCMC steps and 10® i.i.d realisa-
tions are almost identical to 107%.

(2) Results from assuming (incorrectly) a first-order
Markov chain for autozygosity at successive loci.

pairwise probabilities do not suffice.

Table 3 shows the autozygosity probabilities for three
loci, with recombination fraction 0.1 between each pair
of adjacent loci, for the case of a first-cousin marriage
(figure 1).  For this small problem, exact results
could have been obtained, but in fact these are Monte
Carlo results, obtained both by 10° Metropolis steps
of MCMC, and also by 10® independent realisations
from the prior. For this problem, these two simulations
give comparable accuracy (to £107?) in comparable
computing time (about 8 hours on a DEC3100). Also
shown are the probabilities that would be given by a
first-order Markov process with the same pairwise and



marginal probabilities. First, it can be seen that Z =7
is a renewal point; where the central locus has Z = T the
“Markov” results agree with the correct results. Second,
the major effect, in terms of relative error, is in the case
Z = (I, N, I); there is a clumping of states 7 = T in the
jump chain. Alternatively viewed, there is an increased
probability of small regions of non-autozygosity (and
hence likely heterozygosity at a highly polymorphic
marker) within regions of autozygosity (and hence ho-
mozygosity). In this example, the sequence (I, N, I) has
probability 2.5 times larger than a “Markov” view would
predict.

Table 4: Prior autozygosity probabilities for
pedigree of figure 4.

state Z True  Markov®
N N N 0.7901 0.7889
N N 1 0.0478 0.0493
N I N 0.0257 0.0251
N I 1 0.0271 0.0273
I N N 0.0478 0.0493
I N 1 0.0050 0.0031
I T N 0.0271 0.0273
I I 1 0.0295 0.0297

(1) Results from 10° MCMC steps and 10% i.i.d realisa-
tions are almost identical to 107,

(2) Results from assuming (incorrectly) a first-order
Markov chain for autozygosity at successive loci.

Another example is given in Table 4. Many of the
pedigrees in the Werner’s syndrome data set are first
cousin marriages. The more complex pedigree (figure
4) was first ascertained as a first cousin marriage, but
later it was discovered that each parent of the affected
proband was also the offspring of a first cousin marriage,
as shown. Although this is a small pedigree, exact
linkage likelihood computations become infeasible with
the standard methods with more than three loci, due to
the pedigree complexity. The final offspring individual
can be autozygous for a gene in any of the three original
founders marked. Again, the “true” results in Table 4
are Monte Carlo results (both 10® independent samples
and 10° MCMC steps, agreeing to 4 decimal places).
The “Markov” assumption again underestimates most
severely the probability of Z = (I, N, T). However, note
also that now there is no renewal when 7 = I; the
lack of symmetry of the three relevant founder ancestors
destroys this property, even though numerically the
discrepancies are small.

Generally, for just three loci, only the low-probability
state Z = (I, N, I') shows substantial departure from the

Figure 4: A more complex pedigree.

first-order Markov probability values. However, with
data, this state may have high posterior probability.
One of the first cousin marriages (figure 1) for the
Werner’s syndrome (W.S) data illustrates this. The
data consist of homozygosity (affected) at the WS locus
(allele frequency 0.004), heterozygosity at the marker
locus D8S8T (for two alleles, each frequency 0.5) and
homozygosity at the AN K marker. The allele at AN K
has population frequency 0.44, so homozygosity is not
strong evidence of autozygosity, but the example will
serve.

Table 5: Posterior autozygosity probabilities for
cousin marriage.

state Z MCMCD  ratio?
N N N 0.1001 0.1134
N N I 0.0068 0.2576
I N N 0.7491 28.3750
I N 1 0.1440 65.4545

(1) Results 10° MCMC steps, agree with prior x
likelihood to within standard error.
(2) Ratio of posterior to prior probability (see text).

Table 5 shows the posterior probabilities of the four
relevant autozygosity states; states autozygous at the
D8S87 locus are eliminated by the data, and so not
listed. As expected, the states with autozygosity at the
WS locus have much increased probability a posteriors;



the WS disease allele has population frequency only
0.004. Note in particular that the state with lowest
prior probability now has a probability 0.1440, 65
times higher than before. Of course, the posterior
probabilities could also be obtained by multiplying the
prior state probabilities by the likelihoods (and this
was done as a check). Prior state probabilities can be
efficiently obtained by i.1.d Monte Carlo, but conditional
probabilities can only be sampled via MCMC. However,
even in this simple example, the standard error of
the MCMC estimate for the state INT is smaller, for
an equal amount of computing time, due to the 65-
fold factor between prior and posterior. When, as
here, the range of the ratios of posterior to prior is
3 orders of magnitude, sampling from the prior, and
using importance sampling to reweight to the posterior,
is far less efficient than sampling from the posterior,
even though the latter requires use of MCMC.

5. Discussion

Monte Carlo estimation provides an approach when
exact likelihood and probability computation is infea-
sible, particularly in problems of complex dependent
highly structured data, such as arise in genetic analysis.
There are many ways to set up the Markov chain
Monte Carlo likelihood estimates via a choice of latent
variables. In this paper, we have focussed on one
particular choice — the use of segregartion indicators.
This seems to have promise in cases where a very
few individuals are observed on each of a number of
possibly large pedigrees, the individuals being observed
for a number of DNA markers. A particular case is
homozygosity mapping, where the key is the posterior
pattern of autozygosity (gene identity by descent) in
affected inbred individuals.

MCMC is used to sample from posterior distribu-
tions, but this does not require a Bayesian analysis.
Realisations from the distribution of latent variables,
conditional on the data, but at prespecified parameter
values, can be used to provide efficient Monte Carlo
estimates of a likelihood surface. Moreover, while
multilocus genotypes are key unobservables in genetic
analysis, it may not always be efficient to consider
these the latent variables in a Monte Carlo analysis;
segregation indicators that specify the passage of genes
segregating in a pedigree are more fundamental even
than genotypes, and, provided the relevant probabilities
of observed data given the latent variables can be easily
computed, the genotypes of individuals can be bypassed.

Autozygosity patterns at multiple linked loci become
of increasing relevance as multilocus linkage analyses are
performed. The random walk framework of Donnelly
(1983), and the Posson clumping heuristic of Aldous

(1989) together make study of the prior probability
distribution of patterns more feasible (Blossey, 1993).
However, in order to assess autozygosity in the light of
data, or to use realisations from the posterior distribu-
tion of autozygosity consitional on data in a likelihood
analysis, MCMC provides the most efficient computa-
tional approach in many cases. Posterior probabilities
of autozygosity patterns are more efficiently estimated
by MCMC, than by reweighting prior probabilities
estimated by i1.i.d Monte Carlo.
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