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SummaryAlthough there have been several mathematical formulations of multilocus segregation,multilocus gene identity by descent in pedigrees has been little considered. Here wepresent a computationally feasible algorithm for the computation of two-locus kinshipfor individuals between whom there may be multiple complex relationships, and use itto investigate patterns of two-locus gene identity by descent for some standard relation-ships. We also present an explicit formula, which is used to discuss the determinants oftwo-locus identity and the relationship to 3-locus identity by descent. With the currentincreasing density of information on individuals genomes available from DNA polymor-phisms, gene identity at linked loci has practical importance. Procedures for the esti-mation of relationships between individuals on the basis of genetic data will haveincreased exibility to discriminate wider classes of genealogical relationship whereinformation on multiple linked loci can be employed. Gene identity by decent at linkedloci is also a key aspect of mapping rare recessive diseases from data on inbred individ-uals,
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IntroductionThere have been several mathematical formulations of multilocus segregation, originat-ing with the paper of Geiringer (1944). Karlin and Lieberman (1979) consider therecombination process and resulting gametic distributions. Holgate (1981) formalisesthe gametic outputs in the framework of genetic algebras. Christiansen (1987) consid-ers these gametic outputs with a view to analysis of population linkage disequilibria.However, multilocus gene identity by descent in pedigrees has been little considered,although Weir and Cockerham (1969) and Cockerham and Weir (1977) gave some anal-ysis of simple systems. One reason for this has been the computational complexity ofthe problem; Denniston (1975) enumerated the many possible states of gene identitybetween two individuals at two loci. Another reason may have been the absence ofdata that could require consideration of linked loci. However, with the advent of DNApolymorphism data and the increasing density of information on individual genomes,this is no longer the case. Both in the estimation of genealogical relationships fromgenetic data (Thompson and Meagher, 1987) and in the linkage analysis of recessivediseases (Lander and Botstein, 1987) data at multiple tightly linked loci may soonbecome the rule rather than the exception, and multi-locus kinship is a key componentof any assessment of statistical information in both these areas of inference. Thispaper presents an algorithm for computation of two-locus (in principle, multilocus) kin-ship, and investigates the properties of this function of recombination between loci forsome speci�c genealogical relationships. Secondly we consider the general form of mul-tilocus kinship, and its pedigree determinants, giving examples of genealogical relation-ships with identical two-locus kinship, but distinct three-locus kinship functions.A recursive algorithm for two-locus kinship.The �rst objective is to present a computationally feasible algorithm for the computa-tion of two-locus kinship;k2(B ,C ) = Pr(gametes segregating from each of B and C carry (1)genes identical � by � descent at both of two loci , between whichthe recombination fraction is r).Genes are identical by descent (IBD) if they are copies of the same ancestral genereceived via repeated segregations from some common ancestor within the de�ned pedi-gree of B and C. The same ancestor need not provide the alleles at both of the twoloci, although if linkage is very tight (r very small) identity by descent at both loci willtend to result from a single ancestral chromosome carrying both alleles For example ,in �gure 1, B and C could provide chromosomes IBD at locus L from A1 and at locusJ from A2, but only if a recombination occurred in both parents M1 and M2 of B andC . For tight linkage the chance that the IBD chromosome is a copy of a chromosomein either A1 or A2 is much greater.Consider �rst the two well known methods of computation of kinship coe�cients at asingle locusk1(B ,C ) = Pr(homologous genes segregating from B and C are IBD). (2)3



This kinship coe�cient is acccepted as the best overall measure of the closeness of agenealogical relationship between two individuals. Wright (1922) gave the classic for-mula k1(B ,C ) = p(A)X ( 12 ) m(p(A))( 12 (1 + f (A)). (3)Here summation is over all common ancestors A, and all paths p(A) from B up viachild-parent links to A and down via parent-child links to C not passing twice throughany individual. The power m(p(A)) is the number of links on the path, and f (A) isthe inbreeding coe�cient of the common ancestor A, the factor 12 (1 + f (A)) being theprobability that A will pass on IBD genes to two o�spring. For future reference, it isconvenient to think of m(p(A)) as being m(p(A)) � 2 + 2, the two links from commonancestor to two (necessarily distinct) o�spring being omitted from the count (but con-tributing its separate factor 12 (1 + f (A)), but the two segregations from the �nal invi-diduals B and C each contributing a factor. Again, in �gure 1, there are two ancestors,A1 and A2, each providing one path, each of length 5: the kinship k1(B ,C ) is 1/32.Equation (3) was much used in early "loop-tracing" methods for the computation ofinbreeding and kinship (for example, Stevens, 1975), but such methods become infeasi-ble on large and complex pedigrees. With the advent of recursive programming lan-guages the folowing equations have become the standard computational approach:k1(B ,C ) = k1(C ,B) (4a)k1(B ,B) = 12 (1 + f (B)) (4b)f (B) = k1(M ,F ) (4c)where M and F are the parents of B , andk1(B ,C ) = 12 (k1(M ,C ) + k1(F ,C )) (4d)provided B is not C , nor ancestor of C , andf (B) = k1(B ,C ) = 0 (4e)for a founder individual B , not an ancestor of C . These equations provide a completeset which can be applied recursively up a pedigree until founders are encountered.These equations can be intuitively justi�ed. Kinship is symmetric (equation (4a)). Inthe case of two genes segregating from B (equation (4b)) these are the same gene (andhence immediately IBD) with probability 12 and are the two di�erent genes in B alsowith probability 12 . These two genes are then the maternal and paternal genes of B , ora genes from M and a gene from F , and hence IBD with probability k1(M ,F ), also, byde�nition f (B), the inbreeding coe�cient of B (equation (4c)). For equation (4d), thegene segregating from B is with probabilty 12 the gene recived from his mother M , andwith probability 12 the one received from his father, F .Karigl (1981) extended equation (4) to the case of simultaneous gene identitybetween homologous genes segregating from a set of individuals, and Thompson(1983a) introduced "recursive descent probabilities" that enable one to compute theprobability that a set of genes chosen one each from a set of individuals all descend4



from a hypothesised ancestral set. However, these extensions considered only homolo-gous genes-- genes at a single locus. We now extend the same equation (4) to geneidentity at two loci.De�ne now the probabilityk2(J (A(i),B (j ));L(C (k ),D (l)))that two genes at locus J segregating from individuals A and B , to their i th and j tho�spring respectively, are identical by descent and two genes at locus L segregatingfrom individuals C and D , to their k th and l th o�spring respectively, are also identicalby descent. Note that, in addition to labelling individuals we must now also index thedi�erent segregations from each o�spring in the current pedigree, in order that whenwe expand recursively we can identify those genes corresponding to a single gamete (oro�spring chromosome) from those transmitted to di�erent o�spring. Then the two-locus kinship between two individuals G and H , or the two-locus inbreeding coe�cientof their o�spring, is k2(J (G (1),H (1));L(G (1),H (1))),the probability that the o�spring carries IBD genes both at J and at L. The explicitnotation of J and L in the probability k2 is unecessary, but we retain it for greaterclarity. Note �rst that, by symmetry between the individuals in a pair and betweenthe two loci,k2(J (A,B , );L(C ,D)) = k2(J (B ,A);L(C ,D)) = k2(J (C ,D);L(A,B)).where now we assume the segregation (or gamete) indicator is incorporated into thelabel for each individual. We may thus rearrange the arguments at any stage so that agiven one of the up-to-four individuals is the �rst argument for locus J , and, if anargument for both loci, is also the �rst argument for locus L. This will enable us tosummarise our recursions in just �ve equations:Assume throughout that A is not B , C or D , nor an ancestor of any of them, andthat M and F are the parents of A. The relationships or identities between individualsB , C and D are irrelevant, and we again assume that each of these labels incorporatesa segregation indicator. For clarity, we make the segregation indicators for the individ-ual A explicit, and use an indicator superscript (A) on the parent individuals M and Fto indicate gametes to A. Then:Where only one locus involves A,k2(J (A(1),B);L(C ,D)) = 12 [k2(J (M (A),B);L(C ,D)) + k2(J (F (A),B);L(C ,D))] (7)k2(J (A(1),A(2));L(C ,D)) = 12 [k1(C ,D) + k2(J (M (A),F (A));L(C ,D))]: (8)While for a gamete from A,k2(J (A(1),B);L(A(1),C )) = 12 [(1� r)[k2(J (M (A),B);L(M (A),C ) + k2(J ((F (A),B);L(F (A),C ))]+r [k2(J (M (A),B);L(F (A),C ) + k2(J (F (A),B);L(M (A),C ))] (9a))whereas for di�erent segregations at the two loci,5



k2(J (A(1),B);L(A(2),C )) = (1/4)[k2(J (M (A),B);L(M (A),C ) + k2(J ((F (A),B);L(F (A),C ))+ k2(J (M (A),B);L(F (A),C ) + k2(J (F (A),B);L(M (A),C ))] (9b)For a gamete, plus an additional one-locus segregation from A,k2(J (A(1),A(2));L(A(1),D)) = (1/4)[k1(M (A),D) + k1(F (A),D) + (10)k2(J (M (A),F (A));L(M (A),D)) + k2(J (M ,F );L(F ,D))]while for two complete gametes,k2(J (A(1),A(2));L(A(1),A(2))) = 2 r (1� r) k(M ,F ) + R [1 + k2(J (M ,F );L(M ,F ))](11)We have boundary values for a founder A, of, respectively 0, 12 k(C ,D), 0, 0, and Rwhere R = 12 (r2 + (1 � r)2) for the �ve equations (7)-(11). These equations all derivefrom the same straightforward consideration of segregation probabilities as does themore familiar equation (4):Equation (7) : A gene chosen from A at a single locus derives with probability 12 fromM and 12 from F .Equation (8) : If two genes segregate independently from A at locus J , they are copiesof the same gene with probability 12 , and are copies of the two genes in A, and henceone from M and one from F , also with probability 12 . Note that our recursive compu-tation of two-locus kinship will never involve an expansion for the same gamete at thesame locus, although were we to consider a term such as k2(J (A(1),A(1));L(C ,D)) theexpansion would be immediate, since the two genes indicated at locus L are necessarilyIBD.Equation (9) : For a single gamete segregating from A, the genes at loci J and L willboth derive from M or both from F if there is no recombination (each possibility hav-ing probability 12 (1� r)), and from M at locus J and from F at locus L, or vice versa,if there is a recombination (each possibility having probability 12 r ) -- hence equation(9a). On the other hand, for two separate gametes, we have the analogous gene originsin M and F , but independent segregation (equation (9b)). Alternatively, equation (9b)may be regarded as two separate applications of equation (7); both would, of coursehave to be completed before proceeding further up the pedigree, since we cannotexpand from M or F while A remains in the expression.Equation (10) : If genes segregate from A twice at locus J , once in combination with agene at locus L, then r cancels from the possibilities. With probability 12 the twogenes at locus J are copies of the same gene (and hence already IBD), and then withprobability 12 the gene at L derives from M or F each with probability 12 . Alterna-tively, the two genes from A at locus J are genes from M and from F , while again thegene at L derives from either M or F , providing the second two terms of equation (10).Equation (11) : Finally, equation (11) covers the case of two gametes from A. If one isrecombinant and not the other (probability 2r(1 � r)) then at one locus the two genesare IBD and at the other locus they derive from M and F and are IBD with probabil-ity k1(M ,F ). If both chromosomes are recombinant, or both not, (probability 2R),then with probability 12 the genes at each locus are copies of the same parental gene6



and with probability 12 we have genes from M and from F at both loci. Again, if dif-ferent gametes from A are indicated ( k2(L(A(1),A(2));J (A(1),A(3))) for example), wecan apply the recursions (7) or (9a) to the separate segregations. As in the case ofequation (9b) all expansions of A's segregations must be completed before proceedingfurther up the pedigree.As a check, it is worth noting that, when r = 0,k2(J (A,B);L(A,B)) = k1(A,B).and the above equations reduce to the single-locus equations (4). Also, when r = 12 .,k2(J (A,B);L(C ,D)) = k1(A,B) k1(C ,D)and equations (7)-(11) give the products of two independent single-locus recursions.Note again that for the present problem, we are not concerned that the genes at loci Jand L should derive from the same ancestral chromosome, although we could alsoderive very similar equations for this case. In practice, where linkage is tight, and/orthere are few inbreeding loops, it will often be the case that where genes at both lociare identical by descent they will in fact all derive from the same ancestral chromo-some, but this is not necessary. Note also that instead of gene identity probabilities,we could very similarly consider gene descent probabilities, specifying founder genes atlocus J and at locus L from which descent is to be considered. Just as the single-locusgene-descent equations of Thompson (1983b) are generalisations of the single-locusgene-identity equations of Karigl (1981), the analogous multilocus generalisation can bederived here. However, we do not pursue this as there seems to be no immediate practi-cal application.Although some of the above equations involve a four-fold branching recursion,they are simple to implement and computationally feasible even on large and complexgenealogies. In computing two-locus kinship k2(J (A,B);L(A,B)) additional symmetryallows a further reduction of the problem, by combining identical terms among the par-ents of A and B (Table 1). Routines that trim and reorder the individuals in a pedi-gree to avoid lengthy unecessary parts of the recursion, similar to those used in recur-sive formulae for descent probabilities (Thompson, 1986) can also increase the size andcomplexity of the pedigree on which computation is feasible. In spite of the greatercomplexity of the equations owing to the genes being at two loci, it seems that compu-tation is feasible on any pedigree on which any other four-fold gene identity can becomputed.Note also that the formulae extend (in principle) to more loci, L1,L2, . . . ,Ls .For example, we might wish to consider a s-locus expressionks(L1(A,B1);L2(A,B2); . . . ;Ls(A,Bs)),where again the individual label A is assumed to include a segregation indicator, andthus a single s-locus gamete from A is implied. For any individual A, who is not thesame as nor an ancestor of any other individual in the current function, we can expressthe s-locus kinship, ks , as a weighted average of the multilocus kinships between theother individuals and the two parents M and F of A, the weights being simply themultilocus segregation probabilities -- the probabilities with which the relevant genessegregating from A originate from M and F . For the above particular case, provided A7



is distinct from all the B j (who need not be distinct) and not an ancestor of them, wewould haveks(L1(A,B1);L2(A,B2); . . . ;Ls(A,Bs)) =�=(�1,...,�s )X P(gamete from A has parent origins �) (12)ks(L1(�1,B1);L2(�2,B2); ; . . . ;Ls(�s ,Bs))where each �j , j = 1, . . . , s is M or F as the gene at locus j originates from M and F,and summation is over all vectors length s with components M or F . However, thisexpansion may involve 2s distinct terms, and for s > 2 general implementation does notseem to be practicable.Examples of gene identity by descent at two linked loci.At a single locus, many distinct genealogical relationships have the same kinshipcoe�cient. The sum over paths of powers of 12 (equation (1)) can achieve a speci�eddyadic rational in many di�erent combinations. For a single locus, distinct genealogicalrelationships between two individuals can provide not only the same kinship coe�cient,but the same probabilities for patterns of gene identity by descent between the twounordered pairs of genes of the two individuals, and hence the same pairwise genotypeand phenotype distributions. An example is the set of pairwise relationships grandpar-ent-grandchild, uncle-niece, and half-sib. These three relationships can never be distin-guished on the basis of genetic data at independent loci, for, regardless of the charac-teristics of a locus in terms of allele frequencies and the relationship between genotypeand phenotype, all three provide identical pairwise phenotype distributions. On theother hand, it is known that these three pairwise relationships are, in principle, distin-guishable on the basis of data at linked loci, since the probabilities that the pair have agene in common at both loci are functions of the recombination fraction r that di�erbetween the relationships (see for example, Thompson 1986).It is therefore of interest to consider two-locus kinship between relationships withthe same one-locus kinship, and in particular we consider the six relationships betweennon-inbred individuals which all have kinship coe�cient 1/16. These are:a) Great-grandparent -- great-grandchild,b) Half-uncle -- Half-niece.c) First cousins,d) Double half-�rst cousins,e) Quadruple second cousins (paired sibship exchange)and f) Quadruple second cousins (cyclic sibship exchange),The pedigrees of these six relationships are shown in �gure 2, and the graphs of theirtwo-locus kinship, as functions of the recombination fraction r, are shown in �gure 3.We note that the functions are all distinct and non-intersecting on 0 < r < 12 .Not only does a greater multiplicity of ancestral loops lower the two-locus kinship, butthe pattern of joining of these loops a�ects the result. Thus there is even distinctionbetween the two types of quadruple second cousin. The fact that relationships are dis-tinguished ensures their identi�ability on the basis of data at pairs of linked loci. Of8



course, the di�erence is not large, and many pairs of highly informative loci would berequired to discriminate reliably between the two types of quaduple second cousins, butwith the increasing density of DNA polymorphisms mapped in plant and animalgenomes such data are potentially available.The other current practical application of two-locus kinship is in the mapping ofrare recessive diseases on the basis of data on a�ected inbred individuals. The ideaunderlying that analysis is that the individuals will (likely) have IBD genes at the dis-ease locus, so that the probabilities for the genotype at a linked marker locus willdepend on the recombination fraction r , enabling r to be estimated or linkage inferred.This idea was originally considered by Smith (1953) and has been discussed in inter-vening years (Suarez et al., 1978), but until recently the power of the method was con-sidered too slight for it to be practically relevant. Lander and Botstein (1987) pointout that multilocus DNA variants may provide su�cient polymorphism for linkage tobe established by this method. In their analysis, Lander and Botstein consider multi-ple linked loci in linkage equilibrium, but the key to the method is the degree ofmarker polymorphism which this assumption provides. They consider individuals witha speci�c inbreeding coe�cient -- the parents being �rst cousins, or second cousins.However, the function of recombination that, given an a�ected individual, determinesthe genotype distribution at the linked marker locus is not merely the kinship of theparents (or inbreeding of the o�spring), but the two-locus kinship coe�cient. Gener-ally, the smaller the two-locus kinship the lesser the power of the method (Walters,1988).To consider how far multiple ancestral loops can reduce two-locus kinship, weconsider the case of a Hutterite sibship in which an o�spring individual is a�ected bytwo very rare recessive disorders ( Lowrey et al., 1985). The genealogy of this geneticisolate has been traced back eleven generations to a set of about 70 founders. Fifty-�veof these are ancestors of the sibship in question, in which the o�spring have inbreedingcoe�cient 0.099. The parents of the sibship are quadruple second cousins (of thepaired exchange type) -- a regularity of ancestral relationship which is rare, even in thispopulation of multiple sibship exchanges and prefered second-cousin marriages. Over1000 ancestral paths connecting the parents of the individuals have been traced; thecousin relationships between the parents as given by the recursive "rels" routine ofThomas (1987) is given in table 2.Figure 4 shows the two-locus kinship between the parents of this sibship, whenthe genealogy is trimmed at a speci�ed number of generations before the present, from4 (the quadruple second cousin relationship) to 10 (the maximum depth of known rela-tionship) Of course, as more ancestral loops are included, any kinship coe�cientbetween the parents increases, but for intermediate recombination fractions the two-locus kinship increases relatively less. Note that for trimming at 7 generations depth(which includes 95% of the total known inbreeding), the two-locus kinship is below thatfor a half-uncle-niece relationship over the range r=0.1 to 0.35. The lower part of thisrange, at least, is important for linkage analysis where DNA polymorphisms at recom-bination fractions in the range 0.1 to 0.2 are still considered closely linked (Botstein etal., 1980). 9



Relationships with identical two-locus and three-locus identity.Given the power of linked loci to resolve relationships which are not identi�ablefrom data at unlinked loci, we may ask what are the determinants of two-locus kinship,and what distinct genealogical relationships will remain indistinguishable. To answerthis we return to the Wright formula for the kinship coe�cient (equation (1)) andextend this to multiple loci. For any number of loci, L1, . . . ,Ls , and ordered s-tuples ofancestral paths, from one individual up to a common ancestor and down to the other,Pr(gametes from the two individuals are IBD at L1, . . . ,Ls) (13)= (p1,...,pk )X Pr(gametes are IBD at Lj via path p j , j = 1, . . . , s).In particular, for two loci,Pr(gametes from two individuals are IBD at locus J and at locus L)= (p,q)XPr(gametes are IBD at J via path p and IBD at L via path q),where ancestral paths p and q are de�ned as for the single-locus case. Considering theterms in this sum for which the original ancestor A at the head of path p is the sameas that for path q, we have, the probability(1/2)n(p)+n(q)�c(p,q)(1� r)c(p,q)�j (p,q)r j (p,q)RA(r , f , h(r)) (14)where c(p,q) is the number of parent-o�spring links common to the two paths, n(p) isthe number in p, n(q) the number in q, j (p,q) the number of joins in the two paths,and the factor RA being given below. In the count of links, we do not include the twosegregations from the common ancestor A at the head of the path, but we do includethe two segregations from the �nal individuals (see equation (1) and notes following).The rationale for formula (14) and the path counts is shown in �gure 5. Where thepaths are separate each segregation contributes, as for a single locus, the factor 12 , thisbeing the probability that the "right" gene is passed on. Path p has n(p) � c(p,q)such separate links, while path q has n(q)� c(p,q). Where the paths have a segrega-tion in common, we require the "right" pair of genes received from the parent to bepassed to the o�spring; thus, where the paths proceed together from grandparent toparent to child, there must be no recombination and we have a factor 12 (1� r). Onthe other hand, where the paths join in the parent, to obtain the gene from each locusvia the di�erent paths, recombination is necessary, and we have the factor 12 r . Finally,where two chromosomes segregate independently from the same common ancestor, A,we have an additional factor which gives the probability that the two o�spring of Ashare genes at both loci.RA(r , f , h(r)) = (1� 2 f + h(r)) R(r , 0, 0) + f . (15)where f is the inbreeding coe�cient of A h(r) his 2-locus inbreeding, and R(r , 0, 0) isthe previous parameter R = 12 (r2 + (1 � r)2). If paths p and q are via di�erent com-mon ancestors Ap and Aq at the heads of the paths, the factor RA is modi�ed to be( 12 (1 + f (Ap)))( 12 (1 + f (Aq)))10



the probability that the two o�spring of each of the two ancestors receive the samegene at the locus applicable to that path. This is the only change to equation (14).Note that when r=0, we have only contributions from pathsp = q, j (p,q) = 0, c(p,q) = n(p) = n(q) and also then h = f , and RA = 12 (1 + f (A)).The formula then reduces to the single locus kinship (equation (1)). When r = 12 , onthe other hand, the double summation factorises, h = f 2, RA = ( 12 (1 + f (A)))2 andwe have separate summations over p and q giving the square of this single-locus for-mula.We may similarly obtain the contributing factors for the s-locus case (equation(13)). Any segregation or pedigree link will be common to some subset of the paths.Where paths for a subset S of the s loci have a common link, the factor contributed tothe term of the sum (13) expresses transmission of this locus subset without recombi-nation. Where two paths, for sets of loci S1 and S2 join, the contribution is the multilo-cus segregation probability that in a chromosome from the o�spring the locis S1 derivefrom the maternal gamete and S2 from the paternal. (Note that, since individuals haveonly two parents, only two sets of paths can join at a segregation). We return to thisbelow for the case of three loci.Thus, for two loci, any relationship for which the numbers of ancestral paths, thenumbers n(p), n(q), j (p,q) and c(p,q) are the same, will have the same two-locus kin-ship. Conversely, equation (14) shows that indeed two-locus kinship will distinguishbetween standard relationships often considered to have the same degree of closeness,since these are obtained precisely by varying the number of ancestors and paths in a(single-locus) compensating manner-- the example of the six regular relationships ofkinship 1/16 considered in the previous section is no special case. On the other hand,the two relationships of �gure 6 have the same 2-locus kinship. However this exampleis extreme; the two pedigrees show the same s-locus kinship, for all s, or the samegenomic kinship. Regardless of the set of loci within the genome that are considered,chromosomes from the individuals have identical similarities. They are, however, dis-tinct genealogies, and in terms of the pairwise genotypes of the individuals they aredistinguishable -- in the �rst case B is inbred and in the second, not. Since there arerelationships with identical (single-locus) kinship but di�erent two-locus kinship, amore interesting question is whether there are relationships of identical two-locus kin-ship, distinguished by three loci, and so on.Extension of the above formulation in terms of joins and separations in ancestralpaths show that this is indeed possible. The simplest examples found, of kinships dis-tinct at three loci but not at two, involve the 3-path template shown in �gure 7. Here,by "transferring" a segregation from one path segment to another, we achieve a secondset of three paths, showing the same pairwise matrix of links and links in common(Table 3). Additionally, every pair of distinct paths joins once, and the (non-inbred)common ancestor at the head of every path (or path pair) contributes the same factorto the sum. Thus we have the same two-locus kinship, as has been validated numeri-cally using the recursive algorithm. We may question why such a pair of pedigrees aredistinguished by three loci, since there is but a single set of three paths. However, forthree loci, locus order, and thence the order of joining of paths, is signi�cant. Supposethe chromosomal order of three loci is L1, L2, L3 and note that the order of joining ofpaths is p1, p2, p3. Consider the cases under the two pedigrees where L1 is taken via11



p1. If L2 is taken via p2, and L3 via p3, the order of joining of paths required �rst arecombinant between L1 and L2 and then one between L2 and L3. However, if L2 istaken via path p3 and L3 via path p2, we require �rst a recombinant between L1 andL3, and then a double recombinant when the path for L2 (p3) joins (Table 3). Thesetwo triples thus provide di�erent contributions in terms of the recombination fractions.Since under the interchange between the two pedigrees, p1 translates to p3, in terms ofpath lengths and links in common, but the order of joining of the paths remainsp1, p2, p3, the three-locus kinship is di�erent on the two pedigrees.Another example is shown in �gure 8 and table 4. This example is of interest inthat under the interchange of links between two levels in the pedigree, no ancestralpath changes in length: we do not have the interchange of paths that is a feature of the�gure 7 template. Each row of the two matrices of path segments in common containsthe same numbers, and each pair of paths joins once, providing for equal two-locus kin-ship. (Again, this has been validated by the recursive algorithm.) Again, however,under the interchange of links, the order of joining of analogous paths is changed, andthree locus kinship is thus also changed. This pedigree is of interest also in that in tworespects it demonstrates that pedigrees are very special graphs. First, and most impor-tant, individuals have only two parents. The length of the segment marked w is thusat least 1: only two (sets of) paths can join at a time. This makes balancing the num-bers of links in common a more complex task, since the three-way symmetry betweenthe paths is lost. Secondly sex must be assignable on a true pedigree. Note it is impos-sible therefore, that A mates with B , who mates with C who mates with A. Thussome, at least, of the arcs labelled i , j , k , l ,m or n must be greater than 1. Ourexample numbers (Table 4) have been derived with these constraints in mind, althoughthey are not the only possibilities.ConclusionWith the increasing density of information on individual genomes, provided bydata on DNA polymorphisms, gene identity by descent at linked loci becomes of practi-cal importance. The facility to compute and analyse patterns of two-locus kinship incomplex pedigrees, provides a new tool for examining the properties of statistical pro-cedures for the analysis of both current and potential data. A very recent example isprovided by Weeks and Lange (1988) who use multilocus kinships at r = 12 to providea test of departure from independent segregation. Of course, at r = 12 gene identities atthe di�erent loci are independent. The present suggested methodology shows that it isunecessary to consider only the two extremes of complete linkage and free recombina-tion -- analysis for arbitrary degrees of linkage is possible.That two locus analysis is an essential generalisation of single locus analysisbecause of the phenomenom of linkage is well acknowledged. That three locus analysiscarries an additional dimension is less widely appreciated in area of applications,although the critical relevance of locus order arises also in other problems of linkageanalysis when we consider more than two loci jointly (for example, Thompson 1984).While this feature of the problem makes it intrinsically more di�cult to "balance" setsof paths to achieve equal multilocus kinship, there seems no reason to suppose thisimpossible. While it is tempting to conjecture that "three-locus kinship-equivalenceimplies genomic kinship-equivalence", (a mathematical geneticists' analogue of the now12
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Table 1: Initial expansion of two-locus kinship between two individuals A and B whoare not ancestor and descendant using equation (9a). Symmetries then provide areduction in the initial expansion from 16 terms to 10, which can provide a substantialsaving in computing time. For those terms which remain of similar L(A,B); J (A,B)form the same reduction can be made in successive expansions. For simplicity, the seg-regation indicators are omitted; for the initial expansion in a two-locus kinship there isonly a single relevant segregation for each individual.Individuals Parents of individual A Parents of both individualsTerm Term Probability Term ProbabilityL(A,B); J (A,B) L(MA,B); J (MA,B) 12 (1� r) L(MA,MB ); J (MA,MB ) (1� r)2/4L(MA,MB ); J (MA,FB ) r(1� r)/2L(MA,FB ); J (MA,FB ) (1� r)2/4L(FA,B); J (MA,B) r L(FA,MB ); J (MA,MB ) r(1� r)/2L(FA,FB ); J (MA,MB ) r2/2L(FA,MB ); J (MA,FB ) r2/2L(FA,FB ); J (MA,FB ) r(1� r)/2L(FA,B); J (FA,B) 12 (1� r) L(FA,MB ); J (FA,MB ) (1� r)2/4L(FA,MB ); J (FA,FB ) r(1� r)/2L(FA,FB ); J (FA,FB ) (1� r)2/4
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Table 2: The relationships between the parents of a certain Hutterite individual. Thetable gives the number of full and half cousin relationships of each degree, and eachlevel of removal. For example, the couple are sixth cousins once removed 126 fulltimes and 24 half times. Their primary relationship is 4 full times (i.e. quadruple) sec-ond cousins. The total number of ancestral paths is twice 496 plus 42, or 1034.full half level removal4 0 2 02 0 3 04 0 3 14 0 4 02 0 4 116 4 5 022 4 5 114 8 6 0126 24 6 144 0 6 2118 0 7 0124 0 7 116 2 8 0496 42
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Table 3: Path lengths and path-sections in common for the pedigree template of �gure7. General case Pedigree Is = u = 1, x = t = y = 2p1 p2 p3 p1 p2 p3p1 x + s + 2 s + 2 2 5 3 2p2 s + 2 s + u + y + 2 y + 2 3 6 4p3 2 y + 2 y + t + 2 2 4 6General case Pedigree IIu = y = 1, x = s = t = 2p1 p2 p3 p1 p2 p3p1 x + s + 2 s + 2 2 6 4 2p2 s + 2 s + u + y + 2 y + 2 4 6 3p3 2 y + 2 y + t + 2 2 3 5Note that, in both these pedigrees, the paths p1 and p2 join above the Note that, inboth these pedigrees, the paths p1 and p2 join above the link of length s, and the pairare then joined by p3 below this link. On the other hand, in the matrix of link lengthsin common, the roles of p1 and p3 are interchanged between the two pedigrees.
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Table 4: Paths sections and path lengths in common for the pedigree template of �gure8. General case j = l �m = n = 1, i = k = 2, w = s = 1path sections x = y = 1, a = z = 2, b = c = 3p1 p2 p3 p4 p5 p6p1 a + i + x +w + s + 2 9 6 5 4 3 3p2 a + k + y + w + s + 2 6 9 4 5 2 2p3 b + j + x +w + s + 2 5 4 9 4 6 3p4 c + l + y +w + s + 2 4 5 4 9 3 6p5 b +m + z + s + 2 3 3 6 3 9 5p6 c + n + z + s + 2 3 3 3 6 5 9General case j = l �m = n = 1, i = k = 2,w = s = 1path sections a = 1, b = c = x = y = 2, z = 3p1 p2 p3 p4 p5 p6p1 a + i + x +w + s + 2 9 5 6 4 3 3p2 a + k + y + w + s + 2 5 9 4 6 3 3p3 b + j + x +w + s + 2 6 4 9 4 5 3p4 c + l + y +w + s + 2 4 6 4 9 3 5p5 b +m + z + s + 2 3 3 5 3 9 6p6 c + n + z + s + 2 3 3 3 5 6 9
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Figure captionsFigure 1: An example pedigree, showing the ancestral paths which contribute to kin-ship between the two individuals B and C .Figure 2: Six relationships with single-locus kinship 0.625: (a) Great-grandparent andgreat-grandchild; (b) Half-uncle and half-niece; (c) First cousins; (d) Double half �rstcousins; (e) Quadruple second cousins (exchange type); (f) Quadruple second cousins(cyclic type).Figure 3: Two-locus kinship as a function of recombination fraction, for the six rela-tionships (a)-(f) of �gure 2. The curves are in monotone decreasing order, with (a) giv-ing the maximal values for each r-value and (f) the minimum.Figure 4: Two-locus kinship as a function of recombination fraction, for the pedigree ofa certain Hutterite individual, when the pedigree is trimmed at 4,5,6,7 and 10 genera-tions before the present. The curves are in monotone increasing order, with the 4-gen-eration trim giving the minimum values and 10 the maximum. The 4-generation trimis also the curve (e) of �gure 3, and for comparison the curve (b) of �gure 3 (for half-uncle/half-niece) is also shown (broken line).Figure 5: The pattern of segregations on two paths, showing the events required fordescent of requisite genes at two loci.Figure 6: Two pedigrees showing pairs of individuals between whom there is equalgenomic kinship.Figure 7: A pedigree template, showing how equal two-locus kinship, but distinct three-locus kinship, may be obtained. If the values of y and s are interchanged (s, y � 1),and x , u and t remain �xed, the two-locus kinship is unchanged. An example set of val-ues and resulting path lengths is given in Table 3.Figure 8: A more complex pedigree, exhibiting a similar phenomenom to that of �gure6, but without change of any total path lengths. If each of a, b and c is increased by aspeci�c amount, and each of x , y and z decreased by the same amount, other linklengths remaining unchanged, then, provided x + w = z , a + w = c b = c, x = y, thetwo-locus kinship is unchanged. For speci�c example values and path lengths, see Table4.
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Erratum:In Two-locus and three-locus gene identity by descent in pedigrees I.M.A. J. Math.Appl. Med. and Biol. (1988) 5: 261-279.In �gure 3 (P.269), curve (a) is incorrect. The two-locus kinship curve for rela-tionship (a) (great-grandparent/great-grandchild) should be identical to that for rela-tionship (b) (half-uncle/half-niece). There is no error in the algorithm or in the com-puter program; the program gives the correct result. The curve shown was erroneouslyextracted from a di�erent results �le -- it shows the probability of a given great-grandparental chromosome segregating from the great-grandchild without recombina-tion. I am grateful to Dr. Daniel Weeks for pointing out this error.
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