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Summary

Although there have been several mathematical formulations of multilocus segregation,
multilocus gene identity by descent in pedigrees has been little considered. Here we
present a computationally feasible algorithm for the computation of two-locus kinship
for individuals between whom there may be multiple complex relationships, and use it
to investigate patterns of two-locus gene identity by descent for some standard relation-
ships. We also present an explicit formula, which is used to discuss the determinants of
two-locus identity and the relationship to 3-locus identity by descent. With the current
increasing density of information on individuals genomes available from DNA polymor-
phisms, gene identity at linked loci has practical importance. Procedures for the esti-
mation of relationships between individuals on the basis of genetic data will have
increased flexibility to discriminate wider classes of genealogical relationship where
information on multiple linked loci can be employed. Gene identity by decent at linked
loci 1s also a key aspect of mapping rare recessive diseases from data on inbred individ-
uals,



Introduction

There have been several mathematical formulations of multilocus segregation, originat-
ing with the paper of Geiringer (1944). Karlin and Lieberman (1979) consider the
recombination process and resulting gametic distributions. Holgate (1981) formalises
the gametic outputs in the framework of genetic algebras. Christiansen (1987) consid-
ers these gametic outputs with a view to analysis of population linkage disequilibria.
However, multilocus gene identity by descent in pedigrees has been little considered,
although Weir and Cockerham (1969) and Cockerham and Weir (1977) gave some anal-
ysis of simple systems. One reason for this has been the computational complexity of
the problem; Denniston (1975) enumerated the many possible states of gene identity
between two individuals at two loci. Another reason may have been the absence of
data that could require consideration of linked loci. However, with the advent of DNA
polymorphism data and the increasing density of information on individual genomes,
this is no longer the case. Both in the estimation of genealogical relationships from
genetic data (Thompson and Meagher, 1987) and in the linkage analysis of recessive
diseases (Lander and Botstein, 1987) data at multiple tightly linked loci may soon
become the rule rather than the exception, and multi-locus kinship is a key component
of any assessment of statistical information in both these areas of inference. This
paper presents an algorithm for computation of two-locus (in principle, multilocus) kin-
ship, and investigates the properties of this function of recombination between loci for
some specific genealogical relationships. Secondly we consider the general form of mul-
tilocus kinship, and its pedigree determinants, giving examples of genealogical relation-
ships with identical two-locus kinship, but distinct three-locus kinship functions.

A recursive algorithm for two-locus kinship.

The first objective is to present a computationally feasible algorithm for the computa-
tion of two-locus kinship;

ky(B,C) = Pr(gametes segregating from each of B and C carry (1)
genes identical — by — descent at both of two loct, between which

the recombination fraction is r).

Genes are identical by descent (IBD) if they are copies of the same ancestral gene
received via repeated segregations from some common ancestor within the defined pedi-
gree of B and C. The same ancestor need not provide the alleles at both of the two
loci, although if linkage is very tight (r very small) identity by descent at both loci will
tend to result from a single ancestral chromosome carrying both alleles For example ,
in figure 1, B and C could provide chromosomes IBD at locus L from A, and at locus
J from A,., but only if a recombination occurred in both parents M; and M, of B and
C. For tight linkage the chance that the IBD chromosome is a copy of a chromosome
in either A; or A, is much greater.

Consider first the two well known methods of computation of kinship coefficients at a
single locus

ki (B,C) = Pr(homologous genes segregating from B and C are IBD). (2)



This kinship coefficient is acccepted as the best overall measure of the closeness of a
genealogical relationship between two individuals. Wright (1922) gave the classic for-
mula

Bi(B,C)=>Y (5) "MW1+ f(A)). (3)

p(4)

Here summation is over all common ancestors A, and all paths p(A4) from B up via
child-parent links to A and down via parent-child links to C not passing twice through
any individual. The power m(p(4)) is the number of links on the path, and f(A) is
the inbreeding coefficient of the common ancestor A, the factor + (1 + f(A)) being the
probability that A will pass on IBD genes to two offspring. For future reference, it is
convenient to think of m(p(A4)) as being m(p(A)) — 2 + 2, the two links from common
ancestor to two (necessarily distinct) offspring being omitted from the count (but con-
tributing its separate factor 4 (1 + f(A)), but the two segregations from the final invi-
diduals B and C each contributing a factor. Again, in figure 1, there are two ancestors,
A, and A,, each providing one path, each of length 5: the kinship k,(B,C) is 1/32.
Equation (3) was much used in early "loop-tracing" methods for the computation of
inbreeding and kinship (for example, Stevens, 1975), but such methods become infeasi-
ble on large and complex pedigrees. With the advent of recursive programming lan-
guages the folowing equations have become the standard computational approach:

k(B,C)=k(C, B) (4a)
ki(B,B) = 5 (1+ f(B)) (4b)
f(B) = k(M F) (4c)

where M and F are the parents of B, and
k(B,C)= 5 (k(M,C)+k(F,C)) (4d)
provided B is not C, nor ancestor of ¢, and
f(B)=Fk(B,C)=0 (4e)

for a founder individual B, not an ancestor of . These equations provide a complete
set which can be applied recursively up a pedigree until founders are encountered.
These equations can be intuitively justified. Kinship is symmetric (equation (4a)). In
the case of two genes segregating from B (equation (4b)) these are the same gene (and
hence immediately IBD) with probability % and are the two different genes in B also
with probability % These two genes are then the maternal and paternal genes of B, or
a genes from M and a gene from F, and hence IBD with probability k(M , F'), also, by
definition f(B), the inbreeding coeflicient of B (equation (4c)). For equation (4d), the
gene segregating from B is with probabilty + the gene recived from his mother M, and
with probability % the one received from his father, F'.

Karigl (1981) extended equation (4) to the case of simultaneous gene identity
between homologous genes segregating from a set of individuals, and Thompson
(1983a) introduced "recursive descent probabilities" that enable one to compute the
probability that a set of genes chosen one each from a set of individuals all descend



from a hypothesised ancestral set. However, these extensions considered only homolo-
gous genes-- genes at a single locus. We now extend the same equation (4) to gene
identity at two loci.

Define now the probability
ky(J(AY, BU); L™, D))

that two genes at locus J segregating from individuals 4 and B, to their i and j™
offspring respectively, are identical by descent and two genes at locus L segregating
from individuals C and D, to their k™ and 1" offspring respectively, are also identical
by descent. Note that, in addition to labelling individuals we must now also index the
different segregations from each offspring in the current pedigree, in order that when
we expand recursively we can identify those genes corresponding to a single gamete (or
offspring chromosome) from those transmitted to different offspring. Then the two-
locus kinship between two individuals G and H, or the two-locus inbreeding coefficient
of their offspring, is

ky(J(GW, HOY, L(GWY, HM)y),

the probability that the offspring carries IBD genes both at J and at L. The explicit
notation of J and L in the probability k, is unecessary, but we retain it for greater
clarity. Note first that, by symmetry between the individuals in a pair and between
the two loci,

k2(J(A7 B, ); L(07 D)) = k?(J(Bv A)a L(07 D)) = k?(‘](cv D); L(A7 B))

where now we assume the segregation (or gamete) indicator is incorporated into the
label for each individual. We may thus rearrange the arguments at any stage so that a
given one of the up-to-four individuals 1is the first argument for locus J, and, if an
argument for both loci, is also the first argument for locus L. This will enable us to
summarise our recursions in just five equations:

Assume throughout that A is not B, €' or D, nor an ancestor of any of them, and
that M and F are the parents of A. The relationships or identities between individuals
B, C and D are irrelevant, and we again assume that each of these labels incorporates
a segregation indicator. For clarity, we make the segregation indicators for the individ-
ual A explicit, and use an indicator superscript (A4) on the parent individuals M and F
to indicate gametes to A. Then:

Where only one locus involves A,
ky(J(AW, B); L(C, D)) =  [ko(J(M™W, B); L(C, D)) + ky(J(FW. B): L(C, D)) (7)
B(J(AD, AP I(C, D)) = L [14(C, D) + by( J(M™, F9); (C, D))} (s)
While for a gamete from A,
ko (J(AY, B); L(AW, 0)) = 4 [(1 = r)[ko(J(M™W, B): LM, C) + ky(J(FY, B); L(FW, 0))]
ol T(MD, BY; L(FW, 0) + y(7(FW, BY; LMD, 0)) (92))

whereas for different segregations at the two loci,



k2(J(A(1)7 B); L(A(2)7 C)) = (1/4)[k2(J(M(A)7 B); L(M(A)v C) + k?(J((F(A)v B); L(F(A)v C))

+ ky(J(M™W,B); L(FY, C) + ky(J(FWY, B); LMW, )] (9b)
For a gamete, plus an additional one-locus segregation from A,

ks (T(AY, A®); L(AY, D)) = (1/4) [k (MY, D) + ky(F, D) + (10)

ko(J(MW, FAY LMW D)) + ky(J(M, F); L(F, D))]
while for two complete gametes,
o (AU, AD); L(AD, ACY) =27 (1= 1) (M, F) + R [1 + ko(J(M, F); LM, P Y1)

We have boundary values for a founder A, of, respectively 0, % k(C,D), 0,0, and R
where R = £ (r* 4+ (1 —7)*) for the five equations (7)-(11). These equations all derive
from the same straightforward consideration of segregation probabilities as does the
more familiar equation (4):

Equation (7) : A gene chosen from A at a single locus derives with probability % from

M and % from F'.

Equation (8) : If two genes segregate independently from A at locus J, they are copies
of the same gene with probability %, and are copies of the two genes in A, and hence
one from M and one from F', also with probability % Note that our recursive compu-
tation of two-locus kinship will never involve an expansion for the same gamete at the
same locus, although were we to consider a term such as kQ(J(A(l), A(l)); L(C, D)) the
expansion would be immediate, since the two genes indicated at locus L are necessarily

IBD.

Equation (9) : For a single gamete segregating from A, the genes at loci J and L will
both derive from M or both from F if there is no recombination (each possibility hav-
ing probability + (1 —r)), and from M at locus J and from F at locus L, or vice versa,
if there is a recombination (each possibility having probability % r ) -- hence equation
(9a). On the other hand, for two separate gametes, we have the analogous gene origins
in M and F, but independent segregation (equation (9b)). Alternatively, equation (9b)
may be regarded as two separate applications of equation (7); both would, of course
have to be completed before proceeding further up the pedigree, since we cannot
expand from M or F while A remains in the expression.

Equation (10) : If genes segregate from A twice at locus J, once in combination with a
gene at locus L, then r cancels from the possibilities. With probability % the two
genes at locus J are copies of the same gene (and hence already IBD), and then with
probability % the gene at L derives from M or F each with probability % Alterna-
tively, the two genes from A at locus J are genes from M and from F, while again the
gene at L derives from either M or F, providing the second two terms of equation (10).

Equation (11) : Finally, equation (11) covers the case of two gametes from A. If one is
recombinant and not the other (probability 2r(1 — r)) then at one locus the two genes
are IBD and at the other locus they derive from M and F and are IBD with probabil-
ity k(M,F). If both chromosomes are recombinant, or both not, (probability 2R),
then with probability % the genes at each locus are copies of the same parental gene



and with probability % we have genes from M and from F at both loci. Again, if dif-
ferent gametes from A are indicated (kQ(L(A(l),A(Q));J(A(l),A(B))) for example), we
can apply the recursions (7) or (9a) to the separate segregations. As in the case of
equation (9b) all expansions of A’s segregations must be completed before proceeding
further up the pedigree.

As a check, it is worth noting that, when r = 0,
ky(J(A,B); L(A, B)) = k,(A, B).
and the above equations reduce to the single-locus equations (4). Also, when r = £,
ky(J(A, B); L(C, D)) = k\(A, B) k,(C, D)

and equations (7)-(11) give the products of two independent single-locus recursions.
Note again that for the present problem, we are not concerned that the genes at loci J
and [ should derive from the same ancestral chromosome, although we could also
derive very similar equations for this case. In practice, where linkage is tight, and/or
there are few inbreeding loops, it will often be the case that where genes at both loci
are identical by descent they will in fact all derive from the same ancestral chromo-
some, but this is not necessary. Note also that instead of gene identity probabilities,
we could very similarly consider gene descent probabilities, specifying founder genes at
locus J and at locus L from which descent is to be considered. Just as the single-locus
gene-descent equations of Thompson (1983b) are generalisations of the single-locus
gene-identity equations of Karigl (1981), the analogous multilocus generalisation can be
derived here. However, we do not pursue this as there seems to be no immediate practi-
cal application.

Although some of the above equations involve a four-fold branching recursion,
they are simple to implement and computationally feasible even on large and complex
genealogies. In computing two-locus kinship k,(J(A, B); L(A, B)) additional symmetry
allows a further reduction of the problem, by combining identical terms among the par-
ents of A and B (Table 1). Routines that trim and reorder the individuals in a pedi-
gree to avoid lengthy unecessary parts of the recursion, similar to those used in recur-
sive formulae for descent probabilities (Thompson, 1986) can also increase the size and
complexity of the pedigree on which computation is feasible. In spite of the greater
complexity of the equations owing to the genes being at two loci, it seems that compu-
tation is feasible on any pedigree on which any other four-fold gene identity can be
computed.

Note also that the formulae extend (in principle) to more loci, L, Ly, -, L,.
For example, we might wish to consider a s-locus expression

ks(Ll(Av B1)§ L2(A7 B2)§ B LS(A7 Bs))7

where again the individual label A is assumed to include a segregation indicator, and
thus a single s-locus gamete from A is implied. For any individual A, who is not the
same as nor an ancestor of any other individual in the current function, we can express
the s-locus kinship, k,, as a weighted average of the multilocus kinships between the
other individuals and the two parents M and F of A, the weights being simply the
multilocus segregation probabilities -- the probabilities with which the relevant genes
segregating from A originate from M and F. For the above particular case, provided A



is distinct from all the B; (who need not be distinct) and not an ancestor of them, we
would have

kS(Ll(Av Bl); LQ(Av BQ); T Ls(Av BS)) =

Z P(gamete from A has parent origins A) (12)
A:(élv"'ﬂss)
ks(Ll((Slv B1)7 L?((S?v B2)7 ! Ls(657 Bs))
where each 6;, 7 =1,...,5s is M or F as the gene at locus j originates from M and F,

and summation is over all vectors length s with components M or F. However, this
expansion may involve 2° distinct terms, and for s > 2 general implementation does not
seem to be practicable.

Examples of gene identity by descent at two linked loci.

At a single locus, many distinct genealogical relationships have the same kinship
coefficient. The sum over paths of powers of < (equation (1)) can achieve a specified
dyadic rational in many different combinations. For a single locus, distinct genealogical
relationships between two individuals can provide not only the same kinship coeflicient,
but the same probabilities for patterns of gene identity by descent between the two
unordered pairs of genes of the two individuals, and hence the same pairwise genotype
and phenotype distributions. An example is the set of pairwise relationships grandpar-
ent-grandchild, uncle-niece, and half-sib. These three relationships can never be distin-
guished on the basis of genetic data at independent loci, for, regardless of the charac-
teristics of a locus in terms of allele frequencies and the relationship between genotype
and phenotype, all three provide identical pairwise phenotype distributions. On the
other hand, it is known that these three pairwise relationships are, in principle, distin-
guishable on the basis of data at linked loci, since the probabilities that the pair have a
gene in common at both loci are functions of the recombination fraction r that differ
between the relationships (see for example, Thompson 1986 ).

It is therefore of interest to consider two-locus kinship between relationships with
the same one-locus kinship, and in particular we consider the six relationships between
non-inbred individuals which all have kinship coefficient 1/16. These are:

a) Great-grandparent -- great-grandchild,

b) Half-uncle -- Half-niece.

¢) First cousins,

d) Double half-first cousins,

e) Quadruple second cousins (paired sibship exchange)

and f) Quadruple second cousins (cyclic sibship exchange),

The pedigrees of these six relationships are shown in figure 2, and the graphs of their
two-locus kinship, as functions of the recombination fraction r, are shown in figure 3.

We note that the functions are all distinct and non-intersecting on 0 < r < +.
Not only does a greater multiplicity of ancestral loops lower the two-locus kinship, but
the pattern of joining of these loops affects the result. Thus there is even distinction
between the two types of quadruple second cousin. The fact that relationships are dis-
tinguished ensures their identifiability on the basis of data at pairs of linked loci. Of



course, the difference is not large, and many pairs of highly informative loci would be
required to discriminate reliably between the two types of quaduple second cousins, but
with the increasing density of DNA polymorphisms mapped in plant and animal
genomes such data are potentially available.

The other current practical application of two-locus kinship is in the mapping of
rare recessive diseases on the basis of data on affected inbred individuals. The idea
underlying that analysis is that the individuals will (likely) have IBD genes at the dis-
ease locus, so that the probabilities for the genotype at a linked marker locus will
depend on the recombination fraction r, enabling r to be estimated or linkage inferred.
This idea was originally considered by Smith (1953) and has been discussed in inter-
vening years (Suarez et al., 1978), but until recently the power of the method was con-
sidered too slight for it to be practically relevant. Lander and Botstein (1987) point
out that multilocus DNA variants may provide sufficient polymorphism for linkage to
be established by this method. In their analysis, Lander and Botstein consider multi-
ple linked loci in linkage equilibrium, but the key to the method is the degree of
marker polymorphism which this assumption provides. They consider individuals with
a specific inbreeding coefficient -- the parents being first cousins, or second cousins.
However, the function of recombination that, given an affected individual, determines
the genotype distribution at the linked marker locus is not merely the kinship of the
parents (or inbreeding of the offspring), but the two-locus kinship coefficient. Gener-
ally, the smaller the two-locus kinship the lesser the power of the method (Walters,
1988).

To consider how far multiple ancestral loops can reduce two-locus kinship, we
consider the case of a Hutterite sibship in which an offspring individual is affected by
two very rare recessive disorders ( Lowrey et al., 1985). The genealogy of this genetic
isolate has been traced back eleven generations to a set of about 70 founders. Fifty-five
of these are ancestors of the sibship in question, in which the offspring have inbreeding
coefficient 0.099. The parents of the sibship are quadruple second cousins (of the
paired exchange type) -- a regularity of ancestral relationship which is rare, even in this
population of multiple sibship exchanges and prefered second-cousin marriages. Over
1000 ancestral paths connecting the parents of the individuals have been traced; the
cousin relationships between the parents as given by the recursive "rels" routine of

Thomas (1987) is given in table 2.

Figure 4 shows the two-locus kinship between the parents of this sibship, when
the genealogy is trimmed at a specified number of generations before the present, from
4 (the quadruple second cousin relationship) to 10 (the maximum depth of known rela-
tionship) Of course, as more ancestral loops are included, any kinship coefficient
between the parents increases, but for intermediate recombination fractions the two-
locus kinship increases relatively less. Note that for trimming at 7 generations depth
(which includes 95% of the total known inbreeding), the two-locus kinship is below that
for a half-uncle-niece relationship over the range r=0.1 to 0.35. The lower part of this
range, at least, is important for linkage analysis where DNA polymorphisms at recom-
bination fractions in the range 0.1 to 0.2 are still considered closely linked (Botstein et

al., 1980).



Relationships with identical two-locus and three-locus identity.

Given the power of linked loci to resolve relationships which are not identifiable
from data at unlinked loci, we may ask what are the determinants of two-locus kinship,
and what distinct genealogical relationships will remain indistinguishable. To answer
this we return to the Wright formula for the kinship coefficient (equation (1)) and
extend this to multiple loci. For any number of loci, L,,..., L,, and ordered s-tuples of
ancestral paths, from one individual up to a common ancestor and down to the other,

Pr(gametes from the two individuals are IBD at L,,---, L,) (13)

= Z Pr(gametes are IBD at L; via path p;,5 =1,...,5).
(plv"'vpk)

In particular, for two loci,

Pr(gametes from two individuals are IBD at locus J and at locus L)

= Z Pr(gametes are IBD at J wvia path p and IBD at L via path q),
(p:2)

where ancestral paths p and ¢ are defined as for the single-locus case. Considering the
terms in this sum for which the original ancestor A at the head of path p is the same
as that for path ¢, we have, the probability

(1/2)n(p)+n(4)—€(p74)(1 _ T)C(M)—j(p,wrj(pwRA(T7 1, h(r)) (14)

where ¢(p, q) is the number of parent-offspring links common to the two paths, n(p) is
the number in p, n(q) the number in ¢, j(p,¢q) the number of joins in the two paths,
and the factor R, being given below. In the count of links, we do not include the two
segregations from the common ancestor A at the head of the path, but we do include
the two segregations from the final individuals (see equation (1) and notes following).
The rationale for formula (14) and the path counts is shown in figure 5. Where the
paths are separate each segregation contributes, as for a single locus, the factor %, this
being the probability that the "right" gene is passed on. Path p has n(p)— ¢(p,q)
such separate links, while path ¢ has n(q) — ¢(p,q). Where the paths have a segrega-
tion in common, we require the "right" pair of genes received from the parent to be
passed to the offspring; thus, where the paths proceed together from grandparent to
parent to child, there must be no recombination and we have a factor %(1 — 7). On
the other hand, where the paths join in the parent, to obtain the gene from each locus
via the different paths, recombination is necessary, and we have the factor % r. Finally,
where two chromosomes segregate independently from the same common ancestor, A,
we have an additional factor which gives the probability that the two offspring of A
share genes at both loci.

Ru(r, f h(r))=(1—=2f 4 h(r)) R(r,0,0) + f. (15)

where f is the inbreeding coefficient of A h(r) his 2-locus inbreeding, and R(r,0,0) is
the previous parameter R = 1 (r* + (1 —r)?). If paths p and ¢ are via different com-
mon ancestors A, and A, at the heads of the paths, the factor R, is modified to be

(3 L+ F(4(5 (1+ f(4))

10



the probability that the two offspring of each of the two ancestors receive the same
gene at the locus applicable to that path. This is the only change to equation (14).

Note that when r=0, we have only contributions from paths
p=14,§(p,q) =0,¢c(p,q) = n(p) = n(g) and also then h = f, and R, = 5 (1 + f(4)).
The formula then reduces to the single locus kinship (equation (1)). When r = £ | on
the other hand, the double summation factorises, h = f*, R, = (5 (1 + f(4)))” and
we have separate summations over p and ¢ giving the square of this single-locus for-
mula.

We may similarly obtain the contributing factors for the s-locus case (equation
(13)). Any segregation or pedigree link will be common to some subset of the paths.
Where paths for a subset S of the s loci have a common link, the factor contributed to
the term of the sum (13) expresses transmission of this locus subset without recombi-
nation. Where two paths, for sets of loci §, and S, join, the contribution is the multilo-
cus segregation probability that in a chromosome from the offspring the locis S, derive
from the maternal gamete and 9, from the paternal. (Note that, since individuals have
only two parents, only two sets of paths can join at a segregation). We return to this
below for the case of three loci.

Thus, for two loci, any relationship for which the numbers of ancestral paths, the
numbers n(p), n(q), j(p,q) and ¢(p,q) are the same, will have the same two-locus kin-
ship. Conversely, equation (14) shows that indeed two-locus kinship will distinguish
between standard relationships often considered to have the same degree of closeness,
since these are obtained precisely by varying the number of ancestors and paths in a
(single-locus) compensating manner-- the example of the six regular relationships of
kinship 1/16 considered in the previous section is no special case. On the other hand,
the two relationships of figure 6 have the same 2-locus kinship. However this example
is extreme; the two pedigrees show the same s-locus kinship, for all s, or the same
genomic kinship. Regardless of the set of loci within the genome that are considered,
chromosomes from the individuals have identical similarities. They are, however, dis-
tinct genealogies, and in terms of the pairwise genotypes of the individuals they are
distinguishable -- in the first case B is inbred and in the second, not. Since there are
relationships with identical (single-locus) kinship but different two-locus kinship, a
more interesting question is whether there are relationships of identical two-locus kin-
ship, distinguished by three loci, and so on.

Extension of the above formulation in terms of joins and separations in ancestral
paths show that this is indeed possible. The simplest examples found, of kinships dis-
tinct at three loci but not at two, involve the 3-path template shown in figure 7. Here,
by "transferring" a segregation from one path segment to another, we achieve a second
set of three paths, showing the same pairwise matrix of links and links in common
(Table 3). Additionally, every pair of distinct paths joins once, and the (non-inbred)
common ancestor at the head of every path (or path pair) contributes the same factor
to the sum. Thus we have the same two-locus kinship, as has been validated numeri-
cally using the recursive algorithm. We may question why such a pair of pedigrees are
distinguished by three loci, since there is but a single set of three paths. However, for
three loci, locus order, and thence the order of joining of paths, is significant. Suppose
the chromosomal order of three loci is L, Ly, Ly and note that the order of joining of
paths is py, py, ps. Consider the cases under the two pedigrees where L; is taken via

11



py. If L, is taken via p,, and Ly via ps, the order of joining of paths required first a
recombinant between L, and L, and then one between L, and L;. However, if L, is
taken via path p; and L; via path p,, we require first a recombinant between L; and
Ly, and then a double recombinant when the path for L, (ps) joins (Table 3). These
two triples thus provide different contributions in terms of the recombination fractions.
Since under the interchange between the two pedigrees, p, translates to ps;, in terms of
path lengths and links in common, but the order of joining of the paths remains
P1, Pa, P3, the three-locus kinship is different on the two pedigrees.

Another example is shown in figure 8 and table 4. This example is of interest in
that under the interchange of links between two levels in the pedigree, no ancestral
path changes in length: we do not have the interchange of paths that is a feature of the
figure 7 template. Each row of the two matrices of path segments in common contains
the same numbers, and each pair of paths joins once, providing for equal two-locus kin-
ship. (Again, this has been validated by the recursive algorithm.) Again, however,
under the interchange of links, the order of joining of analogous paths is changed, and
three locus kinship is thus also changed. This pedigree is of interest also in that in two
respects 1t demonstrates that pedigrees are very special graphs. First, and most impor-
tant, individuals have only two parents. The length of the segment marked w is thus
at least 1: only two (sets of) paths can join at a time. This makes balancing the num-
bers of links in common a more complex task, since the three-way symmetry between
the paths is lost. Secondly sex must be assignable on a true pedigree. Note it is impos-
sible therefore, that A mates with B, who mates with ¢ who mates with A. Thus
some, at least, of the arcs labelled i, 7, k, I, m or n must be greater than 1. Our
example numbers (Table 4) have been derived with these constraints in mind, although
they are not the only possibilities.

Conclusion

With the increasing density of information on individual genomes, provided by
data on DNA polymorphisms, gene identity by descent at linked loci becomes of practi-
cal importance. The facility to compute and analyse patterns of two-locus kinship in
complex pedigrees, provides a new tool for examining the properties of statistical pro-
cedures for the analysis of both current and potential data. A very recent example is
provided by Weeks and Lange (1988) who use multilocus kinships at r = % to provide
a test of departure from independent segregation. Of course, at r = + gene identities at
the different loci are independent. The present suggested methodology shows that it is
unecessary to consider only the two extremes of complete linkage and free recombina-
tion -- analysis for arbitrary degrees of linkage is possible.

That two locus analysis is an essential generalisation of single locus analysis
because of the phenomenom of linkage is well acknowledged. That three locus analysis
carries an additional dimension is less widely appreciated in area of applications,
although the critical relevance of locus order arises also in other problems of linkage
analysis when we consider more than two loci jointly (for example, Thompson 1984).
While this feature of the problem makes it intrinsically more difficult to "balance" sets
of paths to achieve equal multilocus kinship, there seems no reason to suppose this
impossible. While it is tempting to conjecture that "three-locus kinship-equivalence
implies genomic kinship-equivalence", (a mathematical geneticists’ analogue of the now
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class "period three implies chaos" of bifurcation theory), this seems unlikely. Rather, it
seems that in a similar manner, but with more complex pedigrees, it should always be
possible to construct relationships which have identical s-locus kinship, but are distin-

guished by (s+1)-locus kinship.
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Table 1: Initial expansion of two-locus kinship between two individuals A and B who
are not ancestor and descendant using equation (9a). Symmetries then provide a
reduction in the initial expansion from 16 terms to 10, which can provide a substantial
saving in computing time. For those terms which remain of similar L(A, B); J(A, B)
form the same reduction can be made in successive expansions. For simplicity, the seg-
regation indicators are omitted; for the initial expansion in a two-locus kinship there is
only a single relevant segregation for each individual.

Individuals Parents of individual A Parents of both individuals

Term Term Probability Term Probability
L(A,B); J(A,B) | L(M,,B);J(M,,B) %(1_7') LMy, Mp); J(M,, Mg) (1—7')2/4
LMy, Mp); J(My, Fp) r(l—r)/2
LMy, Fg), J(M 4, Fg) (1—7’)2/4

L(Fy,B); J(M,, B) r L(Fy, Mp); J(My, Mp) r(l—r)/2
L(Fy, Fg); J(My, Mp) 7"2/2
L(Fy, Mp); J(M,, Fg) 7"2/2

) r(l—r)/2

L(Fy,B); J(Fy, B) 7(1—7) L(Fy, Mp); J(Fy, Mp) (1—r)'/4
L(Fy, Mp); J(Fy, Fp) r(l—r)/2

) (-r)/4
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Table 2: The relationships between the parents of a certain Hutterite individual. The
table gives the number of full and half cousin relationships of each degree, and each
level of removal. For example, the couple are sixth cousins once removed 126 full
times and 24 half times. Their primary relationship is 4 full times (i.e. quadruple) sec-
ond cousins. The total number of ancestral paths is twice 496 plus 42, or 1034.

full half level removal
4 0 2 0
2 0 3 0
4 0 3 1
4 0 4 0
2 0 4 1
16 4 5 0
22 4 5 1
14 8 6 0
126 24 6 1
44 0 6 2
118 0 7 0
124 0 7 1
2 8 0

e
Ne]
(@x]
e
N}
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Table 3: Path lengths and path-sections in common for the pedigree template of figure

7.
General case Pedigree 1
s=u=1l,zr=t=9y=2
Dy Py P3 Dy Py P3
P z+s+2 s+ 2 2 53 3 2
Py s+ 2 s+u+y+2 Y+ 2 3 6 4
P 2 Y+ 2 y+t+2 2 4 6
General case Pedigree II
v=y=1l,r=5s=1=2
Dy Py P3 Dy Py P3
Pq z+s8+2 s+ 2 2 6 4 2
Do s+ 2 s+u+y+2 Y+ 2 4 6 3
P 2 Y+ 2 y+t+2 2 3 5)

Note that, in both these pedigrees, the paths p; and p, join above the Note that, in
both these pedigrees, the paths p; and p, join above the link of length s, and the pair
are then joined by ps below this link. On the other hand, in the matrix of link lengths
in common, the roles of p; and p5 are interchanged between the two pedigrees.
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Table 4: Paths sections and path lengths in common for the pedigree template of figure
8.

General case j=l-m=n=11=k=2w=s=1
path sections t=y=1a=2=2,b=c=3

Dy Py P3 Py Ps Ps

P a+1+z+w+s+2 9 6 53 4 3 3

Py a+k+y+w+s+2 6 9 4 5 2 2

Py | b+j+r+w4s+2 5) 4 9 4 6 3

Py cHl4+y4+w+s+2 4 5 4 9 3 6

ps | b+m+z4+s+2 3 3 6 3 9 5)

pg | c+n+z+s+2 3 3 3 6 5) 9

General case j=l—-m=n=1L1=k=2w=s5=1
path sections ea=1lb=c=cs=y=2,2=3

Dy Py P3 Py Ds Ps

pp | e+eit+z4+wts+2 9 5) 6 4 3 3

Py a+k+y+w+s+2 5 9 4 6 3 3

Py | b+j+r+w4s+2 6 4 9 4 5) 3

Py cHl4+y4+w+s+2 4 6 4 9 3 53

ps | b+m+z4+s+2 3 3 5) 3 9 6

pg | c+n+z+s+2 3 3 3 5) 6 9

18



Figure captions

Figure 1: An example pedigree, showing the ancestral paths which contribute to kin-
ship between the two individuals B and C.

Figure 2: Six relationships with single-locus kinship 0.625: (a) Great-grandparent and
great-grandchild; (b) Half-uncle and half-niece; (¢) First cousins; (d) Double half first

cousins; (e) Quadruple second cousins (exchange type); (f) Quadruple second cousins
(cyclic type).

Figure 3: Two-locus kinship as a function of recombination fraction, for the six rela-
tionships (a)-(f) of figure 2. The curves are in monotone decreasing order, with (a) giv-
ing the maximal values for each r-value and (f) the minimum.

Figure 4: Two-locus kinship as a function of recombination fraction, for the pedigree of
a certain Hutterite individual, when the pedigree is trimmed at 4,5.6,7 and 10 genera-
tions before the present. The curves are in monotone increasing order, with the 4-gen-
eration trim giving the minimum values and 10 the maximum. The 4-generation trim
is also the curve (e) of figure 3, and for comparison the curve (b) of figure 3 (for half-
uncle/half-niece) is also shown (broken line).

Figure 5: The pattern of segregations on two paths, showing the events required for
descent of requisite genes at two loci.

Figure 6: Two pedigrees showing pairs of individuals between whom there is equal
genomic kinship.

Figure 7: A pedigree template, showing how equal two-locus kinship, but distinct three-
locus kinship, may be obtained. If the values of y and s are interchanged (s, y > 1),
and z, v and ¢ remain fixed, the two-locus kinship is unchanged. An example set of val-
ues and resulting path lengths is given in Table 3.

Figure 8: A more complex pedigree, exhibiting a similar phenomenom to that of figure
6, but without change of any total path lengths. If each of @, b and ¢ is increased by a
specific amount, and each of z,y and z decreased by the same amount, other link
lengths remaining unchanged, then, provided z +w =2, a + w =¢ b =¢, z =y, the
two-locus kinship is unchanged. For specific example values and path lengths, see Table

4.

19



Erratum:

In Two-locus and three-locus gene identity by descent in pedigrees I.M.A. J. Math.
Appl. Med. and Biol. (1988) 5: 261-279.

In figure 3 (P.269), curve (a) is incorrect. The two-locus kinship curve for rela-
tionship (a) (great-grandparent/great-grandchild) should be identical to that for rela-
tionship (b) (half-uncle/half-niece). There is no error in the algorithm or in the com-
puter program; the program gives the correct result. The curve shown was erroneously
extracted from a different results file -- it shows the probability of a given great-
grandparental chromosome segregating from the great-grandchild without recombina-
tion. I am grateful to Dr. Daniel Weeks for pointing out this error.
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