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SUMMARY

For large numbers of genetic loci, jointly tested to determine their order along a chromo-
some, likelihood methods become infeasible due to the very large numbers of discrete alternative
hypotheses (locus orderings) whose likelihoods must be separately evaluated. A method to order
loci according to the criterion of minimising the obligatory crossover count is therefore proposed.
A branch-and-bound algorithm implementing this proposal has been programmed; the properties
of this algorithm are investigated. The statistical properties of the proposed method are also con-
sidered. It is shown to be consistent under wide conditions including arbitrary locus spacings, vari-
able amounts of information per locus, and some patterns of interference. The relationship
between the minimum crossover order and the maximum likelihood order is discussed. For fully
informative gametes, and tight linkage, there is a virtual equivalence of the two criteria. For looser
linkage there remains a close relationship.



1. Introduction

Recent developments in linkage analysis are towards the multilocus mapping of the highly
polymorphic markers with codominant alleles, these then forming the framework for mapping
more complex traits. With the current technology of restriction fragment polymorphisms, very
large numbers of loci may be typed for each segregation, particularly in the area of plant and ani-
mal genetics where highly informative matings/crosses can be planned. The loci considered are
often known to be syntenic, linked, or even tightly linked: the questions are of locus order. For
the ordering problem, the analysis of three loci jointly, with the extra dimension it provides over
the simple recombinant /nonrecombinant status of a pairwise observation, provides for far greater
accuracy in the assessment of locus order (Thompson, 1984). This increased accuracy has two
sources; at the lowest level gametes may only be pairwise informative, second they may be jointly
informative but the information scored pairwise, and third they may be jointly informative and
jointly scored. Although the intermediate case of joint data scored pairwise can provide good
information for ordering (White et al., 1985) the third data type is the most efficient. Further, for
larger numbers of loci, where the samples are of gametes and individuals informative for different
subsets of the loci, joint analysis of the cosegregating loci must provide still greater benefits over
the pairwise analysis of recombination rates. However, full likelihood analyses are highly compu-
tationally intensive.

There are thus two alternate simplifications for a full multipoint linkage analysis. One is
first to consider data pairwise: linkage of a trait with single markers is often a useful first
approach, although combination of results over different linked markers requires care. Buetow et
al. (1985) have considered multidimensional scaling of maximum likelihood estimates of pairwise
recombination rates to obtain a multilocus order. The other simplification is to consider data
jointly but to score recombination events rather than compute a full likelihood. For the problem
of ordering multiple markers, it seems that more may be lost by failure to take account of loci
jointly than by failing to extract all the statistical information. That is, a simple scoring method
based on joint data may prove to produce better results than a full likelihood analysis of pairwise
data. While a full joint likelihood analysis must be the most statistically efficient procedure, the
computations involved are large and lengthy. A scoring method can indicate the regions of the
hypothesis space, in terms of both recombination values and loci orderings, which should be more
fully investigated.

A heuristic scoring criterion for estimation or inference is never as satisfactory as an esti-
mate based on the likelihood. However, the greater ease of computing such a heuristic estimate
lead to its widespread use. The statistical justification for such a method must lie in the accuracy
of results, and/or in the approximation of such results to those obtained via some valid method of
inference, such as by maximum likelihood estimation. A useful analogy is in the use of minimum
evolution as an approximation to the likelihood solution for divergence of allele frequencies in pop-
ulations under random genetic drift (Cavalli-Sforza and Edwards, 1964). In that problem also,
there are a large number of discrete hypotheses of primary interest -- the alternative evolutionary
tree forms. The estimation of quantitative parameters, such as times of divergence, is of sec-
ondary importance. It is important to investigate the relationship between scoring estimates and
inferences based upon the likelihood function, and the models and/or types of data for which the
methods give similar inferences (Thompson, 1986). Although scoring methods for ordering loci
date back to Sturtevant (1913), there has been no detailed investigation of their statistical proper-
ties. Such investigation is necessary, if such methods are to become widely used either in place of,
or as a preliminary to, full likelihood analyses.

2. Locus ordering by branch-and-bound on a crossover count criterion

The intrinsic information for linkage analysis in data on any segregation consists of the
grandmaternal/grandpaternal origins of alleles on each of the two gametes received by an offspring
(figure 1). We shall therefore consider data in a partially preprocessed form of received gametes
scored for each locus as grandmaternal (2), grandpaternal (1) or unknown (0). For a complex
trait and/or two-generation data alone there may be "partial" knowledge, in the sense of



probabilities dependent upon the types of other offspring of the same mating or on sibs of the par-
ents, either of which may provide partial information on parental phase. However, for three-gener-
ation data on traits with codominant alleles unknown phase will result either from homozygosity
in a parent, or from two identically heterozygous parents providing a heterozygous offspring (fig-
ure 1). In the former case grandparental origin of an allele in intrinsically unknowable; i.e. is fully
"unknown". The latter case occurs with low probability for polymorphic loci, and can be avoided
in planned matings between lines. Thus, although in general information may be lost by scoring
as unknown the grandparental origins of offspring alleles with origins not fully determined, the
loss should be small in all practical cases.

A scoring method can, of course, use any score criterion, including the -log-likelihood itself:
the optimal locus order is, by definition, that which achieves the minimal score. However, in order
to facilitate searching one requires a score function that, for all hypothesised locus orderings, pro-
vides an easily computed non-negative increase on inclusion of data on additional loci. In order
for the optimal order under the criterion to bear any relationship to the true order, we naturally
require some function which we anticipate will "probably" be "small" under the true order. The
criterion which we investigate is the total number of recombination events (crossovers) implied for
the data by a given ordering of loci. The statistical properties of the procedure resulting from this
choice of score function will be investigated below; we consider first the ordering algorithm.

Lemma: The number of implied recombinants is additive over gametes, and provides a non-nega-
tive score increase when, in any hypothesised ordering, data on an additional locus is included.
Proof:

We shall simply specify the score increases for a given gamete; these are functions of the grand-
parental origins for the previously ordered loci of the gamete, which are assumed separately scored
for each gamete of the sample (see above). Suppose that the data for some subset of the loci
under a given subset of $n$ loci ordered without loss of generality as
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and the $(n+1) sup th. $ locus is inserted after locus $A sub i $ (figure 2).

If $ d sub n+1 =08$, there is no change in score.

If $d sub n+1 != 0 $, let $x$ be the first non-zero $d sub j $ (if any) amongst $d sub i, d sub i-1 ,
d sub i-2 , ...$, and $y$ be the first non-zero $d sub j $ (if any) amongst $d sub i+1 , d sub i+2 ,
<., d sub n $; if either of these does not exist let $x7(y)$ be 0. Then:

If $x=y=08%, there is no change in score.

If $x=0,""y != 08, the score is increased by 1 if and only if $d sub n+1 != y.$

If $x != 0,”"y=08%, the score is increased by 1 if and only if $d sub n+1 != x.$§

If $x != 0,” "y != 0%, the score is increased by 2 if and only if $x=y != d sub n+18$.
Thus changes in score are non-negative; they can be zero.

The lemma is proved.

We now consider determination of optimal ordering of loci using the classic branch-and-
bound algorithm for tree-structured searches (see e.g. Lawler and Wood, 1966; Knuth, 1968).
(In pursuing the analogy of section 1, it is of interest that branch-and-bound has also been used in
the context of minimum evolution estimates of evolutionary trees (Hendy and Penny, 1982)). The
tree structure employed is of branch points corresponding to the insertion of information on addi-
tional loci, the alternative branches corresponding to alternative positions for insertion. Thus at
level $i$, when the $i sup th.$ locus is to be inserted, every node has i branch points (figure 3). It
is not necessary that the order for insertion be the same on every subtree, but of course all sub-
trees from a given level must correspond to insertion of the same set of loci.



4.

The search involves evaluation of the score increase involved on each branch of the tree, and
comparison with a previously determined value which is the current minimum found for a full
order (at some tree tip). Since the score increase on each arc is non-negative, but need not be
positive, we can terminate search of any subtree as soon as the value at the root of that subtree is
not strictly smaller than the current comparison value. Thus for an efficient search, evaluating
explicitly the smallest possible number of partial orderings, we require

(a) that some order with low total score is found early in the search, to give a small value for com-
parison, and

(b) that high score increases are acquired at low levels in the tree, to reduce the chance of having
to search many subtrees to high levels.

An important aspect of any branch-and-bound algorithm is thus a specification of order of
insertion of items (in our case, loci). Objective (b) is achieved by choosing for insertion at any
level, that locus that has highest average immediate score increase over the alternative positions
for insertion. Objective (a) is then achieved by searching the alternative subtrees at each level in
increasing order of immediate score increase at that level. It is an open question how far it is
worth reordering insertion of loci on different subtrees (figure 3). While the overall ordering at
low levels can be very important, at high levels the procedure seldom leads to changes, and so the
increased computation involved cannot provide improvement.

A branch-and-bound program has been implemented (in C under UNIX) in accordance with
the above, and tested on simulated data. Some brief summary statistics are given in Table 1, but
some formulae are also illuminating. Note that in a tree of $1$ loci the total number of full and
partial orderings, or the total potential number of order evaluations, is
i
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while the minimum number of evaluations to achieve the first ordering is
3+4+5+..... +1=0+3)(-2)/2.

In many cases, the number of evaluations made is less than twice this minimum (Table 1), show-
ing that for clear data (informative tightly linked loci) the optimal order is not only immediately
found, but more important is almost immediately so recognised by the algorithm. The proportion
of tree searched is closely related to the number of changes that are made before the optimum is
found, although of course there is no exact relationship. This number of changes is never large; it
is often zero. Six was the largest value found in any run. It is dependent on the number of
gametes, as well as on the number of loci and the level of information; the overall means given in
Table 1 are intended only as an indication of order of magnitude. It is also the case, qualitatively,
that optima achieved only after several changes have a higher frequency of not being the true
locus order.

In considering the minimum number of gametes to infer the order of equally spaced loci note
that the probability of an observed recombinant between two adjacent loci is § r (1-h) sup 2 §,
where $r$ is the recombination fraction and $h$ the probability that a locus is not informative,
assumed the same for all loci. Thus the approximate number of gametes to be sampled before
there is an observed recombinant in every one of the §( 1 -1 )$ gaps between adjacent loci is
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Loci cannot be ordered until there is at least a recombinant distinguishing the members of every
adjacent pair (Thompson, 1984). The above formulae is an approximation, since loss of informa-
tion at a locus simultaneously affects two adjacent gaps, but it provides a useful lower bound on
the number of gametes it is reasonable to consider. Another consideration is of the smallest scores
that are likely to give reliable orderings. Table 1 shows that high scoring optima are almost
invariably true, although it is also the case that untrue optima tend to have higher than average



score for that set of locus characteristics. Where there are a sufficient number of gametes for an
expected score of 50 or greater one can place high reliance on the optimum order; those few incor-
rect optima with values over 50 all corresponded to situations in which the average was less than
50. For equally spaced and equally informative loci we can consider the smallest total score that
has a given probability of some score attributable to every gap; again a necessary condition for
order information to be present. For fully informative loci, this is simply an occupancy problem
(Feller, 1968 Pp.102-5); the probability that each of the $( 1 -1 )$ gaps is "occupied" by at least
one of the items in a total score of s required recombinants is
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which can be approximated (for $1$ large) by § e sup {- lambda }$, where § lambda = (1 -1)e sup
{-s/(1-1)}$ (Feller, 1968).

The runs summarised on Table 1 correspond to a "clear" and a "less clear" case for each of
5, 8 and 10 loci. Other runs, for larger numbers of loci and for unequally spaced loci, were also
made. For clear-cut cases (recombination rates less than 0.1, and no missing data) up to 15 loci
can be handled with ease, but for other cases time constraints precluded the gathering of samples
of useful size. For unequally spaced loci, no clear pattern emerged. Cpu times (given for a
VAXT780 but almost identical to those for a MASSCOMP) are almost proportional to the number
of gametes times the number of (full and partial) orders evaluated. For a given number of loci
this is expected, since each position evaluation must be made for every gamete. More surprising
was the fact of virtual constancy of the time per gamete per order evaluation across the range
from 5 to 10 loci and across the range of levels of information. Although times varied slightly, the
mean for every group was between 0.00009 and 0.00011 seconds/gamete/order-evaluated. Thus it
would be efficient to first scan gametes, discarding those with no obligatory recombinants, either
because of tight linkage or because of high levels of missing data. This was not done in the runs
summarised in Table 1. Times are also dependent on the proportion of tree searched, but this
dependence is not great.

While fuller analyses of performance are required, these preliminary results confirm the both
the efficiency of recombination scores in determining a true locus ordering, and the efficiency of
branch-and-bound in determining the order with optimal score. Comparisons with other methods,
such as a full joint linkage analysis, are not possible, since there is no program available which will
deal readily with more than four loci simultaneously.

3. Consistency of the Minimum Crossover Scoring Method

In a statistical analysis of any estimation procedure, consistency is an important considera-
tion -- as the number of informative gametes becomes large, is the correct order inferred? Note
that the evolutionary tree analogy would here suggest that consistency might fail. Felsenstein
(1978) showed that disparate evolutionary rates lead to inconsistency of the "minimum evolution"
tree, although when overall evolutionary rates are small consistency is more likely to obtain.
Here, by contrast, we shall show consistency not only for tightly linked and/or equally spaced loci,
but far more widely. Consistency depends only on the expected value of the score function under
the alternative discrete hypotheses. If this is necessarily minimal for the true order, then asymp-
totically the true order will be (with probability tending to one) that of minimum score. The
scoring criterion is then consistent, giving asymptotically correct results.

Consider, in particular, the case of four loci, and assume that gametes are fully informative
for these four loci. Assume that the true order is $ABCDS$, with inter-locus recombination rates r,
s, and t (figure 4). Assume also absence of interference, so that these three parameters determine
the probabilities of all recombination events. Then there are eight possible gamete types. The
score and the probabilities of these under the true order are given in Table 2. The score which
each assigns to each of the other eleven locus orderings may be likewise computed. Table 3 gives
again the score for the true order, $ABCDS$, and the score differences between all eleven other
orders and the true order. The probabilities of the eight events, and the score differences which



they provide, give immediately the expected score differences, which are also given in Table 3. We
see that these are non-negative for all alternative hypotheses (locus orderings) regardless of the
locus spacing (i.e. for any r, s, and t less than 0.5). Under our assumptions the scoring algorithm
is consistent for four loci.

Not all these assumptions are in fact required. In particular, the assumption of fully infor-
mative gametes is for convenience only and can be relaxed (see below). Also, complete absence of
interference is not required. We need only sufficient restriction on the event probabilities to
ensure strictly positive expected score differences for all untrue orders. From Tables 2 and 3, the
necessary and sufficient conditions for consistency for four informative loci are

dp +dqap > dc +dpp,  da+dpe >4 +dp,  dat+dp > dp +dc, (1a)
ap +qap > 4 +apc, G4+ qap > 4o +ases 244 > 24pp, (1b)
qa + 448 +dpc > 4o +24sp, 4p + 4aB + dBc > 4B + 24Bp, (1c)
and
248 +4c > 4p + dBc + 48D, 24aB *+ 44 > 4B + 40 + 4BD- (1d)

Sufficient conditions are thus

qap > qpc > qpp and min(qy, qp) > maz(qg, qc)- (2)

It is therefore sufficient for consistency that, amongst events when the loci segregate three-and-
one, single crossover events have higher probability than double crossovers, and that separately for
the two-and-two segregating gametes, a single crossover should have higher probability than dou-
bles, and doubles than triples. If loci are equally spaced, these conditions must always be satisfied
for any level of interference. Positive interference in fact will enhance the chance of consistency, in
that it decreases the probability of double and triple crossovers relative to single ones. Note, how-
ever, that the final sufficient conditions are not satisfied by loci with spacing of different orders of
magnitude; there is in general no reason why $ q sub A § should exceed the double crossover rate
$ q sub C$. (In the absence of interference it will do so only if § r(s-1)(1-t)">"(1-r)st $.) Thus
the necessary and sufficient conditions (1) imply consistency in the absence of interference, and for
equally spaced loci regardless of interference, but neither of these cases subsumes the other.
Equation (1) will also provide for consistency in many cases intermediate between these two spe-
cial cases.

In the absence of interference, there are, of course, many alternative ways to write the
expected scores of Table 3 in terms of pairwise recombination fractions. One way that will be illu-
minating for the general case below is shown in Table 4. Each order has an expected score which
is the sum of the expected score for the loci A, B and C in the 3-locus order obtained by deletion
of D, plus an "increment" which depends only on the immediate neighbour(s) of D in the 4-locus
order. Tedious but simple algebra will confirm that the scores of Table 3 can indeed be written in
the form shown in Table 4. We use this idea of an expected score for n loci, plus an increment, to
extend the above now to arbitrary numbers of loci, assuming absence of interference.

Framework; Suppose we have loci whose true order is
Ala AQ,AS, T An7 An+1a s

and suppose that the first n have been placed in some hypothetical order, giving rise to some
expected score relative to the true order. Consider now the addition of locus $ A sub n+1 $, and
suppose that for a given hypothesised order it is placed between loci $ A sub i $ and $§ A sub j $
in the previous hypothesised order, where 1 <=1 < j <=n. Let § r sub i,j $ denote the pairwise
recombination rate between loci $ 1 $ and $ j $, and suppose that § 0 < r sub i,j < 1/2 §. Con-
sider a single fully informative gamete, and, for this gamete, the expected score increase on addi-
tion of locus $A sub n+1 § into the count of crossovers, for any placement of this additional locus.
Scores are measured relative to the true ordering of the same loci, but we wish to consider the
increment in score due to addition of the $(n+1) sup th. $ locus. We consider therefore, for a



hypothesised order $ H sub n+1 $ loci, the expression
(S(Hyy1) = S(Thyr)) — (S(H,) = S(Ty)) (3)

where S is the total expected score function, T denotes a true order, and $H sub n $ is the n-locus
order formed by deletion of $A sub n+1 § from the (n+1)-locus order $H sub n+1 §. Now for
purposes of evaluation we may rewrite (3) as

(S(Hps1) = S(Hy)) = (S(Tosr) = S(T3))- (4)

In the absence of interference, the values $S(T)$ are easily evaluated, being simply the expected
number of recombinations between adjacent loci, or

S(T,) = Z Ti-1,is
i=2
so that (4) reduces to
(S(Hnt1) = S(Hy)) = Topsr: ()

Lemma; If § A sub n+1 $ is located between $A subi$and $ Asubj$with$ 1 <=i<j<=n
$ then

S(HnJrl) - S(Hn) =2 rj,n+1(]- - ri,j) (6)

and if, in the hypothesised ordering $A sub n+1 § is a terminal locus with neighbour $A sub j $
with § 1 <=j <=n§ then

S(HnJrl) - S(Hn) =Tjn+1 (7)

Note; Note first that equations (5), (6) and (7) hold in the transition from three to four loci (Ta-
ble 4). (It also holds trivially in the transition from two to three, but that example is not illumi-
nating.) Our proof will use this framework of four loci, since it is shown that, in the absence of
interference, we need consider only the two immediate neighbours of $ A sub n+1 § in the new
order, to obtain (6) and (7), while locus § A sub n § enters to provide the term $r sub n,n+1 § for
the comparison of true orders (5).

Proof;

Let $<A sub i >$ denote now the totality of all events in which § A sub i $ segregates separately
from $§ A sub j$ and $§ A sub n+1 $, and similarly for the other events with respect to these three
loci (Table 5). Then the probabilities of these events combined over all other loci under the true
order are as given in Table 5.

Now in comparing $H sub n+1 $ with $§ H sub n $ the only score difference is an increase of 2 for
all those events in the set $<A sub i, A sub j >$. Thus the expected score difference is as stated.

For the case where $A sub n+1 $ is terminal in $H sub n+1 $, we have a score increase of 1 for
precisely those events in which $A sub j $ segregates separately from $A sub n+1 $; the probabil-
ity of all such events is simply $r sub j,n+1 $.

The lemma is proved.

We have shown that for any fully informative gamete, for any number of loci, the true order
minimises the expected score for that gamete. But since this argument is on a per gamete basis,
we can now apply it to the informative loci for a given gamete. For any given gamete, the order
that minimises the expected score is any order in which the informative loci for that gamete are
correctly ordered. Hence consistency of the minimum scoring method is not dependent upon hav-
ing fully informative gametes, but only on having loci that have strictly positive probability of
being informative, independently of other loci.



4. Likelihood and crossover counts

The -log-likelihood itself is a consistent score function; but two consistent score functions
need not necessarily provide identical results in analysis of an actual data set. A different question
is thus of possible differences of inferred order provided by the likelihood and by the minimum
cross-over criteria.

Consider first the maximum likelihood estimates of recombination fractions for the case of
four loci, under any specified hypothesised order, on the basis of fully informative gametes, assum-
ing absence of interference. Then the estimated recombination fractions r, s and t, between adja-
cent loci consist of combinations of three out of a total of six possible frequencies. Table 6 shows
these maximum likelihood estimates, for the twelve possible locus orderings. The $ x sub A § etc.
denote the sample frequencies of the events <A> etc., whose probabilities $§ q sub A § etc. are
given in Table 2. The maximised log-likelihood is (Thompson (1984))

N (h(r) + h(s) + h(t))
where
h(r) = rlogr+ (1 —7)log(1—r),

r, s and t are the maximum likelihood estimates, and N the total number of (fully informative)
gametes in the sample. Thus in computing the log-likelihood difference between orders for which
two of the estimates are in common (e.g. ABCD and ABDC, DCAB or CDAB; see Table 6), the
larger log-likelihood will be for the order with the larger h-value for the third estimate. Since h is
monotone decreasing in r (for r< 1/2), the order with higher log-likelihood will be that for which
the third recombination estimate is smallest. But the estimates are precisely the score counts of
recombinants; the lower scoring order will have higher log-likelihood. For three loci, this ensures
that the maximum likelihood order is always that which requires fewest total recombinants
(Thompson, 1984; see also Bishop 1985). For four loci there are, however, other cases, where com-
parisons must be made between orders having only one, or even no, estimated recombinations in
common. Where there is one common estimate (e.g. ABCD with ADCB, CBAD, DBAC, or
ACDB; see Table 6), the log-likelihood order will depend on the ordering of $ h(r)”+"h(s) §,
where r and s are the estimates not held in common, while the score will depend on the ordering
of $(r"+7s)$. While $h(r) "+ h(s)$ is close to monotone in $ (r+s)$ it is not exactly so (figure 5);
thus there can exist data values for which the minimum score and maximum likelihood orders are
not identical. For the remaining four orders (Table 6) there are no pairwise estimates in common.
The log-likelihood for the order depends on $ h(r)+h(s)+h(t) $ while the score depends on $
r+s+t $; again the ordering by maximised log-likelihood need not coincide with that by minimum
crossover score. On the other hand, the probability of a data set in which the maximum likeli-
hood and minimum score orders do not coincide is very small. The orders which "compete" with
the true order, are mainly those for which there are two estimates in common (see Table 3).

For tight linkage, there is an even closer relationship between likelihood and crossover
counts. We consider a very large number of gametes, sufficient to ensure a crossover between ever
pair of loci, but such that the number of crossovers in the total length remains bounded, since the
total map length is small. Now let the number of crossovers between the $ (i-1) sup th $ and $ i
sup th , $ loci under any assumed (not necessarily true) order $ pi § be $ x sub i ( pi )$, so that
the maximum likelihood estimates are $§ r subi "="x sub i ( pi )/N.$ Then the maximised log-
likelihood for order $ pi $ is

-1
LI(x) = N Y h(z;(m)/N)

which reduces to

-1 -1

> @i(mlog(a;(m)) + (logN = 1)(= Y z;(m) + O(N )
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or
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LL(m)/log(N) — — in(ﬂ') = — S(m).

1
Thus as linkage becomes very tight, but samples sufficiently large to ensure identifiability of
orders, the maximised log-likelihood for any order is determined by, and is a fixed multiple of, the
minimum crossover score. Thus not only do both methods infer the same order (which in these
circumstances has a high probability of being the correct order), but the two measures are equiva-
lent for any order.

The above discussion requires fully informative gametes. For gametes that are equally infor-
mative about all loci, similar results appear to hold, although the formulae cannot be so neatly
expressed. On the other hand, the above results are untrue where the information about loci is
highly disparate. The minimum crossover rate order (counts adjusted to rates to adjust for differ-
ent numbers of informative gametes) and maximum likelihood orders can then differ even for three
loci (Thompson, 1984).

5. Discussion

As the number of loci involved in such analyses increases, it will become more important to
have effective sorting and scoring methods to screen the very large numbers of discrete hypotheses
(locus orderings) involved. We have seen that a branch-and-bound method search performs
impressively on multi-locus simulated data. The advantage of such a deterministic method, over
stochastic methods such as simulated annealing (for example), is that the optimum determined is
necessarily the global minimum of the objective function. Scoring methods have also the general
advantage of being more visibly dependent upon particular items of data: the precise gametes or
segregations contributing to anomalous conclusions can be identified, and perhaps reassessed.

An alternative approach would be to use a tree search method over locus orderings, but to
use minus the log-likelihood directly as the objective function. This is feasible only if the log-likeli-
hood for an order can be very rapidly evaluated, but the computation of this likelihood involves
maximisation over $( 1 - 1)$ recombination rates. For fully informative gametes, the estimates can
be explicitly determined. For gametes which are highly informative, so that no two adjacent loci
are unscored for any gamete, the three locus EM-approach (Thompson, 1984) allows conditional
estimation of recombinants, and hence rapid determination of maximum likelihood estimates. For
less informative gametes and/or loci the extended EM-approach of Lander et al. (1986) may pro-
vide rapid evaluation of the likelihood of any locus order. However, any iterative approach to
parameter estimation must involve substantially more computation than the immediate evaluation
of a minimum crossover score. Note also that the recombinant score is ideally suited to a tree-
structured search, with the effect of addition of any locus in any position in any partial order
being easily evaluated, and bounded below only by zero. If likelihoods are to be computed, the
addition of information will again bound the change in -log-likelihood by zero, but since estimates
of all recombination rates may change (particularly where loci are not highly informative) the
-log-likelihood increase is not immediate. Nor will zero in general be a tight lower bound, and this
may adversely affect the performance of a branch-and-bound procedure. It will be important to
determine whether a non-zero lower bound can be predetermined, in order to allow the search to
be curtailed at lower levels in the tree. Finally, the maximum likelihood estimation methods
referred to here assume absence of interference. The minimum-crossover score method makes no
such explicit assumption, and the four-locus results (section 3) show that this method should be
robust to a variety of patterns of interference and "improved" by many patterns of positive inter-
ference. Overall, there seems to be more to be lost than gained by combination of the scoring
method with simultaneous likelihood evaluations, although subsequent likelihood analysis of low-
scoring orders may be a useful procedure.

For fully informative gametes, there is a close analytical relationship, although not complete
equivalence, between the likelihoods for alternative locus orderings and scores based on the
implied numbers of recombinants. However, when loci are differentially informative the low-
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scoring order may differ from the maximum likelihood order (Thompson, 1984). Since it assigns
"equal weight" to all observed recombinants, the crossover count criterion is also then prone to
error. A method that counted recombinants with appropriate weighting might resolve this prob-
lem, but would require increased computation, and considerations of aspects akin to those
involved in analysis of the likelihood function. Note that where a locus is highly uninformative,
likelihood estimation also encounters difficulties. The variance of the natural sufficient statistics
(the unobserved true numbers of recombinants underlying the data) are high for those intervals
adjacent to a low-information locus (Thompson, 1984). Thus any estimation procedure relying on
estimation of these underlying recombinants will be slow to converge, even where there is good
information for order.
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Figure captions.

Figure 1: Scoring of gametes on the basis of three generation data on a pedigree. The maternal
and paternal gametes in an individual are each scored. In scoring at a given locus, an alleles from
the a male grandparent is scored 1, from a female grandparent is scored 2, and one not identifiable
is scored 0.

Figure 2: Increase in crossover score for a gamete on inclusion of information on an additional
locus positioned at any specified point within the current partial order.

Figure 3: A part of a branch-and-bound tree structure; at each level information on an additional
locus is incorporated.

Figure 4: The case of four loci; the situation providing the results of Tables 2 and 3.

Figure 5: Comparison of the functions $h(r)+h(s)$ and $r+s$; the first determines the log-likeli-
hood and the second the crossover score, in the case where just two estimated recombination rates
differ between the orders to be compared.

Keywords: Multipoint linkage, branch and bound, crossover counts, likelihoods, consistency.
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Table 1; Performance of C-program for branch-and-bound locus ordering.

Characteristic nloc=5 nloc=8 nloc=10
Number of evaluations;
potential maximum 75 23,115 2,018,765
minimum number 12 33 92
Proportion min:total possible 0.16 0.00143 0.000026
Score for complete occupancy*
with 90% probability 14.6 294 40.0
with 99% probability 24.0 45.8 61.2
Cpu time/gamete/order (secs) $1x10 sup -48% in all cases
Typical cpu time for correct
inference (secs) 0.3 24 4.6
Data regime $r=0.13  $r=0.2$ $r=0.1$  $r=0.2% $r=0.1% $r=0.1%
$h=0.08 $h=0.4% $h=0.08 $h=0.2% $h=0.09 $h=0.4%
Expected gametes for existent recombinants™*
20.8 28.9 25.9 20.2 28.3 78.6
Mean score per gamete 0.37 0.47 0.76 1.23 0.86 0.92
Mean proportion of tree searched;
if nchange=0 0.160 0.234 0.00165 0.00526 0.000043 0.000084
if nchange=1 0.280 0.275 0.00294  0.00870 0.000093 0.000217
if nchange=2 ok 0.40** ok 0.01661  0.000113** 0.000337
if nchange>2 ok ok ok 0.015%*  0.000162**  0.000404**
Mean number of changes during search
0.25 0.5 0.2 0.9 0.4 1.7
Percentage of true orders amongst optimal scores
over 150 ok 100 100 100 100 100
50 to 149 100 98 100 97 100 88
30 to 49 100 70 88 50 92 50
15 to 29 93 40%* ok 36** ok 20%*

*; See equations and/or explanation in text
**: small samples

**%*: insufficient information
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Table 2; Gamete events and their probabilities and scores under the true
hypothesis ordering $ABCDS$ figure 4.
gamete event score  description probability general
(cosegregating loci)  (under figure 4)  probability

2222/1111 0 0 all together (1-r)(1-s)(1-t) $q sub 0 §
2111/1222 <A> 1 A segr. alone r(1-s)(1-t) $q sub A$
2122/1211  <B> 2 B segr. alone rs(1-t) $q sub B$
2212/1121  <C> 2 C alone (1-r)st $ q sub C$
2221/1112  <D> 1 D alone (1-r)(1-s)t $q sub D$
2211/1122 <AB> 1 AB/CD split (1-r)s(1-t) $q sub AB$
2112/1221 <BC> 2 AD/BC split r(1-s)t $q sub BC$
1212/2121 <BD> 3 AC/BD split rst $q sub BD$

Table 3; Crossover counts and expectations for four loci.

Scores are given relative to the order ABCD, which is assumed true for the

purposes of computing the expectations.

Event 0 <D> <C> <AB> <B> <BC> <A> <BD> expectation.

Null

score 0 1 2 1 2 2 1 3

Order:

ABDC 0 +1 -1 0 0 +1 0 -1 t(1-2s)

DCAB 0 0 0 0 -1 +1 +1 -1 r(1-2s)

CDAB 0 +1 -1 0 -1 0 +1 0 (1-2s) (r+t-2rt)

ADCB 0 +1 0 +1 -1 -1 0 0 (1-2r) (s+t-2st)

CBAD 0 0 -1 +1 0 -1 +1 0 (1-2t) (r+s-2rs)

ACBD 0 0 0 +2 0 0 0 -2 2s(1-1-t)

DBAC 0 0 -1 +1 0 +1 +1 -2 r(1-2s)+s(1-2t)

ACDB 0 +1 0 +1 -1 +1 0 -2 t(1-2s)+s(1-2r)

ADBC 0 +1 -1 +2 0 -1 0 -1 2s(1-r)(1-2t)+t(1-2r)

BCAD 0 0 0 +2 -1 -1 +1 -1 2s(1-t)(1-2r)+r(1-2t)

BDAC 0 +1 -1 +2 -1 0 +1 -2 2s(1-r-t)+(1-2s) (r+t-2rt)
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Table 4; Increments of expected score in the transition from three to four loci.
The expected scores are given in Table 3, and for every 4-locus ordering it may
be checked that the 4-locus expected score is the sum of the 3-locus score and
the given increment. The results thus illuminate the lemma, the final column
giving expressions in the more general notation of the multilocus case.
3-locus order ABC ACB CAB
3-locus expected score 0 s(1-2r)  r(1-2s)
locus D score new new new comment
inserted increment order order order
between;
end and C 0 ABCD N/A  DCAB $rsub CD $-t=0
end and B (s+t-2st)-t N/A ACDB CABD $rsub BD $-t
end and A ((r+s+t)-2(rs+rt+st) DABC DACB N/A  $rsub AD $-¢
+4st)-t
A and B 2(s+t-2st) (1-r)-t ADBC N/A BDAC  $r sub BD $=(s+t-2st)
A and C 2t(1-(r+s-2rs))-t N/A  ADCB CDAB $rsub AC $=(r+s-2rs)
B and C 2t(1-s)-t ABDC ACDB N/A  $rsub BC $=s

Table 5; Values of scoring when additional locus is inserted in the ordering.
All events, orders etc. are specified only with respect to the three loci
$ (Asubi, Asubj, A subn+1)$: for details see text.

Event Probability score score
under true order under $H subn $ under $H sub n+1 $
$(Asubi, Asubj, Asubn+1)$

$A sub n+1 §$ interior;

0 $(1-r sub i,j )(1-r sub jn+1)$ w w

$<A subi >$ $ 1 sub i,j (1-r sub j,n+1)$ w wHl-1=w
$<A subj >$ $ rsubijrsubjnt+l$ w w-1+1=w
$<Asubi, Asubj>$ $(1-r sub i,j )r sub jn+1 $ w wH+l+1=w+2
$A sub n+1 $ terminal;

0 $(1-r sub j,n+1)$ w w

$<A subj >$ $r sub jn+1 $ w w+1

*. $w$ here denotes the score for the given event in the order $H sub n $. It differs, of course,
between event groups, and between events within a group such as $<A sub i >$, but the compari-
son between $H sub n $§ and $H sub n+1 § is the same for all members of the group.
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Table 6; Patterns of recombination estimates for 4-locus orderings.

Interval 1 2

Estimate of r

Order:

ABCD $rsub 0 = xsub A + xsub B 4+ xsub BC + xsub BD$ $rsub 2 =xsub B + xsub C + x sub AB + 3
ABDC $ r sub 0% $t sub1 =xsub B + xsub D + xsub AB +
DCAB $t sub 0% $rsub1 =xsub A + xsub C + xsub AB +
CDAB $t sub 0% $tsub2=xsub A+ xsubD + xsub AB +
ADCB $t sub 2% $t sub 0%

CBAD $r sub 2% $r sub 0%

ACBD $r sub 1% $r sub 2%

DBAC $t sub 1% $r sub 0%

ACDB $rsub 1$ $ t sub 0%

ADBC $ t sub 2$ $tsub1$

BCAD $r sub 2% $r sub 1%

BDAC $t sub 1% $t sub 2%

- 16 -



