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Preface

This book is not a textbook of human population genetics, nor does
it aim to provide general statistical methods. Its purpose is to present
a detailed analysis of a specific problem concerning human evolution on
the basis of a logically justiflable method of statistical inference. The
problem ia specific, yet methods of aasessing the evolutiopary relation-
ships between populations (of the same or of different species) have
attracted considerable interest since Charles Darwin first proposed the
existence of such relationships. The method of inference ig specific, yet
it 18 one that must be at least an Ilmportant facet in any complete acheme
of scientific inference, and seems to he the only method which permita
a unified approach to be taken to the analysis of data in the very wide
variety of problems that arise in the tield of population genetics,

The model through which inferencea are to be made is also
specific, and for this no apology is given. All sclentific inference re-
quires a model, and only when this mode! ig explicit can the effect of
its assumptions be investigated. "Only by the analysis of data on the basis
of explicit models appropriate to specific problems can hypotheses be
objectively congidered. 1In the case of population genetica problems, a
model that can be fully analysed must probably always be a simplification
of the true processes of evolution that have glven rise to current genetic
data, However, we must walk before we attempt to run: when the prob-

lems Involved in the use of a simplified model have been solved, we may
then proceed to extend the model in ways that will make it a closer
approximation to reality,

Thus, although I believe the methods and results presented here
to be of interest, and a detailed analysis of the particular problem to be
of some practical importance, perhaps the most general aspect of the

work 1g that of the line of approach. In the first chapter we place the

pProblem in the more general field of inference problems in human popula-



tion genetlcs, and conslder previous approaches to 1t. We discuss also Human Genetics (37 (1973), 69- 80). The work has mare recently formed
the view of Inference to be taken in this work., Chapter 2 conzslders the part of a thesis submitted for the Ph, D. degree in the University of
genetic problem and 1ts approximation by a probabilistic model. TIn Cambridge.
Chapter 2 the mathematlcal analysis of the model is discussed, while I am grateful to all those who have commented on or discusged
Chapter 4 provides and investigates a method of making the required any parts of this work, 1In particular I am indebted to Mr C. E. Thompson
inferences, In Chapter 5 we congider the computatlonal procedure and of the Computer Laboratory, Cambridge, for hig adyice on computer
the estimates obtained for two particular sets of genetlc data. Further programming details and for other discussions, and to Dr J. Felsenstein
problems and possible extensions of the model are algo studied. In the of the University of Waghington for the correspondence we have had on
final chapter an independent but related problem is Investlgated, and the the subject of evolutlonary trees. This correspondence raised several
approach lg a repetition In mlniature of Chapters 2 to 5: first the genetic points of interest, and has contributed to the discussion presented in
problem, then the approprlate model, next the mathematical analysls of Bome parts of Chapter 5, Professor J, H. Edwards of Birmingham
the model, and [nally the analysis of some genetic data and a discussion University provided the European genetic data on which the evolutionary
ol the reaults and of pogsible extensions of the model, tree of section S, 1 and the results of Chapter 6 are based, I am gratetul
It is hoped that this book will be of interest to both genetleists also for a profitable week spent in hig department,
and atatisticians; 1t has not conscicusly been given either blas. Although Above all, I am indebted to my research supervisor, Dr A, W, F,
gome gections will be of greater interest to one rather than the other, it Edwards of Gonville and Caius College, for hig constant enc’ouragr;me;t .
should be possible for the mathematics to be readily [ollowed by the mathe- and for many helpful discuasions. The extent to which thig research has
matleally inclined geneticist, and the genetic discussion by thc statistician Its Toundations in his earlier work will become apparent, and I am grate-
wlth an intereat in genetics. In the introduction of terminology and the tul to him for the constructive interest he has taken in tI;e progress of
provision of preliminary deflnitlons I have intended to cater for both, but this work and in its publication, While it was through Dr Edwards that
I have perhaps in general tended to assume the reader to have the same I first geriously encountered the problems of the [oundation of Inference
background as myself; that of a statiatician whose interest in genetics, and the subject of population genetics, 1 have greatly appreciated hig
although not secondary, came later. Some knowledge of both subjects éncouragement of independent research and thought. The views expressed

is necessarily assumed. in this book are Iy own, as are, of course, any errors.
The majority of the research on which this book 1s based was

carried out from 1971 tg 1972 a8 a member of Newnham College, Cam-

bridge, and as a regearch student In the Department of Pure Mathematics Cambridge

and Mathematical Statistica. The original research was supported by Aupugt 1974

a Research Studentship from the Science Research Council, while laiterly,

during the writlng of thia book, I have been supported by a Slms Scholar-

ship from the University of Cambridge, I am also grateful for the gradu-

ate scholarehips and studentships I have held from Newnham College

during this period. Chaptera 2 to 5 are baged on a research dlssertation,

awarded a Smith's Prize by the University of Camhbrldge (March 1973),

while the material of Chapter 6 was first published by the Annals of

E. A Thompson
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1-Inference and the evolutionary
tree problem

1.1 PHYLOGENY, MODELS AND INFERENCE

The aim of this book is to provide a method of solution to a spe-
cific problem, and yet one which has attracted a wide interest in recent
years. This is the problem of the statistical assessment of the phylo-
genetic relationships between various ethnic groups within the human
species, on the baaia of genetic data currently available in present-day
populations., The basgic difference between the approach to be considered
here and that of some previous approaches is that inferences are to be
baged on a probabilistic model for the genetic evolution of the populations
under conalderation. The criteria of likelihood inference are to be used
to assess alternative hypotheses of evolutionary history. No model can
cover all agpects of the complex process of evolution, and inferences
are necessarily made within the framework of the model. However
atatistical inferences cannot be made in the absence of a model, and,
even I thls model is necessarily a aimplification of the true situation,
an explicit atatement of the assumptions under which inferences are made
enables the eflect of such assumptions and the possibilities of extending
the model to be considered.

We shall consider only the problem of making inferences con-
cerning several, often large, populations within the human species, these
populations having a common source but having evolved largely indepen-
dently, there being little interchange betwcen them. Population differ-
ences reflect the length of time pince the existence of 4 common ancestral
Population, and an evolutionary tree model is required. Some gpecific
Problems of population admixture may also be analyaed on the basls of a
model of independently evolving populations, and one such is considered
in Chapter 6, but \-are shall not consider more generally the unalysis of
relationghips between smaller populations where the pattern of differen-
Hatlon depends mainly on the interchange between them and where migra-



tion hag been sufficient for them to evolve substantlally as a aingle umt,
Much work has been done on the mathematical analysis of migra-

tion models, and the genetic consequences of many specific migration
patterns have been determined (see, amongst others, Kimura and Weiss
(1964), Bodmer and Cavalli-Sforza {1968) and Maruyama (1972)). How-
ever, such models are complex and must involve many parameters if

they are to bear any approximation to reality; problems ol inferring
migration hlgtory from currently available genetic data are largely un-
golved except under equilibrium assumptions. Analyses of migration
patterns (see, for example, Morton et al. (1968)) have been based on
isolation by distance models (Wright (1943), Malecot (1959)), but the
asgumptions of uniform migration and equilibrium differentiation implicit
in the model cannot normally be justifiable. Morton et al. (1971) have
algo developed methods for the study of genetic correlations between
populations as measured by relative heterozygosities, but although these
correlations provide measures of the patterns of population structure
(Wright (1951)), they cannot be Interpreted in terms of Inferences con-
cerning the history of populations in the absence of a model for this
genetic history (Thompson (1974)). 'Thusa the field of migration patterns
1g a further area in which likelihood analysis on the basis of explicit
modeis appropriate to specific problems may perhaps provide an advance’
on present methods; but it is a field in which many problems remain to
be solved, and is not one which we shall consider here.

A tree model does not allow for the existence of hybrid populations,

While many populations are undoubtedly hybrid to some extent, substantial
migration is a relatively recent phenomenon, In apite of the great in-
crease in migration rates over the last few centuries, most individuals,
even in the more mixed populations such as those of Brazil and Central
America, may still be agsigned at least a mixture of ethnic origins;, most
hybridisation is known. Thus the evolution of major populations may still
be validly represented by a bifurcating tree; present genetic variation
reflects the evolutionary history of populations for which a tree model 1s
at least an adequate approximation, In the future this may no longer be
so. At present migration rates relatively few generations must elapse

before variatlon, even amoengst some larger population groups, will

depend as much on recent migration patterns as on more remote evo-
lutionary history. A reconstruction on the basis of a model of indepen-
dent evolution would then no longer be a valid procedure.

The heuristic methods which have been previously used to provide
phylogenetic representations of human populations are similar to those
which have been uged to estimate the evolutlonary tree of the different
gpecles. In particular the method of minimum length spanning networks
has been used by Dayhoff (1969) and that of least-squares additive trees
by Fitch and Margoliash (1967) and Goodman et al. (1971) (see section
1. 4). There has therefore been some tendency to consider the two prob-
lems equivalent, The obvious difference is the time scale, The evolu-
tionary time, defined to bec the length of time since the existence ;a_
common ancestor, between man and his nearest neighbours on the tree
of the specles, the great apes, is at least 10° yvears and probably very
much more, Homo sapiena evolved from Homo erectus only around
24 x 10° years ago (Cavalli-Sforza and Bodmer (1971: chapter 11)), and
agsuming a monophyletic ortgin the largest poasible evolutionary time for
any group of human populations is of the order of 10° generations,

There is however a far more fundamental difference, Differences
between species are differences between the amino acld sequences of the
various proteins which can occur, Differences between populations within
a specles are differences between the frequencles with which the various
possible forms arise, In the former case the appropriate models are
those of mutation in the discrete space of all pogsible amino acid seqiences;
in the latter the state space ia the continuous space of the allele frequen-
cles within each polymorphic system. The models which we ghall con-
slder are those of change of gene frequency, and not of change of gene
gtate, and the methods to be developed are appropriate only to problems
of frequency difi erentiation,

Still less are the methods to be regarded as general taxonomic
Procedures, although inferences are based upon population similarities
and differences. In numerical taxonomy the aim is to obtain representa-

tlons to the relationships between taxonomic units in the absence of any

- Probabilistic model, sometimes in order to suggest hypotheses but more

often simply as a classificatory or discriminatory procedure (Jardine and



Sthaon (1971)). Our problem is to estimate certaln parameters in a
probability distribution derived from a apecilied model of evolution, and
hence to judge between a priori specified hypotheses. The distance
between populatlons is not a meagure of taxonomic similarity but a ran-
dom varlable having an explicit distributlon under the proposed model.
This point has been made on several occasions {(Cavalll-Sforza and
Edwards (1967), Cavalli-Sforza and Bodmer (1971: p, 702)), but, be-
cause of the gimilarlty of the heuristic approaches previously taken to
thls problem to some of the techniques of cluster analysis, the differences
have not always been clearly stated. These methods are only justifled
by the bellel that they provide an approximatlon to the estimate baged on
a [ull solution to the model, but while they are pursued with this view there
is no justificatlon for the criticisms of taxonomists (Jardine and Slbeon
(1971: p. 1&1)) that the solution pobtained 13 a dendrogram which may not
be interpreted as a phylogenetic tree,

In this section more emphasis has perhaps heen laid on the prob-
lems which our analysls cannot be expected to solve than on those which
it will, but a clarification of the assumptions of any model must always
be of value, Morton et al. (1971) have eriticised the use of tree models
for the analysis of wlthin species relatlonships, While it is true that no
human population evolves in complete 1solation, 1t 1a also the cage that
In many situations a tree model may be very much more appropriate than
one of equilibrium differentiatlon under constant mlgration, and where
there 1s a possiblllty of Inferring the evolutlonary history af guch groups
of populations it would seem to be a valid exercise to attempt to do so.
All statistlcal inference requires a model, and, although the limitations
of any model must be recognised, it is only through the analysis of data
on the basis of models for which the problems of inference can be solved
that progress will be made, When analyses are based upon explicit models
we can consider the effect of the known assumptions upon pogslble results.
When one problem is solved we can conalder the pogglbility of extension
to more general models which may be a closer approximation to reality

1n a wider variety of situatlons,

1.2 THE EVOLUTIONARY TREE PROBLEM

The model to be assumed [or the evolution of human populations
is one of an evolutlonary tree, It 1s supposed that the populations under
consideration are descended, by consecutive binary gplitting, from some
ancestral population existent less than 5 X 10° years ago. 1t is generally
agreed amongst anthropologists that the evolution from Homo erectus
{existent 5 X 10° years ago) to Homo sapiens (existent by 2 X 10° years
ago) cccurred only once, and thus that all populations may be agsumed to
be of monophyletic origin, aithough some would place the ancestral root
at an earlier date. For most groups of populations it is unlikely that the
effectlve ancestral population existed more than 5 X 10* years ago; only
with expanslon of numbeTrs and movement of peaples wlll evolution on a
tree model take place,

The data to be used in the statistlcal analysis of phylogenetic
relationships are the allele frequencies at varlous blood group loci in
present-day populationg, It is assumed that during the process of evo-
lution these gene frequencies have changed, independently at the separate
locl, due toa process of random genetic drift (see section 2.1). By a
geries of transformations this process may be approximated by one of
Brownian motlon in a Euclldean space (see section Z, 3). Thus a proba-
bility dlstribution for the present gene [requencies may be derived, given
a 'history' of the populations consisting of the form of evolutionary tree,
the times of split and the position of the initial root. The problem is to
reconstruct this history from currently available genetic data (Fig. 1. 2),
or, in statlstical terms, to estimate these parameters [rom observed
random varlables. A model for the splitting of populations may also be
included. A simple birth, or Yule, process is the slmplest appropriate
model.

The original attempts to reconstruct the evolutlon of human popula-
tions from their sample gene frequencies used heuristic approaches
{Edwards and Cavalll-Sforza {1963), Cavalll-Sforza and Edwards (1964)),
It was realised that such approaches are insufficient in themselves and
that any attempt to reconstruct evolutlon should be based on a probability
model for the course of that evolution. The Brownian-Yule model was

Proposed by Cavalll-Sforza and Edwards (1967), but owing to difficulties
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Fig. 1.2. Representation of an evolutionary tree. T is Fhe
total evolutionary time of this group of populations,
X 1s the position of the initial root, or the polnt at

which the last common ancegtor of this group of .
populations splita. Information on population positions
{gene frequencies) is avallable in the space t =10,

in analysis and 'singularities’ caused kry a confusion between the role of
parameters and random variables no analyses could be made on the basis
of the model, Writers continued to use minimum evolution (ME) and other
heuristic methods (see section 1, 4) in the hope that these might provide

'a reasonable approximation to the likelihood solution’ {Cavalll-Sforza

and Edwards (1967)).

The heuristic methods have been applied to several groups of
populations (Ward and Neel (1970), Fitch and Neel (1969)). Although the
populations often do not conform to the criterion of igolated non-inter-
breeding units required by a tree model, the methads have proved
guccesgful at representing the relationships between populations In that
the results obtained are compatible with known history and geographic
and linguistic structure (Friedlaender el al. {1971)). However, such
methods suffer deficiencies by comparison with maximum likelihood (ML)
estimation of the evolutionary history (see section 5, 6),

The model was improved as an approximation to reality by new
genetic distance measures, Following an idea of Bhattacharyya (1946}
for multinomial samples, Cavalli-Sforza and Edwards (1967) use a repre-
sentation of the population gene frequencies al each locus on the surlace
of a multidimensional gphere, By stereographic projection of these
spherical surfaces, Edwards (1271) obtains a Euclidean space of the
required dimengion, and populations may now be represented by points
in this space. However, the model remained unanalysed; nor was the
practical validity of these transformations investigated.

Progress was made by Gomberg (1966) in actually setting down
the required probability distributions, Felsenstein (1968), dropping the
Yule process and congidering only the Brownlan motion, developed a
method of transforming the data variables in a way which simplifies the
form of the likelihood and enables it to be evaluated, at given parameter
valueq, from pairwise genetic distances, Edwards (1370) completed the
firat gtage in the golution of the problem by giving the first fully correct
Btatement of it,

Felasenstein {1973) hag more recently used his transflormation
method to develop a method of rapid evaluation of the likelihood at given
parameter values, and hence of maximum likelihood estimation of the
evolutionary tree; a computer program has been written which searches
for this maximum likelihood estimate by evaluation, for a given data get,
at a serles of parameter values. Thid approach is however essentially
bractical and, since it relies on the numerical evaluation of a single func-
tlon, gives little information about the shape of the likelihood surface,
except for the given data in the region of the local maximum found. No



full analysis of the model has previously been made; problems of exis-
tence and uniqueness of maxima have not been considered. Soine assump-
tions implicit in previous work have not been justified, and fundamental
points of llkelihood theory remain to be fully clarified. The approach to
be considered here takes Edwards (1970) as ita starting point. Although
an essential part is the development of a rapid iterative method of finding
the ML tree, we emphasise far more an analytic {reatment which provides
an understanding of the proeess and the likelithood functions involved,

1,2 LIEKELIHOOD INFERENCE

The evolutionary tree problem is to be studied from the approach
advocated by the likelihood theory of inference. A full aceount of the
basic theory with reference to questions of sclentific inference is given by
Edwards (1972).
larly influence the analysis of our particular problem; many of the prob-
lems of inference which arise in Chapters 3 to 5 are relevant to current
thinking in the field of likelihaod inference,

Likelihood theory advocates that hypotheses should be judged on
the basls of their likelihoods. The likelihood of a point hypothesis, H,
given experimental data, D, is

We give here a summary of those points which particu-

= V301
Ly(H) = P(D|H), (1.3.1)

the probability of the ghserved data under the hypothesis, When only one
set of data is under consideration the subseript, D, may be dropped. All
the information in data D on the relative merits of two hypotheses is con-

tained in the likelihood ratlo,
1.3.2)
L) /L (), (

or in the support difference, SD{Hl) - SD(Hz)’ where the support SD(Hi]
is defined to be

loge[LD(Hi)]. (1.3.3)

Support 18 determined only up to an additive constant; only support differ-
ences, between alternative hypotheses for the same data, have any sig-

¥

nificance. 1In likelihood theory it 1s assumed that there 1s always some,
explicit or implicit, alternative hypothesis.

Thus [or simple point hypotheges 1-11 and H2 the only problem
i8 to decide what support difference should lead to the rejection of one
hypothesis in favour of the other. The level 2, or a likelfhood ratio of
ez, has been suggested, and will be adopted here, but the support gcale
has n¢ interpretation in terms of probability or other measure, and the
Interpretation of the support surface lies with the individual investigator
(Edwards (1972: p. 33)). In a statistieal analysis it is better to atate
the actual support difference between alternative hypotheses of interest
than to fix a universal 'signtficance’ level,

Suppose now that Ht 1s 2 eomposite hypothesls concerning a multi-
dimensional parameter ¢ in some space {l; say H1 is & eG1 C 2.

The likelihood ratio for H1 agalnst Hz 18 defined as

max. [Ly ()] /max. [T ,(6)] = max. [P(D|6)]/max. [P(D]8)],
feGG Ber 66(31 8eG
and the support difference ag

ax, (8] - . (8. 1.3, 4
Jnecllsf’ ];g:[SD ] (1.3.9)

" For composite hypotheges the problem of degrees of Ireedom ariges. If

(T}1 has greater dimensionality than G, then it 15 plausible that
max. [5_(68)] > max. [8_(6)]
fi!:'(';‘1 SD 96(32 SD

even if there is no differenee between the two hypotheses as explanations

of the data, Classical likelihood-ratic signifieance-testing theory solvea
this problem by eonsidering the asymptotic chi-squared dlatribution of the
support differenee, but It remains an unresolved problem in likelihood
theory. Although simpler hypotheses are to be preferred, deterministic
hypotheses (P(D 'H) = 1) are normally to be rejected on grounds of prior
knowledge (Edwards (1972: p. 199)). Within the clags of hypotheses speci-
fied by the probability model there is no intrinsic reason, within a finite
set of glven data, to give a ‘bonus’ to a hypothesls having some arbitrary
8et of restrictions however intuitive these may be, In comparing forms



of evolutionary tree we find that the spaces Gi are of the same dimension
and that the problem does not arise {Chapter 4). However when we wish
to compare the information on phylogenetic relationships contained in
different data sets, or to consider hypotheses of slmuitaneous splitting,
the problem must be considered (Chapter 5).

The function max. [L{#)] is known as the maxlmum relative like-
feG
lihood (MRL) with reapect to G (Kalbfleisch and Sprott (1970}),

of deallng with the problem ol nuisance parameters is by maximising over
them and considering the MRL. This may be misleading if there are
many such parameters, and alternative methods of eliminating them have
been developed by Barndorff-Nielsen {1971), using concepts of ancillarity.
These conditioning methods have the serious disadvantage that, if a para-
meter is discarded a3 a nuisance parameter but it is later decided that it
should be congldered, a complete reanalysis is necessary, Thia may
glve different estimates to the parameterd already considered. Use of
the MRL. ensures equality of joint and marginal estlmates. This problem
arises in evolutionary tree theory with reference to the root, Xy which

One way

may be considered as a nuisance parameter in eatimating the tree
(Felsenstein (1973)), but which we cometimes wish to congider (Chapter 5).
This parameter may be eliminated using M-ancillarity (5, 5), but normally
no parameter will be completely disregarded, and if not all are required
at any stage we conglder the MRI., We note that all statements are thus,
implicitly if not explicitly, simultaneous jolnt statements about all para-
meters.

A lurther problem is that of 'prediction’. Flaher (1956: p. 126)
proposes a predlctive likelihood for future random variables whose dis-
tribution depends on parameters which are unknown but on which there is
information through the observed data, However, there is no clear con-
sensus as to whether statements of probability or likelihood are appro-
prlate, or whether any single such statement can be made, An equivalent
problem arises in the theory of evolutionary trees. We ghall not wish to
make future predictions, but we shall wlsh to make inferences about
uncbserved random varlables. The proposed solutlon (3. 2) corresponds
to Fisher's predictlve llkelihood,

10

' to explaln a given set of data.

The basis of likelihood theory is that information about a para-
meter cannot be expressed as a probability distribution, unless it arlses
a8 the result of a random procedure having a probability model. ¥ this
18 not the case knowledge or beliefs must be expressed in termas of the
polnt function, likeilthood, and not a set function. The support function ig
Invariant under one-to-one {1-1) transformations of the parameters, and
support 1s additive over independent data sets. The area under a support,
or likellhood, surface has no meaning. Any prior beliefs regarding hypo-
theses may be expressed by a 'prior likelihood’ but not by a Bayesian prior
distribution (Edwards (1972: p. 28)).
add to give posterlor support,

Prior and experimental supports
An uninformative experiment, or no prior
information, is expressed by a constant (without loss of generality

{w. L. 0. g,) zero) support [unction.

Fisher, in a comment on Jetfreys (1938), states that 'likelihood

... must play in inductive reasoning a part analogous to that of probability

1n deductive problems* and should perhaps be accepted as a 'primitive

'_ Postulate’ rather than justified by repeated sampling arguments. Thus in
-“t.he likelihood theory of Inference, zs opposed to the procedure of maximum
. .I likellhood estimation, we are not concerned with asymptotic properties or
:.' ‘repeated aampling justificatlons, but with the complete gupport surface as

Ia representation of the relative ability of a glven set of polnt hypotheses
In theory we should examine the contoursg
of the complete support surface, which may be multi-modal or even have
singularities. For a large number of parameters this is Impoesible, and
often only the maximum and the curvature at tie maximum are considered,
Y the support function is quadratic these determine the complete surface,
From the curvature at the maximum two-unit support limits {parameter
¥alues at which the support is two units less than at the maximumn} may

be determined on the assumption of 2 quadratic surface iIn the neighbour-
hood of the maximum. These are the likelihood equivalent of classical

- eonfidence 1kmits, The adequacy of this procedure clearly depends on the

Properties of the complete surface, which should be considered wherever
Possible,

All likelihood inference is conditional on the model accepted for
the data: testing the model falla outside its scope. This does not mean

11



that the validity of the model ig unimportant - indeed the success of like-
lihood inference in scientifie problems must depend critically on the
scientific reality of the model adopied. The model is part of the prior
information and can only be rejeeted if some alternative is contemplated.
There is no univergal measure of the weight to be attached to 2 model:
this must depend on the individual seientist (Figher (1956: p. 21)).

Robustness thus plays no part in likelihood theory. We have no
test statistics whose distributions under deviationg [rom the model may
be examined, The change in likellhood funetion under deviations from the
assumed probability distribution is precisely that deviation. The change
in ML estimate may be examined, but, as a statistic, this eatimale hag
little significance in likelihood theory. There are two reasons why a
probability model may be adopted and thege are well illustrated by the
Brownian- Yule mode) of 1. 2, The Brownian motion is a description ol
a real physical proceas that is taking place and the parameters have an
existence Independent of the model. In such cages the validity lles solely
in the accuracy of the approximations involved {to be diseussed in
Chapter 2}, The weight attached to the model wlill depend con the belief in
the physical process rather than on the data,

Alternatively a model may aimply be a convenlent summary of the
data. This is the case with regard to the Yule proeess for the formation
of populations, The weight attached to such a model will depend entirely
on how convenient 2 aummary of the data it proves itself to be, and, In
eontrast to a ‘real process’' model, it has no intringic weight. A 'sig-
nificance test' showing that the model is not an adequate summary of the
data will lead to its rejection, However, even [or a 'real process’ model
gignificanee tests, whether of support (Edwards (1972: p. 180)) or elassi-
cal form, may be of saonie importanee in influeneing our belief that the

assumed process is the one that 18 taking place (2. 4).

1.4 THE HEURISTIC METHODS

There are three main methods that have been used to reconstruct
evolutionary trees from gene frequency data, These are 'minimum evolu-
tion', 'least-squares addilive trees' and the method of Malyutov et al.

(1972). These are summarised here for eompletenesa, and zo that their
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results may be compared with the likelihood solution to the problem.
The interpretation of a representation obtained by these techniques as a
phylogenetic tree is justified onty by the assumption that the result is an
approximation to the egtimate of the evolutionary tree on the haaig of
some probabilistic model for evolution; this belief should therefore be
fnvestigated, In minimum evolution, for example, there is no assump-
tion that evolutlon procedes in any minimal way (Cavalli-Sforza and
Edwards {1967)),

(1) Minimum Evolution (ME)

This method was proposed by Edwards and Cavalli- Sforza (1963).
It has been extensively used and produces acceptable trees (1.2). For
this reason comparisons between ME and the 1ikelihood sclution, to be

* made in sections 3.3, 5.1 and 5.6, are of some importance, The alm

'. Jof the method is to construct the minimum length spanning network, or
minimal Steiner tree, between n population points, when thege are

. embedded in a Euclidean space of (n- 1) dimensions, in accordance
with the pairwise distances given by some genetlc distance measure

- satisfying Euclidean metric conditiona. The minimal Steiner tree ig un-

- ¥ooted; no scale of, even relative, time ig inferred, Thus, at best, the

ME golution iz a projectior} of the evolutionary tree of Fig. 1, ? into the
current 'now gpace’, t = Q.

Cavalli-Sforza and Fdwards (1967 and other papers) have deter-

. mined suitable algorithms for the construction of minimal Steiner trees.

A

n-2
8ince there are Hr=1(2r - 1) unrooted labelled tree forms, the major

Problem is to find a good Initial tree at which to start iteration for the

. 80lutlon. The basis of the algorithms at present in uge is described by

Thompson {1973a) where a new method of finding an initial tree 18 sug-
gested. The methods and programa, originally due to Edwards and
Corfield (Edwards (1946)) but modified for greater efficiency, now seem
to be in their most efficient possible form, unless and until a direct
Bolution to the Stelner problem is found (Thompson (1973a)).

{1) Least-squares additive trees (LSA)

The LSA method was suggested by Cavalli-Sforza and Edwards
(1964) and details of the solution are given by Cavalli-Sforza and Edwards
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(1967), The pairwise distances between populations are fitted, according
to a least squares criterion, by additive distances along the internal
branches of 2 given form of spanning network. The trce form having
smallest resldunl sum of squares amongst those having positive estimates
of the lengths of internal branches is to be adopted, but, as for ME, it
can be positively identifled only by examining all tree forms,

The tree produced 15 again unrooted, and although ME and LSA
give very similar results LSA seems to have even less justification than
ME a5 an approximation to the likelihood soluticn. The proposed model
of genc Irequency diffcrentlation is one in which the population points
move in a Buclidean space as the populations evolve in tlme, and we shall
flnd that differentiation duc to random genetic drift implies that mean
square distances are additive over independent branches of evolution.

The LSA method assumes that simple distances are additive, and it is

not necessarily possible to cmbcd the LSA solution in any Euclidean space.

The method has been investigated by Kidd and Sgaramella-Zonta (1971)
and other criteria for the adoptlon of a tree form have been suggested.
L.SA has becn less used than ME in problems of gene frequency variation,
but it hag been considered extensively with reference to the problem of
reconstructing the tree of the different specles from data on protein amino
acid sequences. .

{111) The Malyutov and Rychkov method

This method of backwards recongtruction 1s described by Malyutov
et al. (1972) and is an advance on previous methods 1n that it 1g based on
the probabliity model and produces a rooted tree with tlme scale and estl-
mates of times of gplit. A tree form 1s predetermined by some clugter
analysis criterion, Then jolns are made, proceeding backwards into the
past, estimating the time and posltion of each ancestor on the basls only
of the population sizes and distances in time and space between the two
populations to be joined. These two populations are then discarded and
only the position and time of their new-found common ancestor are con-
sidered when the next join 19 made. Although the method is very rapid,
the fact that the estimated position and time of any ancestral population
depends only on those of ite two immediate descendants, and not on those
of its ancestors, Tesults in very unreasonable trees. In practice the
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golutions obtained are f{ar worse than those provided by ME and LSA
particularly in many dimengions, ,
' Even if the egtimation criteria were those of likelihood, estimates
I. based only on the two Populations to be joined cannot approximate any
overill method of estimation based on a complete model for all populationsg
The method does have the advantage that known differing population gizes ‘
1 may be taken into account, but more often thege are not known for ances-
Ig,,s;u-m Populations and different guesses may lead to widely differing results
‘"Further the method provides no criterion by which the trees obtained may

!
I . .

3 be judged, or by which the estimates resulting from different a priori
jjyassumed forms may be objectively compared,

Thus the tree methods that have been used in practice have major

i
;ﬁil‘practical and theoretical limitations. There is a need for a practically

.P‘ble and theoretically justiflable solutlon. Felsenstein {1973) has devel-

|‘|"
g any proposed evolutionary tree by evalua-

1";,}.“ ped such a method of assessin

gidon of the likelihood: i ikeli
T od; we shall provide a likelihood analysis of the model

igWhich enables the adequacy of locally-maximum likelihood estimates to
» investigated in terms of the overall support surface
7

y and provide
‘Mreater understa -

nding of the Interrelation between the observed data and
‘e estimated tree.
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2 - The model

2.1 RARDOM GENETIC DRIFT AND THE PROBABILITY MODEL

Our aim is the 'reconstruction of an evolutionary tree', but it is
necessary to define more precisely what 1s to be inferred from the data.
Edwards (1970) detines types of tree as follows: a tree form is a tree
specified only by its topology (as, for example, by Harding (1971)): a
labelled tree [orm i a tree form where now the tips of the branches, the
present populations, are distingulshed. For n populations there are

{“ 1]'(:Zr - 1} labelled rooted tree forms (Cavalli-Sforza and Edwards
(],%7}]. If further a dlstinction 1s made beiween trees of the same labelled
tree form having different orderings ln time of the internal nodes, we
have a labelled history. It is the labelled history of the populations that
is to be inferred, and the labelled hlstory will in future be referred to
simply ag the form of the tree. There are

nt(n - 11 2™1 2.1.1)

labelled histories for n populations (Edwards (1970)).

It 18 assumed that the major cause of gene frequency differentiation
in contemporary populations is random genetic drift in preceding genera-
tiona. [Random genetic drift (r. g. d.} is the name given to changes in
gene frequency due to finlte population size. ] This model of neutral
isoalleles will not be correct for all gene lo¢l; for many characteristics
gene (requency differences may reflect mainly differences in environment.
The widespread polymorphism of the human blood group loel is discussed
by Cavalll-Sforza and Bodmer (1971; pp, 732-8): many models have been
praposed to explain how such a high degree of genetic variabllity ceuld
arise and be maintained. However, Kimura and Ohta {1971: chapter 9)
have shown, on the basis of the theory of neutral 1soalleles, that high
levels of polymorphism may be maintained without stabilising selection,
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For the majority of the human blood groups the obgerved levels of poly-

' _ morphism and patterns of differentiation could well be the result of

. r.g.d. alone; whereas selection may or may not occur, Tr.g. d. musat,
A R.g.d. may be formulated as follows. In each generation, at
\' any k-allele locus, the genes in a diploid population with effective size
“ may be considered to be a random multinomial sample of the 2N

sgnes {cg the ;E{}eviaus one. Thus if the gene frequencies at generatmn t
t
.Ja.re p .--,pf()),

Ek (t} =1, and E(H-l) =Em + E(t),

(®

P, ) /2N
g m NUNIINONG
i, & 1=

and cov(e J

(2.1.2)
ZN

:“N' 1s the 'variance effective population size', which is a modification
‘of the census size N taking irto account non-random mating, age strue-
lﬁ:q.lre and geographlc structure of the population, It is defined to be the

!’lumber guch that (2,1.2) is a correct description of the drift variances;
ffor human populations prior to the very recent increase in longevity it

ln often estimated that N is of the order of 3N,

B!
o

Now the generations are not in reality discrete and {2, 1, 2) may
. be trangformed to a process in continuous time. Let z(t) be the gene
frequencms at time t, tlme belng measured in generations, and let

z{t + 8Y = z(t) + &(z; o),

.' Then E(ei(E; 8t) =0 for i=1, ..., k,
' E((e,(z; 5tH?) = z,(1 - zi)m/zne + of(st),

Ele,(2; Gt)e.(E; 6t)) = -z.z.dt/ZN + o(6t), [i#}],

A ll-nd all higher moments are of order of5t), Also (see, for example, the
. i lllethod of Kimura (1964)) the Kolmogorov forward equation giving the

'Drobablllty density [{z; t) of gene frequencies Zz attime t may be
. Wrltten
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k k k 2
gyﬂ=zagmmuunhsz 2—%—Wme%

(2.1, 3
where

Mi(z) = lim [E(e (z; 56t)/61)]
T 6t =
and

Vi.(z) = lim [E(e,(z; 8t) £,(z; 8t) /6t)],
L O =

Thus for the case of r, g. d. we have

o3 0 = 1 /N )[z —[z (1-z)(z; ©]-3 T 6” [zzf(z 1],
=1 6z 1 1=i=k
1=j=k
i#]

(2. 1. &)

with 0=z, =1, z; = 1 and f(z; 0) = 6(z - p), the Dirac é-function,

i .
i=1
for diffusion {rom some inltlal gene [requencies p [z(0) = p].
We note that (2.1, 3) and (2. 1. 4) are not the standard forms of the
diffugion equations, but are completely equivalent to them. For

k
Ef 2 ez 8)]%) =
1=1
and under (2. 1. 4), or more generally under any model of frequency
di.[[erentiation, the diffugion takes place with probability one in the space
zzm-zm—l
i=1

Thus If we write
k
ez ) =elz, .o, 2 =1z, ...h 27y, l-izlzi);t).

and similarly consider vij’ Mi and zZ, s functions of z*, we obtain
the more usual diffusion equation given by Kimura {1964);

%@”tumngim[umm*mzz Z—T—hz&tm
ot 1—16: i, j={k-1) 62,02 we
<) @.1,5)
18

k-1
with Oszisl, z z
J i=1
iconcentrated entirely at b. (2. 1. 4) may be consldered to contain re-

1 =1 and the distribution at time 0 again being

gundent Informatlon, but its greater symmetry makes it preferable when
',‘. angformations of z are to be considered,

Ewens (1965) has investigated, and conlirmed for sufficiently
arge Ne, the validity of the transltion from discrete to continuous time,

i he variance vij(E) is sufficient at the boundaries (zi = 0 or 1) to ensure
fhat these belong to the domain of the diffusion, which is8 therelore closed,
j The model agssumed [or population splitting is that these evolve
ndependently, and in any time interval &t each population has probabillty
a6t of splitting into two independent populations, each with the gene fre-
uencies of the parent. That is, we havc a Yule process. It is agsumed

t hat there is a 'last common ancestor’, the most recent ancesiral popu-
ation from which all those under consideration are descended, and that
; hig ancestor existed and split at most 10° generations ago. The gene
Irequencies of this ancegtral population are a basic parameter of the

g- odel, as also i8 the population size Ne, assumed equal for all popula-
Blons (but see also 5. 3).

R.2 THE GENETIC AND HISTORICAL ADEQUACY OF THE MODEL

. The validity of the model dependzs largely on the populations and
Bene loci to which it is applied. The [irst requirement 1s that we should
oose populations for which there are sufficient data: it is important

Petween populations due to sampling to be negligible compared with the
Irue differentiation due to drift. Since sampling 1s, like r, g. d. itself,

§ multinomlal gampling, this 18 a requirement that

{1/m) << (’I‘/Ne} {see 5, 3) (2.2.1)

here m is the number of individuals gsampled and T the tntal evolu-
.II cnary time of the populations in generations {see Fig. 1.2). Thus, for
mxample, for the major populations of Western Europe we have perhaps

e © 106, T = 200, and m >>> 5,000 is required, In practice there are
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rarely data from sufficiently large samples, except for the ABC and
Rhesus aystems, and time estlmates may be inflated due to sampling
errors, Although a labelled history (2. 1) may bhe correctly inferred,
estimates of the times of split must be treated with caution: the sampling
problem is discussed further in section 5. 2.

The model does not allow for the exigtence of selection, migration
or hykridisation, The units of population should be such that there is
sufficient internal migration for them to be regarded as a single gene
pool but very little migration between them. Many populations fulfil this
requirement, at least until very recent generations, and although there
are sometimes slignificantly differing gene frequencies between units
within a population differences are substantially less than those between
larger units, which are maintalned by geographic, cultural, linguistic
and political boundaries.

A small amount of migration is tplerable provided differentiation
between populations is maintained, It may then be regarded in the same
light ag mutation - a [actor scarcely affecting polymerphic gene [requen-
cies, but a source of new alleles and an indicatlon of the mutant /migrant
nature of their possessors. The use of known migrantd should be avoided
in the population samples used: we require the gene [requencies for the
descendants of some specifled ancestral population, This is the opposite
view to that for a migration model, where the study is essentially that of
hybrids and migrants and the correlation of genetic and geographic dis-
tance, In practice evolutionarily close populations are often alsc geo-
graphically cloge. In theae cases migration will tend to lead to under-
estimates of the evolutionary times. We may mention here "migrated
units' of population (Jews, American Negroes, Caucasian Australians,
etc.), which may be treated as separate populations, and are distinct
from migration in the above sense of mixing of populations. The ancestry
of these units may be inferred [rom thelr gene frequencies, although in
such cases there may be environmental selection effects., Theae wlll be
indistinguishable from the effects of local admixture, both tending to
make the migrated unit more similar to the local population, although
aelection will affect only some locl (Cavalli-Sforza and Bodmer (1971:

p. 495%.
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Thirdly we consider the problem of environmental selection. A

¥ gelection model can never be refuted since by poslulating the required

'1.' gelectian coefficlents any pattern of gene frequency variation may be
pbtained, and the coefficients Involved would be too small to be detected

I grom sample data. Although there is liltle confirmed evidence of selection
'l_'” blood groups, there may be gome effects on registance to certain in-
'!I‘”cuons and environmental conditions, The problem is really one of the

gnvironment should be used (Malyutov et al. (1972)). However, it is not
'own precisely what selection effects are to be avoided and hence in
hat ways the environments should be similar. There is however another

the problem of gene fixation. The Brownian motion dimension depends
the number of alleles, and if some allele is lost Irom a population the
Wimension I8 decreased. Thus we require populations that are polymor-
lc for the same alleles at the same gene loci, This 18 more likely to
be true of populations not too widely evolutionarily separated,

It will be shown (5, 3] that constancy of populations gire in time
g8 not necessary for the validity of the model. However, for simplicity
' ghall assume it until that point, At any one time the population gizes
ould all be equal, This i a aevere restriction, but it will be more

lages, tribes, countries or continents but not some of each. The model
grssumes instantanecus splitting and subpcpulation sizes both equal fo that
f the parent. However, population splitting will generally take place at

; &quent to the split will decrease time estimates: non-random splitling
populations will increase them,

Thus, regarding population formation, there are many [actors
ythat may regult in unreliable time estimates, but none of these should

i AeTiously affect the possibilily of inferring a correct tree form. It should
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not be expected that consistent estimates of evolutionary times, or even
relative timea, will be obtained using different groupa of populations of
varying size and degree of isolation. However, although the maximum
likelihood estimate of the evolutionary tree must be interpreted with
caution, the likelihood suriace as a whole provides the relative degree

of support for any alternative hypotheses of evolution which may be ex-
pressed in tree form. Such a hypolthesis is a description of major evolu-

tionary events; it does not entail a detalled belief in the instantaneous

occurrence of bifurcating splits at gpecilic pointg in time followed by com-

plete isolation of populations,

In choosing gene loci on which to base a phylogenetic study, we
require unlinked polymorphisms for which there are gufficient accurate
data and which are not subject to selection, particularly environmental
selectian. Canstant directional selection will act equally on all pepula-
tions, and so should cause less distortion of the pattern of gene frequency
differentiation {Cavalli-Sforza and Edwards (1967)). In practice we uae
the red and white blood cell groups; none ol thoge used show evidence
of linkage. Under selection gene irequencies change linearly in time,
whereas [or r, g. d. it is the aguare of the change that {g proporticnal
to time. Thus the avoidance of selection is particularly important where
large times are involved, Little is known about blood group selection,
but the length of time for which polymorphisms have existed shows that
directional selection is unlikely to be a major factor in {requency differ-
entiation; for those loci used there is no confirmed evidence of wide-
apread environmental or stabilising selection. The exclusive use of
blood group loci has been criticised on the grounds that these are not a
random sample of gene loci, but they are used because they are precisely
those loci which may be expected to conform to the model. For a taxo-
nomic procedure, where the alm is one ol efficlent claggification, the
use of anthropometric characteristics would clearly be more effective.

In a phylogenetic study the aim s fo reconstruct history according to a
probability medel and there would be nulhing to be gained by considering
loci that do not gatisty that model.

As will be shown (2. 3), In order for the Brownian motion approxi-
mations to hold we must have allele [requencies that are not too small
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'-Ignd evolutionary times that are not too large. 1In practice only alleles
i with frequencies of at least 3% and preferably 5% in all populations
hghould be considered separately, but low frequency alleles may be con-
i I-.],dered ag a single class. J, H, Edwards {personal communication)
ggests the use of only the most [requent allele at each locus, but this
Baliminates classes unnecessarily and useful information may be lost,
L pe alleles must be grouped in the same way for all populatlona; each
gust have the same diffusion space. Provided r.g. d. is the differentia-
" g force, this grouping does not invalidate the model in any way.
Cavalli-Sforza and Bodmer {1971: chapter 11} discuss the mono-
Bayletic evolutlon of Homo papiens from Home errectus and the eubgequent
' ., olution of human populations. They consider the formation of races by
Renetic isolation, thelr classification according to phylogeny, and the use
\;genetic polymurphisms a3 opposed to anthropometric characteristics
this purpose. Much of their discussion provides further justilication
; the approximation of humman evolution by the proposed model of a
furcating tree and r. g.d., at least over that period of history that is
plevant to current differentiation between major populations.

[ > THE BROWNIAN MOTION APPROXIMATIONS

. We have the diffusion equation (2. 1. 4) given by the diffusion meana
lind variances;

M(z) =0
v‘]_i(E) = zi(l_zi)/ZNe

V(@) = -2, /28

A valli-aror%a and Edwards {1967) note that the angular tranaformation

e, = cos'l(zii) i=1,..

(2.3.1)
(t+})

. » K) standardises the diffusion variance. The
pPopulations may then be represented by polnts on the surface of the unit
" -dimensional sphere, # being the vector of direction cosines of the

f opulation point. The angular distance between populations with gene
Parequency vectors Efl) and _z_(z) at this k-allele locus is

k )
¢~ cos [T {M2{D)7]. 2.3.2)
i=1
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The chord distance
1
[2(1 - cos ¢)]* {2.3.3)

was suggested as an appropriate genetic distance measure, and it is now
this distance that is mosat widely used in the various heuristic methods of

reconstructing evelutionary trees.

Edwards (1971) shows the validity of the stabilisatlon of variance
in the gpherical space, and deduces the approximation of the process by
Brownian motion on a sphere; however, not only the variance but the
complete diffusion equatlon should be considered.

Transforming (2. 1. 3) the diffusion equation for ¢ becomes

k 2
ot
%{L’r}=-i£1 B%i[Mi(g}t(_q;t)] 312”213;—5—[\( @te:0]  (2.3.9)

where Mi(g), Vij[g) are defined in the same way as before (2, 1).

Now
_ 2
z, = col (Bi)

and thus 86, = -(62,)/(sin 26,) - cot 26,(6z, /ain 2sri)2 + o(azi’).
Also, from (2, 3, 1),

E(0z,) = 0,
and to order 6t,
2, _ _ _ 2., .
E(ézi) = zi{l zi)Gt/ZNe {sln 291} dt;BNe
and
. 2.
E{Ozibzi) (cos Bi cos ﬂj) OtzZNe.

Thus, to order 1/Ne,

M (9) = -cot 29i;’BNB
V {9) =1/8BN
Vij(_ﬁ) = -co8°f cos’ 8, /(2N sin 260,8ln 26,) for i#j

i 1 }
= -cot 81 cot 9] /BNe
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and (E 8(cos”8,)) = 0.

l’i‘rliese may be substituted into {2. 3. 4) to glve the required diffusion
equation. Although the variance matrix is preclsely that required for
Brownian motion on a sphere (see Edwards (1971)} we have also the driit
terms Ml(gl. The mean drift increases exponentlally in time and is
directed towarda the edges of the space, but is of order t/Ne while the
gtandard deviation is of order (t;‘Ne)’. The drifl term causes elfects
pear the edges of the space, where the absorption rate of alleles is
' greater than that glven by the Brownian motion alone.
In order for the drift to be negligible, we regulre

i
H

[(t/BNe)cot zei[ << (t/8N)

1
tan 26, 22 (/8N )E. (2. 2. 5)

It t/Ne = 0.1 this reduces to ﬂi > 30 or zi>> 0. 3% [or all alleles,
The drift term may then be ignored and we have Brownian motion on a
" (l/zk}th part of a unit sphere. Thua provided the number of generations
" elapaed is less than one tenth of the variance effective population size,

.fa, which is not too stringent a conditlon whether we conslder American

l“I::ldi:m villages over the last 500 years or larger populations over the

lf last 50, 000, the mean drift may be ignored except at the extreme edges
.",'| 'of the space. All that Is necessary is that the loci used are truly poly-

[morphic, and that we do not have absorption of aome alleles during the

L
@ process of evolution.
Note that, if 86 is the angular distance travelled In time t,

k L
E(86°%) = E((cos_l[ Z {zi(zi + ozin’])z) trom (2. 3. 3)

3 k
f = E((cos” {1-(1/3) p) (ﬁz /z. )]) Y = E( Z (0z /2, ]/4) [to order 0z ]
f i=1 i=1

=(k - I}Otz’SNe. (2. 3. 6)

| fl,ﬁ-l'ld thus we have a mean square distance proportional to (k - 1), the
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number of independent dimensions,

Edwards (1971) makea a further translormation; the stereographic
projection of the (lﬂk)-sphere Into a {k-1)-dimensional Euclidean space,
The diffusion 1e (k-1)-dimensional, but the chord, or angular, distances
can be embedded only in a2 Euclidean space of k dimensions, Thus these
palrwlse distanceg could not have arisen under a model of Brownian
motion in a Euclidean space. In practice the spread of populations on the
sphere in the k-th dimenaion 18 usually small, but the stereographic pro-
jection providea an explicit space of the required dimension. Under the
action of r. g. d. the populations approximately perform Brownian motion
in thig space, and it is in this projected space that population distances
should be meagured,

T

_L
+k ?) _1
-k i=1,...,k (2.3.7

2z

| i

W= n
1+ 1 (zi/K)’)
i=1
where 2, (i=1, ..., k) are the gene frequencies at a k-allele locus,
then the point y performs approximate Brownlan motlon in the (k-1)-
i
dimengional space 7 ¥, = k2, This is due to the orthomorphic nature
i=1
of the stereographic projection, which results in the property, stated by

Edwards (1971} and proved by Thompson (1972), of spherical contours
for the likellhood [unctlon for sufliciently large multinomial samples.
Random genetic drift is then repeated multinomlal sampling.

The stereographic projection results in further distortion near the
edges of the gspace. Edwards (1971) gives the upper bound to thel'scale
factor' by which distances may be increased; namely 2/l + k™ ?) {or
1,17, 1,27, 1. 33 for k=2, 3, 4 respectively), but this occurs only at
the extreme vertices of the space and does not arise in practice. More
generally we may take a&n orthogonal transformation of y to obtain (k N 1)

orthonormal coordinates x (=1, ..., (k-1)) in the space ¥, = k2.
=1
As for 691 ahove we may then congider the means and variance of the

transformed diffusion. We again have a drift term of order {t/Ne) which
is negligible under the same condition (2. 3. 5). Under this same condition,

although the probability of absorpltion of alleles durlng the course of evo-
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projected space (the point 2, = cos %y

1

a’(x) = gec’ (¢(x)/2)/8N_ per generatlon

Further cov(ﬁxi, bxj) =0 to order Gt/Ne'

; the variance ol the

| diffusion does however depend on the distance from the centre of the
=1/k for each i), An expression
! dor E(ﬁx ) may be rigorously derived, but the required result le more

. :!I'geadily obtained as follows,

Fig. 2.3(a). The variance of the diffusion after stereographic
projection [rom the point P*,

From Fig. 2.3{(a), s = 2 tan(¢/2) and the distance 8s in the

Ba— sec’(¢/2)8¢. Hence, from (2. 3, 6), E(|8x|%) = sec*(¢/2) (k- 1)5t/8N..
t Thua, by the symmetry of the diffusion and the orthomorphic nature of the

- ftereographic projection, we locally have a Brownian motion with variance

{(2.3.8)
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in the neighbourhood of a point x at an angular distance q)(x) i rom the
cenire of the space, [In k dimensions sec (¢(x)/2) 2/A1 + k© z),]
Thus if at time 0 the position of a population is known to be x(0) then
after a time t, small relative to Ne, each component xi(t) of x(t) ise
Normally distributed;

N(x,(0), sec’(@(x(@)/2)t/BN), i=1, ..., (k-1),

and the components xi[t) are independent.

Regarding inferences from the model the inflating factor sec4(¢/2)
hag little effect, since in practice the populations are all located in some
gmall region of the space, The only eflect is to inflate all squared dis-
tances, at this given locus, by this same amounl, If required the factor
may be corrected for, for any given aet of data, by for each given locus
scaling the position vectors x of ail populations by the factor sec2(¢/2)
relevant {o that region of the projected space corresponding to the ob-
gerved allele frequencies; equlvalently the pairwise population distances
may be scaled (4, 6). There ig however little 1o be gained by maklng this
correction; the factor is usually small, k often being only 2 or 3 for all
loci, The relevant value of secq{ﬁb/?) does not normally differ signifi-
cantly between loci, and the only effect i8 to Inflate time estimates by
this amount; or, since we f{ind that times are measured only in unlts of

(3, 1), Ne 18 similarly deflated. Estimates of tree form and relative
times are unaffected; we usually infer only relative times, and even when
egtimates of Ne are used to Infer absolute times, the above factor will
be negligible compared with other sources of error - in particular, sam-
pling errors and uncertainty concerning Ne'

For each ki-allele locus we have {ki - 1) independent xj, each

performing a Brownian motlon as the gene frequencles change due to
8

r.g. d. We may thus combine the 2 (ki - 1} coordinates provided by
i=1

s unlinked loci, and obtain a p-dimensional Brownian motion where

p= E(k-l) (2.39
1=1
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¥ These P coordinates will in future be referred to as the ‘projected co-
¥ ordinates’ of the population. k, should be the number of alleles present

A in all populations: if any alleles are absent the Brownian motion for that

| '. ,population Proceeds in a subspace of the p-dimensional space, and failure
' to observe this will result in underestimation of the distance /dimension

' I.nd hence of evolutionary times.

We conslder finally the case of two alleles as confirmation that
e approximations are adequate in practice. For k =2 Kimura {1955)
pa given a series solution to the diffusion equation (2, 1. 5) in terms of
genbauer polynomials, This density function for z, where
g l[t), zz[t)) = {z, 1-z), may be computed for different values of g (the
Bnitial frequency = {0)) and of u= t/N and may be transformed to
ain the true dlstrlbutmn on the c1rc1e quadrant and in the projected

_' pace (Flg, 2. 3(b)). In the original space we have the approximation

z i8 N{q, q(l-qu/?) and 0=z =<1.

the circle quadrant the approximation is

I

6 is N(BG, u/8) where 0 =<6 =< 7/2, and 8,= coa”t(q?),

1

R, . 1L L _Lo 1
¥n the projected space consider hiz) = 23(z% - (1-2)2)/(1+2 2(z2+(1-2)2).
70. 829 = h(z) < 0, 829 and the Brownian motion approximation is

h{z} is N(h(g), u/B).

fn the notation of {2, 3. 7}, h(z) = 2-%(]‘1 - xz). 1
g For q=0.5 and u =0,1 the approximations are virtually periect.
Wor q = 0.1 they are still good (Fig. 2. 3(b}). Similar diagrams for
= 0,25 show that we still have a good approximation for q = 0, 5, but
hat at q = 0,1 the situation is deteriorating, Besides stabilising the
Ariance the angular transformation also improves Normality, The
mecuracy of the approximations after stereographic projection 1s similar

0 that before,

These results confirm that Brownian motion with variance l/BN
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Fig. 2.3(b). The Normal approximation to the distribution for a two-
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allele process of random genetic drift, The broken line denotes
the true density function and the continugus line the Normal ap-
proximation in each cage, (1) The original gene frequency space;
(ii) the representation on the surface of a sphere; (11i} the
stereographically projected space. In each case we have (a) g=0. 5,
u=0,1 and (b) q=0. 1, u=0.1. For further details see text.

:."" ptter than previously expected. If all the populations are, and have
" emained throughout thelr evolution, in the same region of the projected
:?pace it should be possible to infer the evolutionary tree correctly, The
Brinal test of the model is however in the consistency and reliability of

I';:-esults based upon it,

2,4 THE STATISTICAL ADEQUACY OF THE MODEL

We have go [ar only considered the model as an approximation to

J . £ d. In order to Justify its applicalion to given populations and gene

Ef; 1, where differentiation may not depend wholly on r. g. 4., we must
'onﬁrm that it conforms to the avallable data. There may be many genetie
Iodels that will fit the data, but r.g. d. ig a process which has necegsarily
been taking place throughout hlstory, and if the data can be fifted by a
Mrift model alone, with plausible population and time estimates, then the
:.u obtion of the model 15 justified. The model must be tested independently
; any likelihood inferences; these are conditional on the model (1. 3},

.I wing to its complexity, and the number of parameters, it is not posaible
o test the complete model of a bifurcating tree generated by a Brownian-

I le process, but there are several aspects which may be considered
dividually. These are discussed with reference to the large body of

j ta on the American Indians compiled by Post et al. (1968), with a view

b examining the possibilities rather than testing the validity in this par-

It

8 been guggested (Neel and Ward (1970)) that the evolution of the Ameri-
Indian tribes may be well approximated by a tree pattern; for villages
fithin tribes this is less likely to be so.

We must consider the aim of a statistical test of the model.

icular case. We condider inter- rather than intra-tribal variation.

A

,"':- ificant result means that the probability of a priori specified extreme
ents arising under the model is small, and that these results are then
Pbacrved to have occurred; but a significance test alone should not be the
of rejecting a2 model any more than of accepting it. We take the

b that hypotheses may be judged only by a likelihood comparison with
Rome alternative; a significant result may however suggest an alternative
.Ypothesls which would provide a better explanation of the data than the
-‘P‘l‘opased model (1. 3}, We do not consider the power of the tests below
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agalnst specififed altcrnatives; when an alternative is contemplated a
likelihood judgement and not a significance test is required. We simply
consider whelher the given data conforms to the proposed model; if not,
we may consider the way in which it does not, and hente the ways in which
the model may be inadequate,

First we consider testing agreement amongst loci as to pairwisc
population distances. Let dg be the digtance between populations i and
j at locus T, tn the evolutionpary time of thia pair of populations (the

time since the existence of a common ancestor), and ¢ the variance of

€), @),

X My

the Brownian motion 1n the projected space,
Then d'T’? has distribution 20°t..x% . and If d.,
ij ij kr-l 1 1ij
has F distribution F(fz’ f.), where [, = k. - 1. This may be tested
i
amongst large numbers of independent population pairs: good agreement

is obtained,
Far any two gene loci and two disjolnt poputations paire
(1) (1 (2) 2y _ _

P(dij > di'i' and dij < di'j‘) =p, (1 pz}, (2. 4. 1)
where p, = P(F(k, - 1, 'kz 1< 1) for =1, 2, and r = (t/t") the
ratio of the evolutionary times for the two pairs of populationa.
pl(l - pz) =0 ag r~0 or r ==, agig intuitively required. But sup-

pose k!L = kz = ? (values which often occur), then
2 -1, 3 -1, %
P, {1- p2}={4/ﬁ Ytan  {r3) (n/2 - tan” (T 7Y},

This takes itg maximum value of 0. 25 at r = 1, but cven for r = 2 the
value is 0. 24, Thus we can expect very little agreement in the rankings
of pairwise populatlon distances given by the different locl: certainly
we do not have agreement in practice,

The inverse of the coefficient of variation of ai{]?)z

is
v = [(ar @D R = (e, - ), (2.4.2)

Il we have a large number of independent population pairs and several
loci of equal k we can, for each pair, obtain an estimate of » 1In
practice a good fit to the value (2. 4. 2) is obtained. For example, for
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-k = 2 v = 0.7071, and [or eight population pairs over five loci we have
b yalues with mean 0, 695 and atandard deviation 0, 04, This test of the
:J varfance of the squared distance i a test of the 4th means of the original
'fﬂormal distribution, If there are aufflcient data we may test this Normal
I-F_gtribution completely. If xgq)‘ xgq) are the projected coordinates of
Rwopulations i and j 1n dimension g
(xiq} - xgq}) is distributed as W(0, 2 o° tij} for q=1, ..., p.
rhus lor each population pair we may, if g is suificiently large, test
; e [it to a Normal distribution of zero mean and unknown variance, We
' nay then see whether some loci consistently provide the extreme values,
N I'd whether the approximation to Normality can be improved hy grouping
Jome alleles within a locus (2, 2). Available samples are small, but
' ats 2gain prove aatiefactory apart from for a few loci {for example
which consgistently provide smaller values of ‘xiq} - xgq)[ than
do the others. Although this may be an indication of stabilising selection,
Miis cannot be confirmed without further evidence.

That the data conform to any model does not imply that the model
is correct, As a comparison the abhove considerations were applied also
%o intra-tribal differentiation. Even in this case often no substantial dis-
preement with the model was found - probably since sampling was often
e dominant factor, and sample sizes often similar (see below). However
mseveral cages the agreement wae significantly lesa good than [or the
Binter-tribal variation, While no definite conclusions should be drawn from
; fhig, it is an indication that the above tests may be sufficient to enable
8 to distinguish difierent causes of genetic variarion, even with currently
:lvailable data,
] The final case where statigtical teste may be of use 1s 1n investl-
‘Ea-ting the effect of sampling, The theoretical aspects of sampling are
?conaidered in section 5. 3, The gene frequencles wsed te reconstruct

[ evolutionary treeq are usually estimated {rom population samples which

\'lre unfortunately often small, Unless sample sizes for a given population
' differ widely between loci, in which case the observed squared distances
‘ may vary inversely, none of the above tests will distinguish between varia-
 ton due to sampling and to r,g. d. gince both provide disiributions which
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are approximately Normal in the projected space (5. 3). On the assump-

(r} {r)

1 2

tributlon of the squared distance between them due to sampling alone is

[[(l/mir)) + (1/m£"))]/a]x; _1 tlocus r (see>5, 3). For dillerent loci
T

tion of sample sizes m and m {from two populations, the dis-

and disjolnt population pairs we may plot observed distances against those
expected under sampling alone, On the same diagram we may plot the
two-unit x’-support limits (given by Edwards (1972: pp. 187, 227)), as
ghown 1n Fig. 2. 4. (The acale factor in the projected space has little

Fig. 2,4, The comparison ol gampling and cbserved distances.
X = observed distanoe between populations i and j
at locus r, y = distance expected under sampling

alone = (kr - 1)[(1/8m£r)) + (1/8m§r))]. X/ is
x:/T, where = (kr -1), (1) The line x=1vy;
(i) upper two-unit support limits for kr =4, 3,2

respectively; (iii) lower two-unit support limits [or
kr =2, 3, 4 respectively,

effect on the expected sampling distance.) For the European data of
section 5.1 we find that between several population pairs there 1s little
evidence for significant r. g, d., apart from for the ABO, P and PGM loci.
In many cases dlstances can be explained by sampling alone, but this is
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s mply because the effect of drift ie too small to be reliably detected

Uexcept at those loci for which large samples are available. For most

| er locl the correct proportion of distances (about 5%,) are significantly

¢no small, and 12%, significantly too large, There seems to be signiticant

- {ation amongst locl, but sample sizes are often not stated; the Duffy

nd Lutheran systems give significantly smaller distances.

Thus we conclude that no statistical test has provided evidence for
Ie rejectlon of a Brownian motion model, and, as the simplest available

K dequate model for a genetic process which is known to be taking place,

'e are justllled in adopting it, If populatlon dlstances can be explalned by
apling alone, then, although r.g.d. ie necessarily taking place, we

nnot accurately measure its effect. The reconstructed trees based on

juch data, and unfortunately on most currently available data, may not

¢ accurate. However, the statistical validity of a Brownian motion model

a description of the observed data may be checked by the above tests

:' Normality. When large-sample data are available the true population

pitions are accurately known, and compatibility with Normality confirms

validity of an assumption of differentiation due to random genetic drift.

he parametere of evolution may then be reliably estimated, With large-

‘ale sampling of the more recently discovered blood groups more suitable

Jpta are rapidly becoming available.
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3-The likelihood approach

3.1 THE MULTIVARIATE NORMAL MODEL

We have now certain functions of the population gene frequencies
which perform p independent Brownian motions as the populations evolve
in time under random genetic drift, The evolutionary tree is assumed to
have heen formed by a series of bifurcating splits, and it is further as-
sumed that at some point in the past there existed a single common ances-
tor ol the group of populations under consideration, The data are the
observed [unctions of the gene frequencies in the n genetically digtinct
populations; aay

x= ixgq),

i=1, ..., n q=1’---rp]; nzz,pi"l,

1t is assumed that the population coordinates are known; that is, that
sampling errors are negligible, The aim ia to Infer the 'labelled history’',
F, of the populations (2. 1).

Given the form of tree, F, let 8. be the time ago of the (n-r)th
split; 0= 8, =... =8 ,,8= (51, iy sn_l}. Then F and s specily
the complete history, The parameters of the model are F, s, the position
X, of the initial ancestor (50 = (xﬁq), qa=1, ..., p)), and the variance
per generation of the Brownian motion 0'2, assumed to be the same for
all populations and in all dimensions (2. 2). If x{q) = (xgq), i=1, ..., nh
then given s the vectors :_c(q) =1, ..., _are indelpendent, and each
is multivariate Normal, being the sum of independent diffuslons along
relevant arcs of the tree (Fig. 3.1(a)). Hence

1

cov(xi ,

— 2 ——
ij_q (sn_l— sl(i,j))’ q=1,...,p {(3.1.1)

where s ) is the time ago of the splitting of the last common ancestor

i, j
of populations i and j (Adie and Moyal (1963), Felsenstein (1968)). For

example, in Fig, 3.1,
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/

the present

Wig. 3.1, Evolutionary tree [or a group of elght populations, n = 8;

there are seven time variables and six splitting points apart from
the initial root. The topology of this tree is (({2 + 1) +1)+(2+2))
in the notation of Harding (1971), The eight populations, labelled

1 to 8, have positions Xy ooy Xy in the projected space, and

the positions of apcestra)l populations at their gplitting polints are
}'1, ey zﬁ. The position of the last common ancestor for this

group of populations, or the roat of the tree, is Xy The time of

splitting of this ancestor, or total evolutionary time of the popula-
tions, is B The form F of the tree ia speclfied by the topology,

the labelling of final nodes, and the ordering 0 =< 8 =8, <... =8,
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1(2, 3) =3 glnce 8, is the relevant splitting time for

populations X, and X,

Similarly, £(5, ) =6, 1{2, N=1(3, 6) =7 ete.
each i, and 50—0 Also E(x)—xo, where X = =(x
Thus

Also I{i,i)=0 for
(Q)! q= 1! M p]:
and fl*l‘] for i+#]j

txlx,, 8, of, )=

(23) TP | $Pypy_ (P (q)l)T L@ {q)l)]

Cl

3.1.2)

where 1 is a column vector of ones, and T the covariance matrix

given by F and (3. 1. 1) {Gomberg (1966), Felsensiein (1968)). [* will
always denocte the transpose of a vector or matrix, gm, b=1, ..., p),
are n-dimensional column vectors, X (1=1, ..., n), and X, may

thus more intuitively be considered as p-dimenslonal row vectors, al-
We ghall later
use the standard notation x.y for the scalar product x'y [xy'] of two

though they may equally be taken also ag column vectors,

column [row] vectors. ] (3. 1.2) is the likelihood for the parameters.
F) =1(x|x , ks, o°/k, F} for all k> 0.

Now f(x|x, 8, o,
Inferences may be made about o?g but not o’

and s separately. o’

is gimply a scale factor; it may be taken equal to 1, in which cage times
The order of magnitude of
Then the support function S(x , 02_5, ),

arc measured in units of 1/ o’ generations.
o will normally be knaown (2. 3).

(1. 3), is given by

-28(x o’s, F) = -210g L(x,, o%s, F) = -2 log L& ]x, o’s, F)

1) + constant, (3.1.3)

= plog|T| + (x(q) E,Q)y'T'l(;(Q) @
q=l
where the constant is Independent of both data and parameters.
This function is to be [ully investigated in Chapter 4, and so few
further comments need be made at this point. However even the evaluation
The matrix T depends on F, and, al-

though the components of T are linear in s, computation of [T] and

af (3.1, 3) presents difficulties.
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Felsensteln (1968, 1973) gives a
An alternative method of evaluation

-:. T'l for arbitrary F 18 not trivial,
i method for the rapid evaluation of .
b and, more important, a method for finding the point ()_cn, orzg, F) maxl-
b mising S are given in Chapter 4, T may be regarded as a general co-
f varlance matrix with linear restrictions (equality and inequality) on its
b components. Thus the space of T values in which (3.1, 3) is to be

i maximlsed is a closed convex cone in the space of all positive semi-

i definite symmetric matrices. However aince E(xgc“) varies with g but
-not 1 we do not have the ugual multivariate Normal support function: we
:do not have simple sulficlent statistics and maximum likelihood (ML)
iestimates cannot be explicitly found. § has no positive infinities, and
-'JT is non-singular if and only if 8 > 0 (4.6).

8 It is often only F that 18 of primary interest, although,
The MRL for F ig

glven F,
f we may also wish to infer ozg.

L*(F} = max L(:_cu, cz_s_, F) (see section 1, 3),

2
X, d‘s
._D —_—

and we may compare the values of L*(F} given by different values of F.
'ﬂlnce we maximise over the same number of parameters in each case the
1 degrees of freedom problem does not arise and a simple two-unit support
Fdifference criterion is appropriate, In practice there are too many differ-
{.ent tree forms for all comparisons to be made (2, 1), and thia is the major
' remaining difficulty in solution (4. 5),

2
and 08,

For given F we may make in-
Lferences about X,
in x .
L =0

For each s the support surface is quadratlc
The MRL for orzg and F

L‘{U"’E, F) = max L(ED’ 0'2_5_, F)

. EU

:. wlill be considered, for given F, in the following chapter.

v The Internal branching points y (or {qu), i=1, ..., (n-2),
q=1, ..., p}) are random variables generated by the probability model
" and having distributions dependent on the parameters. These variables
. are not relevant to likellhood inference, but we may wish to express

X belicls concerning them. Having made likellhood inferences regarding

the parameters, this may be done by giving the distribution of y con-
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ditional on the data and the M1 estimates of the parameters, or, since
this is a multivariate Normal distribution, by giving its mean and varl-
ance. This is not an entirely satisfactory procedure since, although this
ia the most likely distribution for ¥, there may be other parameter
values which are only marginally leas likely giving very different distri-
butions to Y. However it 15 a reasonable procedure, provided the sup-
port surface i8 unimodal and well-peaked at the maximum, and provided
the conditional probabllity density of ¥ is a contlnuous function of the
parameters. In this particular case the procedure is acceptable within
any one tree form, but there may be alternative F having almost equal
support, but giving very different values to X, and Uzg and hence to the

distribution of y. Thus care must be taken in the use of this approach,

but In general no serious logical problems arise in applying likelihood
inference to the multivariate Normal model.

3,2 THE BROWNIAN-YULE MODEL

In 3.1 we have no probability maodel for the formation of popula-
tions: even the restriction to a bifurcating tree may degenerate if some
§; are equal. There are (n + p} parameters, and this number depends
Edwards {1970) intro-
It is

assumed that we are considering all the descendants of some common

on the number of populations under consideration.

duces a Yule process, rate X, for the formation of populations.

ancestor, The parameters of the process are now X Uz, A, and ft,

where t = 8.1 n-2)

are now random variables having probability distributions dependent on the

is the total evolutiopary time, F and a* = (sl,... . B

parameters, and problems arigse as to how inferences should be made.
The data are {n, Xiveeey En]; n ig a random wvarlable which conveya
information about At. Thus we cannot condltion upon n, and etill less
upon F which specifies n; F cannot be treated as a parameter indepen-
dent of the Yule pracess.

The discrete probability distrlbutions P(F|n, A, t) and P(nla, t)
and the densities f(s*, n, F|A, ) and fx |x,, 8% t, o?, F) have been
given by Edwards {1970), the last being (3.1, 2). P(Fln, A, t) 1is lndepen-
dent of A and t, and is unlform over all F having that n (F € Hn say)

(Harding {(1971)). For a Yule process I(§‘|F, n, A, t) is independent
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(Edwarda (1970)), Thus

L{?_‘ns 02: A D= f{é' nlfn’ 02, A B
=1{x [n, x, 0%, %, OP(@[x, O

=Pm|r, t) I t(x|n, X, o, a, t, F) P(F{n, &, ¥)
Fed -

«Pmr, ) L[ §... J

FeH 0-5515, . ssn_zst

i(x=[§u. 8%, t, 02’ F, n, Mf(s* |n, A, tde*]

(3.2, 1)

{for given n).
This 15 a function only of X o’t and at, and so again we only

b

[have {nformation on relative gplitting and dispersion rates. Again we

| of a group of populations.
Then (3. 2. 1) may be rewritten

[f(x-:lzg' UZ_S_*' Uzta F)

|

Lix,, a’t, At)=P(nrt) 3 f
8 .- Esn_zﬁt

FeH 0=
n 1

.
=,

i(§*|n, A, tds*] (3.2, 2)

U P(F|x, x,, b, 07t, M) = 1(x[x , 0°t, At, n, FIP(F|n, at)

| S f(;ko, o%t, At, n, F) (as a function of F), (3,2.3)

;A maximum probability estimate of F 1s the F maximising this when
. M]. estimates are substituted for the parameters.

f However, [irstly this is not a [easgible procedure, The sum in

| (3.2.2) 18 over n!(n- 1)1 2" ! labelled histories (2.1.1). Adke and
| Moyal (1963) give an iterative (over n) differential equation for the

- characteristic function of f(é, nlfu’ 0‘?, A, t) but no general formulae
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are obtalnable other than as a multiple integral and sum, Secondly,
since F is a discrete variable, this procedure seems inadequate,

{3. 2. 2) is the sum of likelihood functions, one for each F, having their
maxima at different points; it may certainly be multimadal.

i some F were observed to have occurred we would have

L(icu, czt, Ay =[x, F, n|J_(D, oEt, at)
=f(2c__|)_(ni ozt’ At, n, F) P(F,]’ﬂ P(n|lt),

and we would maximise this function to obtain ML estimates conditional
on the given data, including F. We could then give the distributlons of
internal node coordinates and timea c¢ondltlonal on the data, F and these
ML estimates (cf. section 3. 1), Thus instead of making overall estimateg
which involves averaging over F, we may lnstead consider

f(x, n, F|§U, o’t, At) as a 'predictive likelihood', or, for fixed n, con-
sider Gp(x, 0o°t, At) =

[5 ... 1 fxix,, o’s*, o’t, FM(s*|n, A, tids* . P(n[at) (3.2.4)
=g =,,,=<8_ .=t — ° - - -
17" n-2
= [j... I(Elx . ozt, uv, FY(u*|n, At)du* . P(n[at)
=u =, ,.=u_ =] — ©° B - -
1 n-2
where u = si/t, i=1, ..., (n-2).
Note that
L(J_(D, ozt, )= I G (x o crt at). (3.2.9)

FEH

GF is strictly neither a probability nor a likelihood, but we choose
F, X4 o’t, and At jointly to maximise Gge This is slmilar to Fisher's
approach to prediction problems (1. 3}, and seems a reasonable procedure
since {GF, F EHn} must convey the informatlon on X, o’t, At and
F contalned in the data,

In practice even the detalled examination of GF is not feasible
due to the multiple integration requlred to evaluate Lt
This has been done exten-

Although this pro-

Its properties may
be examined by direct evaluation for small n,

sively for n =3 and to some extent for n=4 (3. 3).

a2

'vldes some idea of possible properties of GF’ and counter-examples of

hihoped-for properties, it does not further the use of this model in the

anzlysis of actual data.

. GF does have ane important property for every F:
. has (at least) one internal maximum at (x o @ t A) with 0< at< o,
0 < o 2y < w oo x(m-( w{q=1, ..., p). Forif n> 2 P(n|At)-*{]

:f At= 0 aor At = @ the other part of (3.2, 4) remaining bounded. Pro-

| vided the populations are distinct r{x lx ot azt ozs* F)=-~{ as o't ~Q
Hence the integral

namely it

II or «© and as x(q)-rd:no for any q, uniformly in g*,
|
bwith respect to (w. r.t.) the probability density of s* converges to zero,

iFurther G_, is everywhere tinite and non-negative, and so has an inter-

F
'nal maximum, Thug the problems encountered in using GF are com-

gputational rather than theoretical. Previously it has been thought that

We consider here the solution for three populations, both with and
without a Yule process. This provides some ingight into properties of

fthe support surface and the problems involved in the general case.

Let X, X, and x, be the posltions of the three populations,

Let 8, = t, 8,

=us
b 2
fivector defined in 3.1 (Fig. 3.3(a)).

and o® =1 where (sl, 52) ig the time

b

Let 2 = (53 -1 (:lc1 2+ xz)) = {J'|:J - X)
=h.h =
2
= ”X - )C " >0
and —(x3 Sx ) (x, - X, l (3.3.1)
s Thus —D + d /4
}: Further let K = D/d°, the root of the tree be X
Cp = (&) - X (x, - X
. 2 —
'and dy = |x, )
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Lel Fl be the tree form ((J_:]., )_ck), 5.1) in obvious notation
{i= 1, 2; 3)-
we conslder F = F,. The covariance matrix for the lree of Fig. 3. 3({a)
is

These are the only labelled hislories for n= 3 and w. Lo.g.

t t{1-u) 0
T = | t(l-w t 0 with |7 = tPu2-u). (3.3.2)
0 0 t
t T____ -
=1 22 =3
Fig. 3, 3{a). Three population tree of form F3 = ((51, 52), 53).

The pointg X, X, and x, lie in a plane, and w. L. 0. g.

§L=(—%d, o, ..., 0) and X, ={3d, 0, ..., 0).

This fixes the location and scale and we conslder the likelihood when

X = (w , w

X, 1 Yo 0, ..., 0), as w ~and w, vary.

{n The ME solulion
One aim in obtalning an explicit likelihood solution for thia simple

case is to explore the often expressed hope that the ME solution provides

an approximatlon to the ML one (1.1, 1,4). We recall lherelore the
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Fig. 3. 3(bl.

Diagrammatic representation of the Steiner golution
for three, necessarily coplanar, points,

Bteiner solution for three points In a plane (Thompson (1973a)), shown in
®ig. 3, 3(b). The shortest interconnecting network is formed by joining
» B and C lo the Steiper point § where if

X, EGl' angle CAB> 120°, 8= A
x, €G,, angle CBA > 120°, 8=B
x, EG3, angle ACB> 120°, S=C

.andi.f X, €G, 5 is such that angles ASB, BSC and CSA are all 120°,
| That is, S lies at the intersection of the line OC and the circumcirele
lof the equilateral triangle ABO, the result belng given by symmeiry for
"53 below AB, (3.3.3)

ME produces an unrooted tree, Thus for three populations this

118 the complele solution.

(1)

The trivariale Normal cage

Consider now the likelihoed (3.1, 2) for the case n= 3. {u, t) ia
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a 1-1 transformation of {sl, Sz) and so the likelihood is unchanged
by this reparametrisation (1. 3),
From (3.1.1), (3. 1.3), (3.3.1) and (3. 3. 2)

-25(50, u, t, Fa) = 3plogt + plog(u(2 - u))
+ @ + 2uc )/(u(2 - w) + diu] (3. 3, 4)

where the notation is as defined by (3. 3. 1).
Then maximlsationw. r. L x and t gives

R =[x +x + (2 - u):_ca]/(fl - u)
A ) - (3.3, 9
and  f(w) =[(@" + 208 )/(u(2 - u) + d] 1/3p,

” 2 F -
her and are the values of and when x =X (u),
where <, aaa ¢ € d:o =q ﬂ( )

Further for a stationary point alsow.r.t. u (0 =u=1),

Ku® + 4K + 13u’ - (BK + 18u + 16 =0 or u= &K
Fig. 3. 3(c). The tri-variate Normal case, Dlagram of the tree
form inferred as x, varies over the plane, with

X, and x, fixed. As X, ig in each of the regions

K> 2, there is a unique root 0 < G(K) < 1, which gives a
maximum of S,

It K=2, i(K) =1 is the maximising statlonary point. shown, the corresponding form is inferred.

I K< 2, there is no stationary point in [0, 1] and the maximum
of 5 occursat G=1,
Algo K> ? if and only if h> 3d/2.

] (x3 +X) and the mean x = x, +x + 1:3)/3.

) tw) = 2d°(1 + Ku)/3p(u(s - u))] for K = 2, from (3.3.5),

There can never be more than one tree form giving a root § in {3,3.7)
(0, 1), since for no population positions can two of the median lengths ,
satisfy the required condition, Secondly, there may be no F, with an fand log L*(FS) = maﬁ t[log L(.’_Lg’ u, t, Fg)]
X 5
internal maximum (0 < G< 1). The tree inferred, as x, varies over the -0 ,
_ _1_ -~ -~
plane with x and x_ fixed, is shown in Fig. 3.3(c). Some further =-zp log(t"a(2 - &) - 3p/2. (3.3.8)
oints are of interest. For given form F_; " . -
P E 3? (© U K=2d=1,% =X
~ | " 3 - _
(a) go(u) =X + k(u)h, from (3, 3. 5), (3. 3. B) land t=(1/3p) ) (x, - X (x, - X) = X2 /3p, (3.3.9
' =1"" -
where k() = (2 - w}/{4-u). For 0< u=1, 1/3=sk(u < 1,/2, and k{u) | where X° is the total disperaion.
is a decreasing function of u. Th lie, the median of the triangle '
& s X, neson ectan s () @(K) is a decreasing function of K, and
having the populations as ite vertices al some point between the mid-point
i = min[1, 3/(1 + K. (3.3.10)
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These results together give the following Finally we compare ML and ME results, For n = 3 the tree

t forms cannot be compared since there 1s only one unroocted form. We
Lemma, If there is a tree with 8 < 1 then this is the ML form, ' can however compare the branch point positions y and § (Figs. 3. 3(a),
Further It gives the smallest eatimate of ,’T], the tlme measure of 'total

dispersion', but the largest estimate of t, the total evolutionary time. Given x_, x_ and the parameters, y is multivariate Normal
1 I3 L

N1 - u)ix, +_Xz) + lllto)/(?_’ - u), tu(l - u)Ip/(? - u)), where lp is the

Proof, 1If Fi has G < 1 then it is the only such F (see above).
b X p identlty matrix,

Then
Subatituting ﬁ_’in(u) for x, we have
L*(F) =L(F, 2,8, B where (% , 4, 1) are estimates within F,
— i P =X * .3.12
>1(Fi’ E' ]-a x2/3p) Since ()_(0' i, t} are the ML EStimates EQ) E +k (U)E, (3 3.1 )
glven Fy where k*(u) = u/(d - u) [cl. (3.3, 6)].

L(Fj, %, 1, x? /3p) by aymmetry, for any j
L'(F].) from (3.3.9),

For 0< u=1, 0< k*(u) =1/3 and k*{u) la an increasing

1l

unction of u, y lies on the median of the triangle of the population
Mpositions at a point between X and x.

For K>2 (i< 1) the stand;rd deviation of each y{q) may be
lquite 1arge and to represent y by its mean position may be an over-
;pimplﬁication. However if w_e compare the forms of (3, 3,12) and (3. 3. 3)
‘.we gee that the results are qualitatively very different. Computations

That |T| is minimai for F,; follows immediately from (3. 3. 8) and
(3.3.2). (3.3.11)
Now let d, K ete, also dencte the values corresponding to form
F.. Then ¥F,) = 2d%(1 + Ka)/3pii(4 - 6) from (3.3.7), and for j #1
‘t‘(F].) =X"/3p = 2d*(1 + K)/9p slnce G(F) =1, the value of daq + K
belng independent of the tree form for which d and K are defined (sce
(3.3.7), (3.2.9). Thus ‘E(Fi) < ‘E(Fj) if and only if
(1 + KG)/G(4 - §) < (K + 1)/3, that ig, ifandonly if 3/{1 + K} < G< 1,
but, from (3. 3.10) this is never the case, /

gshow that the Steiner polnt is rarely within two standard deviations of
E(y).

{i11) The Brownjan-Yule model for o =3
i In the notation of 3.2 we have, for n= 3,

It is easily seen that (3. 3. 11) extends to the n population case, )
P(n = 3|at) = P (At) (the probability of 3 descendants from 2

ancestral populations)
=2e "1 - e-lt}

{CH [x, t)=2a exp(-As ) /(1 - exp(-M)) for 0=g =35 =t

Writing the matrix T as tU we see {rom (3. 1. 3) that the general prob-

lem is equivalent to the minimisation of |T[ = tn‘U’ where 2xt

p -
t=(1/np)[ I (E(q) . xgq)p'u 1(§(q) ) x(;”l)],
q=1 -
but we see that this does not 1mply the smallest possible estimate of t. or “ulkt) = M exp(-2)/(1 - exp(-M)), (3.3.13)

K> 2 is not a stringent condition and in practice we often have ) for 0 =u =1, where u= 8 /t. Then

a tree form with an Internal root. However, the situation (2) ¢ )
Gp(x o, M =P 700 1, |2, t) f(£|§0, 8,1 0, F) ds,
- 2 =

* -
log L*{F) - log L(F, x, 1, X /3p) = 2 _ Ilo(lt] expl-At2 + 1) f@h‘_ﬁu; Uzt, o F) do

occura [ar less often, a large value of K being required, = Ilnr(u, At) f{£|§0, Uzt, u, F} du, {3.3.14)
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and  t(x[x;, o*t, u, F) = (°) P/ X(u(2-u) " *Pexp(- e, x,, w/o’t),

where, for F = Fs' glx, X u) =
(3.3, 9)),

(@* + 2uc ) Au(@ - w) + af  (ct.

2 2, z
=d + A2 - +
/2u 2‘15! {z - u) cl3 0 (2.3.15)

2 _ n z ~ -
where di =[x - §(x +x)]° = (x; - B (x, - X).
For given x, GF may be numerically investigated, but more
general conclusions may also be drawn. Asin 3.2 G has at least one
’—(n’ o't and At for each F. GF ls 2 mix-

ture of the muitlvariate Normal likelthoods of 3. 3(1i), or more generally

internal maximum w.r, t.

3.1, w.r. t. the lunction r{u, At), (0 =u =1).

[zd%/(z -u)] + din ia minimised, for eack u, by

EO = E + k(u)l_'l.

Taking axes in the direction of h andin {p- 1) orthogonal directions,

it may be seen that GF ts unimogdal w. r. t. components of X, in direc-
tions orthogonal to h and that
:_‘io =X + kh for some k, {3.3.18)

Thus we have

ik, o’t, A = Gp(® + kh, o°t, At)
= I;r(u, M0 P 2 (2 - u) EP
exp[- £ (a° 72u+h’ (2k? /(2-w +(1-%))) /0% t]du

= j;r(u, At) s(u, k, 0°t)du with r{u, At)> 0.
(3.3,17)

For each u s(u, k, czt) 1s unimodal in k and maximal at

k=k{u=(2-w/4-u (cf (3.3,6)),

and
aG*

2
—&E = Ilr(u, Ab) -gll—i(u-' k, o°t) du.
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fiience GF is maximal w. r.t. k at k, where

min  k{u) < k < max k)
ug0, 1] uef0, 1]

1/3< k< 1/2. (3. 3.18)

In practice it 15 [ound that GF is unimodal w.r.t. k [or each

Thus, for any given F, 1:‘0 lies on the median of the triangle of

-

bopulation positions. %, is never X and the internal branch point y
oincides wlth X, with probablllty zero, the probability of a zero time

interval. The tree is strictly blfurcating with probability one. From

3
L(x,crt At) = ZG (x
i=1 1

» a’t, At).

ven if each G is unimodal it is possible for L to be trimodal.

F.
ether L is trlimodal or, as is also posslble, unimodal in X, it 1s
Aot necessary for X, at the maximal mode to lie on any of the three
fmedians, This may be demongtrated by a distortion of the case for three
Jpopulations in an equilateral trlangle.

Several results may be deduced from symmetry considerations,
Again we consider the sitwation for lixed X varylng
a plane (Fig. 3. 3{(d)). As before let X, =-X = (¢4, 0, ..., 0} and

8,...,0). Let K, = max [G_ (x, o°t, )], &
Pox, ottt Fi°

nction of the population positions or of (d, w

and x_ with x
=2 =3

=(w1,w.

= 2

1 w) with the form Fi

o't < d” = |x - x ||2 and 1(1 «d 31’.

! Now Ki(d’ W) wz) = l(i(d, w5 -wz) for 1=1, 2, 3,

kl(d’ v, w2) = KQ(d, w., W)}, and Kj(d, v, wz} = Ks(d, W, wz),

| for all (d, w oV ) fixed), K./K =L An

(wl, w )-* @ in any direction, K, = max (K, K,, K}), and )—‘Eu(Fa)-.%Es
as In the trivariate Normal case, (x = 0).

As w_ —+1iw (w
1 2

a1



lx,-x, Il = llx,-x, 1

b, -, I = lx,x, |

Fig. 3.3(d). The three-population Brownian-Yule cage. Dlagram
of the tree [orm inferred as X, varies over the

plane with X, and X, fixed.

it x -xl=lx -xi=¢%x =K.

1 x,-x0l=lx-xl=qK =x.

{3.3.19)
We find also that

G;.I(E{Fl), o’t, a) 2 Gy (k(F ), 0’t, at) for each (o°t, At)
2
Z 0,

]
wz) as w, 0.

as w,
and hence Kl (d, W, wz) 2 Kz(d, W, {3. 3. 200
[E(Fi), iu(Fi) denote the values k and in maxlmising GF. for given
(6%, at). ] !

From (3, 3, 20) the only polnts of equallty of the Ki are the sym-
metry points (3. 3,19) and the line w = 0. Thus the form maximising
Ki is almost surely strlctly deflned and consists of Joining the two closest
populatlons firet. The ordering of the K1 as X, varies is shown in
Fig. 3. 3(d). Note the similarities between this solution and that of Fig.
3. 3(¢). Computations show that in practice the form with maximum Ki

has the smalleat estlmate of azt, in contrast to the Lemma of 3. 3(ii).
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In this case a quantltatlve comparison with ME is less easy to

'make: the qualitative comparison remains as before.

Eglx, x,, ot, A0 = E(E@[x, x,, wlx, x,, @'t, a0
= E[(2(1-)% + ux )/2-u)|x, X, o’t, At).

fHence when x_=X +k

0

E{ylx, X, o’t, A =X + khE((u/(2-u)}{x, X, a’t, At (3.3.21)

ow the posgterior distribulion of u given Xx is complicated. However
e prior and posterior distributions may not differ gignificantly, and
hasing the distribution (3. 3. 13} we obtain

E(y) = X + (2B(AD) - Dkh,  (cf. (3.3.12))

[where

H(m) = If(emu;’u)du;’li (emu)du.

b This will approximale the true posterior mean provided the data are not
significant dlsagreement with a Yule process model for the times.

’;ﬂ(m) ig a decreasging function of m, and for 0 =m< =

log 2 = H(m) > 3 and 0< (2H{m)-1)=0.4,

Thus E(y) will rarely be closer to % than to X (ef. 3.3(ii)). As

At = =, (ZH(at) - 1) »0 and E(y) =X as is to be expected. Using the
prior distrlbutlon of u an expression for the variance of y may be

f' similarly ohtained, and hence the position of y compared with that of

Ahe Steiner point S,

' Unimadality of the trivariate Normal likelihood of 3. 3(il) does not
mecessarily imply unlmodality of GF’ even for the gimple mixing function
r{u, at). In practice however we always find a local maximum, which 1s
unjgue at least in the reglon of the parameter space of interest. We have
: already noted that the overall likelihood (3. 2. 5) need not be unimodal. We
have also seen that GF is unimodal w, r, t, components of X, orthogonal

| to h, and that for the situatlon with regard to k we need conalder only
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1/3< k< 1,2,

If we conglder the second derivative of (3. 3. 17) we {ind that this must
be negative, the integrand being negative for every u, provided

h? /0%t < minA1 - 2%)°, 3/ - 392,

For k=1/3, 0,38, 0,42 and 1/2 the right hand side 1s 18, 35, 444
and 12 respectively; normally 0.38< k< 0,42 (see above).
Given u, each componentof h is N(0, ozt(Z - zu)), and thus

E(h’) < 20°pt, E(?/0t) < 2p.

Thua for those ot of inter est GF is unimodal in k, and hence in X
Similar considerations for o°t show that again we need only consider a
and xt of interest the

Thus we may expect uni-

central range of values, and that for those %,
second derivative is negative in this range.
modality w. r, t. this parameter also.
Unimodality in each parameter separately is not sufficient for a
unlque overall mode, To obtain auch a result we require either that the
equations for a stationary point have a unique root, or that any stationary
point is a local maximum,

However the complexity of G., does not allow

F
these requirements to be checked, The above considerations, together
with practical results, do however lead us to the conclusion that there

will ugually be only one maximum in the region of interest in the parameter

space,

3.4 A BIRTH AND DEATH PROCESS RESULT

A model for population splitting is agsumed in order to decrease
the dimensionality of the parameter space, The Yule process model may
hawever be unrealistic, It makes no allowance for populations which have
become extinct or absorbed by others. More seriously it makes no allow-
ance for the fact that we rarely consider all the major deacendants of some
anceatral population. These criticisma may be met by having instead a
birth and death process model, rates :» and u respectively, for the

formation and extinctlon of populations, Besides allowing for true extinc-
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: Hon this model may alao give a more realistic distribution [or the times
L pf oplit for a subaet of the degcendants of 2 common ancestor.

: The atandard birth and death process probabilities for the exis-
'tence of n descendants {from 2 single ancestor) after time t are

pn(t) =u({l - E)/(x - uE)

p, () = (- WE/- pE)

gnd  p (t} = (l/ﬂ)n_lpl (t)[pu{t}]n-l for n=2,
pvhere B = exp(-{x - wt),

(3.4, 1)

.- hese probabilities are functions of At and ut only.

I Now the main peintg in the derivation of the likelihoed of 3, 2 are
.:"' the times of split are independent of the form of tree and that, given
.“s each tree form in Hn is eguiprobable., Suppose we deline a 'significant
baplit as one which is finally distinguishable: that is, one that results in
'ﬂescendants of both daughter populations at the final time of observation.
The coneiderations of Harding (1971) show that a necessary and

at whatever times the significant splits occurred,
each did so with equal probability in each population
then existent, regardless of the previous history.

(3.4.2)

ow In a simple birth and death process populations aplit independently
hnd, at any given time, all populations have equal probability of aplitting
P d of having final descendants. Conversely, if populations split inde-
Ppendently of each other, only such a process can give P(F 'g“', n) inde-

| endent of both F and s* Thus for a birth and death process we have

I e required results: an explicit form for P{s*, n, F) is derived below.

Thus, as in (3. 2, 4}, we may write

Gplx,, o’t, at, ut) = P(n|At, pt).
P J @] bt migl , oa%, o, F, n)ds*,
05515,,,-_:3 =t - =0 =

n-2 (3. 4. 3)

As In (3, 2, 5) the complete likelihood for the parameters is the sum of the
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GF over all F in Hn, but again GF may be considered [or the purpose
of making inferences about F. All the parameters (50, ur?t, At and wut)
are identifiable, but it may be that to obtain a likelihood of reasonable
shape some additional constraint (for example A/4 fixed) must be Im-
posed. This is the case for the likelihood pn(t) for at and ut given

n descendants of a gingle ancestor; whereas in the unrestricted case

£ =10 (provided n=0), if A/ is fixed a unimodal likelihood for At

is obtajned. If such a constraint is imposed there are the same number
of independent parameters as before, but the new distribution for the
times may provide substantially better fit,

Thus, using the result (3. 4. 6) below, there is no Intrinsic problem
in generalising the model to a birth and death process. The likelihood
theory remaing the same, However, the functions involved, and hence
the multiple integration of (3. 4. 3), are more complicated in this cage

and no numerical investigations of GF have been attempted,

Theorem. In the previous notation the joint distribution

f(s*, n, F[}, 4, t}dg*

is independent of F (F € Hn} and proportional to
n-2

121 P (8,),

(2.4. )
where s, is the time ago of the (n-1)th pignificant aplit;

0=s

DESIESZE...EB =8 =1,

Notes. (i) The time distribution given by Edwards (1970} for the
speclal case of a Yule proceas (¢ = 0) satisfies the theorem,

i) f(s*(n, F, A, u, ) =1I(s*, n, F|2, p, t)/P(F|nPO|2, 4, O
and P(F|n) = I/IHn[ for all F € Hn‘ Thus the conditional denaity
[(g‘]n, F, X, 4, t) 18 independent of F and is also of the form {3. 4, 4).

{ii1) Adke and Moyal (1963) provide a result similar to (3. 4. 4)
for unlabelled higtorles descended from a single population but no direct
proof is given,
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Proof. First % [k(pn(s})k- 11:!1 (s)pk(t -8)]= P, (t). (2.4.5)
k=1

§ This may elther be proved directly for a birth and death process from

': (3.4.1), or we may see that it must hold for any branching process of
Yindependent increments; for to obtain one descendant at time t there

I must be k descendants at any given tlme (t- 8) [0 < 8< t, some

k = 1], and any one of these k must have one final degscendant, and the
}emaining fkk - 1) lines must be extinct.

Naw define €, = 1 If there Ig a branch of the tree jJoining the

plits at 5 and s, and 1> j (8, 2 sj}, and Eij = 0 otherwise. Con-

i
jsider such a branch of the tree,

1 descendants by time sj with probability

The relevant population at time si will

fresult in ki
P (xexi - sj}.

. i

i0ne of these aplita in time interval &s with probability

k., da.
i]

IThe remaining {kij - 1) must be extinct lines by the time a further inter-
wal Bj hasa elapsed, which occurs with probability

{k”' 1)‘

(p,(8,)

rther for { =0 and 811 =1 we must have kij = 1: these are the
¢8 joining the final splits to the present populations (Fig. 2. 4).

The total probahility ia then the product over all Independent ares.

we I8, ..., 8 ,, N Fla, g, t)
D™ 2/cm) 0 3 k. (s-s) ) ]
=1A 7 . 5. -8 a
e =1k.>0, k=1 ”pkij 1T
i} if io
0=f=(n-2)
1=i=(n-1)

fwhere, as in Edwards (1970}, C(n) is a function of n alone, and is equal

f to the number of distinet labellings of an unlabelled history. Thug from
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- A likelihood solution

.1 INTRODUCTION

. In the previous chapter it was seen how some model for the aplit-
ng of populations, in particular the Yule process, may be included in the
robability model for the data. The purpoge of this is to decrease the

: I mensionality of the estimation problem, and hence, in theory, lo simpli-
by it. In apite of the attraction of a model requiring only three basic
parameters (50, At and Uzt) to describe the course of human evolution
Bt must be accepted that the gplitting model cannot be very realistic.

her, although the dimensionality of the estimation problem is reduced

Fig. 3.4. Evolutionary tree given by a birth and death process
for population formation. Significant splits are de-
notedby @& , and kil =3,

= Dn—z/C(n)]. n [p, (91)/‘131 (s].)]. n [pl(si)]

rom (n+p) to {p + 2), and becomes independent of n, the Yule rodel
eatly increases the complexity of the likelihood function. It also raises
he unresolved problem of Inferences concerning an unobserved discrete

e,.=1 c =1 N

03 i=<(n-2) lmi (-1 andom variable (1,3, 3 2), Even with the extension to the birth and
- j=(n- ={=(p- 3

l=i=(n-1) n-1) Beath process of section 3. 4 the model for splitting times may still be

pnrealistic, particularly in its asgumption that all existent descendants

_ 1,02 :
=" /Cw] N 1 [Pl(ﬂi) », (sj)], where 91(8::) = PI(U) =1, f some common ancestor are to be investigated,

€y = n-1
OHj-ﬂ(n 2) and  C(n)=nl/2" ", Acceptance of a Yule process model does not introduce singularlties
1=1=(n-1) pr other unacceptable properties into the likellhood suriace. However

partly because of the non-validity of the model, partly because of the

Now for each arc (i, j) (Eij =1, 1 =j=(n-2)) there are two arcs erence problems concerning F, but mainly due to purely computational
Q. ml) and (j, m ) (Fig. 3.4). There are algo two arcs ((n-1), j,) Ibroblems, we now drop the Yule model and consider only the multivariate
and {({n-1), jz)- I- ormal likelihood of sectlon 3. 1. Only when this simpler problem is fully

Thus ”51’ teer By o T F |A, K, 1) ' solved will it be possible to see how some model for population splitting
n-1.n-2 (n-2) i may be reasonably incorporated.
=2 "M [pl(t)]2 m  [p, {s.}]/n! (3. 4. 6) d Y ”
=1 1] In thia chapter we therefore construct and investigate a method for

! the likelihood solutlon of the evolutlonary tree problem on the basis of the
' model of section 3.1. Some discussion of the theoretical approach, some
! basic notation and some properties of the [ikelihood surface were given in

which is the required result, #
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that section. As before we have contemporary gene frequency data for n
populations for blood group loci providing p Brownian motion dimensiong.
We consider the data coordinates x as

{Ei’ i=1, ..., nl,

where Ei={x£q), a=1,,.,,p) oras
Jl}_((q), q=1, ..., p}!

where E(q} = (xgq), i=1, ..., n), acolumn vector (3.1).

For given basic parameters :_(D[: {xﬁq), q=1,...,p}] and s
l= (sl, ey sn-l}’ USSI =.,, =
have (3. 1, 3);

s .1] and labelled history F, we

P
2 .
-2 log ]'_,(1(0’ o8, F) =plog|T] + Z (l((q)'xgq)l)”r 1 (x(q)_x'f;lﬂl}’
q=1 - B N
(4.1.1}
where the notation is as previously defined,
There are some preliminary points to be made. Firstly, the
method will be seen to produce a maximum likelihood tree for a glven

labelled history, F. In theory the value of max. [L(x , o’s, F)]
Xpols 0T
should then be compared over all the [(n!(n - 1)1 );-’2“'1] values of F
(2.1) - a clearly impossible task, An idea on golving this problem is
given in section 4, 5 and used in the program that has been developed
{5.1). Secondly, the gene frequency data must be contemporary. To
assign data points to different times on the evolutionary tree creates sin-
gularities in the likelihood. This anomalous situation is congidered in
section 4. 6,

The gene frequencies, which determine the va, are not actual
Population frequencles, but are estimated from population samples, How-
ever, we assume in constructing the model that X, are kmawn population
positions, The inclusion of sampling is considered in section 5. 3 but the
problems are not fully solved. We note that for 2 Brownlan motion model
the likelihood must be independent of the actual coordinate 8ystem in the

p-dimensional Euclidean space, Use is made of this in section 4, 6, but
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':r:until then the x{q) may he taken ag the projected coordinates given in
hapter 2.

. Finally we emphasise again the necessity of drawing a clear dis-
';I-. nction between parameters and random variables, glnce this distinction
s particularly important over the next few sections, Under the present
jnodel X 029 and F are basic parameters and have a likellhood glven
Ihe data X, belng the probability density of the data glven the parameters,
pince there 18 no model for the produciion of populations n ig a chosen
fonstant. The internal nodes of the process have positions which are
handom variables, having a probabillty distribution given the parameters,

_'. a conditional distribution given the data x and the parameters.

.2 NOTATION AND PRELIMINARY FORMULAE

. Before developing the method some new notation muat be intro-
Muced, In place of Sy the time ago of the (n - k)th split, we now con-
hider the kth time interval ago. That is, tk is the time between the

i - k)th split and the (n - k + 1)th., Then t =s and I:i = (s;i - Si-l)
r'ur i=2, ..., (n-1), and t, =0, t[=(t, ..., tn_l)] iga 1-1 trans-
formation of s, and the likelihood is unchanged. To avoid repeated

dbrovisos we asgume tl > 0 and that the populations are dlstinect.

In the new notation,

0 M5 ) e oL
T.=0 f, (3.1.1
Y [k=z{i, j)+1t“ ‘

(4.2.1)

Let the number of populations existing in the kth time interval ago
. then n = (n- k + 1}. Further when the data are contemporary
is non-identifiable, being simply a scale factor for times. Thus we
may take o = 1, and measure time in units of 1/0° generationa, Fin-

ly, for a glven form of tree ¥, define,

H(x, X, t) = (x - xD_l}'T'I(E- x 1), {4.2.2)

0

where T is the covariance matrix defined by ¥ and t, via (4.2, 1),
.' Then rewriting (4,1.1);
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-23()_(0

y £, F1=-2 logL(x .

t, F)

(4.2.3)

plog[T‘+ E H(x(q),xn , th
=1 L

Example of a tree showlng type 0 (bagic) and type 1
internal nodes. n=7, (n-1) = 6, and

T = 3 (n+1}(n-2) = 20,

Topology of tree = ((2 + 1} + 2+ 2)).

Data are X, where x, = (x(q), Q=1,
TREEE té, x, and F.
The additlonal type 0 variables are Yo ¥p ¥

ceen X

The parameters are t

=12’ ylb

and y and the type 1 variableg are all the other y,.

1%’
1=ij=20.
[The ordering of the labels j of vectors y is
immaterial. |

., b

We now Introduce some notation for the internal nodes of the sys-

f Aem. There are (n - 1) actual internal splitting points, which we call

i itype 0' (or basic) nodes. We consider also the 'type 1' internal nades,
*whlch are the positions of the other populations at the instant at which
gome population splits, Therc are 3 ln+ 1)n-2){=r ] internal nodes
fin all, and these are denoted by

( (qQ

.o, PI, ={y; =1, ..., ), (Fis. 4,2),

he total number of variables is of order n’ and if it were necessary to

sider them all this approach would hardly be feasible, tut we shall find

lype 0 need be considcred in computation.
Denote the conditional distribution of {y(Q)} given the data and

he parameters by

f(;|£, 50’ El F} = I(qu); 1=1! =rhy rD, q=1:l 1 p|é 50! E: F)i

Jend the joint distrlbution of x and y by f(x, y_|x0, t, F.

Then L{x , t, F) = b f(x@, t, H=ixlx,t, F)
-_ q_
=f..] ¥

[(é! Ll’_‘nr t, Fldy (4.2.4)

pod 1y |x, x, t, F) =1, ylx, t, PI/AE, t, P (4.2.5)
4 All these distrlbutions are multlvarlate Normal, being independent
fand identical 1n each dimension g, and can thus be specified by the means
lnd covariance matrices. The maximum probability estimates and the
means are ldentical. Further, since the complete joint distritmtion is
proportional to exp(-3Q) where Q is a quadratic form in x,, ¥,

cery ) and x o the meRns are linear In the conditioning variables
Lt m{ CH E(ygq”g(q), xﬁ"), t, F) for i=1, ..., T

.., b, and consider the arcs of the tree crosaing time interval
t

_q =1,

4. Let eyk) =1 if y; ls the position of a population at time .
[ i=1
| 8go and y, is the position of the same population after time interval t.k

f Otherwise let aij(k) = 0, Define
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C{Q) T.5.e (k){ygq} - y§‘”]2, and C, = §c@ (4.2, 6)

iy
and

{Q) =3 3e& (k)[m(q)

p
ES gq]]z, and D= 1 D, @2

Further let

{

qu) =E{c£q};,é, x,t F) and M 5 M(‘” 3. 2. 8)

k g=1
Note that Ck is the 'total (distant:e)2 travelled in time interval tk by all

populations then existent’, and that
ME = 3.3 e, 0EEY - vk, x, 1, P

= Diq} + 7.2 .&..(k) var((y{m

(q) - p@’
254 yy Iz, x;, b, By =Dl

o' — k

Mk 1g the 'mean total divergence' while Dk ig the 'total divergence of the
means’',
Further let z= {gc_:, L] the total set of internal node and population
= (Q), g=1, ..., p), for i=1,
m= rU + n, being ordered in time, Let z; be the immedlate ancestor
of Z; Then 5‘1“ is either some z, with j < i or the parameter X,

Let {zH i=1, » @o-1), 1 = H = m! be the set of type 0 internal

nodes (i=1,

poditions, the vectors (z ..., m and

., n-1) and populations (i=n, ..., 2n-1). Let Ei‘_‘l"‘
i

be the immediate type 0 ancestor of 2z The distrlbution of Zy given

-
i

24* X, X, t and F is independent of all parte of the tree ‘connected’
L=

to Iy only through E;l*. The distribution of each zgl) l& Normal with

1 @D oty @ !
mean linear in Zy ** and x and variance depending only on t and F;
i
say zgll) s N(ai(i)z;?:“ + biQ’ 5@), Vi(t}). {4.2.9)

It zH is some x, (i.e. n=i=(2n-1}}, ai(i) = Vi(_t_) =0,
by(t, x(q)) _x(q}

We now congider each dimenslon separately, and for convenience
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| drop the superscript (q).

Then

b( X, t, F)=E(E(zy lz X, X
1

=a (E}E(z**’ic, X
H,

— 2 *k
(zHi[_Js, X, t, F) = E(E(zy lzﬂ,x,x 5P X X, t, F)

2 2
=V () +a )’ Bl |x, x,, t, F) + b, %)

+ 2a,(t)b(t, E)E(zﬁ:]lc, x,t ),  (4.2.11)

2
T
Ellzy - o) %, x, t, F)

1 = E(V,{t) + (@,®) - Dzgy + b, °[x, x

’ i

= V() + (a,t) - 1)2E(z;;;2 Ix, =
+ 2(a,(t) - Dhy(t, x)E(z""|x x, t, FYbt, x)’. (6.2.12)

o t_) F)

ot

L Explicit recurrence relations for ai(E), bi(‘i, x) and vi(g) are derived
bin section 4. 4, where the above relationships are used to compute Mk
f and D k=1,..., @1)

| 4,2 THE ITERATIVE METHOD
-

We now state and prove the resulis needed t0 construct an iterative
' method, all notation being as previoualy defined.

(n 1)

Theorem 1, H(E(Q), x(OQ), t)y=

(@)
k-—l (D /‘tk) (a.3.1)
 where H is as defined by (4.2.2) and o° = 1.
This theorem is needed to give a simple method of evaluatlng the
' Bupport S, but is not essential for the construction of the method. The

] Proof, which ls lengthy but straightforward, is therefore deferred to the

[ end of the chapter (4. 7).
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(n-1) @
Corollary, —ZS(x,l F) =plog|T| + E ) {Dq/tk)
q=1 k=1
(n-1)

= plog|T| + E (D, /). (8.3.2)

Proof, Rewrlte equation (4, 2. 3) using (4.3. 1) and (4.2. 7). #

Lemma, L(EU’ t, F) ={2ﬂ}_%KIL i IL[ I Ll-tinkp]

(n-1)

exp(-;—.kzlck/tk)dg, (4.3.3)

{n-1)
where K=p 3 0y =

#p(n + 2){n - 1), and integration ls over
k=1
(@)
¥

< ewq=1...,pad i=1,,.,, T

Proof. Let z = {E(q)’ q=1, ..., p] be the total set of node
and population coordinates as defined above,
Then

e, ylx, t, B=telx, t, F)

= r[ f(z' JK 1 -_! F, E[’ 1=1, 4wy {J_l})
=1
m

= [It(z|z,_, F)
j=1

by the independence of the separate arcs and the ordering ol the 2 But
;q) is N(z(q] , j ]) where tj . ia the time length of arc (Ej , Ej)’

and the separate dimenslons q are independent. Thus
1x, ylx, t, F)

m
= 1 [(ent,, )" exp( 5 ( E (z(q) (q))z/t.*.))]

=1 g=1
m
= (29" =K[n (ty)) Plepi-(3 3 (s - z(q)) Ayeg)
=1 g=1
m
But now El is the sum over all arcs of the tree. Hence
ni (n=1)
2[.1= 2 Pl ).

=1 yo A58

Bb

Note that pm = p(n +rn) =K

Further there are n, arcs of the tree having t % Lk Hence, using

(4. 2. 6],
p @De (g
bax, v [x, £, F) = @) ="[ n (t; Pilexpl-3 2 z '
I (202 o =2 P oo ("zn A (4.3.9)
= {27 7| 2 exp{-3 C . L3,
k———ltk ak=1 k tk

IThe result follows from (4,2.4). #

Theorem 2. Fundamental maximisation theorem:

288~ o) - A)EC |X, x L, t, F)

% = P/ - A/ EC s X, 8,
= (np /tf(}[tk - M, /mp]. (4, 3, 5)

i during time Interval Lk’ given the data and the parameters. A form of

(4. 3. 5) holds under a variety of situations (see 5.3, 5. 4).]
Proof. Using (4. 3, 4),

(n-1)
oL, ylx g, b F) o o3y —nkpf'k)[ “l MPlexp(-4 3 ¢ )

=1 !
n. (n-1)
+1(C /HJ nt 3 "]exp(—— 3 c;n)
=1

= mp/2t1(x, ylx;, t, Plc,/mp) - 4]

_QI;'(KG, LF) g, IL[:L:‘ X, L|§D’ t, R ldy from (4.2.4)

= (n,p/2t)f ...
= (/2 [. ..

Iy (G-t K, ylx,t, Pdy
fy:(ck/nkp)r(; lx, 2,0 t, Py -t JLx , ¢, F)

from (4, 2, 4% and (4. 2, 5),
= (nkp/zt_f(}[(Mk/nkp} -t JL(x, t, F) from (4.2.8).

&{log L)

)
-2 = -2 ,——(2/1_.}
3{; _b_l.k_ 6|‘.l
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= (np A - (M, /0 D)]

as required, 7

Lemma., For ea.ch( value of t the maximum likelihood estimate
2 L )y () m-l -1
R(t) of %, isgivenby % (1) = x'Yr LATY, @=1, ..., p),
where 1 is a column vector of ones, (3. 3.6)

Proof. Using the form of § given by (4. 2. 3)

P
—25(1(0, t, =plog |T| + % (E(q) - x(oq}l)'T'l{x(q) - x(ncnl).
q=1 B B -

88 -
Then —2_@ = 2(x$]°-)l - E(q))'T 11 (T is symmetric), and

Oxo
2
-2 65 o+ = 28 {I’Tﬁll), where & =1 if q=q*
éxotquxgq ) a*q- " - q*q
and aq“q =0 otherwise, (4.3, 7)

whence the result follows trivially since T is a positive delinite matrix. #

This lemma and Theorem 2 now give the results needed to con-
struct an iterative method as follows:

(a) Take some initial value of t.

(b) Find EO{E) = }é'T'll/(l'T-i_l) where x' = (xgq)} apxn
matrix,

(c) Find Msz(Cl“__:g', 5,4 F) k=1, ..., (n-1.

(d) Set t;( = Mk/n.kp k=1, ..., (n-1)

(e) Test for convergence of t; [ti - ti] small, i=1, ,,,, (n-1)

® If not converged set tk = tl'( k=1, ..., {n-1)) andGO TO (b

If converged, evaluate the support S(l‘o’ t, F) using (4. 3. 2).
Clearly if thig scheme converges then the converged value is a root of the
equations for a stationary value of S, within the given form F. The
problema of existence, uniqueness and convergence remaln, These are
congidered in section 4. 5.

4,4 COMPUTATIONAL ASPECTS

We consider firat the computational feasiblity of the iterative

&8

method constructed above, We shall require the formulae of 4.2 and 4. 2

« and the matrix formulae given in gection 4. 7. To minimise computing
§ requirements we wish only to cons!der type 0 nodes. Suppose [1irst that
for some given t J‘qu}(g), qa=1, ..., p, and also the functions

-31(9’ bi(E, )_K(q}) fa=1, ..., p) and Vi(l), i=1, ..., (n-1}), glving
f.the relationships (4. 2. 9) between type 0 nodes, are known. Then working
t'r:lo\w'n the tree {rom root to populations E{zgli} |§, X, t, F) (a=1,...,p)
,a.nd EIE(ZEI_“";» X, t,F), (i=1, ..., (n-1)), may be found using
2. 2.0) and (4. 2.11).
] Now define the 'level’ of a node to be the number of time intervals
thack from the pregent at which it occurs, Time interval tk covers the
me from level k tolevel (k- 1), Suppose that on a given arc the

[ (type 1 or type 0) nodes at levels (k- 1) and k are L2 and E;’ and

at the type 0 nodes at the ends of this arc are 2z, and Ei“ (Fig. 4. 4(a)).

i
T
z¥ !
]
h
z. h
]
X
2
%
Fig. 4.4(a). The elimination of type 1 nodes; [or details see text.

} Thus Zj, z3* are actual splitting polnts with level (z2*) =k and level
| (51) = (k - 1). Let the time intervals be as shown in Fig. 4. 4(a). [If 2
18 type 0, z_j =2, and r, = 0. I E; is type 0, E; Egi** and r = 0.
Also i is some HI' t =1 =2n- 1.1 Then, again considering each
dimension separately and dropping the supergcript (q),
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z*
f(z] 'zl, z1 » Ts oy

o expl-z ({(z}* - zi‘*)z/:r1 * (2 - z;')z/h+ (z, - zj)’/rz)]. (4.4.1)

Hence (z]., zJ?‘) iz bivariate Normal given (zi, z;*) and

h)

E(l(zj - Z‘T)Jzi’ z;‘", r, T, h) = h(zl- zi‘**)/{r1+r2+h), {4. 4. 2)

Y o -
var((zj zj)lzi, ZF% 1, T, h)—h(r1 +r2)/(r1+r2+h}. (4. 4. 3)

Thus
Bz, - 21)°x, X, t, F)
= BE((z;-z1)’ |z, 2%, r, b, 5, x, t, Plx, x, t, F)
=hir +r )/ +r )b/ 4T PR 230 X, X ¢t B
(4.4, 9)
Then M, = qlél Ej at level (k - 1) E((z{q} B zgq}*)z 'J‘t” Xy Lo F), and

usmg (4,2.12) and (4, 4. 4) M, may be rapldly computed from

E E(z{q)2|x x, t, F) and E(z“"lx X b P =1, .., p), i
1

(t) bytt, x¥) @=1, ..., p) and V,(t) areknown (1 =1, ..., (a-1)
To find these functiona consider the subiree with root at ¥; and
suppose that Xj is the immediate type 0 ancestor of ¥4 (Fig. 4. 4(b)).

W.Lo.g. = EHi and Ij = Eﬁ: for gome i, 1 =i = (n-1), the ordering
of the labels I of vectors ¥ being lmmaterial (4. 2), Then for each q,
with the notation of Fig. 4. 4(b),

f(){q)ly(q)g _a ED’ it} F)

o expl - —((y(“’ v m+ @@ y@rys @ )
e« exp|- —(y(‘"‘*(l's;lyl/h)-2y§q’(y§“)/h+§‘q"s;‘ ml, (445

where 1 is the column vector of r ones, S, the r X r covarlance

i
matrix for the subtree, and x(q} the r-dimensional aubtree posaition

vector,
Hence if Uy(t) = 1/(1 + h1'S]'1),

0

-— E(q)__,..

Fig. 4.4(b). The derivation of the iterative formulae; for further
detalla gee text. Si js the * by r covariance

matrix af the r-population subtree with root at ¥y
and Yj 18 the immediate type 0 ancestor of ¥y

X ig here the set of position vectors for the r

(@)

populations of the subtree; x = {x'", g=1,..., PJ
and x¥ = (x(q) el xf_q)}‘

V,(t) = hUD), a(0)=T,(t) and byit, D) =v oV,

by comparison of the form (4. 4. 5) with that of (4.2.9). But the covariance
mafirix for the deacendants of ¥ ia of the form;

R, + tl 0
1= (4.4, &)

-
0 Ri‘+t1=

2o
i

where Rl and R;‘ are the covarlance matrices for the subtrees having
ag roota the two immediate (type 0 or population) descendants of ¥y t

and t* are the tlme Intervals between ¥ and these two nodes, and L
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1s a matrix of ones of appropriate size. [The covariance matrix for a
‘tree' whose root Is its single population is the single element (0).] Then
uging the matrix formulae {4. 7, 10) and (4, 7. 11) we can work up the tree
from populations to root evaluating, in the above notation, 1'S. 11 and
{Pg7*1, and hence Ut), a(t), V,(t) and by(t, xV) sor each type 0
node, This procedure gives also 30@ i, F) and, U required, [T,
Then working down the tree we may [ind Mk a8 described above, and
hence iterate for the times,

To compute the final support, S, we make use of (4, 3. 2);

{n-1)
-28(x,; £, F)=plog e RGN

Alternatively Felgensatein's (1973) method may be used to evaluate S, but
since the mean poaitions of type 0 internal nodes have already been [ound
Dk may be rapidly computed from (4. 4, 2) and (4,2.7), and |T| may be
computed iteratively from (4. 7. 8) and (4. 7. 11}, Thus usge of {4. 3, 2)

is more efficient ip this case, Thus we see that, provided convergence is
agsured, the iterative method is computationally feasible. No matrix
inversion or direct determinant evaluation is ever required. Evaluation
of § at points in the neighbourhood of the maximum enablea estimates of
the curvature, and hence local two-unit support limits, to be made.

4,5 THEORETICAL ASPECTS OF THE ITERATIVE METHOD

We consider now the exlstence and uniqueness of stationary points
of {4,1.1), and the convergence of the iterative procedure of 4. 3. From
(3. 1.1),

P
28k, t, F)=plog |T| + § @ - x@r 1@ . x4y
g 1" 0 - X 0~

n-1
=plog |T| +k£1 D, (x, x,, t, F)A, (irom (4.5.2)),

and from (4. 3. 6) the ML estimate (t), 1mpllc1t1y a function also of x

and F is (x t, F) = {(x(q)'T_ll)/(l'T 1), g =1, ..., p). Thus the
maximum relative support (MRS) satlsfles
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I'F. Hence also Dp k=1, ...

-28%(t, F) = -28(% (x, t, F) t, F)

(@,p-1,44) (x@"r" /0T )] (4.5.1)

=plog [T| + E [x T x
q=1
n-
=plog |T| + z [Df/t) from (4.3.2), (4, 5. 2)
k=1
[ where D} = D (x % (x t, B, t, F).

For gwen data xu(1 t, F) is bounded as t varies, and for each
, {n-1)) are bounded (see (4. 2. Mk

45 of order t, but is bounded as a function of any one component of t,

M =M (8, R (5, 8 ), L, P

.'1 (1) The boundary conditions and the second derivatives

Unless the support surface is well-behaved at the boundaries of

-the parameter space, no likelihood infercnces will he possible, The

..support function is quadratic In X " the matrix S being positive
| definite; it ig sufficlent to consider the MRS, From (4. 3. 5), the solu-

I- tlons to the set of equations

tk=Mﬁ/rLJ(p’ k=1, ..., (n-1) (4.5, 3)

b with tk > ¢ are stationary points of (4. 5. 1) and the values of ! at

} statlonary points of (4.1, 1),

ﬂ *
fk |x =% (1) since —T_)q |x =% (t) 0.]

ti = 0 is always, for 1+ 1, a root of t1l = M;’/nip, but not

; - 2
necessarily ol -g-?-— = -n.p(t. - M."/n.p}/zt. = 0.
i

Further t

n
-3 Ix, - %[|* /np, where X = ( 2 "1}/“' and t, =0
=1 ~
tor 1# 1, provides a golution of (4.5. 3), which thus always has at least

. one solution. Again thls gelution nced not be a gtationary point of {4.5.1);

this can only be positively agserted if t > 0 for all i. Differentiating

{4, 5. 1) the equations —aﬁt—— 0 may be expressed ag polynomial equations

in any glven t.k (the other ti remaining tixed), the maximal degree of
the polynomials depending only of n, There can thus, for each Kk, be at
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most a fixed finite number of roats of (4. 5, 3), and, since no degeneracy
can occur, only a Iinite number of local maxima of S*.
Further, as any subset of the ti ~w |T| = while D" con-

|
verges to a finite limit. Thus S* = .« Thusg algo, since —=10 only

"tk
finitely often, -2 6t‘k > 0 for sufficlently large " {for each Kk, the other
ti remaining fixed), or tk > M*/hkp for all sufficiently large tk (3.5.4)
As t =0 tog|T| *logt and D*/t =g Hx ) 12 /t, where
(i, J) =1 [that ig, X a.nd :-:j are the populatlons w1th splitting time &

1!
see (2.1.1)], thus -28* == and S* ~»_= from {(3.5.2). As any set of
t =0, (+1), [T| converges to a finite non-zero limit, DI‘ is of order
tf, and S* converges to a flnite 1imit,
From (4. 2, 5) and (&, 3. 7) we have

P
-28 = plog|T| + E(J_r(c” @ 1T (x(q) )

q=t
85 (@ @)\, 1
-2 = 2 Vo Wy ly —= 2\[t, -
@ BT DL -2 = P/t - My /np]
and |
88 = 2(I'T'1)8_,  (a posilive definite (4
T, @ - 2l 1 ogitive defini 5.5
bx a 6x a 9*q diagonal matrix). }
Uauang the 1ntegra1 expression (4, 3. 3) {or L{x, t, F), and
(i) (2/L} for any parameter 8,
2 2
N . 65 _ 8L 5L 5 L
(ii) Zm ={2/L )[69 5¢] (Z;’L][m] for any 4, ¢.

2
6°L
~{2 /L) 5666 at any atationary point,

(iii) tk = Mk/nkp

at any stationary point.

) L. [ MDA, v lx, ¢, Fidy
=L, t, PE(K(g)|x, x,t, F) (see(4.2.5)
we lind that, at any statmnary point (x , 1),
5 88 (@ , (@ 2
E@o_tk -2leov((y\? + y'¥), f )/tn-ltk]’iu (4. 5. 6)
¢ X

where ¥, and ¥, are the immediate dcacendants of X, at level {(n - 2),

and
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i:lwhere all expectations are w.r.t. the conditional distribution glven x
and the parameters,

For n =3 it may be shown directly that the matrix of second
fderivatives of -28 is positive definite at any stationary point, and hence,
s 18 already known, that any statlonary point is a local maximum of the
I. pport function, and hence unique., The covariances are not zero at the
tationary points, and in general it may not be true that all astationary

Ipoints are local maxima,

u(il) Exigtence of internal roots ﬁ 0 for 21l 1) and change of tree

form

We have seen (3, 3(ii}) that f[or n — 3 there are cases when there
: is no tree form with 2 maximum in t2 = 0, and that this may occur over a
Ilarge range ol population positions in cases that are In no way pathological,
IThus it may be that [or every F the iree of maximum support may be non-
‘bifurcating, Alternatively there may be several trce forms with maxima
'!i.n ti > 0 for all i. We know that for n =2 this cannot occur, and
f further that, if it exista, the ML tree form 18 the unigquc form having an
internal root, We would like to asgert some general hypothesis along
[ these lines but this does not seem to bc possible, However a tree form
F with zero ML estimate, ‘Ek’ must have a support no greater than that of
¢ any tree form obtained by changing the labelled history about interval
; tk’ since the two forms have equal support at tk = 0. The suvpport for
the new form wlll be strictly greater if this form has an internal maxi-
 mum, This provides a criterion for change of tree form,

The iteratlve method so far presented gives only a method of
[inding the ML estimates of t and X, within any given F. U for some
given F "k converges to zero, we will obtain a tree ol at least as great
a gsupport by changing the tree form about tk’ and continuing iteration
with this new form, Thus the problem of which tree forma should be con-
sidered reduces to finding an initial tree at which to start iteration.

There are two cases of 'changing the form about interval ti(, one of which

Involves the testing of two alternative forms (Fig. 4. 5(a))., Iteration is
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Becomes

Fig. 4.5(a). The posaible changes of tree form about tk when
?'k = 0. (i) Change of history only. (11} Change
of topology.

continued until either we have an F with an internal maximum, or until
no changes about any zera tk produces an Increase in support, the alter-
natives also having t_= o,

If there are many tree forms with Internal maxima we may cease
iteration before reaching the ML form, This may also occur il there is
a local maximum for which ?'k = 0 for a tree and all its immediate alter-
natlves, although some other change through two steps may improve the
support, In practice we may investigate whether such local maxima exist
by astarting iteration from different F. 1n {act at most one form with an
interpal maximum has been found for any one data get, and more often,
for large n, there i5 no such form and the relevant time intervals con-
verge to zero Irom any chosen starting point.

Although we aften obtain a non-bifurcating tree it 18 often only the
root that {8 non-bifurcating (see the examples of 5.1), Felsenastein (1973)
has suggested that the tendency of the MRL to produce non-bifurcating
roots is an indication that the MRL is Inappropriate. However it is not
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) true that a non-bilurcating tree is always produced

Lemma. Forall n there exist (x,, ..., _Xn), points in some
Fuclidean space {of dimension (n - 1)) such that the ML tree has T:1 > 0,

bi=1, ..., (11-1).

_ Proaf. Note that although if p < (n-1) not all possible Euclidean
patterns of population distances are obtainable, ML estimates of the times
depend only on the pairwise population distances divided by p. The result

g independent of p.
The result holds for n = 3; suppose true alsofor n=r - 1, the

en the r population tree with Z{r-1, r} =1 has time estimates t¥ with

ItT _‘ti_ll <5 i=2, ..., (1)

t{) 0 il J_tr#)_:r_l.

| The smallest ti* may then be made as large as we please by scaling the

[ population digstances, and by induction the result ig proved. #

We have a bifurcating root an—l > 0) provided the populations
fall ‘gufficiently’ into two groups, where precise but not very meaningful
B formulae may be given for 'sufficiently’.

A further conjecture is more interesting; namely that for all
! tl, . tn—l (ti non-negative) there exist Xioooes X and F such that
| t 1a the ML time estimate for x and F. This conjecture has not been
! rigorously proved, but it seemﬂ_tha.t, at least provided p = (n-1), we

' have sufficient freedom to obtain any required pattern of covariances.

(11} Unimodality and convergence of the iterative method
A more serious problem, from the point of view of likelihood

Inference, than the possible non-exiatence of tree forms with Internal
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maxima, 1s the possibility of the exlstence of more than one stationary
peint within any one tree form. All gtationary points of (4. 1. 1) are

., P) (4.3), but 8*(t, F) may have
For a unique maximum we reguire that
the implicit equations (4. 5, 2) have at most one strictly positive root

maxima w, r. t, xf}q) (@=1,
stationary points of any type.

The question of convergence of the iterative method is closely
connected with that of the existence of a unique maximum. The iterative
method sets L’k = M;‘l/nkp (see 4, 3} and thus

255 = (RP/t - )

(4.5.8)

or
~ 38 *

S
The method thus causes the estimate of t to ‘climbthe support surface’,
and we may expect convergence to a local maximum, although this is not
theoretically necessary. (The estimate could oscillate indefinitely, }
Local maxima are the only stable points of convergence of the iterative
method; minima and saddle points are unstable,

Note that we have

b e

whereas, in standard notation, Newton-Raphson iteration would give
n-1 2
8 g* ki 88*
bt 2 T
=1 ot 3

From the second derivatives of 8 ({4, 5, 5)-{4. 5. 7)) we may obtain the
matrix of second derivatives ol S*, and we see that the lterative pro-
cedure corresponds to the inverse of the [irst term ol the diagonal com-
ponents of the matrix. Were it computationally [eagible Newton-Raphson
iteration would converge to any statlonary point. Qur procedure converges
only to maxima: It has a larger range of convergence but is of only first

order.

The function 8* hag precisely one maximum along any ray

fet*; ¢ =0, t* rixed). (4.5.9)
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-:]ror Dk and gn(é, t, F) depend only on relative times, and from (4.5.2)

Di(x, ct* F)=Dgix, t*, F)

n.nd

1 n-1

-28*(ct*, F)=nplogec +p log|T| + (1/¢) Zlni/t{é ,
t e

where T and D# are evaluated at x, t*, F.
We may further consider the support as some tk varieg, the other

remaining fixed. For a stationary point w.T. t, tk We Tefuire

{4.5.1D)

i3
255 = (A - Mi/mp) = 0
b+ 1s an increasing function of t,, and M#/np < t_ for all sufficiently
prge tl-: {see (4.5.4)).

2 3 .
= ind dent

As t =0, My = pn t + a b + O(Lk) where a, is independen
tk’ (k # 1). Further from the definition of Mk (4. 2. B), and using
khe consideratlons of 4. 4, it may be shown that ME has at moat one point
b 1nflection for varying tk We thus have two possible cases (Fig. 4. 5(b}),
land there ig at most one positlve roct of (4, 5. 10},

a = 11lm (Mk nkptk)/tk] = lim (2 tl-:
b0 b0

Ay > 0 there ig a unigue roct tk Since M* > tknkp only if tk< tk
tk gives a maximum of S* (gee {4.5,10)), I ak< 0 there is no root
fof (4.5.10) tn t, > 0,
' For k=1, M,
) there is always one root of {4, 5,10} in t, > 0.

) Thus S* is unimodal in each t, and together with (4. 5. 9) this
! gives a clear idea of the possible support surfaces. Although for n=3
| we have overall unimodality, there seems to be no reagon why in general

*%Ilgl-gjllz as t =0, where 1(i, §) =1, and

! we should not have a gupport surface of the form shown In Fig. 4. 5{(c).
We return now to the problem of convergence. We see from

;‘ Flg. 4, 5(b) that, considering iteration only in the kth dimension, we have
convergence to ti, or to zero if no such LE exists, This ensures mono-
tone convergence in the general iteration in regions in which the sets

where S* is greater than some given constant are convex, but not neces-
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1g a saddle point,

1 garily in general, Thus although In practice we always have rapid con-
'."vergence to a local maximum, we cannot assert that this is the only one

|.or that convergence will always be obtalned, We note [inally that when

[ a < 0 convergence Is very slow, the difference between successive

iteratives being af order ti OQften when it is seen that some tk is con-
e —— :
' verging to 2zero it 1s more efficlent to test immediately whether tk =40

Fig. 4.5(b). The two possible forms of M;/np as a function . Bives higher suppart.

of tk’ showing iteration for the root of the equation

b = My /mp.

' 4,6 FURTHER ASPECTS OF THE LIKELIHOOD SOLUTION

" (1) Strplification of the projected coordinates
The functions of the gene frequencies that are assumed to undergo

Brownian motion are, for locus 1 having k, alleles, any (ki - 1) ortho-

i
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gonal coordinates in the projected space (2. 3), The overall space has
8

dimension p= Z (k, - 1). This approximation is valid provided that,
24

for the loci in question, the major cause ol observed gene frequency
differentiation is r. g.d.; the problem of sampling remains to be con-
pidered. We require also that population sizea are approximately equal

at any one time, that all allele frequencies lle between 0. 05 and 0. 95 and
n-1

that 3 ti/Ne = 0.1, where ti are now measured in generations, Under
i=1

these restrictions digcussed in Chapter 2 we may hope to make valid in-
ferences about the form of evolutionary tree.

It complicates the problem unnecessarily to take as the data vari-
ables the actual chaerved projected coordinates, Brownlan motlon is
independent of the particular coordinate system chosen, and the likelihood
depends only on population diastances, Including distances from x o Thus
if, as 1s olten the case, (n-1) < p, the number of variables which must
be considered may be reduced by embedding the projected space population
distances in a Euclidean space of {n - 1) dimensions, as 18 done for the
heuristic ME solution {Cavalli-Sforza and Edwards (1967)). This embed-
ding is equivalent to a rotation and translation of the projected apace in
which all the coordinates

xgq) for 1=i=<n, and n=xq=p

have become zero. Then i‘cf]q} =0 for n=q = p, and the mean internal
node positions, also lle in this subspace, The dimenaion of the motion

is still p; thus embedding need not be rejected, as it 1a by Malyutov et al,
(1972), on the grounds that it reduces the Brownian motion dimension, The
last (p - n + 1} dimensions can be ignored in computation of mean posi-
tions, hut still contribute to the variance terms ln Mk' In programming
there need now be no restriction on p, since the number of variables

that must be retained is independent of p,

fi1) Singularities and past data

Lemma, For contemporary populations the covariance matrix T
is non-singular if and only if t1 >

82

Proaf. Let the two major subtrees of the tree with matrix T

_have covarlance maltrices S1 and S? and let t and t* be the tlmes
from x_ to the two immediate type 0 descendants of X Suppose that
' -0
8 and L-“._‘P are posgitive definite. Then {from {4,4.06)
1

8 +tl 0
1 =

+ t*
] S2 tll_z

"and from (4. 7. 8)

-1 —lqy
= ' 18T ) > 0,
|| l_sll.lszl.u +EUS (L + S ) > 0

Thus, since T is a covariance matrix, T is posltive definite. Con-

I versely suppose that t1 =0, and let x, and x, be the two populations

B,

 with (i, ) =1. Then cov{xiq), x]{rq};= cov(xj (q)’ xgq}') for all r#i,j,
- and var(x(iq)} = va.r(xgq)) = cov(xgq‘}, xgq)) = :i_lz(tk), for each q, [rom

' {4.2.1). Thus T is singular having two identical rows. #

The restriction t1 > 0 places no restriction on the iterative

' method. I two populations have identical coordinates they should be

considered as a gingle population, Under any other circumstances we
ghall never reach an estlmate t1 =1, since as t 0, §—+-; the
gupport surface has no positive infinities.

However i the data are not contemporary, the evolution of some
population(s) does not span t . If the data are at known times 1;1 the past
we have an absolute scale of time, for example in years, and ¢° 18 no
longer a scale factor. Time intervals, tk, and divergences, Dk’ may be
deflned ag before, but with additional Intervals known in terms of the
{n - 1) splitting intervals being given by the non-contemporary populatlon
points, The form of T wmay be readily modified and (4, 3, 2) remains
true. Replactng t by o°t n (4. 3.2) we have 8° = (L/np)Z, (D, /),
and we consider the MRS

-28%(x,, 0, t, F)=plog T| + nplog(, D, (& X, ¢, I/t ) + constant. (4.6.1)

I o is known, or if we have information on the times of past data only

in terms of 0'2, the support function is of the same form as before;
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-28(x, t, F) =plog|T! + 3, (D tx, x , ¥, FIA), [o° =1). (4.6.2)

In either case suppose that it is either possible or given that there
18 some data point strictly previous to all the others, say Xo and con-
gider the situation when the time previous to X, becomes zero; t1 =
T X

. 0
for all i> i say, and z t, = 'timeago of x '. Provided x_=x
=1 ~r =g -r’

: 2
Di is G(ti) as ti =+ 0 for each {> 10, and Di/ti-*[l;
2, D/t -1{21 (D,/t.); a finite lmit,
o

But if X has zero evolutionary time from x ,
- -0

(9)
var(xrq 1=0= cov(xiqj, xgq)} foreach J#r and q=1, .,. , o,

and log!T| = - = S(_xn, t, F) and S*ch, &2, £, F) =+, We have
infinite gupport (or the hypothesis that the point of origin ig the position
and tlme of the earliest data population, which is an unreagonable pro-
position.

If there are two or more distinct populations {xr, =1, ..., w

2=w<n
gay) at the most previous time point we do not have an infinite singularity.

Suppose .‘!{r1 ) rz) =r> io’ and that the populations are distinct. As

ti =0 forall i> iu’ we have as above log]TI =+ -=, being of order of,

at worst, w log{t)), but D, = "-)51:'1'30“2 + "’—‘r -Ennzz% nzr X, 2.
Thus Ek(Dk/tk) 1s of order 1/, and Sz(_)_cu, t, F)— -L. :
AlBo S*(x , 82,1, Fy=-= (n> w)[6 = +u),

Thug, provided the order of magnitude of o is known, it should

be posaible to estimate an evolutionary tree, [If there is no prior informa-

tion at all on either o’ or the times of ancegtral nodes we may have the

further anomaly of maximal, although not infinite, support for a tree of

‘almost zero' divergence rate, with roots *almost infinitely’ Jong ago. ]
The problem of non-contemporary data does not arise when trees

are to be constructed on the basis of blood group frequencies, as there

i no posgibility of having such data for past times, However, this prob-

lem of the singularities which arise as goon as past data are admitted

ig an interesting likelihood problem, which could artse in practice for

B4

: trees based upon anthropometric data. [Although a Normal model may

not be valid for anthropometric data, the same problem arises with any

~atmilar diffusion madel, ] Tt also raises the problem of what is meant

by contemporary. Although our acceptance of present-day populations
ad contemporary scems justiflable, in fact gene frequencies are not
measgured at precisely the same Instant, and may be as much as a genera-

- tion old,

: (1if) The use of prior information

Prior information on either tree form or times of split may in

] theory be included by means of a prior likelihood (1. 3); but this may
' cause problems In the iterative method. Let the prior support for F
- and t be log g(F) and log h{{)} respectively.

Then the net support satisfies

-28(x , o, t, F) = -2 log hit) - 2 log g(F)
- - - n-1
+ploglo®T| + I (O /). (46,3
k=1

The prior support [or F enters only into the comparigon of different
tree forms, and so doea not affect the iterative method explicitly. How-
ever there may now be discontinuities in the support at points of change
of form (tk = 0). This I8 intuitlvely undesirable, and complicates the
criteria for chapge of form. Any large variation in g(F}, over F, is
likely to dominate over any presently available genetic support,

Unless h(ii) 1s 2 homogeneous function of degree 0 in t, or is
a function of az_t_, 7% is no longer a scale factor. There may often be
a cage [¢r introducing some gupport function for relative times; this may
be a better way of incorporating desirable restrictlions on splitting time
intervalg than the incluslon of a probablilty model for population gplitting.
I h{t) {8 only a function of relative timea, or of imes relative to oz,
the iterative procedure may be adapted. At any stationary point we now
have

Bhit)
= (l/nkp)[Mk(:;_, i‘cng, t, P, t, F) + 2E(tk/h@]’

where ig(é’ t, F) is unchanged by the inclusion of h{t ).
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Thus the lterative procedure may be modified to

t = (L/np) Mz + z{T‘;— EmeN]  [ef. 4.3],

At each gtage tk will be changed in the direction of increasing support
{cf. (4,5.8)). Provided h is a suitable function we should in practice
obtain convergence to a local maximum, although the form of h may now

cause there to be geveral of these.

4,7 APPENDICES TO CHAPTER 4

Appendix 1. Proof of Theorem 1 of gection 4. 3.
n-1
Theorem. H{x, x , t} = k}=:1 O ) 3.7.1)

where H i8 deflned by (4, 2. 1) and (4. 2. 2) and Dy by (4, 2. 7), being the
value given by a dingle dimension of the tree, with population positlons x.

Prool. We proceed by induction, so note flrst that the result is
trivially true for a tree of two populations;

oo tl 0

0 t1

We agsume that the result iag true for each of the two major subtrees Q
and Q ofatree P. Let Q [9 ] have covarlance matrix § [R], root
z [z ], populations x (1 }[5(2)] and time intervals g(r| (Fig. 4.7(a)). The
combined tree P has root X populations x L =(§(U' _( )], and
tlme intervals {.

Let H(P) be the value of H for atree P, and F(P) be the form
of P,

e e the value o given , OF x, X, t an
Let D, (P) be the valve of D, givenby P X, X, t and

F(P), and D (P)| be D (P) modified by the restriction that the sum
=
ig only over those arce of P in 91. V4

First we require two lemmas,

Lemma 1, Let ml(Ql) = E(yil)_zu), 2., 8, F(gl)) and
mi(g} = E(yi|§, X, t, F(g)), where ¥, is any internal node of 91.
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Fig. 4. 7(a). Division of the one-dimensional tree P into its two
major subtreea Q and 92, as required 1n the proof

of Theorem 1.

Thenif z = IEI(Z1 |1(, L t, F(P)), where Z1 denotes the ran-

dom variable of the position of the root of Q  under tree P,
m@Q ) = m,(P) (8.7.2)
with an equivalent result [or the nodes of 9?.

Proof of Lemma l. If x, t and F(P) are given, so automati-
cally are x( ), s and F(Q }. The result then follows immediately from
the linearity of m, in the conditioning variables (see 4, 2};

m,(P) = E(y |x, x , t, F(P)

= E(E(Yilz(l), FQ), s)lx, x,, t, F®)

1!
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- ek P, 9z +k &Y, 8)lx, x, b, FED

=k E@Z |x x,t, F@) +k,

= mi(91) for the given z . V4

Lemma 2, 'Type 1 nodes may be ingerted at any point’ or: 1
y:l“ and y; are the positions of a population before and after time inter-
val s, and z is the mean position, given (yi“, yi}, of the population

k
at a time h from the beginning of the interval (see Fig. 4. 7(b)),

(y; - yi‘)z,/sk =y} - 2)% /b + ¥, - Z)zf(sk - h). {4.7. 3}
vi
h
h
z
Sk
(sk-h)
¥y

Flg. 4. 7(b). Division of an arc of the tree, as required in the
proof of Lemma 2,

Proof of emma 2. 1z = (yi*(sk -hy + Yih)/sk.

Clearly the result follows.

Corollary to the two lemmas. I z = E(Z, |x, x» t, F(P),

1

1,0,Q)/8)=1 j(nj(g)lglnj). (4.7.4)
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Proof, Using Lermmma 2 to ingert type 1 nodes in _Q1 at the points
in time at which there are splits in Q2 (Flg. 4.7(a)), and Lemma 1 to

| ensure no change in mean population poeitions, for each j,

D,(Q)/8; = ) ;zA _(D"@) [Qlftk)’

where Aj 1s the set of k for which tlme interval tk of P is part of
interval sj of 91.
Thus

IDy@) 8 =2y 2 FD“(P”_Ql ) = zkuak@)lg!1 R
]

We return now to the proof of the maln theorem: as in (4, 4. 6)
§+tl 0
0 R+t*1

where _11 is a square matrix of ones of appropriate gize, and t and t*
are as shown in Fig, 4, 7{a). U (_Qi consists of only one population 8§
{or R) is the single element {0). Suppose for the moment that this is not
the case. Then r and s, are strictly pogitive and R and S are non-
singular (see 4, 6(ii})).

Let w=1+11'S"'] and w* =1+ t*I'R™'1, where 1 is a column
vector of ones ol appropriate length,

From the matrix formula (4, 7, 9};
et _
HF)=(x-x I)'T (x-x1)

= (1_{(1) _ xol)v[s"l _ (ts_l}_l.s-l)/W](E(l) - xnl}

+ @ ox DR - R 1R )@ - x 1)

= Gl + GZ 83y, {4. 7. 5)
But r(zll:_c, X, t, F(®)
= exp[-3((2, - x )2+ ¢V -z 15D -2 )

and thus U z = E(lelj, X t, F(PY
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2, -xpt=18"a -2 1), (4.7.6)

Then

G =(x (1)-2 1+(z -x )1)'(S (S‘111'5'1)/w)(§(1)-zll+(zl—xn)1)

1
( )., s {xm - D

-z, 1’87 1)’
{1 ) ' 2,0, -1
+2(x -z 1)'8 yzl-xn)/w + 2 -x ) ('8 "1)/w
=H@)) + ((zl—xo)z/tw)[-l +2 + t1's™'1] (using (4. 7. 6Y),
2
= + -
HQ) + =z - x )" M
The requirement that 91 does not consist of only one population may
now be dropped, since in thig case

zZ =X, where x ia the population poaition,

and

G, = (x - x,)’ /A, where t is the total time of P,
and we may take H(Ql} = (, Then from (4, 7, 5)

HP) = H@) + HQ,) + (z, - x )/t + (z, - x )" /t*
provided z, = E(Zil)_(, Xt F(P))
= 3,(0,(Q,)/8) + 2D,(Q )/r)) + (2, -x )/t + (2,-x ) >
by the Inductive hypothesls
=3 (Dk(P)IQ /6) + zk(Dk(mIQ /)
+ (z -x ) /t+ (z -x ) /A*  (from (3. 7. 4))

= Zka(g)/tk on agaln using Lemma 2 to insert a type 1
node on arc (xn, z,) attime t from x,
(w.lLo.g. t*>t). (4. 7.7)

Since all trees have some two population subtree, the required regult is
proved by induction.
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ppendix 2. Some standard matrix {ormulae.

_ The following results are used repeatedly in proving the resulta
|.of Chapter 4, and are given here for reference. They may all be verilied
;d]rectly

Supposge that 8 and R are positive definite symmetric square
Lpatrices of ranks n and nz, Let 1 and 1
fasnote the square matrix and column vector of ones, of any appropriate

' ) ang
MOEN

-

= +
and that n n1 n2

ize, and ' denote the transpose of a vector or matrix, Let x
L (2) be any column vectors of lengths n, and D, and x' = (x
Let

S+t a
8=

0 R+tré

here ts’ tr are any given non-negative scalars., Then

IT| = s+t LI[R+t 1] =[s][RIQ+¢ 1'§ DL+t IR7'D), (4.7.8)

-1
1 (S +t.1) 0
0 R+t1)"
{ -1 =17 111 ra-1
_ [ ST/ 1S ) 0
0 Rt RTTUTR /A4 1R
4.7.9
Hence
o1 =g v s
+ xR0+ R (4.7.10)

DT =18 1AL+ £ 1871 + IR7 1AL+t VR (4. 7.11)

I' [Ift R (and/or §) conslsts of the single element (h), (h=10 and tr > 0,
R+ t,L isthe single element t +h. [The case h =0 is required in
4.4and h> 0 in5 3.] The relevant terms In R in (4.7.8), (4.7.10)
and (4, 7,11) reduce simply to (h + tr}, x(z}/(h + tr) and 1/(h + t}
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respectively, giving the initial terms in the iteration up the tree des-
cribed in 4. 4. ]
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- Further aspects of the problem
and its likelihood solution

The program MAXTREE finds the maximum likelihood tree for a

ldven set of data, using the principlea lald down in the previous chapter,

hns been extensively tested on hypothetical data and on two main sets

: actual data, The first of these is a get of data on nine Aslan and

section, A detailed description of the current form and perfor mance of

dhe MAXTREE program is provided, in order to demonstrate how the

The pregram was first developed for the Cambridge Titan com-
1puter {an extengively modified Atlas I type computer) with an access time

'Ii! 5 microgeconds and 48 bit words (instructions). The program conaists

*"the length of Felsenstein's evaluation program and subatantially shorter

- than the most recent (and shortest) version of Edwards' minimum evolu-
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http:tnl.tl.al

{

}

Read in population gene frequencies.

Find population distances and

Read in already

processed population

OR
coordlnates. Find Brownian motion | = | coordinates and
dimensicn dimensions
Read in TH and iteration constant HD Read in some
i2ad in Jn ard pereen & T =—="]
H=0 cr | 1H =12 given tnittal

tree form and

times

-H—{_The initial tree is cm-nplete!l—

Iterate for the maximum likelihood
time Interval estimates, uslng
subroutine EVALXSU as described
previously, When converged
CONTINUE

If any such change
of tree form increases

the support

¥

Find the closest roots of tree
sections a8 yet unjoined. Joln

these and change matricea

gpecifying [ortn, unjolned
roots etc,

Test whether ti> 0,

foreach i, 1 =i =KK m—>—

Make initial estimates of
the KKih time Interval,

Y

for b, ..., tpqe | use

estimates obtained at the

If not fully converged

1

previous cycle

CALL EVALXSU (T); evaluates the
functions requirced to find Ml:;
that is, in the notation of 4, 2 and

RETURN for further >
iteration

If converged

- (q P (Q)2
4.4, X, E(ZHP’ qilE(ZHi ), a;, b,
and Vi for the basic internal nodes.

| Also evaluates support i required

I

CONTINUE.
I KK = (n-1)

Change time estimates; t‘i = MI /nip, 1=i=KK
Test for convergence of all times. (See 4. 3)

evaluate the

{Inal support
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[ I 8o

Y

Evaluate curvatureg |

al the maximum

using subroutine

1

Change the tree form
about the zero time
interval level, (I),
using subroutine
CHANGE (I). Test for

increased support

¥

If no such change

If, as can occarionally

happen, a polnt of

increases the support

alightly greater

J support is found during
this process due to
incomplete convergence

of some I:1

Change time interval
indicated in the direction
indicated until the

support decreases

Print out final maximum likelihood estimatea of

tree form and times, together with two-unit m

gupport limlis estimated from the curvatures

at the maximum

Fig. 5. 1(a). Flow diagram of the program MAXTREE.
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Compile time 6. 87 secs
Run time 29. 47 secs
Approximate siore required;
MAIN program 1000 words
Subroutines
EVALXSU 500 words
SUERRS 500 words
CHANGE 250 words
Titan library routines 3100 words
Common area (with array capacity
for up to 12 populations) 829 words
TOTAL (with [orward references,
names etc. ) 6702 words
[322 K bits].
Note: on an IBM 370/165,
Total atore required 44 K bytes
[352 K bits],
Run time (after compiling) 1.5 to 2 secs

Table 5. 1(a), Titan diagnostics of the MAXTREE program

The ME program mentloned ahove requires 14 K words of store
and takes 25 seconds to compile and run for a data set of nine populations,
Although_thls 18 much less in time and somewhat less In store than pre-
vious ME propgrams, the MAXTREE program requires the same order
of time and only 7 K of store to accommaodate the analysig of up to 12
populations. Thus likelihood estimation ts computationally more elficient
than previous heuristic methods, The run times for the A and A data
(Table 5. 1(a)) are the largest so far obtained; eome of the time intervals
converge to zero (Table 5, 1{h)}, giving cases of incomplete convergence
{see belaow), and testing of alternatlve forms of iree. A more usual time,
for example [or the seven N. W, Eu, populations, or for ten populations
having a clearly defined tree form, is 15 to 20 seconds.

1

The program utilises population cocrdinates which must therefore

previwsly determined {rom the genc Ircquencies, This is more

"aquency processing program {original versaion due to Edwards) allows

k. up to 15 populations and 10 gene loci with up to eight alleles at each.
TREE has no restriction on the Brownian motion dimension, There
,an option either to build up a tree, or to start iteration from a given
kmplete tree. This enables the stability of the maximum, and the iikeli-
| od of adioining [orms of tree, to be investigated.

) I the tree is to be built up from the lowest level, the program at
! sh stage joins the roots of distinct parts of the tree, atarling at the
mlations and working up to the root. A few lterationa are then per-

b med to find the position of the root of the new subtree and approxinate
ine interval estimates, This is not done to a high level of precision,

Bace further iterations will be undergone at each level of building, and
addition of extra levels changes the ML time estimates, This pro-

.__;: dure ralses the question of stability of ML tree forms under addition

: populations, Work dane on the N. W. Eu. data reveals that although time
gtimates may change the tree form is reasonably gtahle, and together

' \,ith opportunities for later change of form this method of linding an initial
Broe 15 certainly adequate.

! The program thcn iteratea for the ML tree. All the lteration con-

'. tants (small numbers specifying required accuracy of roots) are mul-
ples of a prescribed constant HD, which may be chosen [airly arbitrarily
Pt should depend on the overall dispersion of the data, since it determines
{abaolute, not relatlve, accuracy. When a change of tree form ls indicated

A
the emistence of 2 zero time interval estimate subroutine CHANGE

| within CHANGE depends on whether or not the change is of topology as
¥ well as labelled history (4. 5(i1)).
When a final tree form with an internal maximum is found, or when

| the current tree has zero intervals but no change about these produces a
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The data used are a subset of the data on 15 world-wide
populations complled from varicus gsources by A. W, F,
Edwards and L. L. Cavalli-Sforza. These data have been
used extensively to test previgus heuristic methods of re-
building evolutionary trees., There are data on five gene
loci, AzAzBO’ Rhesus, MN8s, Duffy (Fy) and Diego (D1}
with 4, 7, 4, 2 and 2 alleles respectively, which together
provide 14 Brownian motion dimensions.

Regults: (n=9, p=14)

Maximum likelihood support; § =159, 6

Limit of accuracy of ML estimates: HD = 8 x 10”°
Maximum likelihood time estimates, with their two-unit
support Umite estimated from the curvature at the maximum;

Time intervals (ozti} Time ago (0291 = crz[_il,ltj])
1=1; (13858 x10"° 138 x107* &
i=2, (22+61)x107" 160 x 107°
1=3; (17+68) x10™* 177 x 1074
i=4; ( 2+49 x10"° 179 x 1074
i=5 (148+93) x1g"*} 327 x 1077

1=6; (12282 x10° 339 x 107%

1=7; ( 0x34) x10? 139 x 107*
i=8 ( 0%23)x1077 339 x 107

The two earliest time Intervals have maximum likelihood
eatimate 0, giving 2 4-way root. The populations thus fal]
into four groups.

Note: o’ = 1/8Ne, and hence if the total evolutionary time
(sn_l) i8 arcund 20, 000 years, or 1,500 generations, Ne
is of the order of 10°,
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Table 5, 1(b), Results of the MAXTREE program for nine
Asian and American populations.

time — »

179
177
160

138

o

Maori

5. American
{(Venezuela)

Fig. 5.1(b).

—_— — - R =1 - =
§% §8% £% §325F 3
£8  $ 8% Ef  REGE &
-t L =T '
27 258 68 MdEESE
. << 2
7 z

Maximum likelihoad tree for nine Asian and Ameri-
can populations. Diagram of maximum likelihood
tree form and times of gplit. The ordering of popu-
lations is that given by the first principal component
of position in the projected space. The gcale of the
time axis is in units of (1/10%¢Z} gererations, time
being measured backwards from the present. Values
of the support and maximum likelihood time interval
estimates with thelr 2-unit support limits are given
in Table 5, 1(b), with a summary of the data used.
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There are only five blood group loci for which data could be
obfained for all sevel populations. These are ABQ, Hp,
Dufly (Fy), Kell and P, with 3, 2, 2, 2, and 2 alleles res-
pectively, These together provide six Brownian motion
dimensions, The data were provided by Profegsor J, H.
Edwards. *

Results: (n=7, p= 6}

Maximum likelihood support: § = 133, 2

Limit of accuracy of ML esatlmates; HD = 2 X 107 °
Maximum likelihood time estimates, with their two unit

support limits estimated from the curvature at the maxdmum;

i
Time intervals (ozti) Time ago (0251 = 02[ Zt.)

=1
i=1; (5+16)x10°° 5x10°°
f=2; (24+16) x 1077 29 X 107°
1=3; (Bx29)x10°° 37 x 107 %
i=4, (Bx38)x10° 45 x 1073
i=5  (54%67) x107° 99 x 1077
i=6; (3782 %10 ° 136 x 107°

The ML tree is bifurcating with no zero time interval esti-
mates. The populations fall into two clearly distinguished
groups; Norse and Celtic with England belonging to the
former group and Iceland to the latter,

Note: ot =1 /EENe and hence i the total evolutionary time of
these populations {sn_l) is arcund 4000 years or 200 genera-
tions, N_ 18 of the order of 2 x 10°,

* Some of these data have now been tabulated by Bjarnason
et al, {(1973),
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Table 5, 1(¢c). Results of the MAXTREE program for seven
North-West-European populations.

136

99

45
37
29

5
0
= > g M - o -
3 3 ¥ g g g
¥ L m 8 = [, o
& z & & 5 S 5
& 8 @
Fig. 5.1(c}). Maxlmum likelihood tree for seven North-West-

Eurgpean populations. Diagram of the maximum
likelihood tree form and times of split. The order-
ing of populations is that given by the [irst principal
component of position in the projected space. The
time axis 1s marked in units of (1/10502) genera-
tions, time belng measured backwards from the
present, Values of support and maximum likelihood
time interval estimates with their 2-unit support
Hmits are given In Table 5, 1{c), with a summary of
the data uged.
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form of greater support, control is transferred to subroutine SUERRS
which estimates the curvature at the maximum by evaluating the support
at polnts in the neighbourhood, Convergence of t 18 In terms of close-
ness to a root of b= Ml’:,"nkp k=1, ..., {n-1)), no evaluations of
support being necessary untll the root is found, The factor I/tfK 1n

%tgk_ ean mean that in cases of convergence to zero tk can be approxi-

mately equal to Mﬁ/n.kp at some distanee from the maximum. This
occasionally results 1n lnsufficient convergence, and a point of higher
support is found in the course of SUERRS. If thlg occurs the time interval
in question s changed in the directlon indicated until the support de-
creases and iteration 18 restarted at that point,

A complete matrix of coformations of the maximum relative supnort

surface la not estimated, since this would require at least in(n + 1}
evaluations, In fact the eoformation between any two time intervals is
negative at the maximum, In practiee only curvatures in the directions
of the aXes are taken. The two values for each tk {one taken in each
direction) are combined to give a symmetric two-unit support limit.

[t t < 10HD a single value In the increasing directlon is used and this
fact is indieated in the output. | In practice the two-unit support llmits
give llttle quantitative information. The support is not quadr atic, nor
even symmetric. However, besldes a general indlcation that, these
limits belng large, the surface 18 very {lat at the maximum, the limits
do provide some meagure of the relatlve degree of eonfidence in the dii-
ferent tk’ and also indlcate whether, and which, ather tree forms may
be within two units of support of the maximum, For a large number of
populations there may be many of these and only a few of the elosest can
be examined,

From the flow diagram (Fig. 5.1(a)) It may be seen that there are
several theoretically non-ending loops. To prevent excessive looping only
twenty iteratlons for eaeh time interval, four alternative tree formse and
five returns from SUERRS due to ineomplete convergence are allowed.
Only the Jirst of these limits has ever been reached and this only In cased
of convergence to zero, In this case the method of return from SUERRS
18 much quicker than allowing further iteration. The output from the
program la of a form to be useful in further analysls rather than a final
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3 tions were formed slmultaneously by the splitting of a aingle ancestor

"resentation of results. Each time a major stage is completed (a time

Although the two-unit support limits, given in Tables 5. 1(b),

;.. 1(c), for the two data sets include many other forms of tree, conver-
pance to the ML form was obtalned quite rapidly from a varlety of differ-
int starting points. Further the forms obtalned using subgroups of the
pulations were consistent with the overall form, This ia not a necessary
Ronsequence of the model and to obtain such a result inspires confidence
the estimated forms. The comparison of trees produced by different

il n gets for the same populations is discussed below (5. 2).

!.'I It 18 also possible to make estlmates of Ne given independent
thropological estimates of Sn-l (or vice versa), and rough estimateg
bre glven 1n Tables 5. 1(b), 5.1(c). The estimates are perhaps on the

nall side, hut are certalnly of the correct order of magnitude, indica-
Bing that the observed gene frequency differentlation could be the result
r g d. alone. It may be that small initial population gizes allowed

:. pid initial disperslon and dominate the overall effective population size.
i ‘15 also likely that aampling has had some effect In increasing the appar-
: Int dspersion.

5.2 THE BIG- BANG LIKELTHOOD

. We have computed maximum llkellhood estimates of evolutionary

#

‘eatimated only 1n the direction of the axes and convey little except that
} ‘the confidence limits are wide,
We define the Big- Bang (BB) tree as the tree in which all popula-

and have since evolved independently: ti =0 forall 1+#+1 and F 1
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unspecified since all F give the same tree when all tlme Intervals
between splits are zero,
Then

n
29 = [_zlxgcﬂ] /n=x® (5.2.1)
i=

n
and -25(k (t),0°t, F)= nploglo®t ) + (1/0°t) I |lx, - x|,
1=1
Thus

n
{2}1 =/ ¥ lix, - x1* = %* /mp, (5.2.2)
=1

where X? 1 the total disperslon of the populations.
Then

8(BB) = S(J_‘EO, (U/z}l, 0, ..., 0), Fy=-3np{} + log()ii2 /mp)). (5.2.3)
It is not suggeated that PP is a likely hypothesis, but it provides
a ugeful basic reference point for a given set of data, since were it the ML
solution no inferences about F could be made. Only support differences
between different hypotheses, on the same data, have meaning; support
differences between maximiaing hypotheses for different data sets do not.
The difference in support

58 = S(ML) - S(BB) = § - 5(BB} (5. 2. 4)

provides a measure of the amount of information in the data, and hence
enables comparlsons between different data sets to be made,

Wc may then go further and compute the support for trees having
r non-zero splitting intervals, r=1, 2, ... . Inthis way the 'simplest’
hypothesis compatible with the data may be [ound, where thia hypothesis
is the H with smallest possible r satis{ying

§-8H) =2

{or some other predetermlned level). [I am indebled to Professor D. H.
Cox for this suggestion. | However, even for r =1 there are too many
alternative F to consider. Thus ingtead we start at the ML hypothesis,
and then conslder suitable restrictions ti = 0. 1t is found that the support
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i{s sensitive to changes in the total evolutionary tlme, T (= Uzsn-l)’ but

. 1s far less so to changes in ti gubject to constant T, particularly for

{1 = (n-1), (n-2). In the case of the N. W. Eu. data the support scarcely

: . 2 =5
alters along the line; o't =%°C i=1, ..., 4 and o°(t_+t)= 9010,

from o%a =0 to oztb =51 x 1077,

Some further regults are given in Tables 5. 2{(a), 5. 2(b}, We see

n=29, p=14, X’ =4.1677
Support difference Evolutionary

Hypothesis H § - S . tlme; T
Maximum likelihood (=1 =0) 0 0. 0339
Big Bang {ti =0,i*1l) 8,0 0.0331
Maximum for the ML [orm F subject io t1 = 0 for:

i=4, 6,7 8 0.1 0. 0338
i=13,4,6,7 8 0.2 0. 0337
i=2 3 4,67, 8 0.4 0. 0338

Likelihood ratio for ML tree over Big Bang tree = 1077
Trees with ti ={ for i#1 and 5 have support values close

to the maximum, II ti =0 for 1=2, 3, 4, 6, 7 and B,

ot = 0. 0168, az‘ts =0, 0170,

Table 5. 2(a). Supports for hypotheses of slmultaneous splitting;
Amerlcan and Asian data. See Fig. 5, 1{b} and
Table 5. 1(b}.

that many hypotheses of simultaneous splltting do not have significantly
lower support than the maximum, although for neither set of data is BB
a tenable hypothesis. The estimate T ia scarcely changed by restric-
tions ti = 0, Although the support differences are small the iterative
method gives good discrimination of which tree form should be chosen and
which time intervals made non-zero.

The N, W. Eu, populations give a much larger value to 88, {5. 2. 4),
than do the A and A populations, showlng that thc former contain more
Information on phylogenetic relationships. That this is so is shown also

by the [act that for the former data the ML tree 18 bifurcating while for the
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n=7, p=6, X* = 0,055l
Support difference Evolutionary

Hypothesis H § - s(H) time; T
Maximum likelihood (&, > 0, 1) 0 0. 00136
Big Bang {t, = 0, i # 1) 14, 8 0. 00131
Maximum for the ML [orm (F) subject to
ti =1{Q for;
i=6 0.05 0.00132
1=13, 4 D. 2 0. 00134
1=13, 4, 6 0.2 0. 00133
=5 6 2.2 0. 00133
i=2, 3,4 3.5 0. 00135
i=2,3,4 6 3,7 0. 00132

Likelihood ratio for ML tree over the Big Bang tree = 106'5
Trees with ti =0 for i= 3, 4 and 6 have support values close
to the maximum. If t3 =t4 = tb =0,

'

0%t =0.00005, o't, =0.000%2, and o’t_= 0.0009%.

Table 5. 2(b). Supports {or hypotheses of simultaneous splitting;

European data. See Fig. 5.1(c} and Table 5. l1{c}.

latter the ML soclution has a four-way root. Thus the A and A data pro-
vide no information on the relationships between the four major subtrees.
Note that, as for all measures of statistical information, there s no
agsumption that the information is correct. Qnly validity of the model
and large accurate data sets can ensure the reliability of inferred phylo-
genetic relationships.

From Table 5. 2(a) the most that can be inferred with any degree
ol statigtical eonfidence 15 t1 > 0, t5 > 0, giving a tree similar to the
ML tree in form with a 5-way root. Around mld-way in time between the
root and the present three of these {ive populations splil glving rise to the
three more closely related groups; Gorkha and Korean; Australian and
New Guinean; North American, Maori and Eskimo, For the N. W. Eu.
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' populations the split of Iceland and Ireland from the Norse populations can
| be reliably inferred although the position of Scotland is less clear (Table
5. 2(b)). Whether Ireland and Iceland or the Norse populations are the

| mare closely related cannot be reliably inferred, but for this particular

l rather limited set of data it seems that England is significanily more
 closely related to Norway than to any of the other populations.

Although withln any glven problem the degrees of freedom are not
_' relevant, since we are interested only ln which polnt hypotheses do fall
'-wlthin two untta of support of the maxlmum (1. 3}, in a quantitative com-
i parison of different data sets the effect of varying p and n should be

':' congidered. For the BB tree (n - 2) congtraints are placed on the ti’

g and, were classical asymptotlc llkelihood ratio testing theory applicable,
I'I 1t would aseign a %xi_z slgnificance test to §5. On the alternatlve

1 hypothesis the non-centrality of the x° is the distance of the true hypo-
. thesls from BB in the metric of the information matrix, Given that BB
15 not a tenable hypothesls, it is the difference between the distances [rom
.. BE provided by the different data sets that we wish to consider.

" The clasgical approach as such does not apply, slnce as p in-
creaseg so algo does the number of parameters and asymptotic consis-
:.'-tency and Normality wlll not obtain, but we may consider the above

' 'distances' from BB, An additional gene locus clearly gives additional

: information in some gense, and will increase 65 if this confirms the

?-‘, phylogenetic relatlonships previously inferred; asymptotically, for fixed

[ -0, the increage ghould be linear in p. Both the general support function
and B(BB), (5. 2. 3), are of the order np for given Uzsn-l’ and compu-
¥ tatlons show that, at least for small n and p, 68 increaseg with both n
. and p, Thus 68/np the Information/population/dimenglon appears to be

. the appropriate meagure of the relative information in different sets of

" locl with regard to the phylogenetic relationships between different gets

| of populations.

A There are insufficlent data to examine extengively the agreement
of trees produced using different gets of gene locl for the same populations,
I. * Individual loci do not give good agreement, but this is nat to be expected
(2, 4), Data for flve of the European populations {(Norway and Sweden ex-
¢luded) is available [or flve further gene loc!, also giving p = 6. The ML
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tree [or these data confirms the major Celtic-Norse split but not the
other details of the tree, Substantial agreement is not to be expected for
this emall value of p, and the lmportance of differences of detail is
difficult to assess, However it i8 to be hoped that, were such data avay)_
able, large accurate data sets for locl and populations for which random
genetle drift is accepted as the major differentiating force would give the

same eatimate of the tree form.,

Data 1 Data 2 ]
Loct (8 = 5) ABO, Hp, Fy,Kell, P, AcPh, Gm, MN, Luth, PGM,
Number of aileles (kl) 3, 2,2,2,2 3,2,2,2,2
p= '%l(ki -1 6 6
Dial:;'sion =x’ 0. 0412 0.0325
ML support = § 88. & 88, 2
BB support — 5{BB) 83,9 B7.8
35S = § - 5(BB) &7 0.4

Table 5, 2(c). The comparison ol two dala geta giving data for the

same [ive populations: England, Denmark, Scot-
land, Ireland and Iceland.

The support difference 35 provides a measure of the relative
amounts of information In the two data sets, which have the same n and
p (Table 5. 2(c})). The tirst set of loci contains significant information:
the second does not. Although the two maximum supports differ only
sllghtly it 18 35 that is the relevant factor. 1t ig only the introduction
of some bagic reference polnt that enables comparisons to be made, and

we suggeat BB as a uselul and meaningful such reference point

5.3 DISTORTIONS OF THE TIME SCALE

Although it seems that valid inferences as to tree form, F, may
often be made, the time estimates are less reliable, The two main causes
of distortion of the time estimates are variation in population size and
sampling. There ls alao the conatant scaling factor caused by stcreo-

graphic projection (2. 3. 8), but this is negligible, and for any given group
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', populattons may be corrected for, We show first that constancy of
lation size, in time, is not necessary for the validity of the model,
Buppose that the size at time s ago, of each population then

atent is Ne(s), and let

8
u = JD‘ [ds/BN_(8)], 1=1, ..., (a-1). (5.3.1)

'ider the diffusion z on the arc between type 0 nodes at times 5

S, 260.
That is z = Xj - y¥

for some type 0 node (or population) Xj' and

'mmediate ancestor !j" (which may be the root 30).
8 L]
Then z(q} is N(0, Isi [ds,f'BNe(s)]) or N(0, u,, - ui) a=1,...,p,

all such diffusions are independent,
x, is the sum of such independent diffusiona (i=1,.,., n);

bce 3_:('?1) is multi-variate Normal and

cov(x(q) xgq)) =u ,-u (cf. (3. 1.1)),

i e -17 %, 3

g the likelihood L(}_ca, u, F) is precisely as before, (3.1, 2), with
eplacing o’s. We may refer to u ags effective evolutionary time,

. Thus inferences as to tree form are unaffected by changes in Ne.
¥nbsolute time scale may be inferred, but estimates of absolute effective
pJutionary times may be made. Estimates of actual time may only be
.- e if Ne{s) ls known: we may have Independent evidence as to its
er of magnitude, The time acale at any point in history is in units af
3 {8) gemerations, irrespective of whether thig varies with s, and this
g be taken into account in comparing time intervals at different stages
Fhistory.
: Dilferences between populatlon sizes at a single point in time will
fuse distortiona that are less readily eliminated. [I am indebted to
Pofessor C. A. B, Smith for causing me to consider this question, |
Be above considerations show that the effect of differing population sizes
i the support function is that of a ‘weight' proportional to the effective
fppulation size over the given time interval attached to each arc of the
e, If the population sizes at all stages in history were known, it would
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in theory be possible to Introduce a weighting procedure into the iteratiye
method for egtlmaling a tree. These welghting factors would atfect esti.
mates of both the means and variances of internal node positions, and

the definition of Mk
mental result (4. 3, 5) and the method of Chapter 4 would then still apply,

Such a procedure may not however be computationally feasible,

must be moditied to incorporate them, but the Tunda.

and is in any casc not to be recommended, The effect of incorporating
differential sizes on the form of the support function and on the propertieg
of the iterative method are not known, and the effect of errors in relative
popuiation alze cannat be estimated, The current relative effective popu-
lation sizes will rarely be accurately known, and those pertaining in hia-
tory probably never, We must therefore retain the restriction to equal
population sizes at any given time: nevertheless the above considerations
allow us to recognise that the analysis attaches undue weight to the position
of small populations, and in any given siluation the qualitative effect on
the estimated tree may be considered.

The genetic aspects of sampling have been previously discussed
(2.2 and 2. 4); we consider here iis effect on likelihood inferences. So
far the population frequencies have been asgumed known; in practice thcy

(h)

gay. At best, when all genotypcs are distingulshable, this is a multi-

are estimated [rom samples, slze my from population 1 atlocus h
nomial sampling (assuming sampling 'with replacement’ or mgh} << Ne).
More often we have only maximum likelihood estimates of gene [Tequency
from phenotype data, However, provided there are more phenotypes than
allelea the situation remains approximately multinomial,

In this case we have a sample of Zm(h)

frequencies ﬁ are (1/2m(h))M(2m(h),p) where p is the true population

genea, and the estimated

frequency and M denotes a multinomial variate of the given index and
parameter. Performing the transformations of 2. 3 we obtaln, by analogy
with the multinomial sampling of r, g. d., for large m(h) (but

(h) << N )ﬂ(q} is N(x(q), I/Bm{h}}, where xl are the ohserved, and
xl the true pcpulation pomtions and q ie a dimension corresponding to
locug h. Further all i(q) are independent, glven the true populatlon
positions x.

Then ¥ is N1, o'1 + dipe. @ /Smgh) 1 =1 =n))

s
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= N(x(;l)l , 0°(T + dlag. {Ne/mgh), 1 =i=n)),

n-1
fghere T.. = oo,
' ! r= (ij .])+1

patrix with the given components,

o = 1/8Ne, and diag. () denotes a dlagonal

f_:tq} {g=1, ..., p) are independent.
¥, or Ne’ remains a scallng factor for t but not for the total variance,
he variance acaling factor (2, 3. 8) 18 the same for both the sampiing and
.I e r.g. d., and again may be corrected for at each locus, for popuiations

b 2 glven region of space.

Lemma. With the notation as defined in the previcus chapter, the
mum likelihood estimates ‘ii =1, ..., (n-1) eatiafy

-
e

=E(,l% 2, &), b, Fimp, . 3. 2)
i5 the set of observed population positions, and x (t} is the

* ximum likelihood eatimate of X {'I‘he support

for given t (and F).
(@)

pmains quadratic in each X, and thus :_’ED{'t_) may be [ound explicitly

the previous chapler. )

Prodf,
b-are independent.

Given x, X 1¢ independent of t, X, and F, and ¥ and

Then

LR =(&lx,

=10 f(f:l)f(xlgu, t P

Lix, L B

6L bf(x |x , F)
Iy 1®[x) =% 2 ) ax
L o =
= ... I HRID[-31lx b P pA-EC XX, ¢, F) /tgllax
{from 4, 3)
=_a[n,ka/tk-—j x C 12, x1|x t, F)dédy__/t;

il

-i[n#lL/tk—L J... x’y_ck“ésgiirfuvr_’ d;__dg tli]
S pADILE , ¢, )t - E(C %, X, t, F)/np]

t and x|

-"';lnd hence for a stationary point w. 1. t.

t, = E(C.[%, 2 ®, t, i/mp, (cf. 4.3). /
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But

B [, x, t, F) = EE(Q |x, =

X, t, Pg, x

o b F)

=EM, |, x ., t, F) (by definition) (5.3.3)

Mk is a quadratic function of x, and (5. 5. 3) can in theory by found from
the conditional distribution of X, given )’i= and the paramelers, If samp)p
gizeg are equal for all loci, the iterative method of Chapter 4 may be
readily modified to give the true ML solution, for in this case the variance
does not differ between dimensions and any orthogonal transformation of
the projected coordinates 18 equivalent to the ortginal data (4, &6(1)). 1In
iterating up the tree using (4. 7. 10) and (4, 7. 11), as described in 4. 4 we
must simply change the 'covariance matrix' for any 'subtree’ conslsting
of a gingle populatlon node from the previous single element (0) to the
element (l/ami) (nui = mih) for all h, See 4,4 and Appendix 2 of

4, 7.) A restriction t1 = 0 must also be included but has no effect on
the iterative method; the polnt t1 = 0 is no longer a alngularity since
sampling provides a positive lower bound to the population variances.
Convergence properties, etc., wlll be similar to those deacribed in
Chapter 4, but the program of 5.1 has not been modified in thia way,
gince sample sizes, even where stated, are not equal for all loci, except
perhaps where a single recent study of a population has covered many
blood group systems. If sample sizes are unequal the theory remaing
the same, but it would be necessary to consider the basic projected co-
ordinates and not a transformation based only on distances; this is not
at present computationally feaslble.

The above modification of the method corresponds to Felsensteln's
observation (personal communication) that sampling, with sample size m;,
is equivalent to Ne /mi generations (or I/Bm1 units of l/crz generations)
af evolution. He notes that the ML solution with gsampling included is the
same a8 the solution without sampling for the same population positions at

times 1/8m, in the future, His proposal, equivalent to the above, is that

i
the ML golution for the populationg at these unequal hypothetical time
polnts be [ound, and then the extra times subtracted off to reobtain the

contemporary populations. The required restriction that the time of the

112

t ancestral split occurs no later than the present prevents the singu-
gity which lg in general caused by populations at unequal time polnts

. 4. 6(ii)). Although, for our iterative method, the modification to the
ngle element matrices degcribed ahove provides the simplest method

& golving the problem, Felsenstein's repregentation of the situation

rides a clearer ldea of the ellect of the inclusion of sampling on the
imated tree and on the relative support for alternative estimates. The
aller the sample size the less is our knowledge of the true present
lation position; equivalently the further into the future is the 'elfective
he' of the sample point.

The gituation in which all m, are equal {eay to m) provides the

cularly simple cage In which thie 'effective times' of the populations
nain equal, The only effect of the inclusion of sampling 18 to reduce

| estimate of ot by an amount 1/8m (provided previously

> 1/8m), for the term Uztl + 1/8m replaces aztl in the diagonal
s of the matrix ¢°T, and crzt1 does nol appear elsewhere in the

nort function. Thus when all sample gizeg are of the same order of
gnitude gampling should have little effect on the estimated form of tree,
. However, in practice the variation between loci 15 often much

:' ater than between populations and an alternative suggestion is the
wing. The coordinates used are those obtained by embedding the
dtstla:;lzces in any Euclidean space (4. 6(i)). But the observed squared
d..

mih), mgh) gatisfica

ce at locus h, between populations i and j, with sample

(h)2

1

+++y B, where d

(5.3.4)

. (h)?2
A=, 0,1

ween populations i and j at locus h, having kh alleles, Thus we
define

is the (unknown) true squared distance

ds? = ¢’
' 1) ij

here dgj is the total obgerved distance between populations 1 and J,
hd embed the modified distances d;jz ({, =1, ..., n) In the Euclidean
ace, This may be the best method in practice where sample slzes

The tree inferred 1s, at

-]
(h) {h)
- hzl(kh-l](l/eml +1/8m.™), (5. 3. 5)

er widely with both loci and populations,
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timation of t and F remains theoretically possible, although it is
banplicated by the fact that some dimensions no longer contain informa-
on each t, separately, However, as may be shown by a proof simi-
| to that of (5, 3, 2), we still have the fundamental result that

least, the correct likellhood solution for some get of true population gig.
tances, the squared distances heing unblassed estimates of the true
squared distances based on the obgerved data,

However, unlesa samples are large, we may obtain distances
which do not satisfy the Euclldean metric conditions, we may even haye " -
negative distances between populations where there 1s no evidence of iknkp = E(Ck1§g’ io(’ég’ L F, L F), k=L, el (5.4.9)

differing gene frequency. Thus although the method is ugeful in Practice Having obtained estimates of (x , t, F) based upon x_ we may
—o' = =g

mider the mirsing coordinates . S Since the dimensions are inde-

I dent we consider each separately and drop the superscript (g). We
the ML tree [or those populations for which there are data in the given
'. ension the 'Iramework’ of the iree (Fig. 5.4). Let w=n - rq.

there may be problems. In fact, although estimated distances at some
loci may be negative, the total distances (5. 3. 5) are usually positive ang
can often be embedded in a Euclidean space,

5.4 THE MISSING DATA PROBLEM

Although some heurlstic methods are based entirely on distances
and can use any avallable data to compute these, any method baged strictly
on the probability model must either use loci for which all data are present,
or elge take account of migsing coordinates in some logically justifiable
way, Having Inferred an evolutionary tree we may obtain the probability

distribution of missing coordinates, We then have the following problem:
'To what extent are the maximum probability estimates (or means) of
unobserved random variables compatlble with the ML values of the para-
metera on which they are baged?'

Suppose we have a subget ég of ixgq); 1=1, ..., n,

L z
xk Xj Xi xi

q=1, ..., p! with only rq of the coordinates in dimension q present
(L= rq = n). Suppose further that we with to infer (:_(n, t, F) usingall
avallable data. Population distances are no longer sufficient, and we
must consider the projected coordinates, For each q (1=g=p _’E(q)|x is

=E Fig. 5.4, The estimation of misslng data coordinates. The
N{x(q]l, T, (5.4.1) framework of the tree 18 shown by the solld lines, while
0 - q the broken lines denote missing parts of the tree.
where E(q) Il denotes the restriction of E(q) to ’ég and TE s the Given x_ and the parameters, X {s w-variate Normal, Without
T by T matrix formed by ellminating from T those rows and columns P8 of generality X, =&, e xw) and x,= {xw+1’ svey X ). Let
corresponding to populations for which there are no data in dimension 4. be the last ancestor of X; on the [ramework of the tree (i=1,..., w);
Then 1g. 5.4,
i(q)(x ¢ )= {B(q}[ ]‘T"'l 1)/(1'T*"11) 5. 4.2) Then the maximum probability estlmate (or mean} is
o =g =TT L, 4 —'='q = o
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iizE{x1|§g, x5ty F)

= EEX|x, x, b, F, y)ix. x, t, B
=Ely}lx, x, t. F). (5. 4.)
Lemma, If xi=E(yi*[§g, X t, F) (i=1, ..., w) then
EGilx . X0 %, b B =x, (5.4.5)
and
S b P =% xp b P (5. 4. 6)

Proof, Since all mean posttions and ﬁn may be determined
recursively by the series of equations relating each node to its immediate
neighbourg (4. 4), it is sufficient to congider only the equations relating
yi" to its immediate neighbours, The equations relating framework
splitting points to their neighbours are necessarily unchanged,

Now glven zZ, and z, of Fig. 5 4 and time intervals as shown,

1

X, =% =¢ = . = {t* » At
xl :t:12 ¥m E(yi121’ zz,i, F} {tzz1+t1zz)’(t1+tz)

But
EG; 1y 2,2, 8 IS ADFQUADHLAD (2 /t3)+Ha, ANy /D)

=ym=iil=xi2 i Ym=ym

=Bz, z,, t, P /

2

Thus we have that

(i)  Missing coordinates should be estimated by the mean posi-
tions of thelr ancestors on the framework of the tree,

(i) Given t and F, estimates of all node positions {(including
EO) are unchanged by the tntroduction of the missing coordinateg at their
mean positions, and introducing them in this way is 'consistent' with node
positions already inlerred,

However, the ML estimates of the parameters (f, F and 2
(= fu(g, i, ), are not unchanged by this insertion of the missing data;
the ML soluticn does not usually have 'vertical' arca in any part of the
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L tree, The question of change of ML tree form under the inclusion of

- additional populatlons, discussed in 5 1 with reference to the adequacy
' of the method af constructing an initial tree, is closely related to the

| problem here. The irue ML tree inferred [rom the data ig not preclsely
 the same as the 'revised' trec inferred from the data and additional hypo-
I thetical data constructed on the bagis of that ML tree: but such data do
not usually cause extensive changes in the tree inferred.

.' The approach here may be compared with Figher's 'predictive

Prikelihood® (Fiaher (1956, p. 126)), which would suggest that the complete

(5, 4.7

'ghould be regarded as a likelihood for (Jém, X t, F) and maximised
 jointly with respect to these variables, This approach leads to singulari-
ltiee If applied to the set of all Internal nodes, but in this case ig feasible,
ERecause of Normality, the tree inferred by maximising (5. 4. 7) 18 an
fequilibrium limit of a serics of repeatedly 'revised® trees.

5.5 ANCILLARITY AND THE NUISANCE PARAMETER x_

; As yet we have considered only the complete likelihood
PL(x , t, F), and the MRL

L*({t, F) = max.[Lix, t, ). {5.5.1)

X

=0

'We have diacussged the disadvantages of eliminating any parameter other
.7 than by considering the MRL (1. 3), and have also seen that X ghould

¥ sometimes be considered, for example in the missing data problem or in
'_imy sltuatlon where the node positions are of Interest, However, in gome
P situations it may be that we are interested only In inferring the evolution-
,I ary history {t, F), and X, may be truly a nuisance parameter, although
.. without Eu the estimated tree cannot be [ully specificd. The method of
| Felsensteln (1973) suggests a possible procedure for the elimination of
| x,. [The notation and terminology of Felsenstein (1968, 1973) are here

' alightly modified to corrcapond with those of Chapters 3 and 4. |
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http:E{E(x.lx

Fclsenstein (1968) ghows how for each q (1 =q =p) andfor give
I

{t, F) statistics u(ﬂ) —u (x(q). t), A =1, ..., n}, may be iteratively
constructed; where

{a)

u™ is N(O, vi(i)) forg=1, ..., pandi=l, ..., (n-1}

and (5.5,2)
ur(]q} is N(x{vq), \rn(i)) for g=1, ..., p,

and all variables are independent,
As in Chapter 4 we write
Y . )

g q!q_l “"p! 1=1;""n1={."}i’i=1""’ _{u(q]!q=19'--1p].

(5. 5, 3)
)
o = u®; 1) = (ul.(icf‘”;p, {=1, ..., n 1slinear in xV and tne

Jacobian of the transformatlon is 1, for all t andevery q (Felsenstein

(1973); his 't' belng a simple transformation of curs). Thus

L()—(U’ Er F) = z(é‘fu’ t, F)= fg(}_l__’fu’ _t_’ P,

where {_ and f

dcnote density functions corresponding to sets of

14
I

variableg X and u respectively, and

n
“28(x,, t, F)=p I log(v,(t))
i=1 -

S s D 2 0)
1—1 gq=1

+ E (u, (x(q) L) - f”)z/vn(g). (5, 5. 4)
=1

q
Thus

2wt D= &V q9=1,...,p. (5.5.5)

Let (H,(x; t))z = Z {u (X(q) t)) , [not to be confused with the
Q=

function H (or functions D’k) of Chapter 4]; then

1138

-28%(t, F) = -2 log L*(t, F)

n-1

—DZ loglv,(t)) + )3 ((H (&5 t)) /vty (5.5.6)

Felaenatein (19?3) gives a method for the rapid evaluation of Hf
'."' A i=1, ..., (n-1)) and v and hence of {5, 5. 1), for given

k' F) and pairwlse population distances. Choice of a suitable series of
fatuation pointa (t, F) can lead to the determination of a local maxi-

pm in the multidimensional space

(n-1})
R,

x{Fj; i=1, ..., {(n{n-1Y /'2n_1) 1.

Rere may be many such local maxima and a gearch procedure based only
aluation cannot indicate whether this 18 the case, or demonstrate the
:ral form of the support surface; the !mportance of Felsenstein's
isformations are that the form (5. 5. 4) guggests a procedure for the
biination of x , in situations where it may be regarded as a nuisance

meter, For Felsenstein (1973) suggesta that u, cantaing no infor-

flon about (t, F), and that inferences may be based on L Y

_' &, We have then the marginal likelihood (Kalbflelach and Sprott
f70));

Lo, F) =y, ..., v, t, F) (5.5.7
| n-1

~2log L**(t, F)= PE logv.(t) + Z (H,(x; t) /V(t) (5.5.89)

-28*x{t, F) =-28*{t, F) - plogv (t) (5. 5.9

this may also be rapidly evaluated,

Since L**{{, F) is the likelihood used by Felgenstein (1973} we

' er to it as the Felsenstein Likelthood (FL) and to the values (L**, F**)
_-‘_-- miglng L** as the FL estimates.

' The justification offered tor the adoption of (5. 5. 8) has been that
jdoes not have the tendency of the MRL to produce 4-way roots (4, 5(ii)).
hat a model does not produce the required resuits should be a criticiam
_ I"t.he model or of the preconcelved results, rather than of the method of
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inference. The acceptance of (5, 5, 8) requires further justification, Wwhigh

may be based on the concept of M-anclllarity introduced by Barndorif-
Nielgen (1971),

The y, are independent (1 =1,
and (i, F)} there 18 a value of X, {that is, X, = t_zn) such that

., n), and for any given o

! ~ ~
fylug (X &0 FO 5 g(g;lllcn, t, F) forall u*#u. (5510

Further the domains of variation of X, and {t, F) are independent. But
these are precisely the conditions for M-anclllarity which ig based on the
concept of universality, as opposed to the more classlcal concepts of B-
and S-ancillarity which are based on a factorisation of the likellhood
function.

The statement of M-ancillarity is that: if, whatever happens (En)
angd whatever the values of the parameters of interest (t, F), there s a
value of the nuisance parameter (x ) that makes what has happened the
most probable event, then what has ha.ppened is uninformative about the
parzmeters of inierest ln the absence of further information regarding
the nuisance parameter.

There is a further problem in that the u, are functions of the

-1
parameters t. TFollowing Kalbflelsch and Sprott {1970) we have

t (xlx,g Flax =t (ulx,i Fldu

(fU(u reray U n- [’_‘0’ L F)d"_ll' . dEn—l)

tyla o, oo t, Fidu )

Sh-1r X
= (fg(ill, ey HD-I 't_, F)dE']_' v dEl'l.-].)

Uy, lx,, t, Fldu).

The second term 18 not independent of (t, F), but provided the concept of
M-ancillarity 18 accepted we see from (5.5. 10) that 1t may be deemed to
be uninformative about {t, F) in the absence of knowledge of X and
inferences regarding (t, F) may be based on the first term alcne. [TO
do 90 must however aflect our inferences regarding {t, F), since the
decond term does contain information jointly on {50, t, F) ] To further
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lhere K is the column vector (dxiq)/bur{‘q}, i=1,

I.:. nclude that inferences may be based on the density Iunction {5.5. 7) it

not sufficient that the determinant of the Jacoblan (|J|} of the trans-

prmation, and hence d31' . dBn’ be independent of t; the subspace

'lume element dgl. - dl’n-l must be so algo,

From Kalbfleizeh and Sprott {1970) we have that
n-1

1N
H du, = |[KK|*P 1 _ax,/|3P,

«+,, b}, which is inde-
andent of q.

Lemma, ,K'K| is independent of t.

Proot. u'¥ = J}_(q) @=1,...,p, (5.5.11)

ke e J ls the Jacobian of the linear transformation. Thus x( )—J u{q)

.__‘ !K‘K] - % (Jin)?_[,]'in: (J—l
: i=1

n
E(x£q5= D), (5.5.12)
=1

)m]. Taking expectations

XEQ) = mef]q) for all (x , t, F),

pee £uV) =0 for 1+n and B0 = x, snd BG@) =x@ for

o ' i 0
L
Thus 4" =1 (i=1, ..., n), and |K'K| =n which is indepen-
tof t. /
n-1 l
Thus 1 dy, = n?P I'I dx, and is independent of t (3] =1); the
i=1 i=1

Pibfleisch and Sprott criterion is satisfied, and inferences may be based
Pon (5. 5. 8).

We compare now the properties of (5. 5.1) and {5. 5, 8). From

M. 5. 5) and (4, 3. &)

o, =% &, t, B = (P )01, 9=1, ..., p)

ind thus
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v (1) = var(ugﬂj =@l iy ) = T D7 (5.5.13)
Then from {5. 5. 9)

S*+(t, F) =S*(t, F) - $plog(1'T ™" 1). (5.5.14)
Using the iterative formula {4. 7. 11) we may show by induction that

ﬂ—f—(l'T'll)< 0 forall t > 0, r=1,..,, (a-1).
T

Thus
%gt: > %ts—* for each r andfor all t > 0, (5, 5. 15)
T r

Algo, for each k, §* and 8** are unimodal in tk’ the other ti
remaining [ixed, or else decrease monotonically from tk =0 (4. 5(1).
Thua, although 1t is not necessary that each t;* be individually greater
than the corresponding ‘ii’ {5, 5. 15) shows that the FL wlll tend to give
larger tline interval estlinates than the MRL, and hence more bifurcating
aplits,

However, besides the perhaps deslrable tendency to produce fewer
multifurcating nodes, the FL has also the property that it usually has
internal maxima for several tree forms: simple examples for n= 3 and
4 may be readily constructed {5, ). Computationally the latter property,
which apparently does not occur with the MRL, is undesirable: the deter-
mlnation of a local maximum is no longer a sufflcient criterion for the
acceptance of a tree form. The multifnreating root given by the MRL
and the many internal maxima of the FL are both expressions of ignorance
as to the true tree form, but the former ls necessarlly determined while
the latter may not be found.

From (5.5, 2) and (5. 5, 13) it may he shown that

Le*(t, F) = [.. [Lx , t, F)ax = L. Jiglx , t, Fax .

Thus the FL has the same functional form as a likelihood for (t, F) when
either lntegration over a Bayesian uniform prior distribution for X or
over the fiducial distribution induced on En by the data, is acceptable.

However the [iducial and Bayeslan interpretatlons of L** may be logically
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| different from its Interpretation as a marginal likelihood,

The FL tree is not an unrooted tree, The probability model 18 for
t a rooted tree, and, using the FL, we obtain an estimate of the time of
this root, even though we cannot estimate its position. Using the FL it
15 technically possible to relax the requirement that the times of data

| points be known, in that 'undirected times of dlvergence’ (but not the time
j of the root) may stlll be estimated {(Feleenstein: personal communication).
I The 'tree’ then estimated would be truly unrooted, but the time intervals
i could not be interpreted as having evolutlonary direction, and the 'tree!

" could not be translated into an Inference of the evolutlonary history. It

| would be a [it of the 'times’ of arce to pairwise population (distam:es}2

| essentially analogous to the LSA heuristic method (1. 4), although more

'~ justifiable on the basis of a model of independent increments in that it is

the squared distances that are assumed additive., The [act that for data

f points at variable times the (rooted) evolutionary history 14 essentially
wunestimable using the FL corresponds to the slngularity of the MRL in

Rthe same situatlon (4, 6(ii)).

Chapters 2 to 5 have conaldered in some detail the estimation of
an evolutionary tree from conrtemporary genetic data, We have considered
'the procese of random genetic drift, the probability model, and the general
,!urm of the likelihood, We have seen how ML estimates may be made,
"',a.nd congidered further problems ariging [rom this solution, The iteratijve
'I' method of Chapter 4 rapidly estlmates a tree, according to a logically
Jjusltifiable statistical method, on the basis of a probability model which is
1 8hown to be a close approximation to a genetic process which {8 known to
- he taking place,

. For reagons previously discussed we have advocated the use of the
'|' MRL, but as shown in the previous seclion the FL may also have some

. Justification, Besides the ML and FL solutions there are also the heur-

. 18tic methods of solution, ME and LSA, which are as yet the only methods
wldely used in practice. In this flnal sectlon we compare the ML, FL and
] ME golutlons in some special cases. These demonstrate the tendency of
| FL to have many internal roots, and show that the ME and LSA aolutions
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cannct be consldered adequate estimates of an evolutlonary tree.
We conglider first the cape n = 3. The ML and ME solutions have

been given in 3, 3; we retain the notation of that section;

F ((x

) X, X,) X,)

@ = |x -= | (5.6.1)

= _ L T _
and h —(1_(3 ,-,(J_:l+:_(2}), h®=h.h

The MRL has au internal root for F = F3 only f h>> 3d/2 or
Ix, ~ x 12 + Ix, -x, 12> slx -, [I? (5. 6.2)

For the FL we have; uiq] = (xiq) - xgq}} la N(0, 2t1) and ugq} = h(Q)
e NO, 30t +41), and cov®, u®y =0 q=1, ..., p. (see
Felsenatein (1968) for the method of constructing vectors . )

Thus H, = d° and H; =h%, v () =2t and v ()=3(3t +4t),
in the notation of 5. 5. Hence (5, 5. B) has an internal root for F = F3
provided

4h? > 3d°

or
_ 2 _ 2~ _ 2

lxy - %, 0%+ dx, -2 1°> 20x - %, 0%, (5. 6. 3)
in which cage

g = da’ /2p, £r* = (4n° - 3d°) /8p. (5. 6.4)

Whercas there can never be twn tree forms satlsfying the con-
dition (5. 6. 2) {Fig. 3. 3(c)), there may often be two gatislying (5. 6. 3},
(Ftg. 5. 6(a)). The iree form with maximum L{**(F), F) is the same
as that inferred vsing the MRL.

For the FL solution x, and all internal nodes are not to be con-

gidered; acceptance of any X, entatis jnint egtimation and the ML solu-

tion. To enable us to specify a tree completely we may however conglder

Xt =R (x, t*%, F*), (5. 6. 5)
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Fig. 5.6{a), The three population case. Diagram showing the
tree forms with strictly poaltive FL estimates of
time intervals asg x, varies over the plane with X

and X, remaining fixed. <Compare this with Figs.
3, 3(c) and 3. 3{d).

and mean internal node positions given (EE*, >, F+**) and K. The
resulis in this case are of simtilar form to those for the MRL given in
3. 3(11).

For n =4 we congider

512(01 0, 0, ..., 0)9 EZ =0, ¥ 0 ..., 0)1

E)=(x9 0» bR | 0} a‘nd}_‘q =(x'? Y! 0! A | 0)3

wlth all other notation as given by Fig., 5. &(b).
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For the FL it may be shown that t2 =0
enfor F=F ;

at any stationary point.

N(O, 2t )
N(0, 2t))

N{0o, (tl + 2t3)),

remains independent of

z z
H3=x , and

¥
x X
R A= ul® — (@ _ e is
! I 1 1 2
\ / W@ - (@ @), s
\ £ 2 3 1
3 ’
Y x / 3 3 q 1 2
Zo
X ot =t x y
H -{\ three vectors being jointly Independent. [u
\ =
r’ y, Y | for this topology. ] Then Hf = H: = yz and
f! "\ (t) = \rzft) = 2t1 and v)(t} = t1 + 2t3. Thus i 2x° > yz, (5. 5. 8) has
f 1Y p - hdl
’," Y junique internal stationary point for F = Fl, this being a maximum of
v J*, and
X x 3

.I‘.I E;t: (%x, %Y! O! LI ] 0)

The case of [our populations situated in a rectangle.
The case F = F1 is shown, and the broken line

Fig. 5. 6(b).

indicates how a tree with internal maximum could
also be inferred for F = Fz.

trs = v’ /2p), ty* =0 and tr+= (2x° - ¥°) /4p.

E(y, |x, x5, t*%, F) = (5° /9%, 4y, 0, ..., 0)

(5.6.9)

(5. 6.10)

B, *7, /% =% 1, F)=(x,y, 0, ..., 0)

, L > ?3; FL estimates are larger than ML.

F2 give t;*’}' 0. (5.6.11)

Let F, = (X, X,), {x,, x,)) and F, = ((x, x), {x,, x)). Note that:
For the MRL with ¥ = F_ we have, if x>y, O tre=t
A L @ 1y’ < 2%’ < 4y® both F_ and
Eoz(ix! ¥, 0! rrr g U) L . R
(5. 6. 6) B cannot occur with the MRI..
4 G s * 2 2
L=y /72p, t,=0, t =X -y)/4p, (1) Lex({**(F ), F) > L**(F,), F,) if and only if x> y.

(iv)
case give situations in whilch

then
i 2
Ey, [x, % & F)=("/2x, 3y, 0, ..., 0} and

Ey +y,lt, x,t, F)=@& v 0, ..., 0. (5.6.7)

There is an internal stationary point for F = F1 only if x> ¥
the point is then unique and gives a maximum of the MRL. There can thus
never be internal stationary polnta for both F, and F,. [Wereferto
maxima with t > 0, t > 0 aa 'internal' in this case, although Ez =0
by symmetry, | (5. 6. 8)

Neither does the alternative topology give trees with internal

1
x> y/3%,

x>y F. has the shorter total length.

maxima,
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¥, and F, are both Stelner if v' < 1’ < 9y

This case is not 'pathological’: distortions of the symmetri-
(t{*, t;*, t;"‘) is strictly positive for F=F and F = F.

ME gives a Steiner tree for the above data and F = F:L i

(5.6.12)

The Internal nodes for F:L are given by
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-7 0) and (£1+_}:2)={x: Y! 01 LI ) 0}.
(5. 6. 13)

Thus although if x> y F1 is in all eases preferred to Fz com-
parison of (5, 6, 8), (5. 6,11) and {5. 6, 12} and of {5, 6. 7}, (5, 6, 10} and
{5. 6. 13} show that the details are very different.

Korean

South Veddah
American Maori

North
Amerlican Australian

Eskimo Gorkha
New
Guinean

Fig. 5 é&{c]. Theiorm of the ME tree irnferred Irom the A and A
data of gectlon 5. 1.

We compare [Inally the ME solutions for the two data qeta 01‘5. 1
with the ML solutlona glven there. The ME algorithms have been tested
extensively on the A and A data (Thompson (1973a)), and many Steiner
trees have been found. The shortest 18 that produced by the Prim method
(Fig. 5. 6(c)); this agreea with the ML solution in distingulshing the two
major ethnie groups, but differs significantly in detail. The ML tree wlth
a 4-way root correspands to any of three unrooted trees; one of thege 18
Steiner but is longer than that of Fig. 5. 6(c), whieh conversely has low
likelihood.

For the N. W, Eu, data the unrooted tree eorresponding to the ML
form is Steiner and has length 0,413, The form with Norway and Sweden
reversed is algo Steiner and has length 0. 411 being the shorteat found,
However this {orm has very low support. Thus while ML trees are fre-
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quently good ME trces, thc best ME trees are aften of very low likelihood.
Flg. 5, 4(d) shows why this 1s s0, with relerenee to the above cage of the
N. W.Eu. data, Although the total length of the arcs shown are virtually
equal in the two cases, the length of the terminal ares of the second tree
are compatible with contemporary populations; those of the first are not.
A likelihood criterion, which includes contemporary data as part of the
probability model, distinguishes these trees, whereas ME cannot, since
it has no time giructure,

Other Other
(1 populations () populations
N 8§ E N E 8
E N E

Other populations

0, 05 Other
populations

Fig. 5,6{(d). The two alternative forms for the subtree of Norway
(N), Sweden (8) and England (E) inferred from the
N. W.Eu, data of sectlon 5,1, ME criteria are un-
able to distinguish the two forms, but, whereas tree
{ii) le the ML tree, tree (i} has very low support,

Thus ME, and equally LSA, do not provide good estimates of the
evolutlonary tree, not only beeause they produee unrooted trees and be-
cauge of qualitative differences in the positions of Internal nodes, but
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more seriously because having no time gtructure they have no criterion
of time compatibility of arcs. It 1s thus surprlging that ME, which is

a non-hierarchic cluster method, usually produces adequate representa-
tions of the projection into the present of the hierarchic ML evolutionary
tree. This can only be because, in the particular cases in which these
methods have been successful, the phylogcnetic relationships are suf-
ficiently well defined to be determined by any abjective criterion.
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B - The Icelandic admixture problem

In this final chapter we consider a specific admixture problem to
jylch the general model of independently evolving populations, subject to
kces of random genetlc drift, may be applied. Thia is the problem of
& ating the proportions in the Norde-Celtic mixture which formed the
bnising population of Iceland,
Iceland was colonigsed by Noraemen between A, D, 874 and A, D.

By 950 the population was 50, 000 and remained between 50 and 70
pasand until 1900, This congtancy of popularion size, and the accuracy

jg the effective population size hag been around 50, 800 (2. 1),

Many of the Norse colonists had spent gome time in Ireland or
itern Scotland before colonising Iceland, and many may have had Irish
res. Thus the Icelandic population of A, D. 950 was a Celtic-Norse
fture, in the proportions (1 - r):r may. The aim is to estimate 1

b T = 1) from present-day gene frequencies. It uged to be thought that
II)OIJul'a.tion was predominantly Norse, This 1s what the sagas claim but
II e were written long after colonisation and there is virtually no ¢on-
‘porary evidence. The language and culture are Norse and all later
jlitical 1inks were with Scandinavia. Although thia indicates that the

i g classes, at least, were Norse, studies of blood group gene Ire-
Mcies Indicate a considerable Celtic component in the population. This
8 first noted by Donegani et al, (1950) with some amall samples of ABO,
Pesus and MN data. More recent studies (Constandse-Weatermann [1972),
hason et al, (1973)) have amply confirmed their suspicions. We have
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already seen (5. 1) that an evolutionary tree model glves a Celtic origin
for the Icelanders,

We now inveatigate the problem vla a new model of a Celtic- Norae
mixture in A, D. 950 followed by 1000 years {40 generatlons) of random
genetic drift modifying the gene frequencles of the Celts, becoming Irish,
Norse, becoming Norwegians, and Icelandera (Fig. 6. 2{a)).

The major assumptions of the model are that it hus been random
genetic drift that has influenced the populatlon gene Irequencies of Ice-
lapders, Irish and Norwegianga over the lust 1000 years, and that the
individuals sampled now are representative deacendants of the relevant
Celtic, Norge and Icelandic populations. The maln factors that conld
invalidate this are, firstly, diflerential selection, secondly, migration
to any of the threc countries subsequent to the original mixture, and third-
ly non-representative sampling. 'This last could take the form either of
the original Norsemen having originated Irom an atypical region of Norway,
or of pregent Icelandic samples coming from reglons with a particularly
large Irish component. Fuller discusslon of these factors is given by
Thompson (1973b), but the conclusion is that in the case of the Icelanders
a model of independently evolving populations and random genetic drift
is appropriate. However any, or all, of the above factors may make the
model invalid for other admixture problemas.

6,2 THE MODEL

As in the previous chapters we trangform the observed gene fre-
quencies to glve vectors in 4 p-dimensaional Euclidean space, in which the
process of random genetic drift becomes one of approximate Brownian
moatlon. Suppose that the present observed gample frequencies of Nor-

wegiang, Irleh and Icelanders glve vectoras
x , X and x,,
-0’ = =1

where En = (xiq), q=1, ..., D), while the preaent true population {re-

quencies give

x¥ x* and x* .
-n' —¢ —1
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{

= 40 ¥, (Celts)

2

]

=

=

&

=

x

(3

£

=)

&

@

B

B X! (Trish)

0 Present gene
x* mewegims) « frequency space

Flg. 6.2(a). Diagrammatic representation of the mathematical

model. Norse, Celts and a direct mixture thereof
10 generationg ago, have gene frequenciea which '
change under the process of random genetic drift

to those of present-day Norwegians, Irigh and Ice-
landers. y, = v, t (1-r)l'c for some r, 0=r=1,

[Dlagram from Thompson (1973b). |

Suppose further than the unknown initial frequencies t generations ago
{t is approximately 40) of Norsemen, Celtg and the colonising mixture
give vectors Yoo ¥, and ¥ (see Fig, 6, 2(a)).

Now it is asgumed thgt the original Icelanders were a simple mix-
T2 of Celts and Norsemen.

-. : ) Thus if the gene frequencies at some k-allete
ocus were p(]) p{J)
n’Y¢

and p{j) for j=1, ..., k, then
W o .
pl = (l—r)pf:j)+ rpl(lj)=p£’}+r(ps)-p£’)}, i=1, ...,k

& sampling involved in forming the mixture being equivalent to one

Beneration of drift, 1t may be simply shown that these equationa rrang-

form to

@_ (@ \
=y e Doy oy 2, oo,
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and hence, over the small region of the projected space concerned,
¥y, =1y + (l—r)yc to an accurate approximation.
-1 =n =

Finally suppuse that the effective population aizes over the period since
A,D. 950 are N_, Nc and Ni and the sample sizes, assumed equal {or
n
all loci, are m_, m, and m,.
Then we have the Normal approximations: as in section 3.1

@, . @) -
x 0 is N(yn ,t/BNn) for g=1, ..., p

and as in 5. 3

x(Q) ia N(x(q) .

5 M ,I/an) for g=1, ..., p,

this latter equation holding strictly only if all genotypes are identifiable,

but ag a reasonable approximation provided the number of phenotypes

exceeds the number of alleles, Hence
\
@ . {a) O (1) S-S .
xis N{y ¥, (t/8N )+ (1/8m ))=Nly *, 0 )q=l, .., p
Similarly
)2y
0 56 ¥, @mn)+/m =N, o) a=1, .., b, $620)
and
@ 16 . o)+ 18m) =N, %=1, .., b,
-
all components being independent and
@ _ M SN (L 6.2.2)
y; o=y o+ -ny Y, a=1, ..., P {

I sample mizes vary Letween loci not all the components of each population
vector have the same variance. This complicates the analygls but does nd
easentially alter the situation. We note that a negative estlmate of T
could be interpreted as an inference that the lrish are a Norwegian-lce-
landic mixture, and r > 1 as the Norwegians being an Icelandic-Irish
mixture, but unless these are hypotheges which we are a prilori prepared
to consider we may restrict altention to the support function within the

range U=r <],
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_ The problem of estimating the mixture proportions in a hybrid
kpopulation was considered by (ilass and Li (1953), and their golution has
fbeen elaborated by Krieger et al. (1965} and Elston (1971). The two
pasic criteria of estimation that have been used are maximum likelihood
d least-squares, but although the estimation methods are sophisticated
'. d can take into account dominance at some gene loci and mixtures of
pveral populations, the models have all contained the same basic agsump-
: pn8. These are that the population frequencies in the unmixed popula-
gons are known and are the same as in the original ancestral populations,
jad that the only reason for the obgerved frequencles not being a simple
Rixture at all loci is sampling in the hybrid population (En = E; =¥

L = lcc' = Yo 1:: =zi). Although this may be appropriate for very recent

ures where the parent populations have been extensively surveyed, it

.,--u any of its contributors for any length of tlme. A simple sampling

hod el 15 not justifiable in many of the situatlons to which it has been
fplied, and although the predent model involves several approximatlons

8 an approximation based on the true major causes of observed gene
quency differentiation.

: The simple sampling model may be congidered as a special limit-
[ case of (5. 2. 1) in which Ny N, and N, =« {or t—=0) and m_ and

|~ oo 0% and o ~0 and o2 =1/8m,. Then
n c 1 1

xgq} 1s N(rxr(lq) + (1—r)x(q), 1,-"8mi) for g=1, ..., p.

c (6.2, 3)

b obtain the ML (or indeed least-squares} estimate, £, of r we would

(x, - f)_rn -(1-Fx ). &, -x) =0

A {6. 2. 4}

¢ sampling model solution s then that shown in Fig. €. 2(b}, the dis-
race TI being a sampling distance,
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2 2
—25(1‘, Y + Y L] Un$ ch O’ )

_plog(czczoz) + or {x -TY - (1- r)y )(x - Ty, -(1- r)y )

+0'n -y x, A )+U (X, -y )& -y ), {6.3.1)

 where 0'1 = {(l/Bm Y+ (t/BN )] 15 the total drift and sampling variance
ofeach x (a) (q-—l A 1 etc

Now although, with some provisos (6. 4), it is possible to estimate
poth the variance (o° o crz, ¢®) and the parameters (r, Yor ¥ ) from the
Bjata (x » Kyr xl), in the present problem it may be assumed that the three

riances may be estimated from historical data independently of the

i)

penetic information, and hence may be treated here as known constants,

' Now Tet —x 1. _ 22 a2 2 2
ow let h(r) X - TX {1 ”l‘c and f{{r)=r o + {1-r) o, + oy
Jote that

I \ c
Estimated sampling

E(h(q)(r)} =0 apd var(h[q)(r)) =1(r) for each q, 1 =q =p, (6.3.2)
distance

faximising (6, 3.1) w, r. t, ¥, and y  we obtain, after some rearrange-
Fig. 6.2(b), The sampling model solution, The position vectors ant,

X 3‘;(:' X and )_‘:; give coplanar points N, C, 1 .

and I reapectively, where 3;‘ = fl‘n + (l'f)Ecﬂ and

T is given by ()_:i - )_‘ir} (lcn - l‘c) =0, AThus Nl and
ic are in the ratio (1-f) to f and T is orthogonal

to NC. [Diagram from Thompson (1973(b). ]

(9, - X IEE) = £o’h(#)

e

) o (6.3,
- X JHE) = (1 - £)o hif),

bere (f, ¥, 3.) is the joint ML estimate of the parameters given inde-
§indently estimated variances.

6.3 THE LIKELIHOOD SOLUTION From (6. 3. 3) we have also

Returning to the general drift and sampling model (6. 2. 1) we now X -3 M(E) = crfl_m(f), (6,3, 9)

derive a likelihvod solution. We have
here y—i = fi‘rn +{1 - f]ic,

2 Maximiging (6, 3, 1) w.r.t. T we [urther have

2
L(r,Xn!!tc’U

2 z 2
0)=f(xnrl(!x-|r’ynyzc,cr o, ol

n’ ¢t n ¢ i
-x(f”)“’ x0[-1 (0, 22(“" 1y @ _ 1oy Wy (x - §).49 -F)=0 6. 3. 5)
o q_—' X Y]'l - YC — =i !C - ( T
+ o2 E (x{q) (q))z + g7} g (x{q) ) y(q))z)]' “aations (6. 3, 3)- (6. 3. 5) show how the solution may be represented
n =1 ¥n c q=1 c c pRgrammaticaliy (Fig. 6. 3(a)). This diagram may be compared with

Hence % &t giving the solution for the gampling model (cr . or = 0; Fig. 6.2(b)),
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I W
a Drift
C

Fig. 6.3(a). The general drift and sampling model golution,

g ¢. and
% Iy 50 8, a0

Position vectors X o X
[fxn + {l—f)Ec] glve coplanar points N, C, I, N,

C, I and I* respectively, where £i=ffn+(1—f)_§c-
The three estimated drift vectors (_?_n - En)’

(ic - 1_;':) and (ii - 1_;1) arehallerthogclnal to the line
joining the colinear points N, C and 1. Thus
lengths NI and i€ are in the ratlo (1-f) to f

as algo are NI* and (for equal variances) 1*C, and
&C and NN, while éC + NN + 1. The line II* has

the magnitude and dlrection of the vector h(f).

To solve explicitly for the parameter of interest, r, let din’ d.

: 1
be the pairwise genetic distances (dlstances in the p-dimension?
Then

and dic - N
EBuclidean space) between the present observed population positions.

we have the cosine formulae,
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¢ ete.

2 z
2(1‘1’1 - E1)(1((‘, - Ei) - dic + di.n - dnc

(6. 3.6)

. Bubstituting for -?-n and -th from (6. 3. 3) into (6. 3. 5) and using (6. 3. &)

we obtain the quadratic equation,
a2c 2,2 2 2 2, .2 2 2
- - + 0 - +
r [on(din dic dnc) c(din dic dnc)]
ar 2422 2 2.2 2.2
- + -
* 2r[cc(d1c dnc) ondic 01 dnc]

2,2 2 H 2, .2 2
+ -
[cri (dic din + dnc} +o°(d d

2 —
e -G -d )l = 0. (6.3.7

For simplicity we now consider only the case in which all three

fances are equal, say to 02, although the general case is qualitatively
In this cage I{r) = 02(1 +1? 4+ (1-1)%) = czf‘{r) say, and

F, - %) = FaE) A%

¢, - x.) = (1-Hh(@) /1*(5) (6. 3. 8)
(x, - §) = h{®) /1+(8),

g(f) = 0, where
glr) = rz(dfn - d;'c] + Zr(dfc— dfm)+(dic - dizn)’ (6.3.9)

d g(r) = 0 has two distinct real roots unless din = d:c. Thus the
luations for a stationary value of 5 may be solved, but there are two

gPois to these equations. It 1s therefore necessary to reconsider the
prma of the support function.
Let

S*(r, o°) = S(r, §,00), gc(r), 02, ae, o?)

B the maximum relative support function (MRS) for r.
Then from (6. 3. 1) and (6. 3. 8)
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-28*(r, o) = 3p log @ + h%(r)/o’*(r), (6. 3. 10)
P
where b’(r) = [nm? = 3 0P,
q=1
Using (&, 3. 6), and if o® is a known constant, we have

2.7 2 2 2 5 .
§*(r)=-(c"a] -r(d] +d’ -4} y+d} )[20° (1+rP+(1-r))] (6.3.11)

BG*
and 5% = g(r) 1o (1x(x)) ]
'y
Thus o has the same sign as g(r) and one of the two roots of
g(r) =0 gives a maximum of 5* and the other a minimum, [If

2 2 _ a2 - 1
din—dic-—d the unique root v = 3

>
e < ¢

15 a maximum /sminimum as

The region of interestis 0 =r =1,
0nl — 2 2 . 2
g*(0) = dic/4a , S*(1)= din/4a

and ag 1 =+ =, S*r) =+ —d;c/‘lﬂz.
Thue there are two possible forms [or 8* (Fig. 6. 3(b)}:
() d,_ > d; §%(0) > $*(1), and the coefficient of r° in g(r)
1z positive. The smaller root ol g(r) = 0 gives the ML estimate of r.
(i) dy > d_; §%(1)> §%(0), and the coelficient af r’ in g(r)
is negative., The larger root of g(r) = 0 gives the ML, estimate of r,
Since 5*, and indeed the whole problem, is symmetric with reapect to
interchange of Norse and Celt, nand ¢, and r and (1 - r), it 18 only
neceasary to consider the case din > dic’ (8*(0) > 3*(1)). Then
d >d >d  g0)<0, gl<o,
maximum of S* isin v < 0 (and the mini-
mum in r > 1),

ML estimateiln 0=r =1 {8 £=0,

~
if dnc> din> dic gDy > 0, g{1y< 0,
ML estimate £ is suchthat 0< £< 1.
it dln/ dic> dnc g(0)< 0, g(l) > o,

maximum of S* isin r < 0, minimum in
0D=r=1, But §*(0}> 8*(1), thus ML

egtimate in 0 =r =<1 18 £ =0,
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(i)

|

r —
) \/_
i \
W s* = .d® /40
T s nc
ki / /‘\
T —

Fig, 6. 3(b). The two possaible forms of the functlon S*.

(i} din > dic; 5+(0) > 5*{1). The amaller root of
g(r} = 0 glves the ML estimate of r.

(i1} dic > din; 5+%(1) > 8*(0).
g(r) = 0 glves the ML egtimate of r.

The larger root of

Thus we find that joint maximuem likelihood estimation provides

Y

Y&n estimate £ in the range 0< £ < 1 only if d . 1s the largest of the

I'Ithree pairwiase distances, Although this might be expected to be the case
-Ifor data arising in admixture situations this reatriction will not always
be satisfied. The requirement is far stricter than that for a root in

'ID < r < 1 under the simple sampling moedel. Support regions for the

] Icomplete set of parameters, (r, Y. Xc)’ may be computed but are not

- Very meaningful. It {9 simpler to consider only the MRS, 5*, which may
_be easily plotted, for given 02; two-unit support limits for r may be

| found directly from (6. 3, 11),
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We note finally that the sampling model (6. 2. 3} gives a MRS

$*(r) = -h’(z)/2(1/8m,) = -4m,b’ (), (6.3, 12)
the sample size m, being aimply a scale factor in this case, ag is 1 /¢° L . .
' -1 -3 0 3 1 14
in (6. 3. 11), T T I T 1
I —
6.4 THE DATA AND SOME FURTHER ASPECTS Jff‘ﬂ
77 -10
The relevant present-day descendants of the Norse and Celtic E‘,]f’ ,"
- I
populations which contrlbuted to the Icelandic colonislng population are - /
the Norwegians and North-Western Irish. Data on five blood group loci, ;“ -20
together giving p = 6, give /]
/(11)
dz = 00,0048 d? = 10,0324 and dz = 0. 0318 ff =30
ic” * InT 7 nc : !
]
[A table of the detailed gene frequency data, provided by Protessor J. H, N - 40
Edwards, is glven by Thompson {1973b), ]
Under the model of equal variances the roots of g(r} =0 are 5ol ‘\\\\

r = -0.0053 {maximum of S*} and r = 1. 766 (minimum).
8*{(0) = -6 and 8*(1} = -40.5, and din > dic go that the ML

estimate of r (within 0 <r =1) is T = 0. We therefiore estimate that

Fig. 6.4. The support function for the admixture fraction r
(0 =r=1) (i) The support for r in the cage of the

the Icelanders are of wholly Celtic origin and the hypothesis r =0 general model for the data of Thompson (1973b) and
(wholly Celtic} is e’ -3 {or 10t 5) times as likely as the hypothesia
r =1 {wholly Norse),

For the Icelanders Ni ~ 30,000, t=40 and m

Hence cr].z.

Taking this as the population variance for all three populations the
support function (6, 3. 11) may be plotted (Fig. 6.4). The two-unit support
limit, glven by the solution of S*(f) - 8*(r) =2, {18 r =< 0,19, Thus any
valve of T up to about 20% falls wlthin the two unit support limit, indica-
ting that any estimate within this range cannot be rejected on these genetiC

data,

o° =2 % 10", o° being estimated from data on popu-
lation and sample sizes, independently of the genetic
data, and assumed equal in the three populations,

(11) The support function for the same maximum like-
lihood estimates of gene frequency with a classical
sampling model and hypothetical Jcelandic sample size
of 250, assumed equal for all loci. [Dlagram from
Thompsaon (1973b).

{ = 3, 000.
[= (2 /'Smi) + (t/&Ni}] 18 approximately 2 x 107",

¥ though the general form of S$*(r) is unaltered. Thus an estimate of 2%,
or the Norse component in the Icelandic population is the best that can be

Malned with these data and this series of models, although no value leas

20%, may be rejected,

Estimates of the variances from population and sample sizes indl- | It is sometimes thought that 1t 1s only with reapect to the ABO

cate that, while oiz =2x10"" 18 reasonable, a better estimate of Ufl and :..Ystem that the lcelanders resemble the Irish. We note that the ABO

o is 1% 10°% contributed almost entirely by sampling. If we solve Fstem does nat dominate the distances above. Although it 1s a aignificant
< '} ontributor, and does provide a major part of d:c, it in fact gives

2 a 1y
the more general equation (6. 3. 7} with cri = orz = %U’i we obtaln T=0. 0l
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d.> 4 > d, , and hence £> 0 (Thompson (1973b: Table 1)).

there are unfo:-tunately insufficient data to examlne the consistency of

Again

results given by different data sets. Although most of the possible divi-
aions of the six available dimensions into two three- dimensional groups
do confirm the estimate of a Norse component of less than 20%, no con-
clusions can be drawn.

For comparison we consider briefly the sampling model (6. 2, 3)
with quadratic MRS (6, 3, 12).

Norse component of approxlmately 7%.

(6, 2.4) glves T = 0, 066, a rather larger
From the form of the quadratic
function of {6, 3. 7) we may deduce that this 1a the largest estimate obiain-
able with thege data and this series of models under the reasonable assump-
tions that o> = 0, 0710} 6. 702 + 5. 60
ensuring form (i) of S* and the Iormer g(O 066) = 0, Similarly we have
the smallest estimate, £ =0, if az = 0, 77oi and 6. 70 +5, 601 >of1
The sample size is a scale factor in the MRS (6. 3.12), a.nd the support

and = a; the latter condition

function given by the same genetic distances and a hypothetical Icelandic
sample size of 250 is also plotted in Flg. 6. 4. it may be seen that

m, = 250, or I/Bm1 =5% 10'4, glves simllar uncertainty to the general
drift and sampling model with cr]‘*~1 = az = of =2x10""%
larger support limits than those given by a quadratic approximation at

, the latter having

the maximum. The sampling model gives two-unit support limlts
L L
0.066 - [15, 7/m,]* =1 =0.066 + [15, 7/m,]*

for these genetic data, Although, for equal m,, the sampling model pro-
vides far stricter limits for the estlmate of r tha.n does the general model,
a sampling model is not justifled (cf. 1.3}, Even with the currently avail-
able samples, the distance ||l_1(f) || is too large to be explained only by
sampling in the Icelandic population,

We have assumed throughout that the variances have been lnde-
pendently estimated, It 18 however possible to estimate them jointly with
the other parameters from the genetic data, by maximising the support
{6.3.1) also w.T. t the three variances, Since a positive lower bound to
the variances is provided by the sample sizes we do not have a smg-ularlty-

In general the ML equatlons then obtained must be solved iteratively, but
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provided the relative magnitudes of the variances are known we may ob-

- X 2 2
tain an explicit expression. In the case where Un = cc = 0‘: = 0‘2,

L (6. 3. 10) may be maximised w. r. L. a? and we obtain the joint ML esti-

mate

8° = h’ () /3pf*(£). (6.4. 1)

ated. For the present data we have & = 1,3 x 10_4, which gives
pemarkable agreement with the estlmates of 1 or 2 X 1071 previously
fbtained on the basis of population and sample sizes.

: The data on which the above inferences are based are limited, but
b enlarged set of data is provided by Bjarnason et al. {1973),

pne frequencles for eleven loci, glving p = 13, we obtain

From the

a2 =0.0376, &
¢

— 0.0517 and d°
In n

= 0. 0406,
c

_ain we obtain the estlmate ¥ = 0 and, although d 1s no longer sig-
}ﬁcantly the smallest distance, these data do seem to confirm that the
celanders were predominantly Celtic, Although the actual maximising

' oint 1s now r = -0, 71, §*{(-0, 71)-8*(0) 1s small, and the two-unit support
$imit within 0 < =<1 [S%(0)-8*(r)=<2] is similar to before. The esti-
ate (6, 4, 1) of o given by the genetic data (and £ = 0) is now 4. gx10” "
is larger value may be accounted for by dominance and the smaller
Pample sizes on which the data for some locl are based, but may also be
indication of non-representative sampling (6. 1), or of selection at
lsome loci,

) Finally we consider an alternative hypothesis that has been sugges-
ged In order to preserve a predominantly Scandinavian origin for the Ice-
Anders, This 18 the hypothesis of migration to Norway since A, D, 1000
esulting in the present Norweglans not being descended from the Norse-
juen of that date. This hypothesis was first mentioned by Donegani et al,
! 1950), but there is little supporting historlcal evidence, and while it

- plains the dissimilarity between present day Icelanders and Norwegians
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1t does not explain the similarity of Irish and leelanders. The hypcthesis
thus [urther requires that the Norsemen of A, D, 900 had Celtic-type

gene frequencies and/or that a Norae eomponent also dominateg the
ancestry of Ireland and Northern Seotland. This does not seem to be
tenable. The Norse influence In Ireland and Norih-Western Scotland

wag guperficial and transitory, and these peoples have always been
regarded as of Celtle origln, Further, aithough the evidenee ig far from
conclusive, in thoge areas where the Norse influence waa more lasting,
Orkney and the Isle of Man, the gene frequencles seem to be more similar
to those of present day Norweglans (Mitchell (1973), Boyce et al, (1973,
Thus at the present tlme it seems that the best explanation of the data is a
Celtic component in the Ieelandic colonising population much larger than

has previously been suspected,
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Summary

Teo summarise, we restate the aim propesed in the Preface; that
of providing a specific answer to a specific question. On the basis of the
likelihood theory of inference, and of a model of bifurcating populations
and genetic evolution due to random genetlc drift, we have presented an
analysig of the inferences of evolutionary history that can be made from
current genetle data, 1n particular, we have produced and studied a
procedure for obtaining the maximum likelihood estimate of evolutionary
history, Chapter 6 shows that the same general approach may be used
to analyse an independent but related problem, although the detalls of the
model, as of the hypotheses Lo be congidered, are different,

Many criticisms may be made of the model, but it should be borne
in mind that in likelihood inference we are interested in the relatlve abili-
ties of hypotheses to describe the way in which current data have arisen:
we do not assume that any one hypothesis provides a complete explanation,
A model including all the factors that contribute te current genetic data
might be preferable in theory, but a model which does not permit the
analysis of data is not of practical use, 1t is clear that, with current
genetic data, little could be gained by a more sophisticated evolutionary
model; the effect of sampling errors and non-representative sampling
will be far greater than those of minor non-isolation orselection, or even
of differing population size.

The most serious criticism of the analysis is that, although the
effect of sampling and differing popylation size can be estlmated, they are
not explieitly included in the model. The inclusion of sampling is feaaible

. in some cases (5.3, Chapter &), but more generally the alternative must

be to obtain genetic data for which the sampling errors are truly negligible,
Situations of dominaace in sampling and the more fundamental problem of
obtaining samples representative of the relevant unit of population (2, 2}
are outside the scope of the model, We see in Chapter 6 that, for evolu-
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tlon over comparatively ghort perlods of tlme, sampling may contribute
a major part of observed population distances.

However, the regults of Chapter 5, together with our knowledge
of evolutlonary history obtalned from other sources, show that even
current sample gene [requencies do contain information concerning evo-
lution, and that our model is a sufficiently accurate description of reality
to allow some of this information to be extracted, and ugeful inferences

made,
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Kolmogorov equation, see diffusion equation
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48, 51-2, 60, 68, 72-4, 77-81, 117f., 123, 140, 144
Migration 1-2, 20, 21, 132, 145-6
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96, 123,

Migeing data, see coordinates, missing
Models of evolution 1-7, 147
robustnegs 12
testing 11-12, 31-3, 144-5
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Degrees of [reedom 9, 39, 107-8
Diffusion equation 17-19, 23-5, 29
Dispersion 33, 47, 48, s4, 97, 104

Effective ancestral population 5
evolutionary time, aee evolutionary time )
. - . see also Big Bang, sampling, tree model, Yule process, etc,
population size, see population size E—

time 112 Newton-Raphson lteration 78

Eurcpean data (N.W. Eu.) 34-5, 93, 96, 97, 100-1, 103, 105-8, 128-9 Node, internal 39-40, 42, 49, 53 &1 63f., 116, 125-8
Evaluation (Felaenstein) method 7, 15, 39, 72, 93, 118-19 multifurcating  76-7, 122

Evolutionary models, see models type 62-4, $9-72

time 3, 19, 23, 25, 28, 37, 40, 48, 98, 100, 103, 105, 109 Norse population 100, 107, 129, 1311,

. Nuilsance parameters 9-10, 117-21
Genetic distance 7, 24, 81-2, 113-14, 138f,
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Phylogeny 1, 3, 13, 22-3, 129-30, 147; see also tree form, tree model

Population size 17, 19, 21, 25, 28, 82, 98, 100, 103, 108-9, 131,
134, 142

Random genetic drift (r.g.d.) 5, 16-19, 26, 31, 34-5, 36, 82, 103
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model 135-6, 137, 142, 144
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Singularities 6, 39, 43, 59-60, 74, 82-3, 112, 113, 123, 144
Stereographic projection 26-%, 61, 82, 108, 112, 114, 132
Sufficient statistics 10, 39, 81-?2
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difference 8-5
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Taxonomy 3-4, 22
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86L., 97, 102-3, 104, 117, 122

framework 115-17
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Yule process 5, 7, 10, 12, 40f, 56, 59

158




