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Preface
 

This book is not a textbook. of human population genetics, nor does 

it aim to provtde general statistical methods. Its purpose is to present 

a detailed analysis of a spectftc problem concerning human evolution on 

the basis of a logically justifiable method of statistical inference. The 

problem is specific, yet methods of assessing the evolutionary relation­

ships between populations (of the same or of different species) have 

attracted considerable interest since Charles Darwin first proposed the 

existence of such relationships. The method of inference is specific, yet 

it is one that must be at least an important Iacet in any complete scheme 

of scientific inference, and seems to be the only method which permits 

a unified approach to be taken to the analysis of data in the very wide 

variety of problems that arise in the field of popuLation genetics. 

The model through which inferences are to be made is also 

specific, and for this no apology is given. All scientific inference re­

quires a model, and only when this model is explicit can the effect of 

its assumptions be investigated. -Only by the analysis 01 data on the basis 

of explicit models appropriate to specific problems can hypotheses be 

objectively considered. In the case of population genetics problems, a 

model that can be fully analysed must probably always be a simplification 

of the true processes of evolution that have given rise to current genetic 

data. However, we must walk before we attempt to run: when the prob­

lems involved in the use of a simplified model have been solved, we may 

then proceed to extend the model in ways that wlll make it a closer 

approximation to reality. 

Thus, although I believe the methods and results presented here 

to be of interest, and a detailed analysis 01 the particular problem to be 

of some practical importance, perhaps the most general aspect of the 

work is that of the line of approach. In the first chapter we place the 

problem in the more general field 01 inference problems in human popula­
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Uon genence, and consider previous approaches to It We discuss also 

the view of inference to be taken in this work. Chapter 2 considers the 

genetic problem and its approximation by a probabilistic model. In 

Chapter 3 the mathematlcal analysis of the model is discussed, while 

Chapter 4 provides and investigates a method of making the required 

inferences. In Chapter 5 we consider the computauonat procedure and 

the estimates obtained lor two particular sets of genetic data. Further 

problems and possible extensions of the model are also studied. In the 

final chapter an independent but related problem is lnveat'lgated, and the 

approach Is a repetition in miniature of Chapters 2 to 5: first the genetic 

problem, then the appr-opr-Iate model, next the mathematical analya'la of 

the model, and finally the analyafs of some genetic data and a discussion 

of the results and of possible extensions of the model. 

It is hoped that this book will be of interest to both genenctete 

and statisticians; it has not consciously been given either bias. Although 

some sections will be of greater interest to one rather than the other, it 

should be possible for the mathematics to be readily followed by the rnathe­

mancany inclined geneticist, and the genetic discussion by thc statistician 

wlth an interest in genetics. In the introduction of terminology and the 

provfaion of preliminary denmnone I have intended to cater for both, but 

I have perhaps in general tended to assume the reader to have the same 

background as myself; that of a statistician whose interest in genetics, 

although not secondary, came later. Some knowledge of both subjects 

is necessarily assumed. 

The majority or the research on which this bock Is based was 

carried out from 1971 to 1972 as a member of Newnham College, Cam­

bridge, and as a research student In the Department of Pure Mathematics 

and Mathematical Statistics. The original research was supported by 

a Research Studentship from the Science Research Council, while latterly, 

during the wr-It.lng of this book, I have been supported by a SIms Scholar­

ship from the University of Cambridge. I am also grateful for the gradu­

ate scholarships and studentships 1 have held from Newnham College 

during this period. Chapters 2 to 5 are based on a research dissertation, 

awarded a Smith's Prize by the University of Cambridge (March 1973), 

while the material of Chapter 6 was first published by the Annals of 

vl 

Human Genetics (37 (1973), 69-80). The work has more recently formed 

part of a thesis submitted for the Ph. D. degree in the UniversIty of 
Cambridge. 

I am grateful to all those who have commented On or discussed 

any parts of this work. In particular I am indebted to Mr C. E. Thompson 

of thc Computer Laboratory, Cambridge, for his advice on Computer 

programming details and for other discussions, and to Dr J. Felsenstein 

of the University of Washington Cor the correspondence we have had on 

the subject of eVOlutionary trees. This correspondence raised several 

pomts of interest, and has contributed to the discussion presented in 

some parts of Chapter 5. Professor J. H. Edwards of Birmingham 

University provided the European genetic data on which the evolutionary 

tree of section 5. 1 and the results of Chapter 6 are based. I am grateful 

also Cor a profitable week spent in his department. 

Above all, I am indebted to my research supervisor, Dr A. W. F. 

Edwards of ocnvtne and Caiua College, for his constant encouragement 

and for many helpful dtecusetons. The extent to which this research has 

its foundations In his earlier work will become apparent, and I am grate­

ful to him for the constructive interest he has taken in the progress oC 

this work and in its publication. While it was through Dr Edwarda that 

I first seriously encountered the problema of the roundation of inference 

and the SUbject Of population genetics, I have greatly appreciated his 

encouragement of independent research and thought, The views expressed 

1n this book are my own, as are, of course, any errors. 

Cambridge 
E. A. Thompson 

August 1974 
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1· Inference and the evolutionary 

tree problem 

1.1	 PHYLOGENY, MODELS AND INFERENCE 

The aim of this book is to provide a method of solution to a spe­

ctrtc problem, and yet one which haa attracted a wide interest In recent 

year-s. This is the problem of the statistical assessment of the phylo­

genetic relationships between vartoua ethnic groups within the human 

species, on the basts of genetic data currently available in present-day 

populations. The basic difference between the approach to be considered 

here and that of Borne previous appr-oaches is that inferences are to be 

based on a probabilistic model for the genetic evolution of the populations 

under conetderatton. The criteria of likelihood inference are to be used 

to asaeaa alternative hypotheses of evolutionary history. No model can 

cover all aspects of the complex process of evolution, and tnrerencea 

are necessarily made within the framework or the model. However 

statistical tnrerences cannot be made in the absence of a model, and, 

even if this model is necessernv a simplification of the true situation, 

an explicit statement of the assumptions under which inferences are made 

enables the errect of such aaaumpttons and the possibilities of extending 

the model to be considered. 

We shall consider only the problem of making Infer-ences con­

cerning several, often large, populations within the human species, these 

populations having a common source but having evolved largely indepen­

dently, there being little interchange between them. Population differ­

ences renect the length of time since the existence of a common ancestral 

population, and an evoluttonary tree model is required. Some specific 

problems of population admixture may also be analysed on the basis 01 a 

model of Independently evolving populations, and one such is considered 

in Chapter 6, but we shall not consider more generally the analysis 01 

relationships between smaller populations where the pattern of differen­

tiation depends mainly on the interchange between them and where mtgra­
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tton has been sufficient for them to evolve substantially as a single unit. 

Much work has been done on the mathematical analysis of m lgra­

Hen models, and the genetic consequences of many specific migration 

patterns have been determined (see, amongst others, Kimura and Weiss 

(1964), Bodmer and Cavalli-Sforza (1968) and Maruyama (1972». How­

ever, such models are complex and must Involve many parameters if 

they are to bear any approximation to reality; problems of inferring 

migration history from currently available genetic data are largely un­

solved except: under equilibrium assumptions. Analyses of migration 

patterns (see, for example, Morton et al. (1968» have been based on 

isolation by distance models (Wright (1943), Malecot (1959)), but the 

assumptions of uniform migration and equlltbrium dlflerentiation implicit 

in the model cannot normally be justifiable. Morton et al. (1971) have 

also developed methods for the study of genetic correlations between 

populations as measured by relative heterozygosities, but although these 

correlations provide measures of the patterns of population structure 

(Wright (1951)), they cannot be Interpreted In terms of inferences con­

cerning the history of populations in the absence of a model for this 

genetic history (Thompson (1974)). Thus the field of migration patterns 

Is a further area in which likelihood analysis on the basis of explicit 

models appropriate to specific problems may perhaps provide an advance 

on present methods; but it Is a field in which many problems remain to 

be solved, and is not one which we shall consider here. 

A tree model does not allow for the existence of hybrid populations. 

While many populations are undoubtedly hybrid to some extent, substantial 

migration is a relatively recent phenomenon. In spite of the great in­

crease In migration rates over the last few centuries, most Individuals, 

even in the more mixed populations such as those of Brazil and Central 

America, may still be assigned at least a mixture of ethnic origins; most 

hybrldlsatlon is known. Thus the evolution of major populations may still 

be validly represented by a bifurcating tree; present genetic variation 

reflects the evolutionary history of populations for which a tree model Is 

at least an adequate approximation. In the future this may no longer be 

so. At present migration rates relatively few generations must elapse 

before variation, even amongst some larger population groups, will 

depend as much on recent migration patterns as on more remote evo­

lutionary history. A reconstruction on the basis of a model of indepen­

dent evolution would then no longer be a valid procedure. 

The heuristic methods which have been pr-eviously used to provtda 

phylogenetic representations of human populations are similar to those 

which have been used to estimate the evolutionary tree of the different 

species. In particular the method of minimum length spanning networks 

has been used by Dayhoff (1969) and that of least-squares additive trees 

by Fitch and Margcltash (1967) and Goodman et aI. (1971) (see section 

1. 4). There has therefore been some tendency to consider the two prob­


lems equivalent, The obvious difference is the time scale. The evolu­


tionary time, dellned to bc the length of time since the existence of a
 

common ancestor, between man and his nearest neighbours on the tree
 

of the species, the great apes, is at least 10 6 years and probably very
 

much more. Homo sapiens evolved from Homo erectus only around
 
52* x 10 years ago (Cavalli-Sforza and Bodmer (1971: chapter 11)), and 

assuming a monophyletic origin the largest possible evolutionary time for 

any group of human populations is of the order of 104 generations. 

There ts however a far more fundamental difference. Differences 

between species are differences between the amino acid sequences of the 

various proteins which can occur. Differences between populations within 

a species are differences between the frequencies with which the various 

possible forms arise. In the former case the appropriate models are 

tnoee of mutation in the discrete space of all possible amino acid seruencsa, 

In the latter the state space is the continuous space of the allele frequen­

cres within each polymorphic system. The models which we shall con­

sider are those of change of gene frequency, and not of change of gene 

state, and the methods to be developed are appropriate only to problems 

,of frequency dlff erentiation. 

Still less are the methods to be regarded as general taxonomic 

procedures, although inferences are based upon population similarities 

and differences. In numerical taxonomy the aim is to obtain representa­

tions to the relationships between taxonomic units in the absence of any 

, probabilistic model, sometimes in order to suggest hypotheses but more 

often simply as a classificatory or discriminatory procedure (Jardine and 

j
 
2 

3 



I
 

I
 

II 
1(11 11 

Sibson (1971». Our problem is to estimate certain parameters in a 

probability distribution derived from a specified model of evolution, and 

hence to jUdge between a priori specified hypotheses. The distance 

between populatlons is not a measure of taxonomic similarity but a ran­

dom variable having an explJcit distributlon under the proposed model, 

This point has been made on several. occasions (CavaUl-Sforza and 

Edwards (1967), Cavalli-Sforza and Bodmer (1971: p, 702)), but. be­

cause of the similarlty of the heuristic approaches previously taken to 

thlB problem to some of the techniques of cluster analysts, the differences 

have not always been clearly stated. These methods are only justifled 

by the beller that they provlde an approximatlon to the estimate based on 

a lull solution to the model, but while they are pursued with this view there 

is no justification for the criticisms of taxonomists (Jardine and stoeon 

(1971: p. 161)) that the solution obtained Is a dendrogram which may not 

be interpreted as a phylogenetlc tree. 

In this section more emphasis has perhaps been laid on the prob­


lems which our analysis cannot be expected to solve than on those which
 

it Will, but a clarilication of the assumptions of any model must always
 

be of value. Morton et al~ (1971) have criticised the use of tree models
 

for the analysis of wlthin species relatlonships. While it is true that no
 

human population evolves in complete isolation, It Is also the case that
 

In many situations a tree model may be very much more appropriate than
 

one 01 equilibrium differentiatlon under constant migration, and where
 

there is a possiblllty of Inferring the evolutlonary history of such groups 

01 populations it would seem to be a vaUd exercise to attempt to do so. 

All statistlcal inference requires a model, and, although the limitations 

of any model must be recognised, it is only thrOUgh the analysis of data 

on the basts of models for which the problems of inference ~be solved 

that progress will be made. When analyses are based upon expucrt models 

we can consider the effect of the known assumptions upon possible results. 

When one problem is solved we can consIder the posslbtltty of extension 

to more general models which may be a closer approximation to real1ty 

In a wider variety of situations. 

,
 

1. 2 THE EVOL UTIQNARY mEE PROBLEM 

The model to be assumed lor the evolution of human populations 

is one of an evolutionary tree. It is supposed that the populations under 

consideration are descended, by consecutive binary splitting, fr-om some 

ancestral poputatton existent less than 5 x lOS years ago. It is generally 

agreed amongst anthropologists that the evolution from Homo erech1B 

(existent 5 x 10 5 years ago) to Homo sapiens (existent by 2 x lOS years 

ago) occurred only once. and thus that all populations may be assumed to 

be of monophyletic origin, although some would place the ancestral root 

at an earlier date. For most groups of populations it is unlikely that the 
4effectlve ancestral population existed more than 5 x 10 years ago; only 

with expansion of numbers and movement of peoples wIll evolution on a 

tree model take place. 

The data to be used in the stattattcat analysis of phylogenetic 

relationships are the allele frequencies at varIous blood group loci in 

present-day populations. It is assumed that during the process of evo­

lution these gene frequencies have changed, Independently at the separate 

loci, due to a process of random genetic drut (see section 2. 1). Bya 

series of transformations this process may be appr-oximated by one of 

Brownian motion in a EuclIdean space (see section 2.3). Thus a proba­

btl1ty dIstribution lor the present gene frequencies may be derived, given 

a 'history' of the populations consisting ol the form of evolutionary tree, 

the Urnes of split and the position of the initial root. The problem is to 

reconstruct this history from currently available genetic data (Fig. 1. 2), 

Or, in statIstical terms, to estimate these parameters rrom observed 

random variables. A model for the splitting of populations may also be 

included. A simple birth, or Yule, process is the simplest appropriate 

model. 

The original attempts to reconstruct the evolution oC human popula­

nons from their sample gene frequencies used beurtsnc approaches 

(Edwards and cavanr-storza (1963), Cavalli-Sforza and Edwards (1964)). 

It was realised that such approaches are insufficient in themselves and 

that any attempt to reconstruct evolutlon should be based on a probability 

model lor the course of that evolution. The Brownian- Yule model was 

proposed by Cavatn-Srorea and Edwards (1967), but owing to difficulties 

5 
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'Now apace". 

Representation of an evolutionary tree. T is theFig. 1. 2. 
total evolutionary time of this group of populations. 
x is the position 01 the initial root, or the polnt at-,
which the Iaet common ancestor of this group of 
populations epttre. Information on population pcsttrone 
(gene frequencies) Is available in the space t = O. 

in analysis and 'atngulartttes ' caused by a confusion between the role of 

parameters and random variables no analyses could be made on the basis 

of the model. Writers continued to use minimum evolution (ME) and other 

heuristic methode (see eectton 1, 4) in the hope that these might provide 

'a reasonable approximation to the likelihood solution' (CavalU-Sforza 

and Edwards (1967)). 

__ ~sPace; 

'phe heuristic methods have been applied to several groups of 

populations (Ward and Neel (1970), Fitch and xeet (1969)). Although the 

populatione often do not conform to the criterion of Isolated non-inter­

breeding units required by a tree model, the methods have proved 

successrut at r-epr-esenting the relationships between populations 1n that 

the results obtained are compatible with known history and geographic 

and linguistic structure (Frledlaender et at. (1971)). However, such 

methods suffer deficiencies by comparison with maximum likelihood (ML) 

estimation or the evolutionary history (see section 5.6), 

The model was improved as an approximation to reality by new 

genetic distance measures. Following an idea of Bhattacharyya (1946) 

for multinomial samples, Cavall1-Sforza and Edwards (1967) use a repre­

sentation of the population gene frequencies al each locus on the surface 

of a multidimensional sphere. By eter-ecgr-aphtc projection of these 

spherical surfaces, Edwards (1971) obtains a Euclidean space of the 

required dimension, and populations may now be represented by points 

In this space, However', the model remained unanalysed: nor was the 

practical validity of these transformations investtgated. 

Progress was made by Gomberg (1966) in actually setting down 

the requfred probability distributions. Fetaensteln (1968), dropping the 

Yule process and considering only the BrownIan motion, developed a 

method or transforming the data variables in a way which simplUies the 

form of the likelihood and enables it to be evaluated, at given parameter 

vatces, from pairwise genettc distances. Edwards (1970) completed the 

flret stage in the eolution of the problem by giving the first fully correct 

statement of it. 

Felsenstein (973) has more recently used hie traneror-manon 

method to develop a method of rapid evaluation of the likelihood at given 

parameter values, and hence of maximum likelihood estimation of the 

evolutionary tree; a computer program has been written which searches 

for this maximum likelihood estimate by evaluation, for a given data set, 

at a series of parameter values. Thie approach is however essentially 

practical and, since it relies on th~ numerical evaluation of a single func­

tion, gives little information about th~ shape or the likelihood surface, 

except for the given data in the region of the local maximum found. No 

,
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full analysis of the model has previously been made; problems of exis­

tence and uniqueness of maxima have not been considered. Some assump­

tions implicit in previous work have not been Justified, and fundamental 

points of likelihood theory remain to be fully clarified. The approach to 

be considered here takes Edwards (1970) as its starting point. Although 

an essential part is the development of a rapid iterative method of finding 

the ML tree, we emphasise far more an analytic treatment which provides 

an understanding of the proeeaa and the likelIhood functions Involved, 

1.3 LIKELIHOOD INFERENCE 

The evolutionary tree problem is to be studied from the approach 

advocated by the likelihood theory of inference. A full account of the 

basic theory with reference to questions of ectenunc inference is given by 

Edwards (1972). We give here a summary of those points which particu­

larly Influence the analysis of our particular problem; many of the prob­

lems of Inference which arise in Chapters 3 to 5 are relevant to current 

thinking in the field of likelihood inference. 

LikelIhood theory advocates that hypotheses should be judged on 

the tests of their likelihoods. The likelihood of a point hypothesis, H, 

given experimental data, D, is 

LDIH) ~ PID IH), 11.),1) 

the probability of the observed data under the hypothesis. When only one 

set of data is under conetcer-atton the subseript, D, may be dropped. All 

the information in data D on the relative merits oC two hypotheses is con­

tained in the likelIhood ratio, 

L (1. 3. 2) 
D(H1);LD(H2), 

or in the support difference, ~(Hl) - ~(H), where the support SD(Hi) 
is defined to be 

log.[L )] , (I. J. J) 
D(Hi 

Support is determined only up to an additive constant; only support dllfer­

encee, between alternative hypotheses (or the same data, have any etg­

,
 
ntficance. In likellhood theory it is assumed that there is always some, 

expllcit or impUcit, alternative hypothesis. 

Thus for simple point hypothesee Hand H the only problem
i , 

is to decide what support difference should lead to the rejection of one 

hypothesis in favour of the other. The level 2, or a likelihood ratio of 

e
2 

, has been suggested, and will be adopted here, but the support scale 

has no interpretation in terms of probability or other measure, and the 

interpretation of the support surface ties With the indtvidual investtgator 

(Edwards (1972: p. 33»). In a stattatteal analysis it is better to state 

the actual support difference between alternative hypotheses of interest 

than to fix a universal 'significance' level. 

Suppose now that H te a eomposite hypothesIs concerning a multi ­t 
dimensional parameter 11 in some space n; say "t is 8 e G C O. 

I 
The likelIhood ratio for "1 against H is defined as

2 

max. [LDIe)J/max. [I DIe)) ~ max. [PIDIe)JImax. [PID' e)J, 
f/EG1 8fG 8EG 8£G2 1 2
 

and the support difference as
 

max. ["n(e)) - max. ["n(e)]. (1. 3. 4) 
8fG 8fG1 2 

For composite hypotheses the problem of degrees of freedom arises. If 

01 has greater dimensionality than G then it Is plausible that2 

max. ["n(e)] > max. ["n(e)] 
8fG1 8rt1

2 

,;' even if there is no dUferenee between the two hypotheses as explanattons
,I" 
:,"11,. of the data. Ctasstcat likelihood-ratio signifieance-testlng theory solves 
I 
Ii'
I 

this problem by eonsiderlng the asymptotic chi-squared distribution of the 

J',. support differenee, but It remains an unresolved problem in likeUhood 
:;~ 

"1 theory. Although simpler hypotheses are to be preferred, deterministic
11'1 

')II hypotheses (P(D IH) = 1) are normally to be rejected on grounds of prior 

,'/ knowledge (Edwards (1972: p. 199». Within the class of hypotheses speer­

fied by the probability model there is no intrinsic reason, withln a finite 

set or given data, to give a 'bonus' to a hypothesis having some arbitrary 

eet 01 restrictions however intuitive these may be. In comparing forms 

8 9j
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of evolutionary tree we rind that the spaces G are of the same dimension 

t The basis of likelihood theory is that information about a para­
and that the problem does not arise (Chapter 4). However when we wish 

to compare the information on phylogenetic relationships contained in 

different data sets, or to consider hypotheses of stmuttaaeccs eplttting, 

the problem must be considered (Chapter 5). 

The functton max. [L(fl)] is known as the maxImum relaUve like-
8,G 

Uhood (MRL) with respect to G (Kalbfleisch and Sprott (l970»). One way 

of deallng with the problem. of nuisance parameters is by maximising over 

them and considering the MRL. This may be misleading if there are 

many such parameters, and alternative methods of eltminattng them have 

been developed by Barndorlf-Nielsen (1971), uetng concepts of annfllar-Ity. 

These conditioning methods have the serious disadvantage that, if a para­

meter is discarded as a nuisance parameter but it is later decided that it 

should be considered, a complete reanalysis is necessary. This may 

give different estimates to the parameters already considered. Use or 

the MRL ensures equaUty of joint and marginal estlmates. This problem 

arises in evolutionary tree theory with reference to the root, -.x , which 

may be considered as a nuisance parameter in estlmating the tree 

(Felsenstein (1973»), but which we cometimes wish to conalder (Chapter 5). 

This parameter may be eliminated using M-ancillarity (5.5), but normally 

no parameter will be completely disregarded, and if not all are required 

at any stage we consider the MRL. We note that aU statements are thus, 

Impltcttly if not explicitly, simultaneous joInt statements about all para­

meters. 

A further problem is that of 'prediction', Flsher (1956: p. 126) 

proposes a predIctive likelihood for future random variables whose dis­

tribution depends on parameters which are unknown but on which there is 

information through the observed data. However, there is no clear con­

sensus as to whether statements of probability or likelihood are appro­

prIate, or whether any single such statement can be made. An equivalent 

problem arises in the theory of evolutionary trees. We shall not wish to 

make future predictions, but we shall wlsh to make inferences about 

unobserved random varlablea. The proposed solutIon (3. 2) corresponds 

to Fisher's predictlve likelihood. 

meter cannot be expressed as a probability distribution, unless it arises 

as the result of a random procedure having a probability model. 11 this 

18 not the case knowledge Or beliefs must be expressed in terms of the 

point function, likelihood, and not a set function. The support funcUon is 

Invariant under one-to-one (I-I) transformations of the parameters, and 

support is additive over independent data sets. The area under a support, 

or likelihood, surface has no meaning. Any prior beliefs regarding hypo­

theses may be expressed by a 'prior llkelihood' but not by a Bayesian prior 

distribution (Edwards (1972: p. 36)). Prior and experimental supports 

, add to give posterior support. An uninformative experiment, or no prior 

'I': information, is expressed by a Constant (without loss of generality 
. (w. L o. g. ) zero) support function. 

Fisher. in a comment on Jelrreys (1938), states that "likelfhcod 

, must play In tnductive reasoning a part analogous to that of probab1l1ty 
I 
,\ to deductive problems' and should perhaps be accepted as a 'primitive 

'r:~i', poetutate' rather than justified by repeated sampling arguments. Thus In 

I" tile likelihood theory of inference, as opposed to the procedure of maximum 

IlkeUhood esttmatton, we are not concerned with asymptotic properties or 

'repeated sampltng justifications, but With the complete support surface as 

a representation of the relative ability of a given set of point hypotheses 

'to explain a given set of data. In theory we should examine the contours 

of the complete support surface, which may be multi-modal or even have 

singularities. For a large number of parameters this is impOElsible, and 

often only the maximum and the curvature at the maximum are considered. 

~;I If the support function Is quadratic these determine the complete surface., 

'1 Prom the curvature at the maximum two-unit support llmtts (parameter 

'i(.:, values at which the support is two units less than at the maximum) may 

,/ be determined On the aesumption of a quadratic surface in the netghbour­• 
I, hood of the maximum. These are the likelihood equivalent ol classical 

J, confidence limits. The adequacy or this procedure clearly depends on the 

:\' properties of the complete surface, which should be COnsidered wherever 
Possible. 

All likel1hood inference is condittonal on the model accepted for 

the data: testing the model falls outside its scope. This does not mean
:r 

•.I,
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that the validity 01 the model ls unimportant - indeed the success of like­

lihood inference in scientifie problems must depend critically on the 

scientific reality of the model adopt.ed. The model is part of the prior 

information and can only be rejected if some alternative is contemplated. 

There is no universal measure of the weight to be attached to a model: 

this must depend on the individual eetennet (Fisher (1956: p. 21)). 

Robustness thus plays no part in likelihood theory. We have no 

test etattsttce whose distributions under deviations from the model may 

be examined. The change in likelihood funetion under deviations from the 

assumed probability distribution is precisely that deviation. The change 

in ML estimate may be examined, but, as a statistic, this estimate has 

little significance in likelihood theory, There are two reasons why a 

probability model may be adopted and these are well illustrated by the 

Brownian- Yule model of 1. 2. The Brownian motion is a description of 

a real physical process that is taking place and the parameters have an 

existence independent of the model. In such cases the validity lies solely 

in the accuracy of the approximations involved (to be diseussed in 

Chapter 2). The weight attached to the model will depend on the belief in 

the physical process rather than on the data. 

Alternatively a model may simply be a convenient summary of the 

data. This is the case w1th regard to the Yule proeess for the formation 

of populations, The weight attached to such a model will depend entirely 

on how convenient a summary of the data it proves itself to be, and, in 

eonu-aat to a 'real process' model, it has no intrinsic weight. A 'sig­

nificance test' showing that the model is not an adequate summary of the 

data will lead to its rejection. However, even for a 'real process' model 

significanee tests, whether of support (Edwards (1972: p. 180)) or etaset­

cal Iorm, may be 01 some importanee in influenelng our belief that the 

assumed process is the one that is taking place (2.4). 

1. 4	 THE HEURISTIC METHODS 

There are three main methods that have been used to reconstruct 

evolutionary trees from gene frequency data. These are 'minimum evolu­

tion', 'least-squares additive trees' and the method of Malyutov et at. 

(1972). These are summarised here for eompleteness , and so that their 

l results may be compared with the UkeUhood solution to the problem. 

The interpretation of a representation obtained by these techmques as a 

phylogenetic tree is justified only by the asaumptlon that the result is an 

I.	 approximation to the estimate of the evolutionary tree on the basis of 

some probabilistic model for evolution; this belief should therefore be 

Investigated. In minimum evolution, for example, there is no aasump., 

"	 tton that evolution procedes In any minimal way (Cavalli-Sforza and 

Edwards (1967)). 
'I" 

,II (I)	 Minimum Evolution (ME) 

This method was proposed by Edwards and Cavalli-Sforza (1963). 

It has been extensively used and produces acceptable trees (1. 2). For 
"I this reason comparisons between ME and the likelihood solution, to be 

made in sections 3. 3, 5. I and 5.6, are of some importance. The aim 

of the method is to construct the minimum length spanning network, or 

!''''	 minimal steiner tree, between n population points, when these are, 
·lli',	 embedded in a Euclidean space of (n - I) dtmenstona, in accordance

',.
" , with the pairwise distances given by some genetic distance measur-e 

.at1sfying Euclidean metric conditions. The minimal Steiner tree is un­

,.footed; no scale of, even relative, time is inferred. Thus, at best, the 

ME solution is a pr-ojection oI the evolutionary tree of Fig. I. 2 into the 

Current 'now space', t = o. 

CavaUi-Slorza and Edwards (1967 and other papers) have deter­

mined suitable algorithms for the construction of minimal Steiner trees. 
n-2 (

Since there are nr=1 2r - 1) unrooted labelled tree forma, the major 

problem is to find a good initial tree at which to start iteration for the 

';, eotutron. The baste of the algorithms at present in use is described by 

Thompson (1973a) where a new method of finding an initial tree is sug­

gested. The methods and programs, originally due to Edwards and 

Corfield (Edwards (1966)) but modified for greater efficiency, now seem 

to be in their most efficient possible form, unless and until a direct 

8olution to the steiner problem is found (Thompson (1973a». 

(11) Least-squares additive trees (LSA) 

The LSA method was suggested by Cavalli-Sforza and Edwards 

(1964) and details of the solution are given by Cavalll-Sforza and Edwards 

12 
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(1967). The pairwise distances between populations are fitted, accordtng 

to a least squares criterion, by additive distances along the internal 

branches of a given form of spanning network. The trce form having 

smallest r-esldual sum or squares amongst those having positive estimates 

of the lengths of internal branches is to be adopted, but, as for ME, it 

can be positively identified only by examining all tree forms. 

The tree produced is again unrooted, and although ME and LsA 

give very similar results LSA seems to have even less Justification than 

ME as an approximation to the likelihood solution. The proposed model 

of gene frequency diffcrentIation is one in which the population points 

move in a Euclidean space as the populations evolve in time, and we shall 

fInd that differentiation due to random genetic drttt implies that mean 

square distances are additive over independent branches of evolution. 

The LSA method assumes that stmptc distances are additive, and it is 

not necessarily possible to cmbcd the LsA solution in any Euclidean space. 

The method has been investigated by Kidd and sgerameua-zonte (1971) 

and other criteria for the adoption of a tree form have been suggested. 

LSA has been less used than ME in problems of gene frequency variation, 

but it has been considered extensively with reference to the problem of 

reconstructing the tree of the different spectee from data on protein amino 

acid sequences. 

(111) The Malyutov and Rycbkov method 

This method of backwards reconstruction is described by Malyutov 

et al. (1972) and is an advance On previous methods In that it is based On:'il the probabiUty model and produces a rooted tree with tlme scale and esti ­
II mates of tirnes of split. A tree form is predetermined by some cluster 

I1 analysis criterion. Then joins are made, proceeding backwards into the
 
III past, estirnating the tirne and poaltton of each ancestor On the bas'ls only
 

III, of the population sizes and distances in time and space between the two
 

populations to be joined These two populations are then discarded and 

only the position and tirne of their new-found common ancestor are con­
111!:1 

sidered when the next jObl is made. Although the method is very rapid, 

the fact that the estimated position and time or any ancestral population 

depends only on thoee of ita two immediate descendants, and not on those 

of its ancestors, results in \rery unreasonable trees. In practice the 

14 

"OIUtiOnS obtained are rar worse than those provided by ME and LSA, 
particularly in many dimensions. 

Even if the estimation criteria were those of likelihood, estimates 

based only on the two populations to be joined cannot approximate any 

overall method Of estimation based on a complete model for all populations. 

The method does have the advantage that known differing population sizes 

I'" ,Dlay be taken into account, but more often these are not known for ancee­

I~ltral populations and different guesses may lead to widely differing results. 

:!':Ipurther the method pruvldes no crrterfon by whIch the trees ubtalned may 

I,·,""e jUdged, Or by which the estimates resulting from different a priori 

II~assumed forms may be objectively compared 

jI'! Thus the tree methods that have been used in practice have major

;~(.practiCal and theoretical limitations. There is a need for a practically 

'\~flable and theoretically justtllable eoiunon. Felsenstein (1973) has devel­',' 

, led such a method of assessing any proposed evolutionary tree by evalua., 

·ion Of the likelihood; we shall provide a likelihood analysis of the model 
" Itch enables the adequacy of locally-maximum likelihood estimates to" 

\1 
investigated in terms of the overall SUpport surface, and provides a! 

'eater understanding of the Interrelation between the Observed data and 
e estimated tree. 

c,' 

", 

.\', 
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2·The model 

I, 

2. 1 RANDOM GENETIC DRIFT AlID THE PROBABn,ITY MODEL 11'1 

II:	 II Our aim is the 'reconstruction of an evolutionary tree', but it is 

necessary to deUne more precisely what is to be Inferred from the data. 

Edwards (1970) defines types 01 tree as follows: a tree form is a tree 

specified only by its topology (as, lor example, by Harding (1971); a 

labelled tree form is a tree form where now the tips of the branches, the1\ 
present populations, are distinguished For n populations there areII, n~:})(2r - 1) labelled rooted tree forms (Cavalli-Sforza and Edwards

I ' 
(1967)), If further a distinction Is made between trees of the same labelled 

tree form having different orderings In time of the internal nodes, weIII, II 
have a labelled history. It is the labelled history of the populations that 

is to be inferred, and the labelled hIstory will In future be referred to 

simply as the form of the tree. There are 

nl (n • 1)1/2n- 1	 (2. 1. 1) 

labelled histories for n populations (Edwards (1970)). 

It is assumed that the major cause of gene frequency differentiation 

in contemporary populations is random genetic drIft in preceding genera­"I 
tions. [Random genetic drift (r. g. d) Is the name given to changes in
 

I gene frequency due to finite population size. J This model of neutral
 
"I
 tscaneies will not be correct for all gene loci; for many characteristics 

gene frequency differences may reflect mainly differences in environment. 
I 

The widespread polymorphism of the human blood group loci is discussed 

by Cavalli-Sforza and Bodmer (1971: pp. 732- B): many models have been 

proposed to explain how such a high degree oC genetic variabIlity could 

arise and be maintained. However, Kimura and Ohta (1971: chapter 9) 

have shown, on the basis of the theory 0( neutra1isoalleles, that high 
I 

levels of polymorphism may be maintained without etebntemg selection.
I 

16III 

YF O' the major-ity at the human blood gr-oupe the observed levels of poly­

~' ~orPhism and patterns of differentiation could well be the result oC 

r. g. d. alone; whereas selection mayor may not OCcur, r. g. d, must. 

,~ R. g. d. may be formulated as follows. In each generation, at 

':!I'" any k-anete locus, the genes in a diploid population with effective size 

K may be considered to be a random multinomial sample of the 2N
II e e 

renes of the prevtocs one. Thus 11 the gene frequencies at generation~I are £(t) = (p~t), ••. , p~t)), 

"'I
 
"k (t) _ I d (t+l) _ (t) + (t)

LPl-,an.e -E e.
 

i=l
 
,,f/".' 

I,,'then E(E:(t) = 0, var(e(t» = P~t)(l _ P~t))/2N 
---	 II Ie 

(2. 1. 2) 

and cov(E:~t), e~t») = _PI(t)P~t)/2Nl~' I, 
I] ] e 

I'	 

} 
",:'" is the 'variance effective population size', which is a mod11ication , e
 
i'oI the census size N taking into account non-random mating, age atruc­


II~re and geographic structure oC the population. It is defined to be the 

'~'Nmmber such that (2.1. 2) is a correct description of the driIt variances; 
I~jffor human populations prior to the very recent increase in longevity it 
,'~ "	 J 

" bl often estimated that N Is of the order of aN. e 
Now the generations are not in reality discrete and (2. 1. 2) may 

, be transformed to a process in continuous time. Let ~(t) be the gene 

'frequencies at time t, time being measured In generations, and let 

~(t + Ot) = ~(t)	 + E~; llt). 

" Then E(e:l~; llt» =	 0 for t = I, "', k , 
" 

E(£,(z; ot»2) = z.(l - z.)Ot/2N + 0(01), 
- I I e 

E1el(zi ot)e.(z; ot)) = -z.z.Ot/2N + o(Ot), [17- Jl. 
- J- I] e 

.', and all higher moments are of order o(Ot). Also (see, for example, the,I 

,:",' 'blethod of Kimura (1964» the KoLmogorov forward equation giving the 

"probabmty density C(~; t) of gene frequencies ~ at time t may be 
written 

iii 
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k k k 02Of(z; t) 
~- = -l. ~[M.(Z) f(z; t)] + ~ l. .~1 ",Oz. [Vlji~)li'; til, 

i=I UZi 
1- - i=l J= J 

i2.1. 3) 

where 

M,(z) = lim [E(e.(z; 6t)/6t)] 
- Ot-O 1­

and 

Vi.(z) = lim [E(e.(z; 6t) E.(Z; 6t)/6t)].
J- Ot-+O 1- J-

Thus for the case of r, g. d. we have 

Of( . ) k 02 02 
~l~·t =(1/4N)[); -['.i1-,.)li,;l)]-); );-" [",.fi';!)]I,
UL e i=16z2 1 1 - j cstesk zi ZJ 1 J ­

i l:Sj:sk 
i#j rz. 1. 4) 

k 
with oe zi :s 1, .l zi = 1 and f(!; 0) = 6(! - E), the Dirac 6-function, 

1:::;:1 

for diIfusion from some initial gene frequencies E [!(O) = E]. 
We note that (2. 1. 3) and (2. 1. 4) are not the standard forms or the 

dtrroston equations, but are completely equivalent to them. For 

Ei[ ~ E.i'; ot)]') = 0,
i=1 l­

and under (2. 1. 4), or more generally under any model of frequency 

diICerentiation, the diffusion takes place with probability one in the space 

k k 
2: zi(t) = l Pi = 1.
 

i=l i=l
 

Thus tr we write 

k 
g(z*; t) = g(z , .•. , z, 1); t) = f«z , ... , zk 1,1- 2: Z,); t), 

- 1 k- 1 - i=l 

and similarly consider V.. , M. and z, as functions of z·, we obtain 
Q 1 k ­

the more usual diffuston equation given by Kimura (1964); 

k-l 02 02 
Og C!.; t) = (1/4N )[ 2: - (z (l- Z )g(z*; t)J - 21. 1 oz:oz:-[ ZiZjgC!*; t)]J, 
Of e 1=1 Oz~ 1 1 - i,j:s(k-l) Zi j 

1 i< j 
i2. 1. 5) 

k-l 
-ith u es zi :s 1, .2: zt:s 1 and the distribution at time 0 again being 

1=1 
oncentrated entirely at E. (2.1. 4) may be considered to contain r e­

ndent information, but its greater symmetry makes it preferable when 

ansformations or Z are to be considered. 

Ewens (1965) has investigated, and confirmed for sufficiently 

arge N , the valtdity of the transition from discrete to continuous time. 
e

'he vartance VijC!) is sufficient at the boundaries (Zt = 0 or 1) to ensure 

at these belong to the domain of the diffusion, which is therefore closed. 

The model assumed for population splitting is that these evolve 

dependently, and in any time interval Ot each population has probabiUty 

6t 01 splttting into two independent populations, each with the gene Ire­

menefee of the parent. That is, we havc a Yule process. It is assumed 

at there is a 'last common ancestor', the most recent ancestral popu­

lion from which all those under consideration are descended, and that 

.te ancestor existed and split at most 104 generations ago. The gene 

'requencies 01 this ancestral population are a basic parameter of the 

odel, as also is the population size N , assumed equal for all popula­e

ens (but see also 5.3).
 

THE GENETIC AND mSTORICAL ADEQUACY OF THE MODEL 

The validtty of the model depends largely on the populations and 

:ene loci to which it is applied. The Clrst requirement is that we should 

ooee populations for which there are sufficient data: it is important 

at samples should be sufficiently large for the apparent differentiation 

tween populations due to sampling to be negligible compared with the 

ue differentiation due to drift. Since sampling is, like r-. g. d. itself, 

multinomIal sampling, this is a requirement that 

(l/m)« (TIN) (see 5. 3) rz, 2. 1) 
e 

m is the number of individuals sampled and T the total evolu­

onary time or the populations in generations (see Fig. 1. 2). Thus, for 

exampte, for the major populations of Western Europe we have perhaps 
6

e " 10 , T '" 200, and m > 5,000 is required. In practice there are 
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rarely data from sufficiently large samples, except Cor the ABO and Thirdly we consider the problem of environmental selection. A 

Rhesus systems, and time estimates may be inflated due to sampUng . selection model can never be refuted since by postulating the required 

errors. Although a labelled history (2. 1) may he correctly inferred, 
'f'eelection coerrtctenre any pattern of gene frequency variation may be I" 

estimates of the times of spltt must be treated with caution: the sampllng ':'~': obtained, and the coefficients Involved would be too small to be detectedi 
problem is discussed lurther in section 5. 3. 

The model does not allow for the existence of eetecnon, migration 

or hybr idiaatlon. The units of population should be such that there is 

sufficient internal migration for them to be regarded as a single gene 

pool but very little migratIon between them. Many populations (uUil this 

requirement, at least until very recent generations, and although there 

are sometimes significantly dUlerin!':" gene frequencies between units 

within a population differences are substantially less than those between 

larger units, which are maintained by geographic, cultural, linguistic 

and political boundaries. 

A small amount of migration is tolerable provided dJffer",ntiation 

between populations is maintained. It may then be regarded in the same 

light as mutation - a factor scarcely affecting polymorphic gene Ir-equen­

ctes, but a source of new alleles and an indication of the mutant/migrant 

nature of their possessors. The use of known migrants should be avoided 

in the population samples used: we require the gene frequencies lor the 

descendants of some specil1ed ancestral population. This is the opposite 

view to that for a migration model, where the study is essentially that of 

hybrids and migrants and the correlation of genetic and geographic dia-, 

tance. In practice evolutionarily close populations are often also geo­

graphtcally close. In these cases migration wlU tend to lead to under­

estimates of the evolutionary times. We may mention here 'migrated 

units' of population (Jews, American Negroes, Caucasian Australians, 

etc.}, which may be treated as separate populations, and are distinct 

from migration in the above sense of mixing of populations. The anc,estry 

of these units may be inferred rr om their gene frequencies, although in 

such cases there may be environmental selection effects. These wlll be 

indistinguishable from the effects of local admixture, both tending to 

make the migrated unit more similar to the local population, although 

selection will affect only some loci (Cavalli-Sforza and Bodmer (1971: 

p. 495)). 

'~ trom sample data. Although there is little confirmed evidence 01 selection 

\',t» blood groups, there may be Some effects on resistance to certain tn­

,\i'1ItCtlons and environmental conditions. The problem Is really one of the 

II"C1l1o:lce of suitable selectively neutral gene loci (see below) rather than of 

,pulations, but 1t has been suggested that only poj)\llaiions 01 similar 

lvironment should be used (Malyutov et at. (1972». However, it is not 

own precisely what selection e!fects are to be avoided and hence in 

,bat ways the environments should be similar. There is however another 

" thtsi,euon for choosing populations that are not too wtdety separated: 

the problem of gene fixation. The Brownian motion dimension depends 

the number of alleles, anc if some allele is lost rr cm a population the 

enston is decreased. Thus we require populations that are polymer-

lie for the same alleles at the same gene loci. This is more likely to 

true of populations not too widely evolutionarily separated. 

It wtu be ebown (5. 3) that constancy ot populations size 1n time 

not necessary lor the validity or the model However, for aimpltclty 

"e shall assume it until that point. At any one time the population sizes 

,cuId all be equal. This ie a severe restriction, but it will be more 

i~,early met U only poputattcns ot the same type are considered; that is, 

'lages, tribes, countries or continents but not some of each. The model 

eumee rnetaetaneccs spljtttng and euopcpcianon SIzes both equal to that 

the parent, However, population splitting wnt generally take place at 

mes of rapid population expansion and the parent population size will be 

rapidly attained, Moreover, although splitting wrll seldom be instantane­

I~s. there wtlt come a pctnt at which migration will no longer maintain 

:1milarity and this may be said to be the splitting potnt. Migration sub­

eqcent to the split will decrease time estimates: non-random spl1tting 

populations will increase them. 

: ThUS, regarding population formation, there are many factors 

''that may result in unreliable -ttme estimates, but none of these should 

ler10usly anect the pO!lsibtllly of inferring a correct tree torm. It should 
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not be expected tllat consistent estimates of evolutionary times, or even 

relative times, will be obtained using different groups of populations of 

varytng size and degree of isolation. However, although the maximum 

likelihood estimate of the evolutionary tree must be interpreted with 

caution, the likelihood surface as a whole prcvtcee the relative degree 

of support for any alternative hypotheses of evolution which may be ex­

pressed in tree form. Such a hypothesis is a description of major evclc­

tionaryevents; it does not entail a detailed belief in the instantaneous 

occurrence of bifurcating splits at specific points in time followed by com­

plete isolation of populations. 

In choosing gene loci on which to base a phylogenetic study, we 

require unlinked pclymorphlama for which there are sufficient accurate 

data and which are not subject to selection, particularly environmental 

selection. constant directional selection will act equally on all popula­

Uons, and so should cause less distortion of the pattern of gene frequency 

dUlerenUation {Cavalli-Sfonoa and Edwards (1967)). In practice we use 

the red and white blood cell groups; none 01 those used show evidence 

of linkage. Under selection gene tr eqceectee change linearly in time, 

whereas for r, g. d it is the square of the change that Is proportional 

to time. Thus the avoidance ol selection is particularly important where 

large times are involved. Little is known about blood group selection, 

but the length of time for which polymcrphtama have exreteo shows that 

directional selection is unlikely to be a major factor in frequency differ­

entiation; for those loci used there is no confirmed evidence of wide­

spread environmental or stabilising selection. The exclusive use of 

blood group loci has been crIticised on the grounds that these are not a 
r-andom sample of gene loci, but they are used because they are precisely 

those loci which may be expected to conform to the modeL For a taxo­

nomic procedure, where the aim. is one of efficient classification, the 

use of anthropometric characteristics would clearly be more effective. 

In a phylogenetic study the aim ~s to reconstruct history according to a 
probability model. and there would be nolhlng to be gained by considering 

loci that do not sattsfy that model. 

As w11l be shown (2. 3), in order for the Brownian motion approxl­

matrons to hold we must have allele frequencies that are not too small 

':,'and evolutionary times that are not too large. In practice only alleles 

with frequencies of at least 3"1" and preferably 5"1" in all populaUons 

,Ihould be considered separately, but low frequency alleles may be con­

i,,1dered as a single class. J. H. Edwards (personal communication) 

:ests the use of only the most frequent allele at each lOCUS, but this 

'il1minates classes unnecessarily and useful information may be lost. 

e alleles must be grouped in the same way for all populations; each 

:Wlt have the same c1iffusion space. Provided t, g. d. is the differentia­

force, this grouping does not invalidate the model in any way. 

Cavalli-Sforza and Bodmer (1971: chapter 11) discuss the mono­

tenc evolution of Homo sapiens trom Homo errectus and the subsequent 

,,;olutton of human populations. They consider the formation of races by 

Hc isolation, their classification according to phylogeny, and the use 

(genetic polymorphteme as opposed to anthropometric characteristics 

this purpose. Much of their discussion provides further fuenncattc» 

the appr-oxlrnatlon of human evolution by the proposed model of a 

eating tree and r. g. d., at least over that period 01 history that is 

'Ilevant to current differentiation between major populations. 

THE BROWNIAN MOTION APPROXIMATIONS 

We have the dtIfusion equation (2. 1. 4) given by the diffusion means 

M.(') = 0,- 5 1v,.(z) = z.(I-z.)j2N ' 1 5 k 12. 3. 1)
1 - lie 

l~j::Sk.}VIJ(~) = -:z.1:z./2Ne (t .. J) 

.valli-Sforza and Edwards (1967) note that the angular transformation 
-1 .! 

"r:'1 == cos (zi) (i = 1, ••• , k) atandardtses the diffusion variance. The 

laUOll3 may then be represented by points on the surface of the unit 

;·d1mensional sphere, ~ being the vector of direction cosines of the 

,opulation point. The angular distance between populatlonl:J with gene 

r,.,frequency vectors z(l) and Z(2)__ at this k-allele locus is 

k ()()'1-1 2­, .. cos [~(z Z _)2]. (2. 3. 2) 
i=l 1 I 
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III 

The chord distance 

•
[2(1 - cos IMf (2. 3. 3) 

was suggested as an appropriate genetic distance measure, and it is now 

this distance that is most widely used in the various heuristic methods of 

reconstructing evolutionary trees. 

Edwards (1971) shows the validity of the stabilisatlon of variance 

in the spherical space, and deduces the approximation of the process by 

Brownian motion on a sphere: however, not only the variance but the 

complete diffusion equation should be considered. 

Transforming (2. 1. 3) the diffusion equation for 0 becomes 

klH(9·t) k Ci I k r/

"3\-' ~-r ~[Mi(,)l(';tl]+,r r =[V;I(~lf(~;tl] (2.3.4)
 

1=1 I 1=lj=1 1 J 

where M.(If), V.. (Il) are defined in the same way as before (2. 1). 
1 - 1) ­ill 

Now 
1 

I Z. = COB 2 (9.), , 
and thus 1l8. = -(llZl)/(sin 28.) - cot 28,«(iz./Bln 29.)2 + O(llZ?).

1 1 1 1 I 
II Also, from (2. 3. 1), 

E(llz.) = 0, 
t 

and to order lit, 

E(llz~) = z.(l - z.)llt/2N = [sln 29,)2 11 t/8N 
1 lIe e 

and 

E{llz.6"l.) = -(cos 9. cos 9.)'211t/2N • 
1 ) 1] e 

Thus, to order liNe' 

M1(0) = -cot 29./8N- 'e 
V. = 1/8N

i(8)
V:j(~) = -COSfO{OS2B/(2NeSin 20 29 ) for i 'f- jisln j

= -cot 9. cot 9./8N , J e 

k 
(L: 1l(cos20.n = O.'and i=l I 

These may be substituted into (2. 3.4) to gjve the required diffusion 

equation. Although the variance matrix is precisely that required for 

Brownian motion on a sphere (see Edwards (1971)) we have also the drlIt 

terms MI(~l. The mean drift tncreaees exponentlally in time and is 

directed towards the edges of the space, but is of order tIN while the
• e 

't standard deviation is of order (t/N )i. The drill term causes effects 
e
 

near the edges of the space, where the absorption rate of alleles Is
 

greater than that given by the Brownian motion alone.
 

In order for the drUt to be negligible, we r-aqulre
 

(t/8N )3•I(t/8Ne)cot 29il« e
 

or
 , 
tan 28 » (t/8N/2 . (2. 3. 51 1 

If tIN ~ O. I this reduces to 9.» 30 or z.» 0.3 % for all alleles. e ., 
The drift term may then be ignored and we have Brownian motion on a 

(lj2k)th part of a unit sphere. Thus provided the number of generations 

elapsed is less than one tenth of the variance effective population size, 

'Iii, ,hl.ch is not too stringent a conditlon whether we consider American 

i(IJDdtan villages over the last SOD years or larger populations over the 

IVllast 50, ODD, the mean drift may be ignored except at the extreme edges 
, ' 
I"of the space. AU that Is necessary is that the loci used are tr-uly poly­
1 

:florphic, and that we do not have absorption of some alleles during the 

process of evolution. 

" Note that, if liB is the angular' distance travelled In time lit, 

1 k .t 2
 
E(lle2) = E«cos- [L: (z.(z. + llz.))2Jl ) from (2.3.3)


1=1 1 1 1
 

" 1 k k
 
.= E«cos- [l-(l/8) L: (llz~ /z.ll)'2) = E( L: (llz~ /z.1/4) [to order liZ:]
 

i=l 1 1 i=l 1 1
 
'I
 

= (k - l)llt/8N (2. 3. 6) e, 

I,,.'&nd thus we have a mean square distance proportional to (k - 0, the 
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I 

number of independent dimensions. 

Edwards (l971) makes a further transformation; the stereographic 

projection of the (l/2k)-sphere into a (k-Ll-dtmenaional Euclidean space.
I!II	 The diffusion Is (k-l)-dlmenslonal, but the chord, or angular, distances 

can be embedded only in a Euclidean space of k dimensions. Thus these 

palrwlse dtetancee could not have arisen under a model of Brownian 

motlon in a Euclidean space. In practice the spread of populattona on the 

sphere in the k-th dtmens ton te usually small, but the stereographtc pro­

jection provides an explicit space of the required dimension. Under the 

action of r. g. d. the populations approximately perform Brownian motion 

in this space, and it is in this projected space that population distances 

should be measured. 

If
 
J.. _1­

2(7.~ + k 2)
 
k-~YtO::-	 (io::l, ... ,k) (2. 3. 7) 

(l + L (z./k)j") 
Le I I 

where zl (i 0:: 1, •.. , k) are the gene frequencies at a k-allele locus, 

then the point y performs approximate Brownian motion in the (k-l) ­
- k	 • 

dimensional space r y. 0:: kj". This is due to the orthomorphic nature 
10::1 I 

of the stereographic projection, which results in the property, stated by 

Edwards (1971) and proved by Thompson (1972), oC spherical contours 

for the likelihood function for sufficientiy large multinomial samples. 

Random genetic drift is then repeated multinomial sampUng. 

The stereographic projection results in further distortion near the 

edges of the space. Edwards (1971) gives the upper bound to the 'scale, 
factor' by which distances may be increased; namely 2/(1 + k -.lI) (or 

1.17, 1. 27, 1. 33 for k 0:: 2, 3, 4 respectively), but this occurs only at 

the extreme vertices of the space and does not arise in practice. More 

generally we may take an orthogonal transformation of y to obtain (k - 1) 

orthonormal coordinates x. (j 0:: 1, •.• , (k-l» in the sp~ce ~ y. 0:: k~. 
J 1=1 I 

As for 06 above we may then consider the means and var-Iance of the
1 

transformed dtttuston We again have a drtft term of order (tINe) which 

is negligible under the same condition (2. 3. 5). Under this same condition. 

although the probability of absorption oC alleles during the course of eve­

lutlon may be non-negligible, the distortion of the remainder of the dis­

,trlbution due to absorption effects is small. 

Further cov(llXp llX 0:: 0 to order lItIN the variance of thej) e; 
I :dtffusion does however depend on the distance from the centre of the 

':I'projected space (the point z , 0:: cosZe 0:: 1;k for each I], An expression
' i
 

,I..

"

i", 
,for E(llx.) may be rigorously derived, but the required result is more
 

I 

IIt'eadily obtained as follows. 

~6ifi 

s 

O~ Os 
o ~ 

po 

Fig. 2. 3(a).	 The variance of the diffusion after stereographic 
projection Crom the point P'", 

From Fig. 2.3(a), so:: 2 tan(ifi/2) and the distance lls in the
 

projected space corresponding to small angular distance 114' is
 
a I I' 4
"- 0:: sec (41/2)llifi. Hence, from (2. 3. 6), E( zx ) 0:: sec (4'/2)(k-l)llt/8N .-	 ,

/'l'hus, by the symmetry of the dtcfusion and the orthomorphlc nature oC the 

8tereographic projection, we locally have a Brownian motion with variance 

2(x) 4(ifi(x)/2)/BNcr 0:: sec per generation (2. 3. 8) - - , 
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in the neighbourhood of a point x at an angular distance ¢,(x) from the 
- 2 -.! 

centre of the space. fIn k dimensions sec (l/J(x)/2) :5 2/(1 + k" ~).] 

Thus if at time 0 the position of a population is known to be ~(O) then 

after a time L, small relative to N , each component x.(t) of x(t) is, , ­
Normally dLstrIbuted; 

4(l/J(x(O»/2)t/8N),N(x.(O), sec
-

i = 1, ••• , (k-l),, , 
and the components xi (t) are independent. 

4(l/J/21Regarding inferences from the model the inflating factor sec

has little effect, since in practice the populations are all located in some 

small region of the space. The only errect is to inflate all squared dis­

tances, at this given locus, by thIs same amounl, If required the factor 

may be corrected for, for any given Bet of data, by for each given 10CUB 

2(l/J/2)scaling the position vectors! of all populations by the factor sec

relevant to that region of the projected space corresponding to the ob­

served allele frequencies; equIvalently the pairwise population distances 

may be scaled (4.6). There is however little to be gained by makIng this 

correction; the factor is usually small, k often being only 2 or 3 for all 
4(l/J/2)loci. The relevant value of sec does not normally differ signifi ­

cantly between loci, and the only effect is to Inflate time estimates by 

thts amount; or, since we find that times are measured only in units of 

N (3. 1), N is airmlar-ly deflated. Estimates of tree form and relative 
e e 

times are unaffected; we usually infer only relative times, and even when 

estimates of N are used to infer absolute times, the above factor will 
e 

be negligible compared with other sources of error - in particular, sam­

pling errors and uncertainty concerning N 
e. 

For each k.-allele locus we have (k. - 1) independent Xj' each, , 
performing a Brownian moUon as the gene trequencies change due to 

B 

r. g. d. We may thus combine the }; (k - 1) coordinates provided by
ti=l 

s unlinked loci, and obtain a p- dimensional Brownian motton where 

B 

p = l: (k. - 1). (2. 3. 9) 
i=l 1 

28 

,I These P coordinates will in future be referred to as the 'projected co­

:', ordinates' of the population. k should be the number of alleles present
j 

;', In all populations: if any alleles are absent the Brownian motion for that , 
'f,population proceeds in a subspace of the p-dimensional space, and failure 

to observe this will result in underestimation of the distance/dimension 

and hence of evolutionary times. 

We consider finally the case of two alleles as confirmation thatI. 
e approximations are adequate In practice. For k = 2 Kimura (1955) 

given a series solution to the diffusion equation (2. L 5) in terms of 

, 
ganbauer polynomials. This density function for z, where 

(t), z,(t» = (z, l-z), may be computed for different values of q (the 

11ttal frequency zl (O)) and of u = tINe' and may be transformed to 

n the true dIstribution on the circle quadrant and in the projected
 

~pace (Fig. 2. 3(b». In the original space we have the approximation
 

Z is N(q, q(l-q)u/2) and 0:5 Z .:5 1. 

the circle quadrant the approximation is 

, ' (J is N«(Jo' u/8) where 0.:5(J~1f/2, and (Jo = cos- (q2). 

.!.! !. .!.! .! 
the projected space consider h(z) = 2" (z 2 _ (l-z) 2) /(1 +2- a (z 01+(1- z) 01 )). 

and the Brownian motion approximation is 

h(z) is N(h(q), u/8). 

, 
the notation of (2. 3. 7), h(z) = 2- 2" (Xl _ x). } 

For q 0:: O. 5 and u es O. 1 the approximations are virtually perfect. 

',Or q = O. I they are still good (Fig. 2. 3(b»). Similar diagrams for 

= 0.25 show that we still have a good approximation for q = O. 5, but 

:at at q = O. 1 the situation is deteriorating. Besides stabilising the 

'renee the angular transformation also Improves Normality. The 

curacy of the approximations after stereographtc projection is similar 
that before. 

These results confirm that Brownian motion with variance 1/8N 
e 

'er generation is an adequate model for the gene frequency variation 

eeusee by random genetic drift, and, at least (or tiNe 5 O. 1, seems much 
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Fig. 2. 3{b). The Normal approximation to the distribution for a two­
allele process of random genetic drift. The broken line denotes 
the true density function and the continuous line the Normal ap­
proximation in each case. (1) The original gene frequency space; 
(ii) the representation on the surface 01 a sphere; (Hi) the 
stereographically projected space. In each case we have (a) q=O. 5, 
u=O. 1 and (b) q=O. 1, u=O. 1. For further details Bee text. 

,tier than previously expected. If all the populations are, and have 

"emained throughout their evolution, in the same region of the projected 

~:ppace it should be possible to tnfer the evolutionary tree correctly. The 

~1nal test of the model is however in the consistency and reliability of 

l'reBuits based upon it. , 

THE STATISTICAL ADEQUACY OF THE MODEL 

We have so far only considered the model as an approximation to 

In order to justify its application to given populations and gene 

:i, where differentiation may not depend wholly on r. g. d., we must 

":onfirm that it conforms to the avallable data. There may be many genetic 

odete that will fit the data, but r. g. d. is a process which has necessarily 

en taking place throughout history, and if the data can be fitted by a 

Ht model alone, with plausible population and time estimates, then the 

rtlon of the model is just1fied. The model must be tested independently 

any likelihood inferences; these are conditional on the model (1. 3). 

ng to its complexity, and the number of parameters, it is not possible 

test the complete model of a bifurcating tree generated by a Brownian­

ne process, but there are several aspects which may be considered 

1d1v1dually. These are discussed with reference to the large body of 

.ta on the American Indians compiled by Post et al. (1968), with a view 

examining the possibilities rather than testing the validity in this par­

:u1ar case. We consider inter- rather than intra-tribal variation. It 

been suggested (Neel and Ward (1970)) that the evolution of the Ameri­

Indian tribes may be well approximated by a tree pattern; for villages 

.thin tribes this is less likely to be so. 

We must consider the aim of a statistical test of the model. A 

dftcant result means that the probability of a priori specified extreme 

mta arising under the model is small, and that these results are then 

l'beerved to have occurred; but a significance test alone should not be the 

use of rejecting a model any more than of accepttng it. We take the 

that hypotheses may be judged only by a likelihood comparison with 

,lome alternative; a significant result may however suggest an alternative 

IYPotbesls which would provide a better explanation of the data than the 
,.
 
·proposed model (1. 3). We do not consider the power of the tests below
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I 
1, against spec:lfifed alternatives; when an alternative is contemplated a 

.1'1
l1kel1hood judgement and not a significance test is required. We simply 

conetder whether- the given data. conforms to the proposed model; if not,1\111
111 

we rna)' consider the way in which It does not, and hence the ways in which 
I111 the model may be inadequate. 
11\ First we consider testing agreement amongst teet as to pairwise 

ill\1 population distances. Let d~7) be the distance between populations i and 
'l 

j at locus r, I the If'ovolutiona:ry time of thiB pair of populations (the
111\ 1J 

11 time since the existence of a common ancestor), and ri the variance of 

the Brownian motton In the projected space. (r ) (r )II:: (r)2 . '2 '2 r 1 '2 1 '2
Then has distr tbutton zc tijXkr_l and lf1d /f2d J

II 
dij i j i j 

has F distribution F(f f ) , where C k . - 1. This may be tested
2

, 1 1:::: r" III t 
amongst large numbers of independent population pairs: good agreement 

1I 1 :I is obtained, 

1 For any two gene loci and two disjoint populattona pairs
\1\1 

I1II P(d~~l > d(ll and d(2) < d(I)) ~ p (1 _ P ) (2.4.1)

1] 1'j' ij i'1'l 2'
1III 

11I where Pi :::: P(F(kl - 1, k, - 1) < r) for I :::: I, 2, and r:::: (tit') the

I1 ratio of the evolutionary times for the two pairs of populations.
 

I11

I p (1 - P ) - I) as r - I) or r - "", as Is iSltuitiVely required. But sup­, , 
pose k := k" :=? (values which etten occur), thenill 1 

2 -I..! -1 .!
P (1 _ D )::::(~/1f) tan (1'03) (1112 _ tan (1'a».

i z,:i 
This takes its maximum value of O. 25 at 1':::: I, but even for r = 2 theIII 
value is 0.24. Thus we can expect very little agreement in the rankings 

III 
('If pairwise populatton dtetancee gfven by the different led: certatnly
 

III we do not have agreement in practice.
 

The inverse of the coentcient of var-iation of d~:)2 is
II " 
1\ 

v:= [(var(d~:)2»)~ )/E(i:12)f I = <!(k _ I))!. (2.4.2) 
1) 11 r 

II 'Wc have a large number or independent population pairs and several 

loci of equal k we can, for each pair, obtain an estimate of II. In 

practice a good fit to the value (2. 4. 2) is obtained. For example, for 

32 

1':= O. 7071, and Cor eight population parre over five loci we have 

.

II' 

'"

k:= 2

,,or-
,

,1IH.lues with mean 0, 695 and standard deviation 0, 04. This test of the 

'j variance of the squared distance is a test of the 4th means of the original 

i.:l'or,nal distribution, 11 there are s\lHlcient data we may test thia Normal 

'dlatribution completely. If x~q), x~q) are the projected coordinates of 
1 l
 

lpulations i and j in dimension q
 

(X,(q) ~ x~q)) is distributed as N(O, 2 (jl t .. ) for q-e I , ... , p.
l ') 

IWI lor each population pair we may, if q is sufficiently large, teet 

".e fit to a Normal dtetr tbutton of zero mean and unknown variance, We 

,ay then see whether some loci consistently provide the extreme values, 

itd whether the approximation to Normality can be improved hy gr-ccpmg 

orne alleles within a locus (2. 2). Available samples are small, but
 

~at8 again prove Aattsfa..:::tory apart from (or a few loci (for example

() ~)
 

lulfy) which consistently provide smaller values of IXiq - Xi I than 

the others. Although this may be an indication of stabilising selection, 

a cannot be confirmed without further evidence. 

That the data conform to any model does not imply that the model 

correct. As a compar-ison the above considerations were applied alao 

Intra-tribal differentiation. Even in this case often no substantial drs­

eement wllh the model was found - probably since sampling was onen 

e dominant factor, and sample sizes often similar (see below). However 

several cases Ute agreement waa significantly tess good than for the 

Iter-tribal variation. While no definite conclusions should be drawn from 

ie, it Ie an indication that the above tests may be sufficient to enable 

to distinguish dHletent causes 01 genetic var-ianrm, even with currently 

available data. 

The final case where statistical teste may be of lise is In investi ­

gating the effect of earnplmg; The theoretical aspects of aampl.lng are 

::'eollBidered In section 5. J. The gene frequencies used to reconstruct 

hflolutlonary trees are usually estimated [rom population samples which 

tare unfortunately often small, Unless sample sizes for a given population 

dtffer widely between loci, in which case the observed squared distances 

may vary inversely, none of the above tests win distinguish between varia­

tion due to sampling and to -r, g. d. etnce both provtoe distributions which 
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are approximately Normal in the projected apace (5. 3). On the assump­

tion of sample sizes m~r) and m~r) from two populations, the dis­

tribution of the squared distance between them due to sampling alone is 

[[Climer»~ + (1/m(r»]/8]x 1 at locus r (see 5. 3). For dtrrerent loci, , k' ­r 
and disjoint population pairs we may plot observed distances against thOse 

expected under sampling alone. On the same diagram we may plot the 

two-unit X2-support limits (given by Edwards (1972: pp. 187, 227», as 

shown tn Fig. 2.4. (The scale factor in the projected space baa little 

(iii)

;-----,
, 4 

(i) 

1 ..---- ­

J (ii) 

~r r r 

D 1	 3.6 4.5 6.9
---c'_ 
x 

Fig. 2, 4,	 The comparison of sampling and observed distances. 
x = observed dtstanoe between populations i and j 
at locus r. y = distance expected under sampling 

alone = (k	 - 1)[(1/8m,(r» + (l/am~r))]. x/y is,r	 J 
X If, where f = (k - I), (t} The line x = y;f r 
(rl} upper two-unit support limits lor k = 4, 3, 2 r 
respectively; (iii) lower two-unit support limits lor 
k = 2, 3, 4 respectively.r 

effect on the expected sampling distance.) For the European data of 

section 5.1 we find that between several population pairs there is little 

evidence for significant r. g. d., apart from for the ABO, P and PGM loci. 

In many cases distances can be explained by sampling alone, but this is 

,mply because the effect of drift is too small to be rel1ably detected 

:cept at thoae loci for which large samples are available. For most 

er loci the correct proportion ot dtstances (about 5"lo) are significantly 

'0 small, and 12% significantly too large. There seems to be significant 

tation amongst loci, but sample stzes are often not stated; the Dulfy 

Lutheran systems give significantly smaller distances. 

Thus we conclude that no statistical test has provided evidence for 

e r ejecnon o[ a Brownian motton model, and, as the simplest available 

lequate model for a genetic process which is known to be taking place, 

'e are justUied in adopting it. If population distances can be explained by 

iplmg alone, then, although r, g. d. is necessarily taking place, we 

ot accurately measure its effect. The reconstructed trees based on 

" ch data, and unfortunately on most currently available data, may not 

However, the statistical validity of a Brownian motion model 

a description of the observed data may be checked by the above tests 

Normality. When large-sample data are available the true population 

rttons are accurately known, and compatibility with Normality confirms 

',e val1dity of an assumption of dUlerenttation due to random genetic drift. 

e parameters of evolution may then be reliably estimated. With large­

~ale sampling of the more recently discovered blood groups more suitable 

~ta are rapidly becoming available. 
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3· The likelihood approach 

3. 1 THE MULTIVARIATE NORMAL MODEL 

We have now certain functions of the population gene frequencies 

which perform p independent Brownian motions as the populations evolve 

in time under random genetic drilt. The evolutionary tree ts assumed to 

have been formed by a series of bilurcating splits, and 1t Is further as­

sumed that at Borne point in the past there existed a single common ances­

tor 01 the group of populations under consideration. The data are the 

observed functions of the gene frequencies in the n genetically distinct 

populations j say 

~= lx~q), 1=1, ... , n, q=l, ... , pl. n~2, p~l, 

It is assumed that the population coordinates are known; that is, that 

sampling errors are negligible, The aim is to inter the 'labelled history', 

F, of the populations (2.1). 

Given the form of tree, F, let a be the time ago 01 the (n-rjthr 
split; 0 ~ 81 ~ .•. ~ sn_I' ~ = (6 1, ... , sn_I)' Then F and ~ specify 

the complete history. The parameters of the model are F, a, the position 

x of the initial ancestor (x = (x(qJ, q = I, •.• , p)), and the variance 
-G -G G 

per generation of the Brownian motion (J2, assumed to be the same for 

all populations and in all dimensions (2. 2). II x(q) = (x~q), t = I, •.• , n), 

then given ~ the vectors =(q) (q = I, .. , , p) -are inde~endent, and each 

te multivariate Normal, being the sum of independent diffusions along 

relevant arcs of the tree (Fig. 3. I (a». Hence 

(q) (q) - -' )
cov(xi ,xi) _T j j - (J (sn_1 - sZ(i, j)' q = I, ... , p (3.1. l) 

where sZ{i, j) is the time ago of the splitting of the last common ancestor 

of populations t and j (Adke and Mayal (1963), Felsenstein (1968». For 

example, in Fig. 3. I, 

\ 
\ 

----­ .... ~, 
'~ f-~~~--P''f -I·, I -­

~ f--­ Y, -, 
" 

11' 

~of----------],------­
--------­ Is 

',III l_l ~. 

x
-0 

x, -,xi x X x x x x
-3 - q -, -0 -, -,the present 

'1g. 3. 1. Evolutionary tree for a group of eight populations. n = 8; 
there are seven time variables and six splitting points apart from 
the initial root. The topology of this tree is ((2 + 1) + I) + (2 + 2» 
in the notation of Harding (1971). The eight populations; labelled 
I to 8, have positions x , ... , x in the projected space, and 

-1 -8 

the positions of ancestral populations at their splitting points are 
y , , •• , y. The position of the last common ancestor for this
-1 -6 
group of populations, or the root of the tree, is x , The time 01 

-0 
splitting of this ancestor, or total evolutionary time of the popula­
tions, 1s 8 The form F of the tree is specified by the topology, 1, 
the labelling of final nodes, and the ordering 0 ~ B ~ S ~ •.• ~St , a 

36 37 



,I 

l (2, 3) =: 3 since s3 is the relevant splitting time for 

populations !2 and x .-, 
Stmflarly, 1(5, 7) =: 6, l(2, 7) =: l(3, 6) =: 7 etc. Also l{i,i) =: 0 for 

each i, and s =: O. Also E(x.) =: x , where x, =: (x,{Ql, Q =: I, ..• , pl , o -} -0 ­
and x. -4- x. for i.;. j. Thus 

-1 -J 

II f(!.lx, a, a
2 

,	 F) =: 
- -0 ­

(211)- fnp IT I-~Pesp] - t ~	 (x(Q)-x(q) I )'T- 1 (x(q) -x{q) Ill, 
- 0 - - 0­q=:l 

(3. 1. 2) 

III	 where ! is a column vector of ones, and T the covaetance matrix 

given by F and (3. 1.1) (Gomberg (1966), s'eteenstem 0%8)). [' will 

always denote the tr-anspose of a vector or matrix. ~(Q), (qe l , •.. , p), 

are n-dimensional column vectors. x., (I =: I, •.. , n), and x may
-} -0 

thus more intuitively be considered as p-dimenslonal row vectors, al ­

though they may equally be taken also as column vectors. We shall later 

use the standard notation ~ I for the scalar product !'I ~I'] of two 

column [row] vector-s,"] (3.1. 2) is the likelihood for the parameters. 
2Now f(!.lx , a, a , F) =: f(!.lx , ks, fi ik, F) for all k > O. 

- -0 - - -0 ­

Inferences may be made about a2~ but not a2 
and ~ separately. al 

is simply a scale factor; it may be taken equal to I, in which case times 
2 

arc measured in units of l/a generations. The order of magnitude of 
2	 2s,a will normally be known (2. 3). Then the support function S(x , a Fl,

-0 ­
(1. 3), is given by 

-2S(x ,	 aea, F) = -2 log L(x , a, a, F) == -2 log f<!. x I', a a, F)
-0 - e -0 - e _ -0 ­

=:ploglTI + ~ (x(Q)-x(Q)I)'T- 1(X(Q)_X(Q)l) + constant, (3.1.3)
Q=:1 - 0 - - 0 ­

where the constant is independent of both data and parameters. 

This function is to be fully investigated in Chapter 4, and so few 

further comments need be made at this point. However even the evaluation 

of (3.1. 3) presents difficulties. The matrLx T depends on F, and, al ­

though the components of T are linear in ~, computation of ITI and 
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" 

"
I;

,I:, T- 1 for arbitrary F is not trivial. Felsenstein (1968, 1973) gives a 

method for the rapid evaluation of S. An alternative method of evaluation 

"and, more important, a method for finding the point ~o' a2~, F) maxi­

mising S are given in Chapter 4. T may be regarded as a general co­

'. variance matrix with linear restrtctlons (equality and inequality) on its 

',components. Thus the space oI T values in which (3.1.3) is to be 

maximised is a closed convex cone in the space of all positive semi-

definite symmetric matrtcee. However etnce E{x~Q)) varies with q but•
(Dot I	 we do not have the usual multivariate Normal support function: we 

do not have simple surnctent statistics and maximum likelihood (ML)
 

r;)estimates cannot be explicitly found S has no positive Infinities, and
 

'T Is non-singular If and only tl e > 0 (4.6).
.
 
It is often only F that Is of primary inter-eat, although, given F, 

.we may also wish to infer a2e. The MRL for F is 

L*(F) =: max Ltx , a2.~, F) (see section 1. 3), 
-0 ax , a e 

-0 ­

~and we may compare the values of L"(F) given by different values of F. 

',Since we maximise over the same number of parameters in each case the 

,degrees of freedom problem does not arise and a simple two-unit support 

dlfference criterion is appropriate. In practice there are too many dlffer­

lent tree forms (or all comparisons to be made (2. I), and thts is the major 

remaining difficulty in solution (4.5). For given F we may make in­

';:terences about x and a2s. 
For each s the support surface is quadratic

-Q - ­

In x , The MRL lor is and F
-0 

,	 ,
L+C(lJ S, F) =: max L(x , a e, F) 

-	 -Q ­
X
-0 

will be	 considered, for given Y, in the lollowing chapter.
 

The internal branching points Y. (or {y~Q), i =: I, ••• , (n - 2),
- , 
q = I, .•. , p) are random variables generated by the probability model 

','	 and having distributions dependent on the parameters. These variables 

are not relevant to likelihood inference, but we may wish to express 

beucts concerning them. Having made likelihood inferences regarding 

the parameters, this may be done by giving the distribution 01 ~ con­
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ditional on the data and the Ml estimates of the parameters, or, since 

this is a multivariate Normal distribution, by giving its mean and var l­

ance. This is not an entirely satisfactory procedure since, although this 

is the most likely distribution for ~, there may be other parameter 

values which are only marginally less likely giving very different distri ­

butions to~. However it is a reasonable procedure, provided the sup­

port surface is unimodal and well-peaked at the maximum, and provided 

the conditional probabtlity density of ~ is a contlnuous function of the 

parameters. In this particular case the procedure is acceptable within 

anyone tree form, but there may be alternative F having almost equal 

support, but giving very different values to x and rls and hence to the-" 
distribution or Y..: Thus care must be taken in the use 

-
of this approach, 

but in general no serious logical problems arise in applying likelihood 

inference to the multivariate Normal model. 

3. 2 THE BROWNIAN- YULE MODEL 

In 3. 1 we have no probab1Uty model for the formation of popula­

tions: even the restriction to a bifurcating tree may degenerate if some 

si are equal. There are (n + p) parameters, and this number depends 

on the number of populations under consideration. Edwards (1970) intro­

duces a Yule process, rate A, for the formation of populations. It is 

assumed that we are considering all the descendants of some common 

ancestor. The parameters of the process are now x , 0-
2 

, A, and t,-" where t = s I is the total evolutionary time. F and s· = (e , ... , s 2)
n- - 1 n-

are now random variables having probability distributions dependent on the 

parameters, and problems arise as to how inferences should be made. 

The data are (n, x , ••• , x l ; n is a random variable which conveys 
-1 -n 

information about H. Thus we cannot condltton upon n, and E1tUl less 

upon F which specifies n; F cannot be treated as a parameter indepen­

dent of the Yule process. 

The discrete probability distrIbutions P(F!n, A, t) and P(nl,A, t) 
2and the densities [(s·, n, F IA, t) and f(~ Ix , e-, t, 0- , F) have been 

- - -0 ­

given by Edwards (1970), the last being (3. L 2). P(Fln, A, t) is Indepen­

dent of A and t, and is unilorm over all F having that n (F E: H say)
n 

(Harding (l971)). For a Yule process f(~·IF, n, A, t) is independent 

of F (Edwards (1970)). Thus 

L(x , 0-2 , A, t) = f(!., n Ix , 0-2 , A, t}-0 _ -0 

= f(!.1 n, x , 0-
2

, A, t)P(n 1 X, t) 
- -" 

2,X,t,FlP(Fln,x,t)=P(nlx,t) I (!.In, x ,a
FEH - -0 

n 

cc P(n I,. t) L [ I... I 
FEll O~s~... :sa 2~' n 1 n-

H!.lx ,s"', t, a 2
, F, n, x)[(s"'ln, X, t)ds·]

- -0 - - ­

O. 2. 1) 

'(for given n).
 

This is a function only of x , a 2 t and xt, and so again we only
 -, 
"have information on relative splittIng and dispersion rates. Again we 

~may take (]2 = L Edwards (1970) suggests the restriction t = 1, but ,.
Iithis is less natural, particularly since we may wish to consider subsets 

of a group of populations. 

Then (3.2. 1) may be rewritten 

"L(X , a2t, Xt)=P(n!xt) 1 f .. • I [f(!.lx. a's·, a't, F) 
-0 FEH O:Ss:5, .• :Ss 2~t --0 -­

n 1 n­

f(~·1 n, X, t)d~"'] (3.2. 2) 

,"and, in theory, ML estimates of x , (It and At may be made. F then 
-0

I:I !lao probabi'lity dratrtbutton 

fp(FI~ x, n, 1j2t , Xt) a:f(~lx ,1j2t , At, n, F)P(Fln, xt) 
, - 0 --0 

a: f(!.lx , elt, Xt, n, F) (as a function of F). (3.2.3)
--0 

A maximum probability estimate of F is the F maximising this when 

ML estimates are substituted for the parameters. 

'I However, rtranv this is not a Ieaatble procedure. The sum in 
" ( n-l. .3.2.2) is over nl (n - I)! f2. labelled htstortea (2.1. 1). Adke and 

Mayal (1963) gtve an iterative (over n) differential aquatf on for the 

Characteristic tcnctton of f(!., n ]x , (l, X, t] but no general formulae 
- -" 

"
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•• 

are obtalnable other than as a multiple integral and sum. Secondly, 

since F is a discrete variable, this procedure seems inadequate. 

0.2.2) is the sum of likelihood functions, one for each F, having their 

maxlma at different points; it may certainly be multtmodal. 

If some F were observed to have occurred we would have 

L(x , a t, ~t) = f(~, F, nix, a't, Xt)-, a 

,-0 

(1 t, ~t, n, F) P(Fln\ P(nIHI,= f(~ I~o' 

and we would maximise this function to obtain ML estimates conditional 

on the given data, Including F, We could then give the distribullons of 

internal node coordinates and times oondttlonal on the data, F and these 

MI, estimates (cr. section 3. 1). Thus instead or making overall eenmatea 

which involves averaging over F, we may Instead consider 

f(~, n, FI:'l.o' (It, At) as a 'predictive likelihood', or, for fixed n, con­

sider GF(x , 02 t , ~t) = 
-0 

II I l(!.'lx, (1'-S'", 02 t , F)f~'" In, A, t)d~'" . P{n IAt) (3.'. 'I 
o~s ~ :ss ,::st - - 0 

1 n­

= I I . .. I l(x [x , o"t, u· F)f~"'ln, U)du"'. P(nIAt)- ' nsu ::s•.. esu ,::Sl =-0 
1 n-


where u = s/t, i::< 1, .•. , (n-2).
i 

Note that 

eL(x,(1t, At) = l GF(x , (12 t , ~t). (3. z. 51 
-0 F€H -Q 

n 

G is strictly neither a probability nor a likelihood, but we choose
F 

F, x , 02 t , and xt Jointly to maximise G This is sImilar to Fisher's-, F• 
approach to prediction problems (1. 3), and seems a reasonable procedure 

since IG F € H J must convey the informatlon on x , olt, ~t and
F, n -«
 

F contained in the data.
 

In practice even the detailed examination of G is not feasible
F 

due to the multlple integration requIred to evaluate It. Its properties may 

be examined by direct evaluation for small n. This has been done exten­

sively Cor n = 3 and to some extent for n = '1 (3. 3). Although this pro­

"
 

, 

I

!, Thus

',',' 

as
"

'or . 

'~iB 

vides some idea of possible properties of G and counter-examples of
F, 

";Ihoped-for properties, it does not lurther the use of this model in the 

"analysis of actual data. 

G does have one important property lor every F: namely it
F 

iuas (at least) one internal maximum at (x , (It, ~t) with 0 < At < "",-, 
,,0< 02t< "", -""< x~q)< "" (q=l, ... , pl. Fori! n> 2 P(nIAt) ... a 

~t - 0 or At ... <I:l the other part of (3.2.4) remaining bounded. Pro­
2 2 '2vtded the populations are distinct C(x [x , (1 t, 0 e-, F) _ a as [J t - a= -0 ­

00 ,and as x(q) _±oo lor any q, uniformly in s"'. Hence the integral 

'with respect to (w. r, t.) the probability density of ~'" converges to zero. 

Further G is everywhere finite and non-negative, and so has an inter­
F
 

j:'nal maximum. Thus the problems encountered in using G are com­
F 
!'putational rather than theoretical. Previously it has been thought that 

"~ingularities arise, and thta has been a reason for not considering the 

Yule process (Cavalli-SCorza and Edwards (1967) and Felsenstein (1973», 

'but when random variables and parameters are correctly distinguished 

ts not the case. 

THE CASE OF THREE POPULAnONS 

We consider here the sohltton for three populations, both with and 

Uhout a Yule process. This provides some insight into properties of 

,the support surface and the problems involved in the general case. 

Let x ,x and x be the positions of the three populations.
-1 -2 -~ 

Let s2 = t, sl = uS and (12 = 1 where (sl' s) is the tune
l 

,:::veclor defined in 3.1 (Fig. 3.3(a).
 
"11­Let h=(x -""i(x +x =(x -x)

- -J -1 -2 -) ­

h' ~ h.h ~ II~II'
 

d'~llx -x 11'>0
-1 -2 

D = (x - x ). (x - x ). I (3 3 1) 
-~ -1 -3 -2

2
D + d2/4.h =
 

Further let K = D/d2, the root of the tree be x ,

-0
 

c =(x -x).(x -x)
o -1 -0 -2 - 0 

d',~ [x -x 11'. , -)-0 

" 



Let F t be the tree form ((~j' ~), ~i) in obvious notation 

(i = 1, 2, 3). These are the only labelled histories for n = 3 and w. t.o.g, 

we constder F = F , The covariance matrix for the tree of Fig. 3.3(a), 
I, 

t(l-u)h (I(~-U) t ~) with IT I = l'u(2-u). (3. 3. 2) 

o 

x 
-~-------- __~_o 

r-----­
ut 

x	 x x-,	 -2 -, 

Fig. 3. 3(a).	 Three population tree 0[ form F = «x , x ). x ).
) -1 -2	 -) 

The points x	 ,x and x lie tn a plane. and w. 1. o. g.
-1 -2 -) 

x = (-~d. 0,	 ...• 0) and x =<!d. O. "', D),
-1	 -2 

This fixes the location and scale and we conatder the likelihood when 

~) = (WI' W 0, .•.• 0), as WI and w vary.
2,	 2 

(1) The ME eotutton 

One aim in obtaining an explicit Iikelfhood solution for ttus simple 

case re to explore the often expressed hope that the ME solution provides 

an approximatlon to the ML one (1. 1, 1. 4). We recatt thererore the 
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o 

Fig. 3. 3(b).	 Diagrammatic representation of the Steiner solution 
for three, necessarily coplanar. points. 

That is, S

:einer solution for three points in a plane (Thompson (1973a)), shown in 

'ig. 3. 3(b). The shortest interconnecting network is formed by joining 

• Band C to the steiner point S where ii 

x (G, angle CAB> 120" S=A 
-) 1 '
 

X (G, angle CBA> 120". S = B
 
-, 2 

X (G, angle ACB> 120" S = C 
-) )	 . 
x (G S is such that angles ASB. BSC and CSA are all 120" • 
-, 0 

lies at the intersection of the Hne OC and the circumcircle 

I'of the equilateral triangle ABO. the result betng given by symmetry for 

below AB. (3. 3. 3) 

ME produces an urrrooted tree. Thus for three populations this 

is the complete solution. 

The trlvartate Normal case 

Consider now the likelihood (3.1. 2) for the case n = 3. (u, t) te 
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a }·1 transformation of (Sl' 8 and so the likelihood is unchanged
2)

II by this reparametrisaUon (1. 3).
 

From (3.1. 1), (3, L 3). (3.3.1) and (3, 3.2)


IIII 
- 2S(x • u, t, F ) = 3p log t + P log(U(2 - ul}-u , 

I" -1 2 2 ]+ t [(d -+- - ull + d,o (3.3.4)2UC o)/(U(2II!, Form F 3 Form F 3
 

where the notation is as defined by (3. 3. 1).
 
II Then maximisation w. r. 1. x and t gives 

~~ . 
x (u} = [x + x + (2 - ujx ]/(4 - u)
-0 1 -2 -)III~I I (3. 3. 5) 

and f(u) = [(d' + 2uc u)) + a;o]l3p,II o)/(U(2 ­

where c and a2 are the values of c and d' when x = x (u),o 30 0 30 -0 0
 

Further [or a stationary point also w. r-. 1. u (0 ~ u ::s I),
 

Ku1 + 4(K + 1)u' - (8K + Hlu + 16 = 0 or u = u(K). 
Fig. 3. 3(c). The tri-variate Normal case. Diag-ram of the tree 

form inferred as x varies over the plane, with-,II K) 2, there is a unique root 0 < u(K) < 1, which gives a 
x and x fixed. As x is in each of the regions

maximum of S. -1 -2 -3
 
shown, the corresponding form is inferred.
II K = 2, aoo = 1 is the maximising stationary point.
 

If K < 2, there is no stationary point in [0, 1] and the maximum
 
and the mean x= (x + x + x )/3.

-- -1 -2 -3
of S occurs at a = L . ,

Also K> 2 if and only if h > 3d/2. (b) t(u) = 2d (1 + Ku>l(3p(u(4 - u))] for K ~ 2, from (3.3.5), 

There can never be more than one tree form giving a root u in (3. 3. 7) 

(0, 1), since for no population positions can two of the median lengths 
td log L"'(F ) = max [log L(X , u, t, F )1satisfy the required condition. Secondly, there may be no F with an 3 U t -0 3i X, ,
 

internal maximum (0 < u< I). The tree inferred, as x varies over the
 -.-, 
= _!p log(t\i(2 _ u» - 3p/2. (3. J. 8)

plane with x and x fixed, is shown in Fig. 3. 3(cl, Some further 
-1 -2
 

points are <If interest, For given form F 3;
 
(c) If K:s 2, 11 == I, x ""'- x,-. -
• 3 z 

(al ~ (u) == X + k(u)h, from 0.3. 5), (3. 3. 'I t = (1/3p) 1 (x.· x). (x, - xl == X /3p, (3. J. 9)
-0 - ­ 1=1 -I - -1 ­

where k(u) == (2 - u)/(4 - u}, For 0 < u :'S I, 1/3:'S k(ul < 1/2, and k(U) x2 is the total dispersion.
 

is a decreastng function of u. Thus x lies on the median of the triangle
 
(d) u(K) is a decreasing function of K. and-.

having the populations as its vertices at some point between the mid- point 

U:S min[1, 3/(1 + K)]. (3.3.10) 
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These results	 together give the following 

Lemma. If there is a tree with II < I then this 1s the ML form. 

Further It gives the smallest estimate of ,ITI, the tlme measure of 'total 

dispersion', but thc largest estimate of t, the total evolutionary time. 

Proof. If F., has a c 1 then it is the only such F (see above). 
Then 

L*(Fi) = L(Ft' !o' a, t) where (x , a, t) are estimates within F.
-0	 ,2> 1 (F.,, -i, I, x / 3p) since (it, ii, t) are the ML estimates-, 

given F


= L(F., 
-
x, I, X

,
/3p) 

1
 
by symmetry,	 tor anyJ ­

=: L*(F j) from (3. 3. 9).
 

That IT' is minimal for F., follows immediately from (3. 3. 8) and 

(3.3.2). 0.3. II) 

Now let d, K etc. also denote the values corresponding to form 
2(1

F .. Then ~(F.) = 2d + Ku)/3pii(4 - il) from (3.3.7), and tor j T- i, 
2

, 
2(1	 

d2(1 + K)t(F j ) = X / 3p = 2d + K)/9p since Ii(F
j
) = I, the value of 

beIng independent of the tree form for which d and K are defined (see 

(3.3.7), (3.3.9». Thus t(F < t(F ) if and only it
i) j 

(I + Kil)/il(LJ - ii) < (K + 1)/3, that is, U and only if 3/(1 + K) < Ii < I, 

but, trom (3. 3. 10) this is never the case. ,f 

It is easily seen that (3. 3. Il) extends to the n population case. 

Writing the matrix T as tu we see from (3. L 3) that the general prob­

lem is equivalent to the minimisation of IT I = t n IIT I where 

t ~ (l/np)[ t	 (x(q) - x(q)l)'U-'(x(q) - x(q)1)J, 
- 0- - 0­q=I 

but we see that this does not imply the smallest possible estimate of L 

K> 2 is not a stringent condition and in practice we often have 

a tree form with an Internal root. However, the situation 

2
log L*(F) - log L(F, ~, I, X /3p) e 2 

occurs far less often, a large value of K befng required 

" 

Finally we compare MI, and ME results. For n =: 3 the tree 

r·forms cannot be compared since there is only one unrooted form. We 

can however compare the branch point positions i" and S (Figs. 3.3(a), 

Given x ,x and the parameters, y is multivariate Normal 
r,	 -1 -2 ­
,~ «((I - u)(x	 + x ) + ux )/(2 - u), tu(I _ u)1 /(2 - u)), where I is the 
~~p -1 -2 -0 P P
 

x p identity matrix.
 

Substituting x (u) for x we have
-0 -0 

ECI) = ~ + k*(u)~,	 (3.3.12) 

k*(u) = u/(LJ - u) [ct. (3.3. 6)J. 

For 0 < u:$ I, 0 < k"'(u) :$ 1/3 and k*(u) is an increasing 

nction of u, I lies on the median of the triangle of the population 

oetttons at a point between x and x. 
For K >2 (ii < 1) th; stand~rd deviation of each y{q) may be 

quite large and to represent y by tts mean position may be an over­

'iIl1mpIlfication. However if we compare the forms of (3. 3. 12) and (3. 3. 3) , 
Iwe see that the results are qualitatively very different. Computations 
,
 
"how that the Steiner poInt is rarely within two standard deviations of
 

The BrtJWD1I1Q-Yule model for D. = 3
 

In the notation of 3.2 we have, for n = 3,
 

P(n = 31At) = p(2)(At) (the probability of 3 descendants from 2, 
ancestral populations) 

= 2e -Ut(1 _ e-At) 

f(BtIA, t) = A exp{-As1)/O - exp(-At») for 0:$ sl :$ S2 = t, 

f(u IAt) = At exp(-At)/{I - exp(-At»,	 (3.3.13) 

o :$ U:$ I, where u =: 8 It. Then
1

2GF(X ,a2 t , At)=p(2)(At)jt f(s [x, t) f(xlx, s ,t, a , F) de 
-0	 ~ 0 1 = -0 1 1 

, I 2= I (At) exp{-At(2 + u)) f~ x , a t, u, F) du o	 --0 

, I= Ior{u, At) l(~ :!o' a 2 t, u, F) du, (3.3.14) 
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2 2-3p/2 -!P I 2
and f(~ ~o' 1 a t, U, F) = (0 t) (u(2-u) exp(-ag(~, ~o. u)/a t), 

where, for F = F , g(x, x • u) = (d2 + 2uc )/(u(2 _ u» + d2 (d.
l = -0 0 ) 0 

(3. 3. 411, 
2 

= d /2u + 2~/{2 - u) + d~ 0' (3.3.15) 

where d! = Ilx - !(x + x )11 2 
=::: (x - x). (x _ x).o -0 -1 -2 -0 _ -0 _ 

For given ~. GF may be numer-Ically investigated, but more 

general conclusions may also be drawn. As in 3. 2 G has at least one 
, F
 

internal maximum w. r, t, x. a t and :\1 for each F. G Is a mix­

-0 F 

ture of the multlvariate Normal likelihoods of 3. 3(H), or more generally 

3. I, w. r-, t. the lunction r(u, ;H), (u s u ::s 1).
 

[2d~/(2 - u)] + d2 is minimised, for each u, by
n 30 

x = x + k(u)h.
-0 - ­

Taking axes in the direction of ~ and in (p - 1) orthogonal directions, 

it may be seen that G is unimodal w. r , t. components of x in dtrec­

tiona orthogonal to .!! 
F
and that 

-0 

x = x+ kh for some k. (3. 3. 16) -0 

Thus we have 

G;'(k, ch, At) = GF(~ + k.!!, a't, At)
 

2(u(2
= I~r(u, At)(a"tf 3P/ - u)f!P 

exp[_!(d" /2u+h"(2k" /(2-u)+(I-k)"))/a't]du 
, ,
 

= I or(u, At) stu, k, a t)du with r(u, At) > 0. 

(3.3.17) 

2t)
For each u s(u, k, a is unimodal in k and maximal at 

k = k(u) = (2 - u)/(4 _ u] (of, (3.3,611, 

and 

'G'F i At) 6s(u. k, a2t) duoOK = Ior(u, Ok 
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G is maximal w, r, t. k at k, where
F 

min k(u) < k < max k(U)
 
u£[O, 1] U€[O, 1]
 

1/3 < k< 1/2. (3.3.18) 

In practice it is found that G is unimodal w. r. 1. k for each
F 

a't, and that 0.38 < k < 0.42 over a wide range of population 

ostttons. 

Thus, for any given F, x lies on the median of the triangle of 
-0
 

opulation positions. x is never i and the internal branch point y
 
~ -0 - ­
oincides wlth x with pr-obablllty zero, the probability of a zero time

-0 
iter-val. The tree is strictly bifurcating with probability one. From 

".3. 2. 5) the overall likelihood is 

, 3
 

-0 At) = )"IGF.(~O' a't, At).
L(x,at,

1= 1
 

G is unimodal it is possible for L to be trtmodal.
F., 

ether L is trimodal or, as Is also possIble, unimodalln x , it Is
-0
 

ot necessary for x at the maximal mode to lie on any of the three
 
-0 

ediana. This may be demonstrated by a distortion of the case for three 

rpulations in an equilater-al tr langle, 

Several results may be deduced from symmetry considerations. 

n we consider the situation for fixed x and x with x varyIng
-1 -, -, 

a plane (Fig. 3.3(d). As before let x = -x = (~d, 0, ••• , 0) and
-2 -1
 

:'=(W1' w2' 0, "" 0). Let m~ [GF.~o' a"t, At)], a
Ki= x , a t, At 1 
-0 

nctton of the population positions or of [d, w , w ), with the form F 
i a 1
 

as previously defined. Note that for given orientation of the populations
 

0'2t 0: d2 = Ilx _x 11 2 and K a: d- 3p 
I, -1 -, t . 

Now K w , w ) = K.(d, w, -w ) [or I = I, 2, 3, 
, l(d, 12112
 

K,(d, W" w,) = X,(d, -w" w ), and X (d, w , w ) = X (d, -w , w ),
 
, 311'12
 

for all (d, w , w). As w - ±«> (w fixed), X !K - 1. As
 
1212 21 

(W" W ) - «> in any direction, X = max, (K , X , X) and x (F )-!x
2 ) 1 2 a" -0 l -l 

as In the tr tvarfate Normal case, (~= 0). 
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[x -x II ~	 II~, -~,II ~ II~, -z, II 
-1 -2 

> 
> K 

Form
F 2A 

K , 
j 

~j\ K > 
F 2 \K~ > 

K, 

Form/~2 
F 

j 

K 
>

j 

K:\ Form 

l> K 
2 

0 lIs 

Ilx -X II ~ Ilx -X IIIlx II-X -1-2 -3-2-3 -1 

K > K > KK, , j , 

Form F, F 1 

Form F 3 Form Kl > K, 
> K,K, > K , > K j 

Fig. 3.3(d).	 The three-population Brownian-Yule case. Diagram 
of the tree rorm inferred as x varies over the-, 
plane with x and x jtxed.

-1 -2 

If [x - X I ~ Ilx - X II ~ d, K ~ K .
-1 -3 -1 -2 2 3 (J.J.l9) 

If [x - X II ~ [x - X II ~ d, K ~ K • 
-2 -) -1 -2 1 3 I 

We find also that 

2 .... 2	 2A

G;' (K{F ), CJ t, At):( GF (k(F 2)' o t, ~t) for each ((1 t, ).t) 
i i a 

as WI ~ 0, 

and hence Kt(d,Wl,W2l:CK2(d,Wl,w2) as Wl~ O. (3.3.20) 

[k(F.J, x (F,)	 denote the values k and x maximising G for given
1 -0	 -0.F 

(ch, .U).l 1 

From P. 3. 20) the only points of equality of the K. are the eym­
j 

metry points P. 3.19) and the line wI = O. Thus the form maximising 

K is almost surely strictly deflned and consists or joining the two closest
1 

populatlons first. The ordering of the K, as x varies is shown in -, 
Fig. 3. 3(d). Note the similarities between this solution and that of Fig. 

3.3(c). Computations show that in practice the form with maximum Ki 
has the smallest esUmate of O' 

2t , in contrast to the Lemma of 3. 3(ii). 
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In this case a quantltaUve comparison with ME is less easy to 

the qualitative comparison remains as before. 

22E(y I~, x , O' t , .\t) = E(E(Y I!., x , u) I!., x , O' t, .\t) __ -0	 - - -0 __0 

= E[(2(l-u)x + ux )/(2-u) I!., x , O' 
2 t, .\t). _ _0 _ -0 

x = i + kh 
-0 - ­

2
E(YI!., x • (h, .\t)=x. +khE«u/(2-u)) I!., x, O' t , .\t). (3.3.21) 

__ -0 _ _ - -0 

ence when

e

'hus 

>.t .... 

rtu, .\t). 

to ~, 

'ow the posterior dlstribulion of u given !. is complicated. However
 

prior and posterior distributions may not cuter slgnillcantly, and
 

log the distribution (3. 3. 13) we obtain
 

E(I) =! + (2H(.\t) - l)k~, (d. (3.3.12)) 

2mu 2mu
H(m) = II (e /u)du/ I} (e )du. 

",This will appr-cximale the true posterior mean provided the data are not 

In etenmcant dlBagreement with a Yule process model for the times. 

is a decreasing function of m, and for n es m < "" 

log 2 e H«(I1») ~ and 0 < (2H(m) - I) ::s O. II. 
e 

E(y) will rarely be closer to x than to x (d. 3. 3(ii)). As _	 -0­

"", (2H(.\t) - 1) .... 0 and E(I) ....! as Is to be expected. Using the
 

mer dietrlbutlon of u an expression for the variance 01 I may be
 

imllarly obtained, and hence the position of I compared with that or
 

e Stetner point S. 

Unlmodallty of the tr ivar tate Normalllkel1hood or 3. 3(ii) does not 

eecesearny Imply unlmodaUty of G even for the simple mixing function
F, 

In practice however we always find a local maximum, which Is 

unique at least in the region of the parameter space of interest. We have 

already noted that the overau likelihood (3. 2. 5) need not be unimodal. We 

have also seen that G Is unimodal w. r. t, components of x orthogonal
F -0 

and that lor the situation with regard to k we need conetder only 
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1/3 < k < 1/2. on this model may also give a more realistic distribution lor the times 

of split for a subset of the descendants of a common ancestor. 
U we consider the second derivative of (3. 3. 17) we find that this must 

The standard birth and death process probabilities for the exie­
be negative, the integrand being negative for every u, provided 

I;tence of n descendants (from a single ancestor) after time tare 

h2/ U2t < min(2/(l _ 2k)2, 3/(1 _ 3k)2). 

For k 0:: 1/3, 0.36, 0.42 and 1/2 the right hand side te 18, 35, 44~
 

and 12 respectively; normally O. 38 < k < O. 42 (see above).
 

Given u, each component of h is N(O, 02 t(2 - iu», and thus
 

2 2 2 2E{h ) < 2a pt, E{h /o t] < 2p. 

Thus for those a 
2 
t of interest GF is unimodal in k, and hence in ~o. 

Similar considerations for a 2 t shCIW that again we need only consider a 

central range of values, and that for those x and Xt of interest the 
-' 0 

second derivative is negative in this range. Thus we may expect uni­

modality w, r. 1. this parameter also. 

Unimodality in each parameter separately is not eurrtctent for a 

unique overall mode. To obtain such a result we require either that the 

equations for a stationary point have a unique root, or that any stationary 

point is a local maximum. However the complexity of G does not allow 
F 

these r-equtr-ementa to be checked. The above considerations, together 

with practical results, do however lead us to the conclusion that there 

will usually be only one maximum in the region of interest in the parameter 

space. 

3.4 A BIRTH AND DEATH PROCESS RESULT 

A model for population splitting is assumed in order to decrease 

the dimensionality of the parameter space. The Yule process model may 

however be unreausttc. It makes no allowance for populations which have 

become extinct or absorbed by others. More seriously it makes no allow­

ance for the fact that we rarely consider all the major descendants of Bonte 

ancestral population. These criticisms may be met by having instead a 

birth and death process model, rates X and Ii respectively, for the 

formation and extinction of populations. Besides allowing for true exttnc­
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::~:~ :~~I_ -1i~):~~X- ~:~)2 
13.4. 1) 

Pn(t) (X/Ii)n-lp1(t)[po(t)]n-I for n 2. 2,0:: }
E exp(-(X - Ii)t).0:: 

'hese probabilities are functions of xt and IJt only. 

Now the main points in the derivation of the likelihood of 3. 2 are 

,at the times of split are independent of the form of tree and that, given 

;n, each tree form in H is equfprobable. Suppose we define a 'significanr, n 
IpUt as one which is finally distinguishable: that is, one that results in 

,~escendants of both daughter populations at the final time of observation. 

The conetcerauons of Harding (1971) show that a necessary and 

Bufftcient condition for P(F Is*, n) to be independent of F (Fdf) and - n 
hence necessarily of ~.. Is that, given n and ~*, 

at whatever times the significant splits occurred, 

each did so with equal probabtltty in each population )13• 4. , ) 

then extatent, regardless of the previous history. 

'ow in a simple birth and death process populations split independently 

~land, at any given time, all populations have equal probability of splitting 
" d of having final descendants. Conversely, if populations split inde­

ndently of each other, only such a process can give P{F '.~''', n) inde­

ndent of both F and ~*. Thus for a birth and death process we have 

Le r-equtred results: an explicit form for P(~*, n, F) is derived below. 

Thus, as in (3. 2. 4), we may write 

GF(X, u2t , xt, IJt) 0:: P(njl\t, IJt).
-0 

2s*, 2I J ....•• f i(s*IA, IJ, t, n)f(~lx ,a u t, F, n)ds*. 
u-se :S ••• ese ,:st - --0 - ­

1 n-
13.4. 3) 

As in (3.2. 5) the complete Hkel ihood for the parameters is the sum of the 
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G over all F in H • but again G may be considered ror the purposeF n F 
of making inferences about F. All the parameters (x , a'\ At and ~t) 

-0 
are identifiable, but it may be that to obtain a likelihood ot reasonable 

shape Borne additional constraint (for example X/IJ fixed) must be im­

posed. This is the case for the likelihood p (t) for Xt and Ilt given 
n 

n descendants of a single ancestor; whereas in the unrestricted case 

11 = 0 (provided n >f. 0), if >"!IJ is fixed a unimodal Itkel1JJood for At 

is obtained. If such a constraint is imposed there are the same number 

of independent parameters as before, but the new dLstribution ror the 

times may provide substantially better fit, 

Thus, using the result (3.4.6) below, there is no Intrinsic problem 

in generattetng the model to a birth and death process. The likelihood 

theory remains the same. However, the functions involved, and hence 

the multiple integration of (3. 4. 3), are more complicated in this case 

and no numerical investigations of G have been attempted.
F 

Theorem. In the previous notation the joint distribution 

f(S"', n, F IX, u, t)ds"' 

is independent of F (F £ H and proportional to
n) 

n-2 
II p (s.), (3.4.4)

i=l 1 1 

where si is the time ago of the (n-t)th signiflcant spUl; 

O=s -s e ~s es ... 5S 2~s I=t.
012 n- n-

Notes. (i) The time distribution given by Edwards (1970) for the 

specIal case of a Yule process /iJ = 0) satisfies the theorem. 

(til f(~*ln, F, A, u, t) = f<!., n, Fix, Il, t);P(Fln)P(nIA, u, t) 

and P(Fln) = 1/IHnl for all F £ H Thus the conditional densityn• 
f(!* In, F, A, u, tl Is independent of F and is also of the form (3. 4. 4). 

(iti) Adke and Moyal (1963) provide a result similar to (3.4.4) 

for unlabelled histories descended from a stngle population but no direct 

proof is given. 

" 
~ 

k-IProof. First '"' [k(P (s)) p (s)o. (t - el] = P (t). (3.4. 5)
kee l 0 1·11: 1 

This may either be proved directly for a btrth and death process from 

(3.4.1), or we may see that it must hold for any branching process of 

'independent increments; for to obtain one descendant at time t there 

must be k descendants at any given time (t - s) [0 < s < t, some 

e 1], and anyone of these k must have one final descendant, and the 

Iremaining (k - 1) lines must be extinct. 

N<JW define E •. = 1 1f there te a branch of the tree joining the 
'J 

Ipl1ts at B and B and I> j (si 2: Sj)' and 0 otherwise. Con­
1 j 

Eij = 

tder such a branch of the tree. The relevant population at time s.• will 

eeutt in k' descendants by time a. with probability
•J J 

Pk .. (si - Sj)'
 
'J
 

ne of these splits in time interval Os with probability
 

AkijOs. 

,The remalning (k - 1) must be extinct lines by the time a further inter­
iJ
 

has elapsed, which occurs with probabtltty
 

(k .. -I)

(p(S))lJ.
 

o J 

rther for l = 0 and £lj = 1 we must have k = 1: these are the1j 
ce joining the final splits to the present populations (Fig. 3.4). 

The total probability ta then the product over all Independent arcs. 

,us rte
1

, .•. , e n- 2' n, FIA, Il, t) 

2 (k .. -I) 
~ [,n- IC(n») n_ , L _ [k,;"!< (s,-sJ)!PoISj))'J ) 

Eij-l k i ( 0, iJk lO-1 
O~I::sc(n-2) 

1::sct::sc(n-l) 

['Where, as in Edwards (1970), C(n) is a function of n alone, and is equal 

to the number of distinct labell1ngs or an unlabelled history. Thus from 

(3.4.1) and (3.4.5), f(s , ..•• s 2' n, FIA, Il, t)
• n­
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Sj 

. A likelihood solution 

INTRODUCTION 

t In the previous chapter it was seen how some model for the split-
S, Ig ot populations, in particular the Yule process, may be included In the 

:._'obability model for the data. The purpose of this is to decrease the 

menetonanty of the estimation problem, and hence, in theory, to simpli-

It. In spite of the attraction of a model requiring only three basic 

ametera (x , At and a 2 t ) to describe the course of human evolution -, 
must be accepted that the sputting model cannot be very realistic. 

Fig. J.4.	 Evolutionary tree given by a birth and death process :her, although the dimensionality of the estimation problem is reduced 
for population rormatton. SignIficant aplite are de­

om (n + p) to (p + 2), and becomes independent of n, the Yule modelnoted by	 5Q.. and k = J.tJ eatly increases the complexity of the llkeUhood function. It also raises 
n- 2 ][=.l. IC(n)]. n [PI (St)/Pl (8 . n [p, (Sil ]	 e unresolved problem of Inferences concerning an unobserved discrete

l)E = 1	 E = 1ij t O dom vaetable (1. 3, 3. 2). Even with the extension to the birth and 
0< j~(n-2) l:s.ts(n_l) 

,ath process of section 3.4 the model for splitting times may stIll be1~i:s.(n-l) 

eeansnc, particularly in its asa.umption that all existent descendants 

= [.l.n-2IC(n)] ~ [PI (St)!PI (Sj)]' where PI (so) = PI (0) = 1, some common ancestor are to be investigated 
1 and n-1E1J -	 ( ) =C n nl /2 Acceptance of a Yule process model does not introduce singularities 

OSj::s(n- 2) 
other unacceptable properties into the likel1hood surface. However1:51::s(n-l) 

lartly because of the non-valldtty of the model, partly because of the 
Now lor each arc (t, j) (E = 1, 1 :s. j :5: (n-2» there are two arcs erence problems concerning F, but mainly due to purely computationalii
 
(j, m ) and 0, m ) (Fig. J.4). There are also two arcs «n-l), it) jeobtems, we now drop the Yule model and consider only the multivariate
l 2 

and «n-l), i/ ormal likelihood of section 3. 1. Only when this simpler problem is fully 

Thus 1(8 , .••• s 2' n, F lA, 11, t) otved will it be possible to see how some model for population splittingi	 n­
(n-2)
 may be reasonably incorporated.

2n- 1)n-2[p	 {td n= [p (8.)]lnl (3.4.6)
 
1 j=l IJ
 In this chapter we therefore construct and tnvesngate a method for 

the likelihood solution of the evolutionary tree problem on the basis of the 
which is the required result. 1/ 

~ model of section 3.1. Some discussion of the theoretical approach, some 

I! basic notation and some properties of the likelihood surface were given in 
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that section. As before we have contemporary gene frequency data for n 

populations for blood group loci providing p Brownian motion dimensions. 

We consider the data COOrdinates ~ as 

!x.,i=l•.••• n },-, 
where	 x, = (x(q), q =: 1, ...• p) or as - ,
 

lx(q). q = 1..... pl.
 

where	 x(q} = (x~q), i = 1, ..• , n}, a column vector (3.1),
 

For giVe~ basic parameters x [= (x(q), q = I •... , p)] and s
 
-0	 0 _ 

f= (s ,	 "', s 1)' n c s :s ... cs s 1] and labelled history F, we'1 n- 1 n-
have (3, 1. 3); 

-2 log L(~ ,(12~, F)=plogITI + ~ (x(q)-x(q)1)'T- 1(x(q)_x{q)1) 

o	 q-e l " 0 - - 0 -'
 

(<1.1.1)
 

where the notation is as previously defined.
 

There are some preliminary points to be made. Firstly. the 

method will be seen to produce a maximum likelihood tree for a given 

labelled history. F. In theory the value of max. [I.(x , (12S, F)] 
2 -0 ­x , (1 S 

-0 ­
should then be compared over all the [en! (n _ 1)1 )/2n- I ] values of F
 

(2.1) - a clearly impossible task. An idea on solving this problem is 

given in section <1.5 and used in the program that has been developed 

(5.1). Secondly, the gene frequency data must be contemporary. To 

assign data points to different. times on the evolutionary tree creates sin­

gularities in the likelihood. This anomalous situation is considered in 
section	 4. 6. 

The gene rrequenciaa, which determine the x~q), are not actual 

population frequencies, but are estimated from population samples. How­

ever, we assume in constructing the model that x. are known population -, 
positions. The inclusion of sampling is considered in section 5.3 but the 

problems are not Iul'ly solved. We note that Cor a BrownIan motion model 

the likelihood must be independent of the actual coordinate system in the 

p-dimensional Euclidean space. Use is made oC this in section <1. 6. but 

":'v.ntil then the x~q) may be taken as the projected coordinates given in 

hapter 2. 

Finally we emphasise again the necessity of drawing a clear dis­

,nction between parameters and random variables, sInce this distinction 

particularly Important over the next few sections. Under the present 

.odei x • (/ sand F are basic parameters and have a likelihood given 
,,' -0 ­

,e data ~. be lng the probability density of the data given the parameters. 

Ice there Is no model for the production or populations n is a chosen 

,onstant. The internal nodes of the process have positions which are 

dom variables, havIng a probabillty distribution given the parameters, 

a conditional distribution given the data !. and the parameters. 

NOTATION AND PRELIMINARY FORMULAE 

Before developing the method some new notation must be tntro­

Iced. In place oC sk' the time ago 01' the (n - kIth split, we now con­

jder the k th time interval ago. That is, t, is the time between the 
" 'k 
iI - k)th split and the (n - k + IUh. Then t = sand 1. = (s. - s. 1)

11111_I'or i =	 2, "', (n-1), and t.2: 0, t[= (t , .•. , t 1)] is a I-I trans­
,	 1 - 1 n­
ormation of ~, and the likelihood is unchanged. To avoid repeated
 

ovteos we assume tt > 0 and that the populations are dIstinct.
 

In the new notation, 

(n-1\ 
T. = 0'[ l: '1<1 (d. (3.1.1)) (4.2. I) 

1) k=l (i. j)+ I 

Let the number of populations existing in the k th time interval ago 

~: then flt = (n - k + 1). Further when the data are contemporary 

is non-identiliable, being simply a scale factor for Urnes. Thus we 

,ay take (12 = I, and measure time in unite of 1/0"2 generaUonB. Fin­

for a given Corm of tree F, define, 

H(x, x , t ] = (x - x I)'T-1(x _ x 1),	 (<1.2.2)
-0--0-- -0-­

T is the covariance matrix defined by F and !' via (<1. 2. 1).
 

Then rewriting (4. 1. 1);
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We now introduce some notation for the internal nodes of the aye­
-2S(~0, !. F) = -2 log L~O' !.' F) 

,.' ....m. There are (n - 1) actual internal spUrting points, which we call 
"~~PlogITI+ f HI~lq),x;q), ,). 14.2.3) "('type 0' (or ~asiC) nodes. We consider also the 'type I' internal nodes, 

q=I 
t....ntcb are the positions of the other populations at the instant at which 

" 
lome popUlation epllts, There are t(n + I)(n - 2) [: r c] internal nodes 

all, and these are denoted by 

x_____________ ,-0 
~:{l':(q),q:I •..• , pl,l':(Q):(yiq),i=I, ...• r 0)' (Fig. 4. 2). 

'.
 "'he total number of variables is of order n 
2 

and if it were necessary to
 

ider them all this approach would hardly be feasible. but we shall find 

,at type I nodes are useful only as a theoretical concept and that only 

e 0 need be considered in computation. 

Denote the conditional distribution of {y~q)} given the data and" 
l':18	 e parameters by 

f(Y.l:l!... x , t, F): f(iq
\ i:I, ..•• r , q=I, .. " pl~ x., t , F),t, _ _ -0 - 1 0 - -0 ­

Id the joint distrIbution of !. and Y. by f(!., z.l x , t, F).____ 0­

t, Then L(X, t, F): h f(x:(q) , t, F) = f(!.lx ,t, F) 
-0	 Q=I - - - -0 ­

~ II... ) «s. I'lx, t, FJd>:. (4.2.4)'2 !, = - -0 - ­

,d f(y.lx, x, t, F):f(!., y.lx, r , F)/L(x. t , F). (4.2.5) _ = _0 - - - -0 - -0 ­

, All these distrIbutions are multivariate Normal, being independent 
x x X X x X X

" 
-1 -2 -3 -, -5 -6 -7	 'llnd identical in each dimension q, and can thus be specUied by the means 

~'and covartance matrices. The maximum probabll1ty estimates and the 
Fig. 4.2.	 Example of a tree showing type 0 (basic) and type 1 

internal nodes. n: 7, (n-I): 6. and jJlleans are Identical. Further, since the complete joint distribution is 
r : !(n+1)(n-2): 20. 
o iJlroportional to exp(-tQ) where Q is a quadratic form in ~i' l':l 

Topology of tree: ((2 + 1) + (2 + 2». f(i = I, .,., n) and x , the means are ltnear In the conditioning variables- - - - () -.Data are ~1' ... , ~1' where ~i : (xi
q 

• q: 1, ... , pl. andinx.
 
The parameters are t , .•.• t ,x and F.
 i~t m(q): Ely(q) Ix(q) x(q) t F) for i = 1 r1 6	 -0 i i - ' o· -' , ... , 0' 
The addHlonal type 0 variables are y , y ,y ,y

-1 -7 -12 _16 q == 1•••• , p, and consider the arcs of the tree crossing time interval 
and y ,and the type 1 variables are all the other y"

-19	 - r\. Let £ij(k) = I if l':i is the position of a population at time ! tl 
,	 l=Ir s t e zc.
 

[The ordering of the labels j of vectors y. is ago and r, is the position of the same pcputauon after time interval ~.
 
immaterial. ] -J
 Otherwise let £ij(k) = O. Define 

I, 

l':16 

I, 

!J)-------. ­
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Clql ~	 rClq) E.E.E (k)[ylq) - y(q)I' and C ~ 14.2.61k IJlj ii' k k'q=l 
and 

D~q) = ~ ir{ij(kl[m~q) - m~q)12, and D = qLD~q) (4.2.7)
k 

Further let 

M~q) = E(C~q) I~, ~o' ~, F) and M = ~ M~q). 14. 2. BIk q=l 

Note that Ck is the 'total (distance)2 travelled in time interval \. by alt 

populations then existent', and that 

(q) - "	 I I II Iq) Iqll'l )Mk -L.oiJjE.jkE y. -yo !., x, t, F 
1 1	 1 J - -0 ­

~ olq) + E.E .E .. Ik) v.,llylql - ylq)) Ix x I F) ~ olql.
k 1 J IJ 1 j =' -0' -' k 

Mk Is the 'mean total divergence' while D Is the 'total divergence of the k 
means'. 

Further let	 !":.= ~ yJ. the total set of internal node and population 
---II . 

postttons, the vectors z , = (z.q , q = 1, ...• p), for 1 = 1, ..•• m and-, , 
m = r + n,	 being ordered in time. Let z·, be the immediate ancestor o -
of z .. Then z:" is either Borne Zj with j < i or the parameter x . 

-I -1 - -0 

Let {~H; i = 1, ..•• (2n-l), 1 :s Hi -s m ] be the set of type 0 internal, 
nodes (i = I, ..• , n-L) and populations (i = n, ..• , Zn-L], Let ~it , 
be the immediate type 0 ancestor of ~Hi' The distrlbuUon ot .!H given 

i 
~H·' ~, !o' ~ and F is independent 01 aLI parts 01 the tree 'connected', ­
to !H. only through !H~' The distribution of each z~) Is Normal with 

1 () 1 () t 
mean linear in zi. U and x q and variance depending only on t and F; 

• 
z(qlBay is N(ai(!.)z~.)u + bi(~' !(q), Viet»). (4.2. <1)
Hi , 

II !H. is some !j (L e. n es i s; (2n-l», ai(~) = V;t.9 = 0, 

b.ll, ~Iq)) ~ xlq) 
1 - - J 

We now consider each dimension separately, and {or convenience 
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" drOP the superscript (q). 

Then 

E(ZH.~' xo' !.' F) = E(E(ZH,!ztt, ~,xo'!.' Fl I!, xo'~' F) 
,	 t 

= ai<!)E(zH~I!, x ' !.' F)+bi (!., !), (4.2.10), o 

and 

E(z~.I~, xo'!.' F) = E(E(z~.lzit,~, xo'!.' F)I~, x ' !.' F), , , o 

= V + ai(t)2E(zH·21~, x !.' F) + bi (!. , ~)2i(!.) , o' 

+ 2a (!.)bi<!, ~)E(zH~ , I~, x ' !.' F), (4.2. IIIi o

hand
 

E«(ZH - ZH:)21~, x o' !.' F)
 
1
 

= E(Vi (!.) +	 «a i '!.) - I)zH~ + \(!., ~))21!, "o' !.' F) 
t 

= Vi(~) + (a i (!.) - I)2E(z;t21~, !.' F)x o', 
+ 2(a (!.) - I)b ~)E(zH.I~, x ' !.' F)+b{~_, ~)z. (4.2.12)

i i(!., , o

,Explicit recurrence relations for a.(tl, b.(t, x) and V.(t) are derived 
1- 1-- l ­

in section 4. 4, where the above relationships are used to compute M
k
 

:,:and D (k = I, .•. , (n-I».

k 

4. 3 THE ITERATIVE METHOD 

We now state and prove the results needed to construct an iterative 

method, all notation being as previously defined. 

(n-l) 
Theorem I. HC!(q), x~q), !.) = L: (D~q) 1\), (4.3.I) 

k=I 

where H is as defined by (4. 2. 2) and ri = I. 

This theorem is needed to give a simple method ot evaluating the 

Support S, but is not essential. for the construction 01 the method The 

prool, which Is lengthy but straightforward, is therefore deferred to the 

j, end of the chapter (4.7). 
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p (n- 1) 
Corollary. -2S(x , t, F) ~plo.ITI + r r (Dlq)/'.)

-0 - q=I k=I k 
10-1) 

~ploglTI + r IDk/'.). 10.'.2) 
~I 

Proof. Rewrite equation (4. 2. 3) using (4, 3. I) and (4.2.7). J' 

.!K (n-I 1­
Lemma. L(x , t , F) ~ (2.f' II... I [ n ,-'VI


-0 - ~ -k - k=I
(n-I) 

e'O(-1 r Ck/' )dJ'.. 10. ,. J)
k=l -k_ 

(n-L) 
where K = p L '\ = ~p(n + 2)(n - 1), and integration Is over 

k=I 

- 00 < y~q) < 00, q = I, ... , p and i = I, ,." r o' 

Proof. Let ~ = {!(q), q = I, ... , p J be the total set at node 

and population coordinates as defined above, Note that pm = p(n +r 0) = K. 

Then 

I(!.,
-

~Ix
-0

, 
-
t, F) = f(~lx 

­_ -0
, t, F)

-

m 

= ,n I(~I,I~o' ~, F, !l' 1 = I, •.. , (i-I» 
J=I 
m 

= n Hz,lz:",~, F)
j=I -J -] 

by the Independence of the separate arcs and the ordering or the zr But 

z~q) is N(z~q)., ))' where t .• , is the time length or arc (z)., -z).
l]

tJO JJ - ­
and the separate drmenetons q are independent, Thus 

l(x, ~Ix , t, F)= - -0 ­

= ~ [(2m,. f-hexp(_!( ~ (z~q). _ z~q))2 !t.•.»] 
j=I J j q=I]) J J 

1m l mp()I) 
= (21lfiK[n (t..yiPJexp(-!(L L (zq •• z.q)2;t,.,)) 

J=I ] J 1=1 q.e l j J 1 J 
m 

But now L is the sum over all arcs at the tree. Hence 
)~I 

m [n- I)
 
r [.I~ r l.r.e.. lk)[.].


j=I k=I I] 1] 

" 

v Further there are '\ arcs of the tree having t • j = it' Hence, usingj 
(4. 2. 6), 

1. (n-I) 1. (n-I) p () 
F) ~ 12.f''1 n ('k,p)'\]e'O(-! 1 1 C: I'.)t(!, ~I~o' !..' 

keel k=I q=l 
1 (n-L) 1 (n-I) 

~ 12.f''1 n 'k',\P]e'Ol-l r Ck/'.). 10. ,. 0) 
ke I k=I 

,The result follows from (4.2.4). J' 

Theorem 2. Fundamental maximisation theorem: 

'8 , I
-2~ ~ (V/V - (II'.) E!Ok ~, ~o' " F) 

10. ,. 5)~ IV~)['. - Mk/V]' 

[Note that Mk/'\P ts the mean divergence per population per dimension 

during time Interval it' given the data and the parameters. A form of 

'(4.3.5) holds under a variety of situations (see 5. 3, 5.4). ] 

Proof. Using (4, 3, 4), 

) 1 m ~ (n-I) 
F = (2:11r]"K[(_i,\p/~)[ n fjnjP]exp(_~ I cJ/t.)'lSG!~' ~I~o' !' j=I] j=l] 

m 1 [n-L) 
+ t(Ck/~)[ n tj'injPJexp(_--i l. C ..,t.)] 

J=I j=I J J 

~ (V/2~)fl~. !:"~o' " F)[ICk/V) - '.]. 

,'Thus 

6~'t!O'!.' F) = IJ... I~[6~(~' ~I~o'!.· F)]~ from (4.2.4) 

~ 10",,/2~) fl... IlC[(S/V)-'.lfl~.!:,Ixo' ,. F)O!:, 

~ IV/2~)[ I ... I!:,IS/,\p)r", I~, ~o' t, F)O!:, - '.]L(xo'" F) 

from (4,2,4) and (4.2.5), , 
~ I,\P/2'k)[(Mk/,\p) - '.]LI~o' ,. F) from (0. 2. 8). 

Thus 

-2 6S __ 2 Mlog L) _ 12;L)6L ... - "k -- ''. 
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~ (V;;;)[.. - (Mk/V)] 

as required. II 

Lemma. For each value of t the maximum likelihood estimate 

x (t) of x is given by x(q)(t) """ (X(q)'T-1l)/(1'T-1l), (q = 1, "" p),-0 - -0 0 _ _ _ _ _ 

where	 .! is a column vector of ones. (4. 3. 6) 

Proof. Using the form of S given by (4. 2. ) 

-2S(x ,	 r , F) = p log IT I + ~ (:x(q) - x(q)1)'T- 1(x(q) - x(q)O.
-0 -	 - 0 - - 0 _

q=1 

Then -2 llfq) = 2(x~q).!. - ~(q»'T-l! (T is symmetric), and

'x. 
a 

-2 /\8 ( *j = 26. (l'T-II), where 0 * = 1 if q = q*
llxqOx q qq- - qq 

o 0	 and llq.q = 0 otherwise, (4. J. 7) 

whence the result follows trivially ernce T is a positive definIte matrix. II 

This lemma and Theorem 2 now give the results needed to con­

struct an iterative method as {allows: 

(a) Take some initial value of t • 

(b) Flnd x (t) = X'T-ll/(1'T-1I) Where x ' = (x~q» a p x n 
-0 - = - - - = 1 

matrix. 

(0) Find Mk = E(StI~, ~o'!' F) k = 1, "', (n-t). 
(d) Set tit = Mk/~ k = 1. '.', (n-I}, 
(e) Test for convergence of t; It. - t!j small, i = 1, "', (n-l). 

If not converged set \: = 
-
1t (k 

,
= I, 

, 
..• , (n-l)) andGO TO (b). 

(f) I
If converged, evaluate the support S<.!o'!' F) using (4. 3. 2). 

Clearly if this scheme converges then the converged value is a root of the 

equations lor a stationary value of S, withIn the given form F. The 

problems of exil5tence, uniqueness and convergence remain. These are 

considered in section 4.5. 

4.4 COMPUTATIONAL ASPECTS 

We consider first the computational feasibility of the Iterative 

6B 

Also

a (! ) , b
t

"and

[pethod constructed above. We shall require the formulae of 4.2 and 4. 3 

I:' and the matrix formulae given in section 4. 7. To minimise computing 

reqUirements we wish only to constcer type 0 nodes. Suppose lirst that 

"for some given t x(q)(t), q = I, ... , p, and also the functions 
( ) - 0 ­

i (!.. ~ q) (q = 1, ... , p) and Vi <.!.), i = I, ... , (n-I), giving 

the relationships (4. 2,lJ) between type 0 nodes, are known. Then working 

"down the tree from root to populations E(Z~) I~. !o' !. F) (q= 1•..•• p) 

e (0)' I ) (1	 .2: E(zH. ~'!o'.!.' F, i = 1, ... , (n-l)), may be found usmg 
q=l 1 

(4.2.	 ID) and (4.2.11). 

Now define the 'level' of a node to be the number of time intervals 

back from the present at which it occurs. Time interval ~ covers the 

e from level k to level (k - 1). Suppose that on a given arc the 

',,(type 1 or type 0) nodes at levels (k - 1) and k are !j and ~r, and 

at the type 0 nodes at the ends of this arc are z. and z~· (Fig. 4.4(a)).
-1	 -1 

z.. 
1 

~zr r, 

~Zj h 

-. r, 

Fig. 4.4(a). The elimination of type 1 nodes; for details see text. 

z , z~· are actual splitting points with level (z~·) ~ k and level 
-1 -I	 -1 

(!i) :s (k - 1). Let the time intervals be as shown in Fig. 4. 4(a). [If~j 

is type 0, z) '" z, and r = O. If z! is type 0, z~ '" z~ .. and r = O. 
- - 2 -J -J -1 1 

i is some H l :s 1 :s 2n - 1.] Then, again considering each
l• 

dimension separately and dropping the superscript (q), 
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f(Zi' zrlZi' zi*. rl , r2, h) 

o;exp[-~«z~·-z~l/r + (Zj_Zj.)2/h+(z._Z,)2/r )].(4.4.1)
1 J 1	 1) 2 

Hence (z., z~) ts bivariate Normal given (z" z;o.) and) J	 , 

E«z, - Zj) Iz i • zt", r 1, r 2, h) = h(ZI- zr*)/(r1+r 2-l-h), (4.4.2) 

var«Zj-zj)lzl,zi"'.rl,r2,h)=h(rl+r)/(rl+r2+h). (4.4.3) 

Thus 

E«Zj - Zj)21~, ~o. ~. F) 

=E(E«Z.-Z:,,)2Iz,. z:"*, r,. h,~, x. t, F)I!., x, t, F)
J] 1 ~ - -0 - _ -0 ­

= her +r )/(r +r +h)+(h/(r +r +h)]2E«z._z,",*)2Ix, x • t , Fl,
1 2 1 2 1 2 1 = -0 ­

(4.4.4) 

- ~ , « (q) (q).), I F)ThenMk- l. l.. r i '(k liE zJ -z. x,x,t, ,andq=l J a eve - J = -0 ­

using (4. 2. 12) and (4.4.4) M may be rapIdly computed from
k 

~ (q)'1 ) (q)1	 ) . 
l. E(ZH ~. ~o' !. F and E(ZH ~. ~o' !' F) (q = I, •••• P, if 

q=l 1 (q) _ 1 _ 
al(t), bl <!, ~ ) (q - I, ...• p) and V (! ) are known (l - 1, ... , (n-l)).

l 
To find these functions consider the subtree with root at -,y. and 

suppose that Ij is the immediate type 0 ancestor of ,[i (Fig. 4.4(b». 

w.L o. g. Ii = ~H. and Ij = ~H~ for some t, 1 es t es (n-L), the ordering,	 , 
of the labels l of vectors Il being Immaterial (4. 2). Then for each q, 

with the notation of Fig. 4.4(bl, 

f(y~q)ly~q), ~'!o'~' F) 

cc exp[-1«y(q) - y(q))'!h + (x(q) - y(q)1)'8-'(x(q) - y(q)1))]
i J - i-i- 1­

a: exp] - ~ (y(q)2(1 'S-1 1 + 1/h) - 2y~q)(y~q) /h + x(q)'S-ll))] (4.4. 5)i-i- IJ -1-' 

where .!- is the column vector of r ones, S:l the r x r covariance 

matrix for the subtree, and !(q) the r-d:lmensional subtree position 

vector. 

Hence if U.(t) = I/O + hI 'S~II), 
1-	 - 1 ­

70 
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", )0< x'"' 

Fig. 4.4(b).	 The derivation of the iterative formulae; for further 
detaIls see text. S. is the r by r covariance, 
matrix of the	 r-population subtree with root at Ii 

and Ij Is the immed:late type 0 ancestor of If 

x is here the set of posltton vectors for the r 

populatfona of the subtree; !. = {x(ql, q=l, ... , pI 

and !(q) = C!~q), ... , x~q».- ­

Vi(~) = hUi(~)' ~(~)=Ui(~) and bi(!., !(q»= V:I(!.)C!(q).st!), 

by comparison of the form (4.4.5) with that of (4.2.9). But the covariance 

matrix for the descendants of y. is of the form;-, 

, + t~ 
i	 

0)8 =	 , (4.4.6) 
o R* + t*l(	 t ~ 

where R and Ri are the covarIance matrices for the subtrees having
I 

as roots the two immediate (type 0 or population) descendants of Ii' t 

and t* are the tlme intervals between y. and these two nodes and 1 
-1 '= 
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is a matrix of ones of appropriate size. [The covariance matrix for a 

'tree' whose root is its single population is the single element (0).] Then 

using the matrix formulae (4. 7. 10) and (01. 7. 11) we can work up the tree -,
from populations to root evaluating, in the above notation, 1'S. 1 and 

~(q\S~ll, and hence U&), al(~)' Vi(~} and b&, ~(q) fO; e~h type 0 

node. This procedure gives also x (~, t, F) and, U required, ITI.-0 _ ­

Then working down the tree we may lind M as described above, and
k 

hence iterate for the limes. 

To compute the final support,s, we make use of (4. 3. 2); 

(n-L) 
-2S(~.,.t., F)=plog ITI + ~ 11\"",1. 

k=:ol 

Alternatively Felsenstein's (1973) method may be used to evaluate S, but 

since the mean positions of type 0 internal nodes have already been round 

D may be rapidly computed from (4.4.2) and (4.2.7), and ITi may be
k 

computed iteratively from (4.7.8) and (4. 7. 11). Thus use of (4. 3.2) 

is more etr tctent in this case. Thus we see that, provided convergence is 

assured, the iterative method is computationally feasible. No matrix 

inversion or direct determinant evaluation is ever required. Evaluation 

oC S at points in the nelghbourhood of the maximum enables estimates of 

the curvature, and hence local two-unit support limits, to be made. 

4. 5 THEORETICAL ASPECTS OF THE ITERATIVE METHOD 

We consider now the existence and uniqueness oC stationary points 

of (4. 1. 1), and the convergence of the iterative procedure of 4.3. Front 

(4.1.1). 

-2S(x,-. t , F) = P log ITI + ~ (xlql - x(q)II'T-'lxlq) - ,Iqll) 
- qe.I - 0 - - 0 ­

n-L 
=:0 p log ITI + I D (!. , x , ~,F)1t (from (4.3.2)),

k=l k ~-o 'li. 

and from (4.3.6) the ML estimate x (t), lrnpUcitly a function also of !. 

and F is x (!., t , F) "= «(X(q)'T- 11)0/(I 'T- 1I ), q == 1, •.• , pl. Thus the 
-0 _ - - - - ­

maximum relative support (MRS) eansnes 

-2S*(t, F) == -2S(x (~, t, F), t, F)
- -0 - - ­

= P log IT I+ ~ [X(q)'T- 1X(q) _ (x(q)'T- 11j21(1 'T- 1 l)] (4.5.1) 
q=l - - - - - ­

n-I 
= ping ITI + ), [Dk/'.] from 14.3.2), (4.5.2) 

k=l 

Dk= Dk(~' ~o (~. ~. F), !-. F). 
For given data x (x , t, F) is bounded as t varies. and lor each 

-0 = - ­
'F. Hence also Dk (k=l, •••• (n- l)) are bounded (see (4.2.7)). Mk 
,is of order t, but is bounded as a function ol anyone component of t , 

if,the others, ~d x , remaining fixed: so also is Mk' ­
" -0

(Mk = Mk(~' !o(~, !.' F), ~, F)). 

I; (il The boundary conditions and the second derivatives 

Unless the support surface is well-behaved at the boundaries ol
 

the parameter space, no likelthood lnlercnces will be possible. The
 

support function is quadratic In x , the matrix T- being positive
-. 1 

i: definite; it is surnctenr to consider the MRS. From (4. 3. 5). the solu­

"nons to thc set of equattons 

(4. 5. 3) '. ~ Mk/'Y" k = I, .... (n-II 

t atwith 1t> 0 are stationary points of (4. 5. 1) and the values of
 

atatfonar-y points of (4.1.1).
 

es- OS I es Isince ~'~"(tl~O'][.'. = .'. ~.~~.I~) OX -0 -0­
o 

t = 0 is always. for i -j 1. a root of t i = MiIn.p, but not 
1 OS. 2 1 

neceeeeruv 01 or- = -n.p(1. - M:"In.p)/2t. = O. 
1i n I 1 lIn 

Further t = E II~i - !11 2 
Inp. where ~ = (1 ~i)/n, and ti = 0 

1 1=1 bl 
for f ~ 1, provides a solution 01 (4.5.3), whtcb thus always has at least 

one solution. Again this solution need not be a stationary point of (4. 5. 1); 

this can only be positively asserted if 1. > 0 lor all 1. Differentiating 
OS. 1

(4. 5. 1) the equations M:'" = 0 may be expressed as polynomial equations , 
In any given 1t (the other \ remaining fixed), the maximal degree of 

the polynomials depending only of n. There can thus. for each k, be at 
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most a fixed finite number of roots of (4. 5. 3), and, since no degeneracy 

can occur, only a Itntte number or local maxima of S*. 

Further, as any subset of the it - GO, IT I - 00 while Di con­

verges to a finite limit. Thus s* - - GO. Thus also, since ~~ == 0 only 

OS'
Clnitely often, -2 O~ > 0 for sufficiently large ~ (for each k, the other 

ti remaining fixed), or it> MklV lor all BuffiCi~ntly large ie' (4.5.4) 

As t -0 loglTI cc log t and D*/t ~tllx. _x.ll;t where 
1 1 1 1 -1 -J 1 

l (i, j) == 1 [that is, ~t and ~j are the populations with splitting time 8 , 
1 

see (3. I, 1)], thus -28* - "" and s* __ .., from (4.5. 2). As any set of 

t i - 0, (t oF 1), ITI converges to a Itmte non-zero limit, Di is of ordert:. and S'" converges to a finite I1mJt. 

From (4. 3. 5) and (4. 3. 7) we have 

-28 == plog!TI + r(x(q)-X(q)l)'T-l(X(q)~X{q)l) 
- 0 - - 0 ~q=l 

-2 °rQ) ~ -2(~(Q)-<Q)~)'T-'~, -2 O~S ~ (V/\I['. - Mk/V] 
ex 1< n 

""d
 
28


0 -1
-2 (q) (q*} = 2(!'T .!l6q• q (a positive definite (4.5.5)

OX OX o o diagonal matrix). 

Using the integral expression (4. 3. 3) lor L(x , t, F), and 
es OL -0 ­(0 - 2 09 = - (2;1.) 08 for any parameter 9.
 

25

0 2 oL 6L 02L,[if} -2~ = {2;L )[06 6¢] - (2/Ll[OOOl/l ] for any 9, rp. 

"L= -(2;1.) 080rp at any stationary point. 

(iii) 1t = Mk/ry at any stationary point. 

(IV) I... 1 h(!.)f(x, !.I x , t F)"Y.t - = - -0 - ­

=L(x. t, F)E(h(I)I!., x., t, Fl (see(4.2.5»-0 - __ -0 ­

we lind that, at any stationary potnt (x-. , fl, 
-

-2 o's ~-2[cov«(y(Q)+y(q\ r{Q\/t "]1•• (4.56)
6x~q)61t 1 2' -x n-lll: ~Q' !' . 

where y and y are the immediate descendants of x at level (n _ 2),-1 -2 -0 
and 

O's - , ~ (Q) (Q) "JI-2 Of 6t - [(P°k/'k)O'k - " (cov('1< ,C, )/2"',) x t (4.5.7) 
It l q=l -0' ...J 

i;:where all expectations are w, r, 1. the conditional distribution given 11 

and the parameters. 

For n = 3 it may be shown directly that the matrix of second 

derivatives of -2S is positive deltnlte at any stationary point, and hence, 

is already known, that any stationary point is a local maximum of the 

Ipport function, and hence unique. The covartancea are not zero at the 

rtationary points, and in general it may not be true that all stationary 

, omts are local maxima, 

Existence of internal roots (ii> 0 for all 1) and change of tree 
form ­

We have seen (3. )(ii)) that for n =) there are cases when there 

is no tree form with a maximum in t > 0, and that this may occur over a,
 
'large range of population positions in cases that are in no way pathological. 

Thus it may be that (or every F the tree of maximum support may be non­

bifurcating. Alternatively there may be several tree forms with. maxima 

.tn 1. > 0 for all 1. We know that for n = 3 this cannot occur, and, 
"turth.er that, if it exists, the ML tree form is the unique form having an 

i: internal root. We would like to assert some general hypothests along 

these Hnea but this does not seem to be possible. However a tree form 

"with zero ML estimate, \r, must have a support no greater than that of 

" any tree form obtained by changing the labelled history about interval 

1t' since the two forms have equal support at 1t = O. The support for 

the new form will be strictly greater if this form has an internal maxi­

IIJum. This provides a criterion for change of tree form. 

The iterative method so far presented gives only a method of 

rtnding the ML estimates of t and x within any given F. If for some 
- -.
 

given F 'k converges to zero, we will obtain a tree of at least as great 

a support by changing the tree form about 1t' and continuing iteration 

with this new form. Thus the problem of which tree forms should be con­

sidered reduces to finding an initial tree at which to start iteration. 

There are two cases of 'changing the form about interval 'k' one of which 

Involves the testing of two alternative forms (Fig. '1. Sea)). Iteration is 
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(i) 

Becomes 

abc d a b c d 

(ii) 

~r----

a b c a b c a c b 

Fig. 4. 5(a).	 The possible changes of tree form about 1t when 

'\ = O. (i) Change of history only. (II) Change 

of topology. 

continued until either we have an F with an internal maximum, or until 

no changes about any zero 1t produces an Increase in support, the alter­

natives also having \ = O. 

If there are many tree forms with internal maxima we may cease 

iteration before reaching the ML form. This may also occur U there is 

a local maximum for which \. = 0 for a tree and all its immediate alter­

nattvee, although some other change through two steps may improve the 

support. In practice we may investigate whether such local maxima exist 

by starting iteration from different F. In fact at most one form with an 

internal maximum has been found for anyone data set, and more often, 

for large n, there Is no such form and the relevant time intervals con­

verge to zero from any chosen starting point. 

Although we etten obtain a non- btrurcattng tree it Is crten only the 

root that is non-biIurcating (see the examples of 5.1), Fe laensteln (1973) 

has suggested that the tendency of the MRL to produce non-bifurcating 

roots is an indication that the MRL is Inappropriate. However It is not 

,~ 

;' 

t 
1

.!. 

"I =1,

"true that a non-btrurcanng tree is always produced 

Lemma. For all n there exist (x , ... , x ), points in some
-1 -n
 

EucUdean space (Of dimension (n - 1» such that the ML tree has 11> 0,
 

,." (n-L). 

pr-oct, Note that although iI p < (n-l) not all possible Euclidean 

.tterna of population distances are obtainable, ML estimates of the times 

lepend only on the pairwise population distances divided by p, The result 

independent of p. 

The result holds for n = 3; suppose true also for n = r - 1, the 

me estimates being t , ... , t " Then continuity and the form of 
1 r-

ensures that for any ~ > 0 there exists an £r > 0, such that iI 

II~r - ~r-lll "£r 
en the r population tree with l{r-l, r) = 1 has time estimates t~• with 

It1'- \_11 < 6 (i = 2, .. " (r-l» 

t· > 0 tI x	 "/- x I'
1 -r	 -r-

The smallest ti may then be made as large as we please by scaling the 

,population distances, and by induction the result is proved. j' 

We have a bifurcating root (1 1 > 0) provided the populations
n-

fall 'sufficiently' Into two groups, where precise but not very meaningful 

formulae may be given for 'sufficiently', 

A further conjecture is more interesting; namely that for all 

••.. , t 1 (I. non-negative) there exist x , '" ,x and F such that 
n- 1	 -1 -n 

Is the ML time estimate for!! and F. This conjecture has not been 

II rigorously proved, but it seemethat, at least provided p e (n-L), we 

have sufficient freedom to obtain any required pattern or covarfancee. 

Unlmodal1ty and convergence or the iterative method 

A more serious problem, from the point of view of likelihood 

Inference, than the possible non-existence of tree forms with Internal 
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maxima, is the possibtlity of the existence of more than one stationary 

point within anyone tree form. All stationary points of (4. 1. 1) are 

maxima w. r. t, x(q) (q = 1, .,., p) (4.3), but s-«, F) may have " -
stationary points of any type. For a unique maximum we require that 

the implicit equations (4. 5. 2) have at most one strictly positive r-oot, 

The question of convergence of the iterative method is crosety 

connected with that of the existence of a unIque maximum. The iterative 

method sets 1t. = Mk/~ (see 4. 3) and thus 

os* 2_2 0" ~ ('1<pl\l[.. - 'kJ (4. 5. 8) 

or 

...... oS*..­
.. " 'k as 0"> O. 

The method thus causes the estimate of !. to 'climbthe support surface', 

and we may expect convergence to a local maximum, although this is not 

theoretically necessary. (The estimate could oscmate indefinitely. ) 

Local maxima are the only stable points of convergence of the iterative 

method; minima and saddle points are unstable. 

Note that we have 

2 os*'k ~ .. + (2'i/VI 1llk' 
whereas, in standard natation, Newton-Raphson iteration would give 

n-l 2 k OS''k~"+ I [_0 S'] I2 M'l=1 Ot I 

From the second derivatives of S «4.5.5)-(4.5.7») we may obtain the 

matrix of second derivatives or S*, and we see that the iterative pro­

cedure corresponds to the inverse of the rtrat term of the diagonal com­

ponents of the matrix. Were it computationally feasible Newton-Raphson 

iteration would converge to any stationary point, Our procedure converges 

only to maxima: It has a larger range of convergence but is of only first 

order. 

The function S* has precisely one maximum along any ray 

lc!.·; c 2: 0, t· fixed).	 (4.5. 'I 

1\ and !o(~, !' n depend only on relative times, and from (4.5.2) 

Dk(~' c!.·. F) = Dk(~' E..*, F) 

n-l
 

- 2S*(c.!.*, F) = np log c + p 10giTI + (l/c) 1 D*It-*,

k=l k-k 

T and Dk are evaluated at ~, !."'. F. 

We may further consider the support as some ~ varies, the other 

remaining fixed. For a stationary point w. r, t, ~ we require 

(4.5.10)-2~~ (V~)(.. - Mi/'1<p) ~ o. 

*	 is an Increasing function of ~, and Mk/~ < ~ for all sufficiently 

ge ~ (see (4.5.4». 

As ~ - 0, M k= p'\.~ + ~~ + 0(\.) where ~ is independent 

~, (k '* 1). Further from the definition of M (4.2. B), and using k 
e considerations of 4. 4, it may be shown that Mk has at moat one point 

inflection lor varying ~. We thus have two possible cases (Fig. 4. 5(b»), 

Id there is at most one posiUve root of (4.5.10). 

2 Os*'k ~ Urn [("k - V ..IIlk] ~ Urn (2 0'- I. .....,	 .....,. 
~ > 0 there Is a unique root tt· Since Mk> ~~ only if ~ < tt, 

':'tk gives a maxImum of S· (see (4.5.10)). If ~ < 0 there is no root 

of (4. 5. 101 In .. > O. 

For k = 1, M -! [x - x.II' as t - 0, where l(1, j) = I, and 
I -1 -J 1 

there is always one root of (4. 5. 10) in t l > O. 

Thus S* is unimodal in each ~, and together with (4.5.9) this 

h gives a clear idea of the possible support surfaces. Although for n = 3 

" we have overall unimodality, there seems to be no reason why in general 

we should not have a support surface of the form shown In Fig. 4. 5(c). 

We return now to the problem of convergence. We see from 

4. 5(b) that, considering iteration only in the k th dimension, we have 

convergence to !k. or to zero 11 no such lk exists. This ensures mono­

tone convergence in the general iteration in regions in which the sets 

where S* is greater than some given constant are convex, but not neces­
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[I] 'k> a 

b=-I­

r 
"k/"kP 

I, til 
'k 

,.	 " 

(ii) ~ < 0 '" 
r I A' • t j 

Fig. 4.5(c). Contours of a possible maximum relative supportMt/ty surface. Potnts M are local maxima, while S 
Is a saddle point. 

sarily in general. Thus although In practice we always have rapid con­

vergence to a local maximum, we cannot assert that this is the only one 

or that convergence wlll always be obtalned, We note finally that when 
, 

I, ~ < a convergence Is very slow, the difference between successive 

tteratives being cr order ~. Often when it is seen that some \ is con­

verging to aero It te more efficient to test immediately whether \ = a"'~ 
gives higher support.Fig. 4.5(0).	 The two possible rorme of Mk/V as a function
 

of \. showing iteration for the root of the equation
 4.6 FURTHER ASPECTS OF THE LIKELIHOOD OOLUTION 

="k/,\",'" (1) SlmpUllcatlon of the projected coordinates 

The functions of the gene frequencies that are assumed to undergo 

Brownian motion are, for locus 1 having k alleles, any (k - 1) ortho-
i	 i 
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genal coordinates in the projected space (2. 3). The overall space has 
s 

dimension p '= L (k. - 1). This approximation is valid provided that, 
i=l 1 

for the loci in question, the major cause or observed gene frequency 

dtIferentiaUon is r. g. d.; the problem of sampling remains to be con­

sidered. We require also that population sizes are approximately equal 

at anyone time, that all allele frequencies He between O. 05 and 0.95 and 
n-1 

that r 1.IN -s O. 1, where t. are now measured in generancns. Under 
i=l 1 e I 

these restrictions discussed In Chapter 2 we may hope to make valid in­

ferences about the form of evolutionary tree. 

It complicates the problem unnecessarily to take as the data vari ­

ables the actual observed projected coordinates. Brownian motion is 

Independent of the particular coordinate system chosen, and the likelihood 

depends only on population distances, Including distances from x. Thus-. 
if, as is often the case, (n-L) < p, the number of variables which must 

be considered may be reduced by embedding the projected space population 

distances in a Euclidean space of (n - 1) dimensions, as Is done for the 

heuristic ME solution (Cava111-Srorza and Edwards (1967)). This embed­

ding is equivalent to a rotation am translation of the projected space in 

which all the coordinates 

x~q) for 1 ~ i .s n, and n cs q :s p, 
have become zero. Then x~q) '= 0 for n S q .s p, and the mean internal 

node positions, also lie in this subspace. The dimension of the motion 

is still p; thus embedding need not be rejected, as it Is by Malyutov ~~. 

(1972), on the grounds that it reduces the Brownian monon dimension. The 

last (p - n + 1) dimensions can be ignored in computation of mean posi­

tions, but still contribute to the variance terms In M In programming
k. 

there need now be no restriction on p, since the number of variables 

that must be retained is independent of p. 

(11) Singularities and past data 

Lemma. For contemporary populations the covariance matr-Ix T 

is non-singular II and only II i > O.
l 

82 

Proal. Let the two major subtrees of the tree with matrix T
 

have covariance matrices 8 and 8 and let t and t* be the times

1 2 

"from x to the two Immediate type 0 descendants of x.. Suppose that 
-0 -0
 

8 and S are positive definite. Then from (4.4. 6)
, , 
s +tl 0 \
 

T = 1 0 '= 52 + t*-1 )
 ( 

, and from (4.7.8)
 

11) > 0
ITI~ls t.ls 1.(1 + tl·s-' 1)(1 + ,OI'S­
1 2 - 1 - - 2 ­

Thua. since T is a covariance matrtx, T is positive definite. Con­


versely suppose that t '= 0, and let Xi and x be the two populations
 j

with l(1 j) '= 1 Thenl,",ov(x(q) x(q)-)- cov(; (q) x(q») for all r e t ,"
 

, . "i'r- j'r "
 

and var(x~q» = var(x~q)) '= cov(x\q). xJ(q» = nil (itJ, for each q, Crom
 
I l I k=2
 

(4.2.1). Thus T is singular having two identical rows. II
 

The restriction t > 0 places no restriction on the iterative
1 

method. If two populations have identical coordinates they should be 

considered as a single population. Under any other circumstances we 

shall never reach an eat.[mate t 1 '= 0, since as t 1 ... 0, S ... -""; the 

support surface has no positive infinities. 

However II the data are not contemporary. the evolution of some 

population(s) does not span t If the data are at known times In the past
1. 2 

we have an absolute scale of time, for example in years, and a is no 

longer a scale ractor. Time intervals, it' and divergences, 1\.' may be 

defined as before, but with addltionallntervals known in terms of the 

(n _ 1) spl1tting Intervals being given by the non-contemporary population 

points. The form or T may be readily modified and (4.3.2) remains , ,
true. Replacing ~ by a! In (4. 3. 2) we have 8 '= (1/np)L k(I\/it), 

and we consider the MRS 

_2S*(~0. 82, !' F) '= p log IT I+ np log(LkDk(~ ~o' !' F)I\) + constant. (4.6.1) 

If fi is known, or if we have information on the times of past data only 

1n terms of a2 , the support function is of the same form as before; 
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- 2S(~0' !.. F) =p loglT! + lk(Dk(~' ~o • .!.. F)/\.), r(,2 =1). (4.6.2) 

In either case suppose that it is either possible or given that there 

is some data point strictly previous to all the others. say x • and con­

'. 
-, 

steer the situation when th~ time previous to ~r becomes zero; t - 0 
i
 

for all r > i say, and }; t i - 'time ago of x'. Provided x = x •
 
o i=l -r -0 -r
 

D i is G(t:) as t i - 0 for each i> to. and D/t - 0;

i 

rk(Dk/~) -.~ (D/\); a finite limit. 
,- . 

But if x has zero evolutionary time from x • 
-r -0 

var(x~q» = 0 = COV(X~q), x~q) for each l #. rand q = 1•...• p, 

and 10gIT!--""'; S(x. t , F) and S*(x, 8"2, t , F)-+""'. we have 
- 0 - -0­

infinIte support [or the hypothesis that the point of origin Is the position 

and time of the earnest data population. which is an unreasonable pro­
position. 

If there are two or more distinct populations (x.i=l•...• w 
-r z e w < n 

say) at the most previous time point we do not have an infinite singularity. 

Suppose l {rl' r 2) = l > io' and that the populations are di..l1tinet. As 

1.-0 for all i> i., we have as above 10g!TI-."". being of order of,• o 
at WOTst. W log{ll)' but Dl ... II~r -.~)I· + jl~r _~)12 ~ ~ ~!r -~r 11 2. 

1 2 1 2 
ThUB Ik(Dk/~) i5 of order I/tl and S(!o'!.' F) "'_"". 
Also S*(x • &2. t , F}'" _"'" (n > w) [&2 _ + ..:».-, ­

Thus. provided the order of magnitude of (72 is known. it should 

be possible to estimate an evolutionary tree. (If there is no prior informa­

tion at all on either (72 or the times of ancestral nodes we may have the 

further anomaly of maxlmaf although not inClnite, suppor-t for a tree of 

'almost zero' divergence rate, with roots 'almost infinitely' tong ago. ] 

The problem of non-contemporary data does not arise when trees 
are to be constructed on the basis of blood group frequencies, as there 

is no possibility of having such data for past ttmes, However, this prob­

lem of the singularities which arise as soon as past data are admitted 

is an interesting likelihood problem, which could arise In practice for 

B4 

trees based upon anthropometric data. {Although a Normal model may 

not be valid for anthropometric data, the same problem arises with any 

aimilar diffusion model. J It also raises the problem of what Is meant 

by contemporary. Although our acceptance of present- day populations 

as contemporary seems justifiable, in fact gene frequencies are not 

measured at precisely the same instant, and may be as much as a genera­

r, tion old. 

(Ui) The use of prior information 

Prior information on either tree form or times of split may in
 

theory be included by means of a prior likelihood (1. 3): but this may
 

cause problems In the iterative method Let the prior support for F
 

and t be log g(F} and log h(!.) respectively.
 

Then the net support satisfies 

-2S(x. (72, t , F)=-2Iogh(t)-210gg(F) 
-0 - - n-l 

+ plogla2TI + L. (Dk/a·~). (4, 6. 3) 
k=l 

The prior support for F enters only into the comparison of dirrerent 

tree Ior-ms , and so does not affect the iterative method explicitly. How­

ever there may now be discontinuities in the support at potnts of change 

of form (~= 0). This Is intnttlvely undesirable. and complicates the 

criteria for change of form. Any large va.riation In g(F}, over F, is 

likely to dominate over any presentfy available genetic support. 

Unless h(~) is a homogeneous function of degree 0 in !.' or is 

a function of a1,!. , 1I2 is no longer a scale factor. There may often be 

a case [or introducing some support function for relative Urnes; this may 

be a better way of incorporating desirable restrtcttcne on splitting time 

intervals than the inclusion of a probabHlty model for population splitting. 

If h{!.) te only a (unction of relative times. or of times relative to (72. 

the iterative procedure may be adapted At any stationary point we now 

have 

lih(t) 

.. ~ I1/V)[,\I>\, ~.iIi,,~, F), t, F) + 2 Ot:I~/hI~))I, 

where x (!.. t, F) is unchanged by the inclusion of h(t).
-0- - ­
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Thus the iterattve procedure may be modified to 

'k ~ (11"",,)[,,; + 2:1',; (~/h(~))] [ct. 4.3]. 

At each stage \ will be changed in the direction of increasing support 

(cr. (4.5.8». Provided h is a suitable runctton we should in practtce 

obtain convergence to a local maximum, although the form of h may now 

cause there to be several of these. 

4. 7 APPENDICES TO CHAPTER 4 

k 

Appendix 1. Proof of Theorem 1 of section 4. 3. 

n-l 
Theorem. H(~, x o' ~) = r (Dk/\), 

k=1 
(4.7.1) 

where H is deflned by (4.2.1) and (4.2.2) and D by (4.2.7), being the 

value given by a single dimension of the tree, with population positions ~. 

Proof. We proceed by induction, so note first that the result Is 

trivially true for a tree of two populations; 

T~('~ ,:}
 
We assume that the result is true for each of the two major subtrees Q-, 
and Q of a tree P. Let Q rQ ] have covarjance matrix S [R], root

-2 - (1) _lL.:"'Z 
Zl[z2]' populations! f!(2)] and time intervals ~L!'.] (Fig. 4.7(a)). The 

combined tree ~ has root "c' populations !: ~,=(~(1),. !(2),)], and 

tlme intervals t . 

Let H(~) be the value of H for a tree !" and F<!') be the form 

of P. 

Let !\<!') be the value of Dk given by ~, or by ~. !. and 

F(~), and I\:(~) IQ be I\:(~) modified by the restriction that

xo'
the sum 

-1 
Is only over those arcs of ~ in 9i. 1/ 

First we require two lemmas, 

Lemma 1. Let m t(91
) = E(yil~(1), Zl'!' F(9

1
») and
 

ml(~) = E(Yil~, xo'~' F(~)). where Yi is any internal node of 91,
 

B. 

" 

" s. t· 

r ! " \ nn 

" 
" '. " 

" 
,-., t 

,:t::f / \ A \ t "t\ [ 
*-x(2)~ 

Fig. 4. 7(a).	 Division of the one-dimensional tree P into its two 
major subtrees Q and Q , as required in the proof- -, 
of Theorem 1. 

Then if z =	 E(Z [x, x , t, F(P)), where Z denotes the ran­
11-0-- 1 

dom variable of the position of the root of Q under tree P,-, ­

m,(Q ) = m.(P)	 (4.7.2)
-1 1­

with an equivalent result (or the nodes or Q-, . 

Proof of Lemma 1. If x, t and F(P) are given, so automati­

cally are x(I). 13 and F(Q). The-result then fellows immediately from 
- - -1 

the linearity of m. in the conditioning variables (see 4. 2); ,
 
mi(~) = E(Yll~, X ' ~, F(~))o 

= E(E(y i I~(1) ,Zl' F<.91) , ! ) I ~, x ,, -t, F(I')) 
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'= E(k (x(l), S)Z + k (x(l), a) [x, X" ~, F(PII
1- - 1 2- - ­

=k E(Z [x, x , t, F{P)) + k
11-0-- 2
 

= m.(Q) (or the given z • II
 
1 - 1	 1 

Lemma 2. 'Type I nodes may be inserted at any point' ~: U 

yi and Yi are the positions of a population before and alter time inter­

val sk and z is the mean position, given (Yt, y of the populationi), 
at a time h from the beginning of the interval (see Fig. 4.7(b)), 

(Yi - Yi)2/~ = (Y1'- z)2/ h + (Y i - z)2/(~ - h). (4.7.31 

'j 

h 

z 

'k 

(a -h)
k 

" 
Fig. 4.7(b).	 Division or an arc of the tree, as required in the 

proof of Lemma 2. 

Proof of Lemma 2. z = (Yi(~ - h) + yih)/sk' 

Clearly the result follows. II 

Corollary to the two lemmas. If z = E(Z Ix, x , t , F(P)),
1 1-0-­

14.7.41"kIDkI9,1/"k1 = I;lD;I!'II-,Q /'11. 

Proof. Using Lemma 2 to insert type I nodes in Q at the points-, 
in time at which there are splits in Q (Fig, 4. 7(a», and Lemma 1 to-,
 
ensure no change in mean population positions, [or each j, 

Djl9,I/'j = k;:'(Dk(!'1 19 / \ 1, 
I 

where A is the set of k for which tlme interval \ of P iB part of 
j 

interval s . of Q .I - , 
Thus 

IDJIQ lis. = I I".IP) IQ II) = "k(DkIP) IQ ;'- l. ;l
J - 1 J 

I j k€A. - -1 11: - -1 K 
J 

We return now to the proof of the main theorem; as in (4.4.6) 

s + tl 0 )
 

T= ( a = R+t"'~
 

where ~ is a square matrix of ones of appropriate size, and t and tOO 

are as shown in Fig. 4. 7(a). If Q. consists of only one population S-, 
(or R) is the single element (0). Suppose for the moment that this is not 

the case. Then r 1 and sl are strictly positive and Rand S are non­

singular (see 4. 6(H». 
-1	 -1

Let w = I + t.!.'S 1. and w· '= I + t"'1.'R 1., where I is a column 

vector of ones of appropriate length. 

From the matrix formula (4. 7. 9); 

.,
H(P) = (x - x	 I I 'T (x - x I)

- -0-- -0­

= (x(I) _ x 1)'[8- 1 - (tB- l I I ' S· l ) /w)(x (I ) . x I) 
- 0-- -- - 0-­

+ (x(2) _ x 1)'[R- 1 
_ (t*R- 1 1 1'R- l ) / woo )(x (2) _ x 1) 

- 0- -- - 0­

= G , + Ga say.	 (4.7.5) 

But f(Z [x, x , t, F{P))
1 - 0 -	 ­

ocexp[-t«Z	 • x )2;t+ (x(I) _ Z I)'S·l{x(I) - Z Ill1 
1 0 - 1- _ 1_ 

and thus U z =E{Z [x, x , t, F{P))
1 1-	 0- ­
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(z - x )/t = I'S-1(X(1) • z 1).	 (4.7.6)
1 0 - - 1­

Then 

G = (X(I)_Z 1+(z -x )1)'(S-I.(S-1 1 1'S-1)/W)(X(l).Z 1+(z -x )1) 
I - 1- 1 0 - -- - 1- 1 0­

= (X(I)_Z l)'S-I.(X(l)_Z 1) _ (t/W)(X(l)_Z 1)'S-1 1)2
- 1- - 1- - 1- ­

+ 2(x(l)_z 1)'S- l l (Z -x )/W + (z -x )2(I'S-1 1)/ W 
- 1- - 1 0 1 0 - ­

= H(Q ) + «z -x )2 / tw l[_1 + 2 + tI'S-1 1] (using (4. 7.6)),
-1 1 0	 - ­, 

= H(Q,) + (z	 - x ) It. 
- 1 0 

The requirement that Q does not consist of only one Population may 
-1 

now be dropped, since in this case 

Zl = x, where x is the population position, 

and 

G = (x - X	 It, where t Is the total time of P,
1 O)2 

and we may take H(Q ) = O. Then from (4. 7. 5)
-1 

H(P) = H(Q ) + H(Q ) + (z _ X )2 It + (z _ X )2 / t* 
- -1 -2 1 0 2 0 

provided zi = E(Zi I~, x ' 1, F(~))o 

= ~j(Dj(.91)/Sj) + }:i(Di (9 ) / r i) + (Zl-X/" It + (Z2-X/;t* 

by the inductive hypothesis 

~ EkIDk <!' )IQ	 1'.1 + Ek(Dk(!'1 IQ !'k) 
-1	 -2 

+ (z - x )2/t + (z _ X )2;t. (from (4.7.4»)
1 0	 2 0 

= rkI\(~)J\	 on again using Lemma 2to insert a type 1 

node on arc (x , Z ) at time t from xo , 0 

(w, 1. o. g. t* > t). (4. 7, 7) 

Since all trees have some two population subtree, the required result is 

proved by induction. 

.ppend1x 2. Some standard matrtx formulae. 

The following results are used repeatedly in proving the results 

fof Chapter 4, and are given here for reference. They may all be verUied 

Ildlrectiy. 
ii' Suppose that S and R are positive definite symmetric square 

hl:Platrtces of ranks n1 and "e' and that n = n1 + n Let land 12. 
'Dote the square matrix and column vector of ones, of any appropriate 

"Ibe,	 and ' denote the transpose of a vector or matrix. Let x(1) and 

,(2) be any column vectors of lengths n and n and ~' = (;(1)., ~(2),). 
1 2,
 

Let
 

T~ C+:,l R: trl ) 

t	 • t are any given non-negative scalars. Then , r 

ITI ~ ISH '1IR+t 11 ~ ISIIRI(l+t l'S"'j(lH "R",), (0.8)s= r= s--r-- ­

d
 

S + t 1)" 0 )T- 1	 s­0= 

( O (R+tl)-l 
r~ 

1.!!.'S_I)/(I+ts!'S_l.!))
~ (S-I_(tsS- 0 ) 

(R-l_(t R-11'I'R-1)/(1+t l'R- 1 1)) o	 . 
r -- r- ­

('.7.9) 

x'T- 11 = x(l)'S-Il/(1 + t l'S-1 1)
--- - 8-­

+ x(2)'R- 11/(1 + t I'R- 11)	 (4.7.10)
- - r- ­

and 

I'T- 11 = I'S-1 1/(1 + t I'S-1 1) + I'R-11/(I+t I'R- 11). (4.7.11) 
---- 8---- r- ­

[U R (and/or	 S) consists of the single element (h), (b ~ 0 and t > 0),
r 

R + t 1 is the single element t + h. [The case h = 0 Is required in 
r=	 r 

4.4 and h> 0 in 5.:3.1 The relevant terms in R in (4.7.8), (4.7.10) 

and (4. 7.11) reduce simply to (h + t ), x(2) I(h + t ) and 1/(h + t }
r r r 
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respectively, giving the tnl.tl.al terms in the iteration up the tree des­
Further aspects of the problemcribed in 4. 4. ] 

and its likelihood solution 

THE PROGRAM AND THE RESULTS 

The program MAXTREE finds the maximum likelihood tree (or a 

wen set of data, using the principles laid down in the previous chapter. 

':, bas been extensively tested on hypothetical data and on two main sets 

actual data. The first of these is a set of data on nine Asian and 

erfcan populations (A and A), which is a subset of the data on 15 world­

"ide populations compiled by Cavalli-Sforza and Edwards and used exten­

Ively to test previous heuristic methods. Secondly there Is a set of data 

seven North-West-European populations (N. W. Eu.) provided by 

'rcreeeor J. H. Edwards. [Some of these data have been tabulated by 

arnason ~al. (1973).] Summaries of the data and diagrams and tables 

the results obtained are gIven In figures and tables (b) and (c) or this 

eetton. A detailed description or the current form and performance of 

e MAxTREE program is provtded, In order to demonstrate how the 

ecrettcat considerations 01 the previous chapter may be translated into 

i'practice, and to enable comparisons with other procedures to be made. 

I'I~'I The program was first developed for the Cambridge Titan c om­

:1'PUter (an extensively modified Atlas I type computer) with an access time 

II! 5 microseconds and 48 bit words (instructions). The program consists 

,:.0( 392 Itnes of FORTRAN (excludtng COMMENT), which 1s less than hall 

;/the length of Felsenstein's evaluation program and substantially shorter 
I 

than the most recent (and shortest) verslon of Edwards' minimum evolu­

rUon (ME) program (Edwards (1%6), Thompson (1973a)). A flow diagram 

,I Of the program is given in Fig. 5. 1(a) and the approximate sizes of pro­\ 

gram and library routines, and running diagnostics, in Table 5. l(a). The 

program has also been modified for use on an IBM 370/165, but no exten­

siVe tests have been made. A factor of ten in the running time is to be 

expected, and this 15 the order of the factor obtained (Table 5. l(a)). 
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-------
- - - ---

I
r',-

:\1,1
I:'t, 

II,.',,

II
 
hj' 

" 

Read in population gene rrequenctes. 

Find population distances and 

Read in already 

processed population
OR 
-coordinates. Find Brownian motion coordinates and 

dimension dimensions 

Change the tree form 

for each t, I ~ t >'S KK 

Test whether tt> 0, 

If not about the zero time 

If so interval level, (I).---,­
using subroutine 

CHANGE (I). Test for 
Evaluate curvatures increased 'support 
at the maximum 

,...
 

t t 
R!:.a~ iE)!1~n~ .!!e.Ea!t~ £.o~~!. ~i--

IKK - 0 IH=Oj or IH=l 

t 
Build up tree 

KK_KK+l 

If KK> (0-1) The initial tree is COmplete 

If KK ~ (n-l) 

I 
II ~ind the closest roots of tree 

~'dionB as yet unjoined. Join 
these and change matrices 

specifying rorm, unjolned 

roots etc. 

If not fUlly converged 

RETURN for further 

"" If KK=(n-l) 

evaluate the 

lInal support 

iteration 

If converged 

CONTINUE. 
........
 

f->-­

Read in some 

given initial 

tree form and 

times 

Make initial estimates of 

the KKth time interval; 

for t ••• , t
l 

, 'B'KK
_

1 
estimates obtained at the 

previous cycle 

t 

Iterate for the maximum likelihood 

time Interval estimates, using 

subroutine EVALXSU as described 

previously. When converged 

) ICONTINUE 

using subroutine 

SUERRS
If, as can occasionally 

happen, a point of 

slightly greater 

supportts found during 

this process due to 

incomplete convergence 

of some t
i 

I t I 

If any such change 

or tree form increases 

the support 

If no such change 

increases the support 

Change time interval 

indicated in the direction 

ind1cated until the 

support decreases 

Change time estimates; t: - MUn.p, l~i~KK., , 
Test for convergence of aU times. (See 4. 3) 

r----1 

, ENDL--,-J 

Fig. 5. 1(a). Flow diagram of the program MAXTREE. 

CALL EVALXSU (T); evaluates the 

functions required to find Mk; 
that is, in the notation of 4, 2 and 

• (ql ~ p ((q)2 b4.4, x ,E(ZH' E ZH i, a., . 
-0 1 q=l i. 1 1 

and Vi for the basic internal nodes. 

Also evaluates support II required 

Print out final maximum likelihood estimates of I 
I)tree form and times, together with two-unit I 

support limits estimated from the curvatures 

at the maximum 

, 

I£.,
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Compile time 6. 87 sees 

Run time 29.47 sees 

Approximate store required; 

MArn program 1000 words 

Subroutines 

EVALXSU 500 words 

SUERRS 500 words 

CHANGE 250 words 

Titan library routines 3100 words 

Common area (with array capacity 
for up to 12 populations) B29 words 

TOTAL (wlth forward references, 
names etc. ) 6702 words 

[312 K bllsI. 
Note: on an. IBM 370/165, 

Total store r-equir-ed q4 K bytes 

(352 K bits1. 
Run time (after compiling) L 5 to 2 sees 

Table 5. I (a), Titan diagnostics or the MAXTREE program 

The ME program mentioned above requires 14 K words of store 

and takes 25 seconds to compile and run for a data set of nine populations. 

Although this is much less in time and somewhat less in store than pre­

vious ME programs, the MAXTREE program requires the same ordcr 

of time and only 7 K of store to accommodate the analysis or up to 12 

populations. Thus likelihood esttmatton is computationally more ef'I'ic ient 

than previous heuristic methods. The run times for the A and A data 

(Table 5. l(a)) are the largest so far obtained; some of the time intervals 

converge to zero (Table 5. l(b)), giving cases of Iaccmp'let.e convergence 

(see below), and testing of alternative forms of tree. A more usual time, 

for example for the seven N. W. Eu. populatlona, or for ten populations 

having a clearly defined tree form, is 15 to 20 seconds. 

The program utilises population coor-dinates which must therefore
 

r~::effects 

previously determined from the gene frequencies. This is more
 

:netent than processing the gene rreqcenctes within the program, since
 

:en several runs with the same data set will be j-aqutred, using diCfer­


subsets of the populations or different initial forms of tree. The gene
 

','tlQuency proceeetng program (original version due to Edwards) allows
 

;,',_ \lp to 15 populations and 10 gene loci with up to eight alleles at each.
 

'TREE has no restriction on the Brownian motion dimension. There 

:~an option either to build up a tree, or to start iteration rrcm a given 

Iplete tree. This enables the stab1Hty of the maximum, and the Hkeli ­

of adjoining terms of tree. to be investigated. 

J( the tree is to be built up from the lowest level, the program at 

:h stage joins the roots of distinct parts of the tree, starling at the 

ilattona and working up to the root. A few Iterations are then per­

'mad to Bnd the poetuon of the root at: the new subtree and approxbnate 

e interval estimates. This is not done to a high level of precision, 

Ice further iterations will be undergone at each level of building, and 

,I addition oC extra levels changes the ML time estimates. This pr-o­

",,oDe raises the question of stability of ML tree terms under addition
 

populations. Work done on the N. W. Eu. data reveals that although time 

itimates may change the tree form 109 reasonably stable, and together 

'lth opportunUies for later change of. form this method of Hnding' an initial 

ee ts certaInly adequate. 

The program then iterates Cor the ML tr-ee. All the iteration con­

I~ts (small numbers spectrytng required accuracy of roots) are mul­

nee of a prescribed constant MD, which may be chosen fairly arbitrarily 

it should depend on the overall dispersion of the data, since it aetermtnes 

,iGlaOlute, not relative, accuracy. When a change of tree form ls indicated 

!'by the existence or a zero time interval estimate subroutine CHANGE 

uae, tests whether or not the new form can give higher support 

'and accepts or rejects it on these grounds (Fig. 5.1(a). The procedure 

'( within CHANGE depends on whether or not the change is of topology as 

well as labelled hlstory (4.5(11)). 

When a final tree form with an internal maximum is found, or when 

the current tree tics zero intervals but no change about these produces a 

., 
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The data used are a subset of the data on 15 world-wide 

populations complied from various sources by A. W. F. 

Edwards and L. L. Cavalli-Sforza. These data have been 

used extensively to test previous heuristic methods at re­

bUlldlng evolutionary trees. There are data on live gene 

Iocr, A Rhesus, MNSs, Duffy (Fy) and Diego (Di)
1A2BO, 

with 'I, 7, 1I, 2 and 2 alleles respectively, which together 

provide 14 Brownian motion dimensions. 

Results: (n = 9, P = Ill) 

Maximum likelihood support; S=159. 6 
-,Limit of accuracy of ML estimates: HD = 8 x 10 

Maximum likelihood time estimates, with their two-unit 

support Umits esttmated from the curvature at the maximum; 
i 

2
Time intervals (a t. ) Time ago «(1281 = o.2[ ~ t,ll 

1 j=l 
1 = 1; (138 ± 58) x 10. 4 138 X10. 4 

i=2; (22±61)XIO- 4 160xl0- 4 

1=3; (17±68)xIO- 4 177 x 10- 4 

i=4; ( 2±41l)XIO- 4 179 x 10- 4 

i = 5; (Ill 8 ± 93) x 10- 4 327 X 10. 4 

i=6; (12±82)XIO- 4 339><10- 4 

i= 7; ( O± 34) x 10. 4 339 X 10. 4 

i = 8; ( 0 ± 23) x 10- 4 339 X 10- 4 

The two earliest time intervals have maximum likelihood 

estimate 0, giving a 4-way root. The populations thus fan 

into four groups. 

Note: rl = l/8N , and hence if the total evolutionary time e
(sn- ,) 18 around 30,000 years, or 1, 500 generations, N , 
is 01 the order of 104. 

Table 5.1(bl. Results of the MAXTREE program lor nine 
Asian and American populations. 

339 t----- ----------­
327 

1
 
" 
~ 

179 
177 
160 

138 

0 

<;;; 
",­

Fig. 5.1(b). 

l: -- ... o -a"2 ~-;:;- a~lIl-;:;-i~ ~ 13 J::§ .§ ~~ t 11 III :=: .~ ~ III~ III ~ "" <'I:l .... c::
li:l.~ o "" .... l: ...."." :0; -=~~c3~ ::4'" J.. <U

e~ e.:; lO< g. -- .0" 6 
<~ ;3.0-- Et: « • 

z'" 
Maximum likelihood tree for nine Asian and Ameri­
can populations. Diagram of maximum likelihood 
tree form and times of split. The ordering of popu­
lations is that given by the first principal component 
of position in the projected space. The scale of the 
time axis is in units 01 (1/10 4(]1) generations, time 
being measured backwards from the present. Values 
of the support and maximum likelihood time interval 
estimates with their 2-unU support limits are given 
in Table 5.1(b), with a summary of the data used. 
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There are only five blood group loci for which data could be 

obtained for all eevet populations. These are ABO, Hp, 

Duffy (Fy), Kell and P, with 3, 2, 2, 2, and 2 alleles res­

pectively. These together provide six Brownian motion 

dimensions. The data were provided by Professor J. H. 

Edwards.• 

Results: (n = 7, P = 6) 

Maximum likelihood support; S = 133.2 

Limit at accuracy of ML estlmates; HD = 2 X 10- 5 

Maximum Hkelihocd time estimates, with their two unit 

support limits estimated from the curvature at the maximum; 
i 

Time intervals (u2t i) Time ago «(lSI = (l[ L t.]l 
j=l J 

i = 1; (5±16)X10- s 5xlO- 5 

1 = 2; (24 ± 16) x 10- 5 29xIO- 5 

1= 3; 8 ± 29) x 10- 5 37x 10- 5 

t = 4; (8±38)xlO- 5 45x 10- 5 

i = 5; (54 ± 67) x 10- s 99 x 10- 5 

i = 6; (37± 82) x 10-s 136 x 10- 5 

The ML tree is bifurcating with no zero time interval esti­

mates. The populations Iall into two clearly distinguished 

groups; Norse and Celtic with England belonging to the 

former group and Iceland to the latter. 

Note: fi = l/8N and hence 1:f the total evolutionary time of -- e 
these populations (1'1 ,) is around 4000 years or 200 genera-

n-
trona, N Is of the order of 2 x 104• 

e . 

• Some of these data have now been tabulated by Bjarnason 

et at. (1973). 

Table 5. 1(c). Results 01 the MAXTREE program for seven 
North-West-European populations. 

~I 

136 

i 
99 

•8 

" 
45 

37 

'9 
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Fig. 5.l(c). 

~ -e -c -c -c"~ :!" 
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" Q "• 0 - ­
•••0 -• 8 -'0• • -•••0 

~'" 
Maximum likelihood tree for seven North-West­
European populations. Diagram of the maximum 
likelihood tree form and times at split. The order­
ing of populations is that given by the first principal 
component of position In the projected space. The 
time axis Is marked in units of (1;10 5(72) genera­
none, time being measured backwards from the 
present. Values of support and maximum likel1hood 
time interval estimates with their 2-unit support 
limits are given in Table 5. l(cl, with a summary of 
the data used. 
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form of greater support, control is transferred to subroutine SUERRS 

whlch estimates the curvature at the maximum by evaluating the sUPPort 

at points in the neighbourhood. Convergence of ! is in terms of close_ 

ness to a root of \ = Mk/n p (k = 1, ... , (n-lll, no evaluations of 

support being necessary until 
k 

the root is found. The factor 1Ilk, In 

~t ean mean that in cases of convergence to zero \ can be approxi­

mately equal to Mk/ '1l at some dtstanee from the maximum. This 

occasionally results In Insufficient convergence, and a point of higher 

support is found in the course of SUERRS. If thla OCCUrB the time interval 

in question is changed in the direction indicated until the support de­

creases and iteration Is restarted at that point. 

A complete matrix of coformations of the maximum relative support 

surface is not estimated, since this would require at least 1n(n + 1) 

evaluations. In fact the eoformation between any two time intervals is 

negative at the maximum. In practtee only curvatures in the directions 

of the axes are taken. The two values for each \ (one taken in each 

direction) are combined to give a symmetric two-unit support limit. 

[If \ < 10 HD a single value In the increasing directIon is used and this 

fact is tndieated in the output. 1 In practice the two-unit support lImits 

give Ilttle quantitative information. The support is not quadratic, nor 

even symmetric. However, bealdes a generat tnctcanon that, these 

limits being large, the surlace Is very nat at the maximum, the limits 

do provide some measure of the retanve degree of eonndence in the dU­

lerent \' and also Indlcats whether, and which, ather tree lorms may 

be within two units ol support of the maximum. For a large number of 

populations there may be many of these and only a few of the etoseet can 

be examined. 

From the flow diagram (Fig. 5. l(a» It may be seen that there are 

several theoretically non-ending loops. To prevent excessive looping only 

twenty iterations lor eaeh time interval, lour alternative tree forms and 

five returns from SUERRS due to ineomplete convergence are allowed. 

Only the first of these limits has ever been reached and this only In cllBes 

of convergence to zero. In this case the method 01 return from SUERRS 

Is much quicker than allOWing further iteration. The output frOm the 

program Is of a form to be useful in further analysIs rather than a final 

", I,.sentation 01 results. Each time a major stage is completed (a time 

eraUon, form change or support evaluation) the relevant information is 

'1nted This enables alternative forms, rates of convergence and non­

mmetry of support limits to be seen, and these suggest possible tree 

,rIDS to be tested in any further analyala, 

Although the two-unit support limits, given in Tables 5.I(b), 

,.1(c), for the two data sets include many other forms of tree, conver­

ece to the ML form was obtained quite rapidly from a variety of differ­

, It starting points. Further the forma obtained using subgroups of the 

lations were consistent with the overall form. This is not a necessary 

equence of the model and to obtain such a result inspires confidence 

the estimated rorme. The comparison of trees produced by different 

sets for the same populations is discussed below (5.2). 

It is also possible to make esumetee of N given independent , e
 
".thropological estimates of 13 1 (or vice versa), and rough estimates
 
, n­
'. given in Tables 5.1(b), 5.I(c). The estimates are perhaps on the 

,all side, but are certainly Of. the correct order of magnitude, indica­

that the observed gene frequency differ entfatton could be the result 

.r, g. d. alone. It may be that small initial population sizes allowed 

.d initial dispersion and dominate the overall effective population size. 

'is also likely that sampling has had aome effect In increasing the appar­,
lot dispersion. 

THE mo-BANG LIKELIHOOD 

We have computed maximum Ukellhood estimates of evolutionary 

and maximum support values. However these do not give an ade­
" 
,I~e picture of the shape of the likelthood surface, the support for alter-

Illatives, or the amount of information on phylogenetic relationships con­

dned in a set of data. The curvatures at the maximum give a measure 
,.\....
'I confidence In the time interval estimates, but In practice these areUl 

estimated only in the direction of the axes and convey Uttle except that 

,the confidence limIts are wide. 

We define the Big-Bang (BB) tree as the tree in which all popula­


tions were formed simultaneously by the spUtting of a single ancestor
 

and have since evolved independently: t = 0 for alII'" 1 and F Is
i 
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unspecified since all F give the same tree when all tlme Intervals 

between epttte are zero. 

Then 

.(q)(t) ~ [i: x(q)]/n ~ i(q) (5. 2. 1) 
0- i=11 

n 
and -2S(x (t),a2t, F)= nplog(a2t ) + (1/a2t ) ~ Ilx. _xll 2• 

-0 -	 - 1 1 -1­
Thus	 1=1 

2~ = (l/np) ~ II!i - ~I12 = X /np, (5. 2. 2) 
i=l 

2where	 X is the total dispersIon of the populations. 

Then 

S(BB) = Sex , (~ , 0, ... , 0), F) = -!np(l + log(X2 / np)). (5.2.3)
-0	 , 

It is not suggested that BB is a likely hypothesis, but it provides 

a useful basic reference point for a given set of data, since were it the ML 

solution no Inferences about F could be made. Only support differences 

between different hypotheses, on the same data, have meaning; support 

dtIferences between maximising hypotheses for different data sets do not. 

The difference in support 

'8 ~ 8(ML) - 8(BB) ~ § - 8(BB)	 (5. 2. 4) 

provides a measure of the amount of Information In the data, and hence 

enables compar-Isons between different data sets to be made. 

We may then go further and compute the support for trees having 

r non-zero splitting intervals, r = I, 2, .••. In this way the 'simplest' 

hypothesis compatible with the data may be found, where thl.8 hypothesis 

Is the H with smallest possible r satisfying 

§ - 8(H!." 2 

(or some other predetermIned level). [I am indebted to Professor D. H. 

Is sensttrve to changes in the total evolutionary tlme, T (= a
2s 

I)' butn­
ts far Ieee eo to changes in t subject to constant T, particularly for

i 
1 = (n-t I, (n-z). In the case of the N. W. Eu. data the support scarcely 

S
altere along the line; lit, =0: i = I, ..• , 4 and a 

2 
(t + t ) = 90XIO- , 

2 1 -5 5 6
 
from fit = 0 to a t = 50 x 10 .


6 , 

Some further results are given in Tables 5.2(a), 5.2(b). We see 

2 
n = 9, P = 14, X = 4.1677 

Support difference Evolutionary

Hypothesis H 8 - 8(H) tlme; T-
MaxImum likelihood (i.1=i =0) o O. 0339 

e
Big Bang (t = 0, i'f- 1) 8.0 O. 0331

i 
Maximum for the ML form F subject to t = 0 for:l 
i=4,6,7,8 0.1 0.0338 

i=3,4,6,7,8	 0.2 0.0337 

i=2, 3, 4, 6, 7, 8 0.4 0.0338 
3•5Likelihood ratio for ML tree over Big Bang tree = 10

Trees with t = 0 for i 'f- 1 and 5 have support values close
i 

to the maximum. U t = 0 for i = 2, 3, 4, 6, 7 and 8; i 
2" 2" 

(f t = 0.0168, a t = O. 0170.
1 s 

Table 5. 2(a).	 Supports for hypotheses of sImultaneous splitting; 
AmerIcan and Asian data. See Fig. 5. l(b) and 
Table 5. l(b). 

that many hypotheses of simultaneous spllttlng do not have significantly 

lower support than the maximum, although for neither set of data is BB 

a tenable hypothesis. The estimate T is scarcely changed by restric­

tions t = O. Although the support differences are small the iterative
i 

method gives good discrimination of which tree form should be chosen and 

which time intervals made non- zero. 

The N. W. Eu. populations give a much larger value to OS, (5. 2. 4), 
""1" 

Cox for this suggestion.] However, even for r = 1 there are too many	 than do the A and A populations, ehowing that the former contain more'I
j
, 

alternative F to consider. Thus Instead we start at the ML hypothesis,	 information on phylogenetic relationships. That this is so is shown also 

by the fact that for the former data the ML tree Is bifurcating while for theand then consider suitable restrictions 1. = O. It is found that the support• 
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n = 7, P = 6, X = O. 0551 

Support differ-ence Evolutionary 

Hypothesis H i) - i:>ln}~ _.--, time; T 

Maximum likelihood (ij) 0, i) 0 D. 00136 

Big Bang (t j = 0, i"* 1) 14. B O. 00131 

Maximum for the ML form (F) subject to 

t=Ofor'I • 
i=6 0.05 0.00132 

1 = 3, 4 0.2 0.00134 

i = 3, 4, 6 0.2 0.00133 

i = 5, 6 2.2 O. 00133 

i=2,3,4 3.5 O. 00135 

i = 2, 3, 4, 6 3. 7 O. 00132 

106•5 Likelihood ratio for ML tree over the Big Bang tree =
 

Trees with t. = 0 for i = 3, 4 and 6 have support values close
,
 
to the maximum. If t = t = t = o·

3 4 6 • 

u\ = O. 00005, azt = 0.00032, and u2i = O. 00096. 
2	 s 

Table 5. 2(bl.	 SupportB (or hypotheses of simultaneous splitting; 
European data. See Fig. 5.1 (c) and Table 5.I(c). 

latter the ML solution has a four-way root, Thus the A and A data pro­

vide no information on the relationships between the lour major subtrees. 

Note that, as for all measures of statistical information, there is no 

assumption that the information is correct. Only validity of the model 

and large accurate data sets can ensure the reliability of inferred phylo­

genetic relationships. 

From Table 5. 2(a) the most that can be Infer-red with any degree 

of statistical confidence is t > 0, t > 0, giving a tree similar to the , , 
ML tree in form with a 5-way root. Around mid-way in time between the 

root and the present three of these five populations split giVing rise to the 

three more closely related groups; Gorkha and Korean; Australian and 

New Guinean; North American, Maori and Eskimo. For the N. W. Eu. 

I 

," 

I 

I;, 

,I. 

I. 

populations the split of Iceland and Ireland from the Norse populations can 

I: be reliably inferred although the position of Scotland is less clear (Table 

5. 2(b)). Whether Ireland and Iceland or the Norse populations are the
 

more closely related cannot be reliably inferred, but for this particular
 

rather limited set of data it seems that England Is significantly more
 

closely related to Norway than to any of the other populations.
 

Although wlthln any glven problem the degrees of freedom are not 

:1 relevant, since we are interested only In which poInt hypotheses do faU 

'Within two untts of support of the maxlmum (1. 3), in a quantitative com­

,I parteon of dtlferent data sets the effect of varying p and n should be 

eonsrder ed. For the BB tree (n - 2) constraints are placed on the t.,, 
,'and, were classical asymptotlc likelihood ratio testing theory appUcable,
 

1 2
 , it would assign a a X stgmrrcance test to 6S. On the alternaUve
n_2 

{hypothesis the non-centrality of the X2 is the distance of the true hypo­

",thesis from BB in the metric of the information matrix. Given that BB 

1B not a tenable hypothesIs, it is the difference between the distances from 

I BB provided by the dtlferent data sets that we wish to COnsider. 

The classical approach as such does not apply, alnce as p in-

I:, creases so also does the number of parameters and asymptotic consis­

I:,tency and Normality wlll not obtain, but we may consider the above 

'I 'distances' from BB. An additional gene locus clearly gives additional 

Wormation in some sense, and will increase OS tl this confirms the 

"phylogenetrc relatlonships previously inferred; asymptotically, for fixed 

! .n, the increase should be linear in p. Both the general support function,
,and 6(BB), (5.2.3), are of the order np for given a s l' and compu­

n­
taUons show that, at least for small nand p , 6S increases with both n 

and P. Thus 66/np the information/population/dimenslon appears to be 

the appropriate measure of the relalive information in different sets of 

loci with regard to the phylogenetic relationships between different sets 

of populations. 

There are tnsurrtctent data to examine extensively the agreement 

of trees produced using differ-ent sets of gene teet for the same populations. 

Individual loci do not give good agreement, but this is not to be expected 

(2.4). Data for five of the European populattona (Norway and Sweden ex­

cluded) is available for five further gene loc1, also giving p = 6. The ML 
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tree lor these data confirms the major Celtic-Norse split but not the 

other details of the tree. SUbstantial agreement is not to be expected for 

this small value of P, and the Importance of dUferences of detail is 

difficult to assess. However it is to be hoped that, were such data avajj., 

able, large accurate data sets for loci and populations for which random 

genetlc drift is accepted as the major differentiating force would give the 

same estimate of the tree form. 

Data I Data 2 

LocI. (s 0== 5) ABO, Hp, rv, Kell, P. AcPh, Gm, MN, Luth, PGM. 

Number of alleles (kl) 3, 2, 2, 2, 2 3,2,2,2,2 
e 

P = I (k. - 1) 6 6 
i=l 1 

Dispersion = X2 
O. 0412 0.0325 

ML support = § 88.6 88.2 

BB support = S(BB) 83. 9 87. 8 

6S = S- S(BB) 4.7 a.4 

Table 5. 2(c). The compar1son of two data sets giving data for the 
same live populations: England, Denmark, Scot­
land, Ireland and Iceland 

The support difference 6S provIdes a measure of the relative 

amounts of information In the two data sets, which have the same nand 

p (Table 5. 2(c»). The first set of loci contains signtncant information: 

the second does not. Although the two maximum supports dtfIer only 

slightly it Is 6S that is the relevant factor. lt is only the introduction 

of some basic reference point that enables comparisons to be made, and 

we suggest BB as a useful and meaningful such reference point, 

5. 3 DISTORTIONS OF THE TIME SCALE 

Although it seems that valid inferences as to tree form, F, may 

often be made, the time estimates are less reliable. The two main causes 

of dIstortion or the time estimates are variation in population size and 

sampling. There Is also the constant scaling factor caused by atcr eo­

graphic projection (2. 3. 8), but this is negUgible, and for any given group 

populations may be corrected for. We show first that constancy of 

Ietton size, in time, is not necessary for the validity of the model. 

Suppose that the size at time s ago, of each population then 

.tent is N (e), and let 
e 

u = 1'I !ds/8N (s )], I. = I, .•. , (n-l). (5.3.1)
i 0 e

z on the arc between type 0 nodes at Urnes si 

St_ ago. 

That is ~ == XJ - xj for some type a node (or population) Xj' and 

",j.rnmediate ancestor y~ (which may be the root 11: ). ,. -J -0 
(q) . si_ i _ 

0( Then z ia N(O, 1 [de. 8N (S)]) or N(O, u u q - 1, ••. , p,
e i_ i)St
 

all such diffusions are independent.
 

~I. - ~o is the sum of such independent dUfusions (i= 1, ... , n};
 

"'-e x(q) is multt-vartate Normal and
 

( (q) (ql) ­
covxi ,xj - uI(i, j) (cr. (3.1.1)).-un_ l 

the likel1hood L(x , u, F) is precisely as before, (3.1.2), with 
-0 ­

eplacing cr2!!. We may refer to u as eHective evolutionary time.
 

Thus Infer-ences as to tree form are unaffected by changes in N 
e. 

olute time scale may be inferred, but estimates of absolute effective 

lutionary times may be made. Estimates of actual time may only be 

if N (a) Is known: we may have independent evidence as to its 
e 

!r 01' magnitude. The time scale at any point In history is in units of 

I) (51 generations, irrespective of whether this varies with e, and this 

be taken into account in comparing time intervals at dUferent stages 

:fl1s tor y. 
DiICerences between population sizes at a single point in time will 

e distortions that are less readlly eliminated. [I am indebted to 

oreseor C. A. B. Smith for causing me to consider this question. ] 

,Ie above considerations show that the effect of differing population sizes 

the support function is that of a 'weight' proportional to the effective 

nnatton size over the given time interval attached to each arc of the 

ee. If the population sizes at all stages in history were known, it would 
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in theory be possible to introduce a weighting procedure into the iterative 

method lor estimating a tree. These weighting tactore would affect estt, 

mates of both the means and var-Iances of internal node positions, and 

the definition of M must be modified to incorporate them, but the Iunda.,k 
mental result (4. 3. 5) and the method of Chapter 4 would then still apply. 

Such a procedure may not however be computationally feasible, 

and is in any caec not to be recommended. The effect of Incorporating 

differential sizes on the form of the support function and on the properties 

of the iterative method are not known, and the effect of errors in relative 

population size cannot be estimated. The current relative errecnve popu­

lation sizes will rarely be accurately known, and those per-talnlng in his­

tory probably never. We must therefore retain the restriction to equal 

population sizes at any given time: nevertheless the above considerations 

allow us to recognise that the analysis attaches undue weight to the position 

01 small populations, and in any given situation the qualitative effect on 

the estimated tree may be considered. 

The genetic aspects of sampling have been preViously discussed 

(2.2 and 2.4); we consider here its effect on likelihood inferences. So 

far the population rrequenctea have been assumed known; in practice thcy 

are estimated rrom samples, s lze m~h) Irom papulation I at locus h,
 
say. At best, when all genotypes are distinguishable, this IS a multi ­

nomial sampll.ng (aasumlng aampl.lng 'with replacement' or m~h)« N ). 
i e 

More often we have only maximum likeUhood estimates or gene frequency 

from phenotype data. However, provided there are more phenotypes than 

alleles the situation remains approximately multInomIaL 

In thlB case we have a sample or 2m~h) genes, and the estimated 

frequencies tl are (ll2m~h»)M(2m~h\p) where p Is the true papulation 
- 1 1 - ­

frequency and M denotes a multinomial variate of the given index and 

parameter. Performing the transformations of 2.3 we obtaln, by analogy 

with the multinomIal samplIng of r, g. d, for large m~h) (but 

m (h)« N ) i~q} is N(x~q) 1/8m~h) where x are 
1 
the observed, and

el 1'1' -1 
x. the true, population positions, and q is a dimension ccrreepcndtng to 

l~cus h. Further all i~q) are independent, given the true populatIon 

positions !.. 

Th~ x(q) is N(x(q)l, a2T + dt~. (1/8m~h), 1.:5': i.:5': n)) 
o - I 1 

no 

= N(X(q)I, a?(T + dfag, (N Im~h), 1 .:5': i .:5': n»)), 
o - e 1
 

n-f
 
2'here T .. = r t, a = 1/8N , and diag. () denotes a diagonal 

IJ r= (i, j)+i r e 
atrix with the given components. B:(q) (q = I, ••• , p) are independent. 

, or N , r-emains a scaling factor for t but not for the total variance. 
e -

e variance scaling factor (2. 3. 8) is the same for both the sampUng and 

ill r. g. d.• and again may be corrected for at each lOCUS, for populations 

a given region or space. 

Lemma. With the notation as defined in the previous chapter. the 

mum likelihood estimates \ (I = I, ... , (n-l» satisfy 

(5. 3. 2) ti = E( il:£, ~o<!), 1. F)/ntp. 

£. Is the set of observed population positions, and ~o(!-) is the 

mum Hkehhood estimate of x for given t (and Fl. (The support
-0 ­

arne quadratic in each x(q) and thus x (t) may be found explicitly
o -0­

in the previous chapter.)
 

prcct. Given x , ;l. is independent of t, x and F. and y. and = = - -0 ­

independent. Then 

L(x, t , F) = f(!lx , t, F)
-0 - - -0 ­

~ J •.. J f(!Il0 f("lx , t , F) "" 
~ _ - - -0 - ­

'L _ J J f(x-Ix) O[("lx , t , F) dx"Ilk - ... " ~ ~ ''k- -0 - ~ 

~ I... Ix f(~I~Hf("I~o'!. Fl[<""I'k)-E(C. I~, ~o,~, F)/~]J"" 
~ 

(from 4. 3) 

~ -t[VL/'k - J••• J~,l:. C. f(~, ,,'l:, I~o'~' F) "" ~~] 

~ -HVLI'k - L J.. ~(l:. C. ((~'l:,I~'~o,~,F)"" ~/~] 
~ -t(V~)L(~o'~' F)[~-= E(c.I~, ~o' t, F)/V] 

I'lnd hence for a stationary point w. r. t. t and x 
, - -0 

'k ~ E(c.I~, ~o(!)' ~, F)/V' (d. 4. 3). II 

III 
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- -

But 

E('i< I~. x , t, F) = E(E(CkI~, ~o' ~. F)I£, ~o.!. F)-0 ­

= E(Mkl£. ~o.!-. F) (by definItion) (5. 3. 3) 

M is a quadratic function of ~, and (5.5. 3) can in theory by found fromk 
the conditional distribution of ~, given :!. and the parameters. lC sample 

sizes are equal for all loci, the iterative method of Chapter q may be 

readily modified to give the true ML solution, Cor in this case the variance 

does not differ between dimensions and any orthogonal transformation Of 

the projected coordinates is equivalent to the original data (4. 6(1)). In 

iterating up the tree using (4. 7. 10) and (4. 7. 11), as described in 4. 4 we 

must simply change the 'covariance matrix' for any 'subtree' consIsting 

of a atngte population node from the previous single element (0) to the 

element (l/Sm
i
) (m

i
= m~h) for all h. See 4.4 and Appendix 2 of 

4. 7.) A reetrtctton t1 2. a must also be included but has no effect on 

=0the iterative method; the point t 0 is no longer a slngularity since 
1 

sampling provides a postnve lower bound to the population variances. 

Convergence properties, etc., wlll be similar to those described in 

Chapter 4, but the program of 5. I has not been modified in this way, 

since sample steee, even where stated, are not equal lor att loci, except 

perhaps where a single recent etudy of a population has covered many 

blood group systems. If sample etees are unequal the theory remains 

the same, but it would be neceaear-y to consider the basic pr-ojected co­

ordinates and not a transformation based only on dtstancea; this is not 

at present computationally Ieaalble. 

The above modification of the method corr-esponds to Felsenstein's 

observation (personal communtcanon) that sampling, with sample atze mi' 

Is equivalent to N 1m. generations (or 118m, units of l/ri generations)e , 
of evolution. He notes that the ML solution with sampling included is the 

same as the solution without sampling for the same population poeitions at 

times 1/8m in the future. His proposal, equivalent to the above, is that 
l 

the ML solution for the populations at these unequal hypothetical time 

polnts be found, and then the extra times subtracted off to reobtatn the 

contemporary populations. The required restriction that the time of the 

II2 

r

a

e

ere

e.

It ancestral split occurs no later than the present prevents the stngu­

,ty which Is in general caused by populations at unequal time poInte 

•	 4.6(ii». Although, for our iterative method, the modification to the 

:le element matrices deacribed above provides the simplest method 

.alving the problem, j'etsenstetn's representation of the situation 

dee a clearer Idea of the effect of the Inclusion of sampling on the 

ated tree and on the relative support for alternative estimates. The 

Ier the sample size the less is our knowledge of the true present 

ilatton position; equivalently the further into the Iutur e is the 'effective 

e' of the sample point. 

The situation In which all m are equal (say to m) provides the 
t 

.cularly simple case In which the 'eHecttve times' 01 the populations 

.in equal. The only effect of the tnclueron of aampltng is to reduce 

r, estimate of 0-2 t by an amount 118m (pr-ovided previously 

> 118m), for the term 0-2 t } + 118m replaces (lll in the diagonal 

of the matrix 0-2 T , and 0-
2 t} does not appear elsewhere in the 

crt function. Thus when all sample sizes are of the same order of 

ltude sampling: should have little errect on the estimated form of tree. 

However, in practice the variation between loci is often much 

.ter than between populations and an alternative suggestion is the 

-lng, The coordinates used are those obtained by embedding the 

'tic distances in any Euclidean space (4. 6(i)). But the observed squared 

Ice d~~)2 at locus h, between populations i and i, with sample
J 

m(hl m(h) eattsttcs 
1 • j 

E(d(h)2) = (k _1)(1/8m(h))+11/8m(h)))+d(h)2 15 3 ')iJ h i i a,ij .. 

b. = I, ••• , s, where d(Oh).~ is the (unknown) true squared distance 
• 'I 

'een populationa t and i at locus h, having k alleles. Thus weh
 
cenne
 

dij2 =0 d~. - r (~_I)(1/8m~h) + 1/8m~h)), (5.3.5) 
1] h=l	 J 

d~. is the total observed distance between populations i and i, 
'1 z 

Id embed the modlIted distances dij (1, l =0 I, ••• , n) in the Euclidean 

This may be the best method in practice where sample sizes 

er widely with both loci and populations. The tree inferred Is, at 
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least, the correct likelihood solution for some set of true population dis_ 

tances, the squared distances being unbiassed estimates of the true 

squared distances based on the observed data. 

However, unless samples are large, we may obtain distances 

which do not satisfy the Euclldean metric conditions, we may even have 

negative distances between populatlone where there is no evidence of 

d1I:lering gene frequency. Thus although the method is useful in practice 

there may be problems. In fact, although estimated distances at SOme 

loci may be negative, the total distances (5. 3. 5) are usually positive and 

can often be embedded in a zucueean space. 

5. 4 THE MISSING DATA PROBLEM 

Although some heuristic methods are based entirely on distances 

and can use any avallable data to compute these, any method based strictly 

on the probabU1ty model must either use loci lor which all data are present, 

or else take account of missing coordinates in some logically justl1iable 

way. Having inferred an evolutionary tree we may obtain the probability 

distribution of missing coordinates. We then have the following problem: 

'To what extent are the maximum probability estimates (or means) of 

unobserved random variables compatIble with the ML values of the para­

meters on which they are based?' 

Suppose we have a subset x of Ix~q); i == 1, ... , n, 
=g I 

q = 1, .•• , p } with only r of the coordinates in dimension q presentq 
(1 .s, r es n), SUppose further that we with to infer (x , t, F) using all q -0 ­

avatlable data. Population distances are no longer sufficient, and we 

must consider the projected coordinates. For each q (t esq csp Jq)1
- x " ~g 

N(X~q)!, T')	 (5.4. I)q , 

where x(q) I denotes the restriction of x(q) to ~g and Tq Is the 
- x 

~. 

r by r	 matrlxformed by eliminating from T those rows and columnS q q 
corresponding to populations for which there are no data in dimension q. 

Then 

x~q)(~g' !.' F) ~ ([x(q) 1 )'T·"I)/(I'T·"I). (5. 4. 2) 
~gq--q-

"

.'

"- ,tlmatlon of !. and F remains theoretically possible, altbough It Is 

~pllcated by the fact that some dimensions no longer contain informa­

an each t] separately. However, as may be shown by a proof simi­

to that of (5. 3. 2), we still have the fundamental result that 

\ry = E(~I~g' ~o(~g' f, Fl, 1, F), k=I, .•. , (n-L), (5.4.3) 

Having obtained estimates of (x , t , F) based upon x we may
-0 - =g 

,ider the missing coordinates ~m' Since the dimensions are Inde­

lent we consider each separately and drop the superscript (q). We 

the ML tree lor those populations for which there are data in the given 

,ension the 'framework' of the tree (Fig. 5. <1). Let w = n - r .q

x o 

Yk( 
,	 E!----t; -- t'" 

J,, , 
y' 

Y ,/._ ~ __t1'l_ f 3, ,	 m,_ ,,,, ,,	 ," ' ,, ,	 t ', N, 
x. Xi"k x.

J	 " , 

Fig. 5.4.	 The estimation of missIng data coordinates. The 
framework of the tree is shown by the send lines, while 
the broken lines denote missing parts of the tree. 

Given x and the parameters, x is w-varlate Normal. Without 
-g -m 

18 of generality x = (x , .•• , x ) and x = (x +1' •.• , x.). Let 
-m 1 w -g w n 

be the last ancestor of Xi on the lramework of the tree (i=l, ... , w); 

5.4.
 

Then the maximum probability estimate (or mean) is
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XI = E(x,1x • x , t , F)-g 0­

= E{E(x.lx, X. t , F, y~)\X. x , t, F)

l-gO- 1-g0­

=E(Y,*lx, x, t , F). (5.4.4\-g 0­

Lemma. If x,=E(Y:-lx. x. t, F) (i=I, "', w) then
1--g0­

E(y~lx ,x ' x. t, F) =x" (5.4. 5)
1 -m - g 0­

and
 

i (x. t, F)=x (x ,x. t , F). (5.4. b)o-g- o-m-g-

Proof. since all mean positions and X may be determined 
o
 

recursively by the series of equations relating each node to its immediate
 

neighbours (4. 4), it is sufficient to consider only the equations relating 

v: to its immediate neighbours. The equations relating framework, 
splitting points to their neighbours are necessarily unchanged. 

Now given z and z of Fig, 5.4 and time intervals as shown, , 2 

Xi =x =9 =E(y'!z z t F)=(t"'z+t"'l.),(t"'+t*)
1, mil' 2' -' 2 1 1 2' 1 2 

t 

But 

E(y~ Iy •z ,Z .t , F)=«l /t"')+(l/t.)+(l/t*lf 1 «z/t-)+(z /t.)+(Y /t*))
Im12- 123 21lni3 

=9 =i =x ify =9ml. mm 
1i2 

=E(yt!zl' Z2'~' F). /I 

Thus we have that 

(i) Missing coordinates should be estimated by the mean posi­

tions of their ancestors on the framework of the tree, 

(ii) Given!. and F, estimates of all node positions (including 

x ) are unchanged by the introduction of the missing coordinates at their
-0 
mean POSitions, and introducing them in this way is 'consistent' with node 

positions already inferred. 

H~:ver, the ML estimates of the parameters (i, F and x0 

(= ~o~, .!, F))), are not unchanged by this insertion of the missing data; 

the ML solution does not usually have 'verttcaj' arcs In any part of the 
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,tree. The question of change of ML tree form under the inclusion of 

additional populatlons, discussed in 5.1 with reference to the adequacy 

I: of the method of constructing an initial tree, is closely related to the 

"problem here. The true ML tree inferred (rom the data is not precisely 

,the same as the 'revised' trec inferred from the data and additional hypo­
" thetical data constructed on the basis of that ML tree: but such data do 

"not usually cause extensive changes in the tree inferred. 

The approach here may be compared with Fisher's 'predictlve 

:1keljhood' (Fisher (1956, p. 126», which would suggest that the complete 

:probability distribution 

(5.4. 7)f(~m' ~gl,~o' !.' F) 

,!hould be regarded as a likelihood for (!. ,x, t, F) and maximised_m -0 ­

,Jointly with respect to these variables. This approach leads to aingularf­

lUes if applied to the set of all internal nodes, but in this case is feasible. 

ecause of Normality, the tree inferred by maximising (5. 4. 7) ts an 

ullibrium limit of a eertce of repeatedly 'revised' trees. 

ANClLLARITY AND THE NUI8ANCE pARAMETER x-0 

As yet we have considered only the complete likelihood 

!.' F), and the MRL 

L"'(t, F) = max. [L(X , t, Fl]. (5.5.1) _ -0 ­
x
-0
 

"We have discussed the disadvantages of eliminating any parameter other
 

'than by considering the MRL (1. 3), and have also seen that x should
-0 

"sometimes be considered, (or example in the miSsing data problem or in 

any situation where the node positions are of Inter-eat. However, in some 

situations it may be that we are interested only In inferring the evolution­

ary h1Btory (t, F), and x may be truly a nuisance parameter, although _ -0 

without x the estimated tree cannot be lully epectncd. The method of 
-0 

Felsenstein (l973) suggests a possible procedure for the elimination of 

~o' [The notation and ter-minology of s'etaenstetn (1968, 1973) are here 

slightly modified to corrcspond with those 01 Chapters 3 and 4. ] 
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Fclsenstein (1968) ebowe how for each q (1 ~ q :s p) and for given 

<!' F) statistics u~q) = Ui(~(q); !.), (i == 1, ... , n), may be iteratively 
constructed; where 

u(q) 
is N(O, v.(t)) for q=l, ..• , p and i=l, "', (n-l) ti , ­

and
 
(5.5.2) 

u(q) (qi _
Is N(x ,v (t» for q_l, ... , p, n , n­

and all variables are independent.
 

As in Chapter 4 we write
 

!! = lu(q) q=l, •.. ,p, i=l, •.• , n J= Iu., i=l, ••. , n ] = { u(q), qeel , ... , p I- i' -1 _ • 

(5. 5. 3) 

u(q) = u(x(q); t) = (u.(x(q); t ), I = 1, ..• , n) is linear in x(q) and thc 
- -- - 1- - _ 

Jacobian of the transformatIon is 1, lor all !. and every q (Feleenatetn 

(1973); his '!' being a simple transformation of ours). Thus 

L(~O' !' F) = fx(~I~o, !.' F) = fu(~I~o' !.' F), 
= = 

where l~ and f!l denote density functions corresponding to sets of 

variables ~ and ~ rcspectlvely. and 

n 
-2S(x, t, F) = p 1: 10g(v.(t))

-0 - i=l I-


n-l p )

+ I {[ I (u.(x(q, lii'J/v.(,) I

1- _ 1­
1=1 q=l 

+ ~ (u (x(q\ t) - X(q»2 Iv (t). (5. 5. 1I)n- - 0 n-q=l 

Thus 

X (!., t, F) = (u (x(q); t}; q = 1, "" pl. (5.5.5)
- 0 - - n-

Let (Hi(~; ,!.))2 = l (uI(~(q); !))2, [not to be confused with the 
q=l 

function H (or functions 1\) of Chapter 1I]; then 

-2S-(t, F) =-2 log L-(t, F)-- e ­
n n-l 

=p I lug(v.(~)) + I «H,('" I))' /v,(',)). (5.5. b)
1=1 1 1=1 - -

Felsenstein (1973) gives a method for the rapid evaluation of H~, 
vi (i=l, ••• , (n-l» and v and hence of (5. 5. 1), forgiven

n' 
, F) and patrwtse population distances. Choice of a suitable series of 

luation points <!' F) can lead to the determination of a local maxi­

in the multidimensional space 

(n-l) { .. _ n-1 }
R+ x Fj'J-l, ... , (n1(n-1)1/2 ). 

Ire may be many such local maxima and a search procedure based only 

atuatto» cannot indicate whether this is the case, or demonstrate the 

" mal form of the support surface; the importance of FeIsenstein's 

normattone are that the form (5. 5. 1I) suggests a procedure for the 

Ination of x , in situations where it may be regarded as a nuisance-, 
.eter. For Felsenstein (1973) suggests that u contains no infor­-n 

, on about (!' F), and that inferences may be ba-sed on ~1"'" ~n-l 

e. We have then the marginal IlkeUhood (Kalbfleisch and Sprott 

L"(!., F) = f!.!~l' ... , ~n-ll!, F) (5.5.7) 
n-l n-l 

-21ogL"(t. F)=p 1 logv.(t) + 1 (H.(X; t»2;V.(t) (5.5.8) 
- i=2 1- i=ll=- 1­

-2S..(t, F) = -2S-(t, F) - P log v (t) (5.5.9) 
- - n-

this may also be rapidly evaluated. 

Since L--<!-, F) is the llkelthood used by Pelaenateln (1973) we 

rllr to tt as the Felsenste:ln Likelihood (FL) and to the values f!. --, FU) 

,miS1ng L-- a-s the FL estlmates. 

The fusnrrcanon offered for the adoption of (5. 5. 8) has been that 

'doee not have the tendency of the MRL to produce 4-way roots (li. 5(ii)). 

,at a model dcaa not produce the r-equtr-ed results should be a criticism 

,Ithe model or of the preconceived results, rather than of the method of 
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- -

inference. The acceptance of (5.5. 8) requires further justification, WhiCh 

may be based on the concept of M-ancillarity Introduced by naendorrr., 

Nielsen (1971). 

The ~t are independent (1 c-= 1, "" n), and for any given ~n 

and (t, F) there 1s a value of x (that is. x "= u ) such that 
-	 -0 -o-n 

f!l~n II ~o. !.. F) > C!l~~ I~o' !.' F) for all ~~ ~ ~n. (5. 5. 10) 

Further the domains of variation of x and (t. F) ar-e independent But 
--0 ­

these are precisely the conditions for M-anclllarity which is based On the 

concept of untversaltty, as opposed to the more classical concepts of B_ 

and S-ancillartty which are based on a factorisation of the likelihood 

function. 

The statement of M-ancillarlty is that: if, whatever happens (u )
-n 

and whatever the values of the parameters of interest ~, F), there is a 

value of the nuisance parameter (x ) that makes what has happened the 
. -0 

most probable event. then what has happened is uninformative about the 

parameters of interest in the absence of further information regardIng 

the nuisance parameter. 

There is a fur-ther problcm in that the ~1 are functions of the 

parameters !.. Following Kalbfleisch and Sprott (1970) we have 

f~{~ I~o' !.' F)~ = fM(~ I~o' !.' F)dg, 

= (fM(~1' •.• , ~n-11~0' !.. F)d~l' •. d~n_l) 

(fu{~nl~l' •.•• ~n-l' ~o·.!.' F)~n) 

= (fM(~l' •..• ~n-ll~. F)d~~y .• dEn_I) 

(f!:I(.':!n I~o' !.. F)~n)· 

The second term te not independent of t!. F), but provided the concept of 

M-anc1llarity Is accepted we see from (5.5.10) that It may be deemed to 

be uninformative abcet (t , F) in the absence of knowledge of x • and 
- -0 

inferences regarding (!.. F) may be based on the first term alone. [To 

do so must however affect our inferences regarding (!., F), since the 

second term does contain information jointly on (x , t , F). ] To further 
--0 ­

dude that Inferences may be based on thc density function (5. 5. 7) it 

not sufHctent that the determinant of the Jacoblan (I J I) of the trans­

.rmation, and hence du ..• du • be independent oI t; the subspace
-1 -n	 ­

ilume	 element ~1'" d~n_l must be so also. 

From Kalbfleisch and Sprott (1970) we have that 

o-t 1 n
 
n du ~ IK'KI'P n dx.ltJIP,
 

i=1	 -t i=l -1 

K is the column vector (ox~q) lou~q). i = 1, .•. , n). which 18 Inde-

Lemma. IK'K I Is independent of .!.. 

-~ (q) - (q) ( - )proct. u _ Jlt q _ 1, .••• p.	 (5. 5. 11) 

e J Is the Jacobian of the linear transformation. Thus x(q)=J-1u(q)
n. . 

!K'K) "= }; (JIn)2. [i n= (J-1), J. Taking expectations
 
i=l n
 

E(x~q1= i JllE(U~q»),	 (5.5.12) 
l=l 

x(q) = Jinx(q) for all (x t F)
o 0 -0' -~ • 

e E(u(q) = 0 for 1 7- n and E{u(q) = x(q) and E(x(q) = x(q) for 
1	 n 0' 1 0 

I. 

Thus	 in = 1 (i = 1, "', n), and IK'KI = n which Ie Indepen­

n-1 I n 
Thus n d.':!:i = niP" ~i and is independent of !. (IJI = 1); the 

i=l 1=1 
.lbfieisch and SproU criterion is sattened, and inferences may be based 

jon (5. 5. 8). 

We compare now the properties of (5. 5. 1) and (5. 5. 8). From 

'. 5. 5) and (4. 3. 6) 

~n =	 ~o(~ • .!.. F) = «!(q)'T-1~)/<.!'T-l!). q "= 1, ••.• p) 
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(1'T- 1TT-1l)/(1'T-1l)2v (t) = var(u(q)j =	 = (ItT- llf l• (5.5.13) 
n- n - - - - - ­

II Then from (5. 5. 9) 
I	 . -,

SU(~, F) = S*(.!.. F} - '2Plog(.!.'T .!).	 (5.5.14) 

II Using the iterative formula (4. 7. 11) we may show by induction that 

, -,
orQ'T .!)< 0 lor all ~> 0, r=l, "0' (n-1), 

r 

Thus 

OS" 'SOor> 'B't for each r and for all t > O. (5.5.15) 
r r 

Also, for each k, S· and S** are unimodal in it' the other Ii 

remainIng fixed, or else decrease monotonically [rom \. = 0 (4.5(l.1t». 

Thus, although It is not necessary that each tr be individually greater 

than the corresponding t., (5.5.15) shows that the FL wIll tend to give , 
larger tlme interval estlmates than the MRL, and hence more bifurcatlng 

sputs. 

However, besides the perhaps deslr abte tendency to produce fewer 

multifurcating nodes, the FL has also the property that it usually has 

internal maxima for several tree forms: simple examples for n"'" 3 and 

4 may be readily constructed (5. 6). Computationally the latter property, 

which apparently does not occur wIth the MRL, is undesirable: the deter­

mlnation of a local maximum ts no longer a sufllcient criterion for the 

acceptance of a tree form. The multiInrcating root given by the MRL 

and the many Internal maxima of the FL are both expressions of ignorance 

as to the true tree form, but the former is necessarlly determined while 

the latter may not be found. 

FrOm (5. 5. 9) and (5. 5. 13) it may be shown that 

L**(t, F) = I... IL(x , t, F)dx = I... If(xlx, t, F)dx.
- -D - -D = -0 - -0 

Thus the FL has the same functional form as a likelihood for (~, F) when 

either integration over a Bayesian uniform prior distribution lor x , or
-0 

over the fiducial distribution induced on x by the data, is acceptable.
-0 

However the fiducial and Bayesfan interpt-etatlona of Ln may be logically 
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different from its lnterpretatlon as a marginal UkeHhood. 

The FL tree is not an unrooted tree. The probability model is for 

a rooted tree, and, using the FL, we obtain an estimate or the time of 

this root, even though we cannot estimate Its position. Using the FL it 

Is technically possible to relax the requirement that the times of data 

points be known, in that 'undirected times of dIvergence' (but not the time 

of the root) may sUll be estimated (Felsenstein: personal communication). 

The 'tree' then estimated would be truly unr-ooted, but the time intervals 

could not be interpreted as having evolutlonary direction, and the 'tree' 

could not be translated into an Inference of the evolutlonary history. It 

".would be a (it of the 'times' of arcs to pairwise population (distances)2 

:,	 essentially analogous to the LSA heuristic method (I. 4), although more 

Justifiable on the basis of a model of independent increments in that it is 

the squared distances that are assumed additive. The fact that for data 

points at variable times the (rooted) evolutionary history is essentially 

.unesttmable using the FL corresponds to the sIngularity of the MRL In 
" 'the same situatlon (4. 6(ii». 

'is.6 FINAL COMPARISON OF SOLUTIONS IN SOME SPECIAL CASES 

Chapters 2 to 5 have conerdered in some detatt the estimation of 

,an evolutionary tree from contemporary genetic data. We have considered 

·'the process of random genetic drift, the probability model, and the general 

"form o[ the Hkel'lhood, We have seen how ML estimates may be made, 

~,and considered further problems artatng (rom this solution. The iterative 

",', method of Chapter 4 rapidly estimates a tree, according to a logically 

Justifiable statistical method, on the basis of a probability model which ts 

.shown to be a close approximation to a genetic process which is known to 

" be taking place. 

For reasons previously discussed we have advocated the use of the 

MRL, but as shown in the previous sectton the FL may also have some 

fuettncanon. Besides the ML and FL solutions there are also the heur.. 

',lstic methods of solution, ME and LSA, which are as yet the only methods 

wldely used in practice. In this flnal sectIon we compare the ML, FL and 

ME solutlons in some special cases. These demonstrate the tendency of 

,: FL to have many internal roots, and show that the ME and LSA solutions 
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cannot be considered adequate estimates ~ fln evotuttonaey tree. 

We consider first the case n::: 3. The ML and ME solutions have 

been given in 3.3; we retain the notation of that section; 

F) = «~1' !), !,)
 

d' ~ Ilx -x II' (5. 6. 1)

-1 -, 

and h =(x -~(x,+x».h'=h.h. 
-) - -, J 

The MRL has an internal root for F::: F) only iI h > 3d/2 or 

[x - x II' +	 [x -x II'> 511x -x 11' (5.6.2)
-) -1	 -, 2 -1 -2 

For the FL we have; u(q) = (x{q) - x(q) Is N(O, 2t ) and u(q) = h(q) 
. I 1 1()1() 1 2q q
IS N(O. a(3t	 + 4t and Cov(u • u ) = 0 q == 1. "" p. (See1 z))' 1 z 
Felsenstein (l%8) for the method of constructing vectors ::!r) 

Thus H' == d2 and H2 ==h'. v (t)::: 2t and v (t)=~(3t +4t),
I	 2 1- 1 2- 1 2 

in the notation or 5. 5. Hence (5.5. 8) has an internal root 101' F = F) 

provided 

4h2 > 3d' 

nr 

Ilx -x 11'+ Ilx -x II'> 211x -x II', (5.6. 3)
-) -2	 -) -1 -1-2 

in which case 

t*" ::: d2/2P. t .... = (4h2 _ 3d2)/ 8p.	 (5.6,4)
1	 , 

Whereas there can never be two tree forms satIsfying the con­

dition (5. 6. 2) (Fig. 3, J(c)), there may often be two satisfying (5. 6. 3), 

(Ftg. 5.6(a)). The tree form with maximum L(t....(F). F) is the same 

as that Inferred using the MaL. 

For the FL solution x and all internal nodes are not to be con­
-0 

sider-cd; acceptance of any x entaHs jotnt estimation and the ML solu­
-0 

han. To enable us to specify a tree completely we may however consider 

x·· = ~ (x t ... • F ...... )	 (S. 6. S) 
-0 -0 a- -' , 
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F onlya 

F and F F} and F)z , 

\'( .o ~ F<nlY 3'd/2\ F<nlY 

1 -1 -2 \ 0, 

d 
3d/2 3d/2 

F,
F, only F} only,". 

F and F , F 1 and F)
2 

F, only 

Fig. 5. 6(a).	 The three population case. Diagram showing the 
tree forms with strictly positive FL estimates or 
time intervals as x varies over the plane with x

-) -1 
and x remaintng rtxed, Compare this with Figs.-, 
3. 3(c) and 3. 3(d). 

and mean internal node positions given (x". t·*. F**) and~. The 
-0 - ­

results irl tbts case are 01 simtlar form to those for the MRL gwen in 

3,3(11). 

F/}r n = 4 we consider 

x ::: (0, 0, 0, ..• , 0). x == (0, y, 0, . , " 0),
-1	 -, 
X ~ (x 

• O•••• , 0)· and x == (x, y, O. ... , 0),
-1 -, 

with all other notation as given by Fig. 5.6(b). 
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If"::	 ..... ~?,,,,,,l, ,,
x ,-=.0__ -( x ,,,
l, ,,,,,, 

" 
-,x

Fig. 5.6(b).	 The case of lour populations situated in a rectangle. 
The case F = F 1 is shown, and the broken line 

indicates hO'W a tree with internal maximum could 
also be inferred for F = F " 

2 

Let F = «x	 , x ), (x , x » and F = ((x. x ), (x,x).
1 -1 -2 -3 -4 2 -1-3 -2 -~ 

FortheMRLwlth F=F we have, if x > v,, 
.8 0 = (1x, h, 0, ••• , C) 

(5. 6. 6) " 2 ~ ,. 2 2
t 1 = Y /2p, t - 0, t} = (x - y )/4p,

2 I
then 

E(y11~,~0,"s 2x, h, 0, ..• , 0) andF1)=(y2/

E{~l + J.21~, ~o' ~, = (x, s, 0, •.• , 0). (5. 6. 7) F 1) 

There is an internal stationary point for F = F only if x > y:
i 

the point is then unique and gives a maximum of the MRL. There can thus 

never be internal stationary points lor both F and F. [We refer to, , , 
maxima with	 t > O. t > 0 as 'internal' in this case, although t = 0i ,	 , 

by symmetry. ] (5.6.8) 

Neither does the alternative topology give trees with internal 

maxima. 
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For the FL it may be shown that t = 0 at any stationary point., 

'-

enfor F=F ;
1 

u(q) ~ (x(q) -	 x(q», ,	 , is N{O, 2t )
1


u(q) = (x(q) • x(q») is N(O, 2t )

a a , 1

u(q) = !.(x{q) + x(q» - !(x{q) + x(q» is N(O, (\ + 2t », 
3 1.} 4 1 2 3

three vectors being jointly Independent, ["!:!. remains independent of 
2 2 2 - 2 2for thts topology. ] Then H = H = y and H = x and 
1 2 3' 

,(t)=v (t)=2t and v (t)=t +2t. Thuslf lX' > y', (5. s. 8l has 
,- 1 3- 1 3 

Ique internal stationary point for F = F i ' this being a maximum of 

1*. and 

t u = (y' /2p)	 t*'" = 0 and t** = (2x2 _ y2)/4p. (5. 6. 9) , ' , ,
 
x"'* = (j x, !y, 0, ...• 0)
-. 
E(r11~, ~~*,	 ~u, F 1) = (y2/4x, -h, 0, "', 0) } (5. 6. 10) 

E(y +y lx,	 xu, t U , F )=(x, y, 0, ..• ,0)
-1 -2 = -0 - 1 

Note that: 

(I) t*· = t , r-v > t ; FL estimates are larger than ML. 
1 1 3 3 

(il) If y2 <	 2x2 < 4y' both F and F give tn > O. (5.6.11), , , 
cannot occur with the MRL. 

(111) L**(t**(F), F ) > V''''(F ), F ) if and only if x > y.
- 1 1 2 2 

(iv) This case is not 'pathological': distortions of the symmetri ­

case give situations in whIch
 

(t**, t**, t**) is strictly positive lor F = F and F = F •
 
1 2 }	 l ' 

ME gives a steiner tree for the above data and F = F 1 if 

, 
x > Y/3 2 

• 

and F 2 are both Stetner If y' < 3x2 < 9y2. (5.6.12) 

x >y F 1 has the shorter total length.
 

The Internal nodes for Flare given by
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Eskimo 

! 
Y, = (f,y/3 2 

, ~y, 0, ••• , 0) and (y +y )=(x, y, 0, •• _.0).
-	 -1 -2 

(5. b. 13) 

Thus although if x > Y F I is 1n all eases preferred to F1 eom-. 

par-Iaon of (5.6.8), (5.6.11) and (5. 6. 12) and of (5. 6. 7), (5.6.10) and 

(5. 6. 13) show that the details are very dUCerenl. 

Korean 

South Veddah 
American 

North
 
American
 ) Australian 

Gorkha 

New 
Guinean 

Fig. 5'. b(e).	 The form of the ME tree inferred from the A and A 
data of eecnon 5. 1. 

We compare Ilnal'ly the ME solutions for the two data sets of 5. 1 

with the ML scluuons glven there. The ME algorHhms have been tested 

extensively on the A and A data (Thompson (197Ja»), and many Steiner 

trees have been found. The shortest is that produced by the Prim method 

(Fig. 5. b(e)); this agrees with the ML solution in distinguishing the two 

major ethnic groups, but differs significantly in detail. The ML tree wIth 

a s-way root corresponds to any of three unrooted trees, one of these 1B 

Steiner but is longer than that of Fig. 5.6(c), whieh conversely has low 

likelihood. 

For the N. W. Eu, data the unroored tree eorr-eepondtng to the ML 

form is steiner and has length 0.413. The form with Norway and Sweden 

eevcescd is azec Steiner and has length 0.411 being the shortest found. 

However this form has very low support. Thus while ML trees are rre­

quentIy good ME trees, the beet ME trees are often of very low likelihood. 

FIg. 5. 6(d) shows Why tfue is so, with referenee to the above case of the 

N. w. Eu, data. Although the total length of the arcs shown are Virtually 

equal in the two cases, the length of the termlnal ares of the second tree 

are compatible with contemporary populations; those Of the first are not. 

A likelihood criterion, which inctudee contemporary data as part of the 

probability model, distlnguishes these trees, whereas ME cannot, since 

it has no time structure. 

Other Other 
populations pcpclattona(1)	 (JI) 

N E S 

E	 N E 
O. (II 

/0. 01 "Z0I"""""';'
_N 

O. 02 O. 02 

O. DI 
1- \ 1
 

Other populations
 , 
Oth'er 

populations ""'" n as 

\ 
S	 S 

Fig. 5.6(d).	 The two alternative forms for the subtree of Norway 
(Nl, Sweden (S) and England (E) inferred from the 
N. W. Eu, data of section 5. 1. ME criteria are un­
able to distinguish the two forms, but, whereas tree 
(H) is the ML tree, tree (i) has very low support. 

Thus ME, and equally LSA, do not provtde good estimates of the 

evoluttonary tree, not only beeause they procuea unrooted trees and be­

cause of qualitative differences In the positions of Internal nodes, but 

N S E 
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more seriously because having no time structure they have no criterion 

of time compatibility 01 arcs. It is thus surprIsing that ME, which is 

a non-hierarchic cluster method, usually produces adequate r epreeenta, 

tions or the pro,ection into the present of the hierar-chic ML evolutionary 

tree. This can only be because, in the particular cases in which these 

methods have been successful, the phylogcnetic relationships are sul­

ficiently well defIned to be detar mtned by any objective criterion. 

.The Icelandic admixture problem 

INTRODUCTION 

In this final chapter we consider a epectnc admixture problem to 

Itch the general model of independently evolving populations, subject to 

ee of random genetic drift, may be applied. This is the problem of 

attng the proporttons in the Norse-Celtic mixture which formed the 

Istng population 01 Iceland. 

Iceland was colonised by Norsemen between A. D. 874 and A. D. 

By 950 the population was 50, 000 and remained between 50 and 70 

and untll 1900. This constancy of population size, and the accuracy 

which it is known through the very long tradition of national censuses, 
f"1
tee the Icelandic population particularly convenient for study. It has
 

estimated (J. H. Edwards: personal communication) that the har­


no mean of the population size since A. D. 950 has been 60, 000, and
 

the effective poputauon size has been around 30,000 (2. 1). 

Many of the Norse colonists had spent some time in Ireland or 

:ern Scotland before cotonistng Iceland, and many may have had Irish 

'8. Thus the Icelandic population of A. D, 950 was a Celtic-Norse 

r-e, in the proportions (1 _ r)~r Ray. Thp. atm iR to estimate r 

r ~ 1) from present-day gene frequencies. It used to be thought that 

!'population was predominantly Norse. This is what the sagas claim but
,"e were written long after colonisation and there is virtually no con-


Iporary evidence. The language and culture are Norse and all later
 

ltiCal I1nks were with Scandinavia. Although this indicates that the
 

,g ciaseee, at least, were Norse, studies oC blood gr-oup gene rr a­

des Indicate a considerable Celtic component in the population. This 

ftriSt noted by Donegant et at (1'150) with some Small samples of ABO, 

;,lesUS and MN data. More recent studies (Constandae-Weatermann (1972), 

nason et at (1973)) have amply confirmed their suspicions. We have 
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already seen (5. 1) that an evolutionary tree model gtvea a Celtic origin 

for the Icelanders. 

We now investigate the problem via a new model of a Celtic-Norse 

mixture in A. D. 950 followed by 1000 years (40 generatlons) Of random 

genetic drUt modifying the gene frequencles or the Celts, becoming Irish, 

Norse, becoming Norwegians, and Icelanders (Fig. 6.2(a)). 

The major assumptions of the model are that it has been random 

genetic mUt that has influenced thc populatlon gene frequencies d Ice­

landers, Irish and Norwegians over the taet 1000 years, and that the 

individuals sampled now are representative descendants Of the relevant 

Celtic, Norse and Icelandic populattcns, Tile maln factors that ('ould 

invalidate this are, It:rstly, differential selection, secondly, migration 

to any oC the three ccuetetes subsequent to the original mixtur-e, and third­

ly non-representative sampling. This last could take the form either or 
the origInal Norsemen having originated from an atypical region of Norway, 

or of present Icelandic samples coming from regIons with a particularly 

IQT"ge Irish component. Fuller discussion of these factors is given by 

Thompson (1973b), but the conclusion is that in the case of the Icelanders 

a model of independently evolving populations and random genetic drift 

is appropriate. However any, or all, Of the above factors may make the 

model invalid for other admixture problems. 

6. 2 THE MODEL 

As in the previous chapters we transform the observed gene n-e­

quenctes to glve vectors 1n a p-dtmenetonat Euclidean space, in which the 

proccaa of random genetic drlft becomes one of approximate Brownian 

motion. Suppose that the present observed sample frequencies of Nor­

wegians, Ir-Ieh and Icelanders gtve vector-s 

x ,x and X. , -n -c -1 

where x = (x(q), q = 1, ••. , p), while the present true population Ire­
-n n 

quencres give 

X., x'" and x'". 
-n -c -1 
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~ 40 ~	 z, (Celts) 
~ ~T'" , I v.,:{Mlxnn'p) 1
 
"•

11 
~ 
•8 _(Icelanders);:: 

1_---"i:~~~~::::;;:..1 ~~ (Irish) 
o	 \. Present gene 

x- (Norwegians) ~ frequency space
-"-~ 

FIg. 6.2(a). Diagrammatic representation of the mathematical 
model. xorse, Celts and a direct mixture ther-eof, 
1)0 generations ago, have gene frequencies which 
change under the process of random genettc drift 
to those of present-day Norwegians, Ir-iah and Ice­
bander-a. y. = ry + (I-r)y for some 1", 0<::1"51. 

-1 -n -c 
[Diagram from Thompson (l973b). ] 

{t 

,Suppose further than the unknown initial frequencies t generations ago 

ts approximately 40) Of Norsemen, Celts and the cclonlalng mixture 

h~ve vectors In' I and It (see Fig. 6.2(a)).c 
Now it is assumed that the original Icelanders were a simple mix­

re of Celts and Norsemen. Thus if the gene frequencies at SOme a-aneta 
:"',OCUB were pW, pO) and PI(j) for j = I, •.. , k, then 

n c 

P(il = (I-r)p(;) + ~(j) =p(j) + r(pO) _ pliJ J' = 1 k 
i c · ...n c n c'I , ... , , 

e sampling involved In forming the mixture being equivalent to one 

,geJ1eration of drifl It may be simply ahown that these equancns n-ans., 
form to 

y(q)=y(q)+r(y(q)-y(q)l+o((rily -y 11)2) q = 1 ... P 
1 c n C <n -c' • ., 
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and hence, over the small region of the projected space concerned, 

y. = ry + (l~r)y to an accurate approximation.
-1 -n -c 

Finally euppcse that the effective population etses over the Period Alnce 

A, D. 950 are N ,N and N. and the sample sizes, assumed equal for n c , 
all teet, are m m and mn, c r 

Then we have the Normal appr cxfmattone: as in section 3. 1 

x(q). is N(y(q) 'IBN) for q = 1, "" p
n n' n 

and as In 5. 3 

x~q) is N(x~q)., 1/8m ) 101' q = I, .,., p,
n

this latter equation holding strictly only if all genotypes are identifiable, 

but as a reasonable approximation provided the number of phenotypes 

exceeos the number of alleles. Hence 

isx(q) 
c 

and 

xJq) is 
n 

Similarly 

N(y(q) 
n ' 

N(y(q) 
c ' 

(q) 2(t/BN )+{l/0l ))=N(y ,(j )q:ol, ' .• , p. 
C C C C 

(q) ')(t/BN ) + (118m »=N(y • o q=I, ... , p,
n n n n 

(6,2,1) 

(q).Xi IS ,..Iq)NUi ' ( ) ( ))-N( (q) ')-1t/BNi + I/Bm
i 

- Yi ,(ji q- , ' .• , p, 

all components being independent and 

y<q) ~ ry(q) + (1 - r)y(q) q ~ 1 ..• , p. (6.2. 21 
1 n c" 

If sample sizes VaFy between loci not all the cornpcmenls of each population 

vector have the same variance. This complicates the analYsIs but does not 

essenUally alter the situation. We note that a negative eenmate of r 

could be interpreted as an inference that the lrish are a Norwegfan-Lce­

Iandic mixture, and r> I as the Norwegians being an Icelandic-Irish 

mixture, but unless these are hypotheses which we are a priori prepared 

to consider we may restrict attention to the support function within tho 

range o e l' ~ 1, 

The problem 01 estimating the mixture proportions In a hybrid 

p~ulation was considered by Glass and Li (1953), and their solution has, 

'been elaborated by Krieger et al, (1965) and Elston (I971). The two 

de criteria of estimation that have been USed are maximUm likelihood 

d least-squares, but although the estimation methods are sophisticated 

Id can take into account dominance at some gene loci and mixtures of 

'era} populations, the models have all contained the same basic assump­

es. These are that the popUlation frequencies in the unmixed popula­

are known and are the same as in the original ancestral populations, 

id that the only reason for the Observed frequencies not being a simple 

lJxt.ure at all loci is sampling in the hybrid population (x = x. = y ,
' -n-n-n 
" = x" Y , ~ = y,). Although this may be appropriate (or very recent:0,--C-C-I­
~ures where the parent populations have been extensively surveyed, it 
" 

11 not be so in a situation where the hybrid population has been separated 

any of its contributors for any length of tlme, A simple sampling 

·1 19 not justifiabll? in many of thl? aituattona to which it has been 

ilted, and although the present model involves several approximations 

an approximation based on the true major causes of observed gene 
IUency diffcrentiation. 

The simple sampling model may be COnsidered as a special limit­

case of (6. 2.1) in wh1ch N ,N and N. - "" (or t - 0) and m and 
2 2 n c I n 

- "". IJ and IJ ..... 0 and o~ -I IBm.. Then'n c 1 1 

(q) ((q)()(q),)Xi is Nrx + 1-1' Xc ,l,Bmi forq=l, .••• p. (6.2, 3)n 

obtain the ML (or indeed least-squares) estimate, f', of r we would 
,mise 

! (x~q) _ rx(q) _ (1_r)x(q»2
 
qeel 1 n c
 

[x, - fx - (l ~ r)x ) • (x - x }:o D. 
-1 -n -c -n-c (6. 2. 4) 

e saJupUng model solution is then that shown in Fig. . 6.2(b), the dis-
e n being a sampling distance. 
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N 

I 

Estimated sampling 
distance 

Fig, 6.2(b).	 The sampling model solution, The position vectors 

x , x , x. and x!' give coplanar points N, C, 1 -n -c -1 -1 

and i respectively, where x~ = flx + (I-i)x and 
-1 -n -c 

f is given by (~i - ~P'~n - .!cl = O. Thus Ni and 

ic are in the ratio (I-f) to f' and ri 18 orthogonal 

to NC. [Djagrarn from Thompson (1973(bl. ) 

6. 3 THE LIKELIHOOD SOLtmoN 

Returning to the general drift and sampling model (6.2.1) we now 

derive a likelihood solution. We have 

222 I 22,L(T, v , y • a, a. a,) =fix , x ,X. T, Y ,y , a, c.., 0,\-n -c n	 C -n -c -1 -n -c n c 

ox (<T2a2irhexp[_.!.(u~2 ! (x~q) _ Ty(q) _ (1_r)y(Q»)2 
n c 1 2 1 q=l 1 n c 

+ 0- 2 £ (x(q) _ y(q»2 + cr-1 ! (x(q) _ y(ql){)]. 
n q=l nne q=l C C 

Hence 

2 2 2-28(1', Y • Y	 , a • a • a.)
-n-cnel
 

2 2 2 - 2
 
= P log(unO"CO"l) + (11 (~i - rrn - (l-r)rc)'~l- rI - (l-r)¥c) 

n 

+ (J
-2 (x -y l.{x -y \ +0-2 (x -y ).(x _y ). (6.3.1 ) 
n -n -n -n -n c -c -c -c -c 

where <7: = «118m.) + (t/8N.)) is the total drift and sampling variance 
h (q) 1 1, 
of each Xi (q = 1•.•.• p), etc. 

Now although, with some provisos (6.4), it is possible to estimate 
2, 2,

:.....th the variance (cr cr cr,2) and the parameters (r, y , y ) from the
I~ n c -n -c 

,. ~ta (~n' ~c' ~), in the present problem it may be assumed that the three 

.riances may be estimated from historical data i.ndependently of the 

metre information, and hence may be treated here as known COnstants. 
22 22'2NOW let h(r) = x. - rx - (r-rjx and l(rl = r o + (l-r) o + cr,. 

- -1 -n -c	 n c 
lote that 

E(h(q)(r)) = 0 and var(h(q)(r)) = f(rl lor each q, I -s q ~ p. (6.3.2) 

y and y we obtain, a1ter some rearrange­-n -c 

(y - x )f{fl) = flclh(r)
-n -n n­

(6. 3. 3) 
(Y - x )l(f) =	 (l - r)(lh(r), )--c -c c-. 

're (r, y , y ) is the joint ML estimate of the parameters given inde­
'." -n	 -c 
Itldently estimated variances.
 

From (6. 3. 3) we have also
 

(~ - ri)l(r) =	 cr~~(r), (6. 3. '1) 

9. c::f9 + {l_ 'f)y.
-1 -n -c
 
MaxImising (6. 3. 1) w. r, t, r we further have
 

(x,-Y.!.(Y -9 )~o.	 (6.3.5)- -1 -n -c 

rcattcns (6. 3. 3)-(6.3.5) show how the solution may be represented
 

llg1'arnmatically (Fig. 6. 3(a»). This diagram may be COmpared with
 

at giving the solution lor the sampling model (cr2, <72 _ 0; Fig. 6.2(b)).
 
n c 
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Drift~_ N 

N 

Drift 

,1'< \ :;)c
\ 

. 
c 

Fig. 6.3(a). The general drUt and sampling model solution. 

Position vectors x , x , x., y , 9 , y. and 
-n -c -1 -n -c -1 

[Px + (l-f)x ] give coplanar points N, C, I, N,
-n -c 

I! C, i and I'" respectively, where fi=fin+(l-flic' 

The three estimated drift vectors (9 - x ),-n -n 
(y _x ) and (9. - x) are all orthogonal to the lineI -c -c -1-t 
joining the colinear points H, C and i. Thus 

lengths m and it are in the ratio (I-f) to r 

I as also are m'" and (for equal variances) l"'C, and 
I cc and NN, while CC + NN + ri, The line II'" has 

the magnitude and dIrection of the vector ~(r).III 

To solve explicitly for the parameter of interest, r, let din' dnc 
I
I1I 

and d be the pairwise genetic distances (dIstances in the p_dimensional 
tc 

Euclidean space) between the present observed population positions. Then 
II 

we have the cosine formulae,
I 

DB 

2(x - x..) (x - x.) = d. + d. _ d etc. -n -1 -c -I '"IC m nc (6. 3. 6) 

"
v

"SUbstituting for 9 and 9 from (6.3.3) into (6.3.5) and using (6. 3. 6)-n -c
 
we obtain the quadratic equation,
 

+d2)]f2[(l(d~ -d~ _d2 )+(l(d~ -d~
nmlcnc C1nlC nc 

+ 2r[<l(d2 _ d 2 ) + (ld~ _ (ld2 ]
cic nc n uo inc 

+ [O"~(i -d~ +d2 )+0"2(d2 _d2 -d2 l] = O. (6.3.7)lie m nc cnc ic in 

'his equation always has two distinct real roots except when the co­


'tctent of f2 is zero.
 

For simplicity we now consider only the case in which all three 

'lances are equal, say to 0"2, although the general case is qualitatively 

dlar. In this case f{r) = 0"2(1 + r 2 + (1_r)2) = 0"2 f"'(r) say, and 

'[Qations (6. 3. 3)-(6. 3. 7) reduce to 

(y - x ) = rh(r)/f"'(r)-n -n _ 

(9 - x ) = (l-r)h(r)/f"'(r):!...C -c _ (6.3. B) 

~i - ill = ~(r)/f"'(f), J 
g(f) = 0, where 

2(r) = r (d2 _ d2 ) + 2r(d2 _ d2 )+(d2 _ d~ ) (6.3. 9)g tntc iCncncm' 

g(r) = 0 has two distinct real roots unlcss d~ = d,2. Thus the 
on c 

[uations for a stationary value of S may be solved, but there are two 

:s to these equations. It is therefore necessary to reconsider the 

of the support function. 

Let 

S"'(r, 0"2) =S(r, y (r), 9 (r), 0"2, 0"2, 0"2)
-n -c 

the maximum relative support function (MRS) for r-,
 

Then from (6.3.1) and (6. 3. 8)
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2 2 2 2'
-2S*(r, a ) =- 3p log a + h (r)/a f*(r),	 (6.3. 10) 

2 2 P (q) 2
where h (r) ~ Ilh(rlll ~ (h (r)).00 

- q;:l 
Using (6, 3.6), and 11 a2 is a known constant, we have 

2 2 )/[2a2(1+r 2+(1_r)2)]S*(r);:_(r 2d 2 _r(d +d2 _d2 )+d	 (6.3.11)
nc j cnCnj Ic
 

o5S* 2 2

and --, ;: g(r)J1a (f*(r») ]. 

r o5S* 
Thus or has the same sign as g(r) and one of the two roots of 

g(r) ;: 0 gives a maximum of s* and the other a minimum. [If 

d~ = d~ ;: d2 the unique root r- = ~ Is a maximum /m intmum asIn	 IC . 

d >< d.]nc
 
The region of interest is 0 ~ r- s, 1,
 

S*(O) = -d~ /4a 2, S*(1):::: -d~ /4a2 
IC	 III 

,	 a
and as r'" :1:"", S*(r) ... -d /4a.

nc 
Thus there are two possible forms for S* (Fig. 6.3{b)): 

2(i)	 d. > d, ; S*(O) > S*(1), and the coerrtctent of r in g(r)m c 
is positive. The smaller root of g(r);: 0 gives the ML estimate of r, 

2(ii)	 d, > d. ; s-o: > S*(O), and the coerrtctenr of r in g(r)c m 
is negative. The larger root of g(r);: ° gives the ML estimate of r. 

Since S*, and indeed the whole problem, is symmetric with respect to 

interchange of Norse and Celt, nand c, and rand (1 - r), it is only 

necessary to consider the case d. > d , (8*(0) > 8*(1»). Then 
m j c 

if d. > d > d. g(O) < 0, g(l) < 0,
III nc IC 

maximum of S* is in r- < 0 (and the mini­

muminr>l), 

ML estimate in 0 ~ r ~ 1 is r;: o. 
if d > din> d g(O) > 0, g(l) < 0,

nc ic 
ML ea timate i' is such that C < r < 1. 

tl d ) d > d g(O) < 0, g(l) 0,
j n j c nc 

maximum of S* is in r < 0, minimum in 

o es r ~ 1. But S*(O) > s-ui, thus ML 

estimate in 0 5 r es 1 Is i';: o. 
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(i) 

s·l 
/	 r _____

~"	 .---­

(ll) ~S*;: -d'4'/ a 
nc
 

S't /
 

,/	 
r- .. 

Fig. 6. 3{b). The two possible forms of the tunctlon S*. 

(i)	 d, > d. ; 8*(0) > 8*(1). The smaller root of 
n " g(r);: 0 gives the ML estimate of r-, 

(ii) d. > d, ; S*(1) > S*(O). The larger root of
ic n 

g(r) = 0 gives the ML estimate 01 r , 

Thus we find that joint maximum likelihood estimation provides 

. be "

,an estimate r in the range 0 < f < 1 only if d Is the largest of the 
nc 

r,,:three pairwise distances. Although this might be expected to be the case 

',for data arising in admixture situations this restriction wtll not always
 

be satisned. The r-equfrement is far atr tcter than that for a root in
 

,0 < r < 1 under the simple sampling model. Support regions lor the
 

complete set of parameters, (r , y , y ), may be computed but are not
 
-n -c 

:,very meaningful. It 18 simpler to consider only the MRS, S*, which may 

' easily plotted, for given o ; two-unit support llmits for r may be 

'.found directly from (6.3.11). 
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We note finally that the sampling model (6. 2. 3) gives a MRS 

s-r»=-h2(r)/2{l/8m 2(r).= -4m	 (6.3.12)
i) ih 

the sample size m	 being etmpty a scale factor in nus case, as is 1 .'02 
i
 

tn (6. 3. 11),
 

6.4 THE DATA AND SOME FURTHER ASPECTS 

The relevant present-day descendants of the Norse and Celtic 

populations whtcn contr-Ibuted to the Icelandic colonislng population are 

the Norwegians and North-Western Irish. Data on five blood group loci, 

together giving p = 6, give 

, z	 ,
d. = 0.0048, d, = 0.0324 and d = O. 0318,

lC n	 nc 

[A table of the detailed gene frequency data, provided by Professor J. H. 

Edwards, te given by Thompson (1973b). 1 
Under the model of equal variances the roots of g(r) = 0 are 

r =e: -0. 0053 (maximum of S*) and I' = 1. 966 (minimum). 

8*(0) = -6 and 8*(1} = -40. 5, and d. > d. so that the ML
In ic 

estimate of r (within 0:$ r es 1) is r = O. We therefore estimate that 

the Icelanders are of wholly Celtic origin and the hypothesis I' = 0 

101 5(wholly Celtic) is e)~' 5 (or ) Urnes as likely as the hypothesis 

r = 1 (wholly Norse), 

For the Icelanders N. "" 30,000, t "" 40 and m, "" 3,000. 
2 . 1	 -4

Hence a. [= (l/8m.) + (t/SN.)] is approximately 2 x 10 
1	 l' 1 

I 

Taking this as the population var-Iance for all three populations the 

support function (6. 3.11) may be plotted (Fig. 6.4). The two-unit support 

limit, given by the solution of S*(f) - S*(r) :s 2, is r.:s O. 19. Thus any 

value of I' up to about 20~/o falls wlthln the two unit support limit, indica­

ting that any estimate within this range cannot be rejected on these genetic 

data. 

Estimates of the variances from population and sample sizes tndl­
2 -4 2 nd 

1'1 cate that, while o. = 2 x 10 Is reasonable, a better estimate of an a, 
a~ is, 1 x 10- 4 contributed almost entirely by sampling. If we sotve 

II1I 2 2 2the more general equation (6. 3. 7) with a = a = i a we obtain r=O.017,n ,	 l 
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o	 t 1 

r_ 

.r: 
" (i) ../'/ -10 

........ ,/
,, -20,,, 
" (11) -3D ,t, \,,t ,, 

-40 [. \ 

" '\
\ , 

-SO \ " 

Fig. 6.4.	 The support function for the admixture fraction r 
(0 .:s I' :s 1). (i) The support for r in the case of the 
general model lor the data of Thompson o973b) and 

2 
a = 2 x 10- 4, fl being estimated from data on popu­
lation and sample Sizes, independently of the genetic 
data, and assumed equal in the three populations. 
(11) The support function for tile same maximum Hke­
Uhood estimates of gene frequency with a classical 
sampling model and hypothetical Icelandic sample size 
of 250, assumed equal for all loci. [Diagram Irom 
Thompson (1973b). ] 

, 

,though the general form of' 8*(1') Is unaltered TIlUB an estimate of' 2% 

!or the Norse component In the Icelandic population Is the best that can be 

ned with these data and thIs series of models, although no value less 

20~/~ may be rejected. 

It is sometimes thought that It is only with respect to the ABO 

o,U'stem that the Icelanders resemble the Irish. We note that the ABO 

'stem does not dominate the distances above. Although 1t is a atgntncant 

ontrtbetcr , and does provtde a major part of d2 , it in fact givesnc 
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d > d. > d. , and hence i > 0 (Thompson (1973b: Table 1)). Again 
nc m ic 

there are unfortunately insulficient data to examlne the consistency of 

results given by different data sets. Although most of the possible divi­

sions of the six available dimensions into two three-dimensional groups 

do confirm the estimate of a Norse component of less than 20"/", no con­

clusions can be drawn. 

For comparison we consider briefly the sampling model (6. 2. 3) 

with quadratic MRS (6. 3. 12). (6.2.4) gives r = O. 066, a rather larger 

Norse component of approxImately 7"/0' From the form of the quadratic 

function of (6. 3. 7) we may deduce that this Is the largest estimate obtaln., 

able with these data and this series of models under the reasonable assump; 
2tions that a	 ~ O. 071a2 and 6.7a2 + 5. 6(1~ 2: a

2 
the latter condition 

c n c 1 n 
ensuring form (i) of S'" and the former g(O. 066) es O. Similarly we have 

• 2	 2 2 2 2
the smallest estimate, r = 0, if a 2: O. 77a. and 6. 7a + 5. 6a, 2: a .c 1 c n 
The sample size is a scale factor in the MRS (6.3.12), and the support 

function given by the same genetic distances and a hypothetical Icelandic 

sample size of 250 is also plotted in FIg. 6.4. It may be seen that 

m = 250, or 1/8m = 5 x 10- 4 
, gIves simIlar uncertainty to the general

i i 2 4
drift and sampling model with a2 = a = a,2 = 2 x 10- , the latter having

n c 
larger support limits than those given by a quadratic approximation at 

the maximum. The sampling model gives two-unit support limlts 

~	 ~ 

0.066 - [15. 7/mJiI ~ r:"O O. 066 + [15. 7/mi)Z 

for these genetic data. Although, lor equal m., the sampling model pro­•
vides far stricter limits for the estimate of r than does the general model, 

a sampling model is not justiiled (d. 1. 3). Even with the currently avail ­

able samples, the distance 11~(f) II is too large to be explained only by 

111	 sampling in the Icelandic population. 
1	 . We have assumed throughout that the variances have been Inde­

pendently estimated. It is however possible to estimate them jointly with 

the other parameters from the genetic data, by maximising the supportI'~I 
(6. 3.1) also w. r, t. the three variances. Since a positive lower bound to 

I the variances is provided by the sample sizes we do not have a singularity. 

In general the ML equations then obtained must be solved iteratively, butIIII 
• 

I 
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provided the relative magnitudes of the variances are known we may ob­
2,tain an explicit expression. In the case where a~ = a~ = a~ = a

(6.3.10) may be maximised w. r-, t. a2 and we obtain the joint ML esti ­

mate 

h2(r)/3pf*(r).a-2 =	 (6.4. 1) 

ThlB can provide some check on the model, although it is very far from 

'being a complete test. For had differential selection acted the mean 

stances between populations would be larger and estimates of a2 

For the present data we have &-' = 1. 3 X 10- 4
, which gives 

emarkable agreement with the estimates of 1 or 2 x 10- 4 previously 

ned on the basis of population and sample sizes. 

The data on which the above inferences are based are limited, but 

enlarged set ordata is provided by Bjarnason et at (1973). From the 

ne frequencIes for eleven loci, giving p = 13, we obtain 

222d. = 0.0376, d = O. 0517 and d = 0.0406. 
~ 1n	 oc 

'ain we obtain the estimate r = 0 and, although die is no longer sig­

I~icantly the smallest distance, these data do seem to confirm that the 

elanders were predominantly Celtic. Although the actual maximising 

lint is now r = -0. 71, S*(-O. 71)-S*(O) is small, and the two-unit support 

mtt within 0:"0 r:"O 1 [S*(O)-s*(r) -s2] is similar to before. The estt­
2ate (6. 4.1) of a given by the genetic data (and r = 0) is now 4.8xIO- 4 

is larger value may be accounted for by dominance and the smaller 

,ample sizes on which the data for some loci are based, but may also be 

indication of non-representative sampling (6.1), or of selection at 

~i"ome loci. 

Finally we consider an alternative hypothesis that has been eugges­

d in order to preserve a predominantly Scandinavian origin for the Ice­

ders. This Is the hypothesis of migration to Norway since A. D. 1000 

'esulting in the present Norwegians not being descended from the Norse­

en of that date. This hypothesis was first mentioned by Donegan! et at 

:t950), but there is little supporting historIcal evidence, and while it 

dains the dissimilarity between present day Icelanders and Norwegians 
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1t does not explain the similarity of Irish and Ieelanders. The hypothesis 

thus further requires that the Norsemen of A. D. 900 had ceinc-type 

gene frequencies and/or that a Norse eomponent also dominates the 

ancestry of Ireland and Northern Seotland. This does not seem to be 

tenable. The Norse influence In Ireland and North-Western Scotland 

was superficial and transitory, and these peoples have always been 

regarded as 01 Celt1e orig1n. Further, although the evtdenee is tar from 

conclus1ve, in those areas where the Norse influence was more lasting, 

Orkney and the Isle of Man, the gene frequencIes seem to be more eimner 

to those of present day Norwegians (MUchell (1973), Boyce et at (1973». 

Thus at the present time it seems that the best explanation 01 the data is a 

Celtic component in the Ieelandic c olonlatng population much larger than 

has previously been suspected. 

Summary
 

To summarise, we restate the aim proposed in the Preface; that 

of providing a spectnc answer to a spectrtc question. On the basis of the 

likelihood theory of inference, and of a model of bifurcating populations 

and genetic evolution due to random genetic drift, we have presented an 

analysis of the inferences of evolutionary history that can be made from 

current genette data. In particular, we have produced and studied a 

procedure ror obtaining the maximum likelihood estimate of evolutionary 

history. Chapter 6 shows that the same general approach may be used 

to analyse an independent but related pr-oblem, although the details of the 

model, as of the hypotheses to be considered, are different. 

Many crtttctams may be made of the model, but it should be borne 

in mind that in likelihood inference we are interested 1n the relative abili­

ties of hypotheses to describe the way in which current data have arisen: 

we do not assume that anyone hypothesis provides a complete explanation. 

A model Including all the factors that contribute to current genetic data 

might be preferable in theory, but a model which does not permit the 

analysis of data is not of practical use. It is clear that, with current 

genetic data, little could be gained by a more sophisticated evolutionary 

model; the effect of sampling errors and non-representative sampltng 

w1l1 be far greater than those of minor non-Isolation or selection, or even 

01 differing population size. 

The most serious critict.sm of the analysis is that, although the 

effect of aampljng and differing Population size can be estlmated, they are 

not expUeitly included in the model. The inclusion 01 sampling is feasible 

in some cases (5.3, Chapter 6), but more generally the alternative must 

be to obtain genetic data for which the sampling errors are truly negligible. 

Situations of dominance in sampling and the more fundamental problem of 

obtalnlng samples representative of the relevant un1t or population (2.2) 

are outside the scope oC the model. We see in Chapter 6 that, for evolu­
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tlon over comparatively short per-rode of tlme, sampling may contribute 

a major part oI observed population distances. 

However, the results of Chapter 5, together with our knowledge 

of evolutlonary history obtained from other sources, show that even 

current sample gene Crequencies do contain information concerning evo­

lution, and that our model is a sufClciently accurate description of reality 

to allow Borne of this information to be extracted, and useful tnrerences 

made, 
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