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Improving Pedigree-based Linkage Analysis
by Estimating Coancestry Among Families

Chris Glazner and Elizabeth Alison Thompson

Abstract
We present a method for improving the power of linkage analysis by detecting chromosome

segments shared identical by descent (IBD) by individuals not known to be related. Existing
Markov chain Monte Carlo methods sample descent patterns on pedigrees conditional on observed
marker data. These patterns can be stored as IBD graphs, which express shared ancestry only,
rather than specific family relationships. A model for IBD between unrelated individuals allows
the estimation of coancestry between individuals in different pedigrees. IBD graphs on separate
pedigrees can then be combined using these estimates. We report results from analyses of three sets
of simulated marker data on two different pedigrees. We show that when families share a gene for
a trait due to shared ancestry on the order of tens of generations, our method can detect a linkage
signal when independent analyses of the families do not.
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1 Introduction
Identity by descent (IBD) is the sharing of DNA copied through successive meioses

from one chromosome in a recent common ancestor. IBD is always relative. In a

pedigree, it is defined relative to the founders of the pedigree. In a population, it

must be defined relative to some time point or ancestral population. In this paper,

we follow Browning and Browning (2010) in defining IBD on the order of tens of

generations. At this time-scale, the lengths of shared inherited IBD segments are

on the order of several million base-pairs, and thus an order of magnitude longer

than the extent of linkage disequilibrium, which is itself a reflection of more remote

coancestry. Whether in pedigrees or in populations, gene mapping approaches are

based on the dependence in descent of DNA at nearby locations in the genome.

Hence the coancestry of segments of DNA drives all gene mapping methods.

In this paper we extend gene mapping models on defined pedigrees to in-

corporate coancestry on an intermediate scale. If families are selected for a rare

trait or from a small population, they are likely to share ancestors in this time span.

Capturing these relationships in a pedigree is impractical, both due to the unknowa-

bility or unreliability of ancestral pedigrees with multiple generations of missing

genetic data and to the computational difficulty in analyzing them. On smaller 3-

or 4-generation pedigrees, with few individuals unobserved, genetic marker data

validate the pedigree structures (see Sun et al., 2002, for example) However, link-

age analyses using such pedigrees lack resolution, due to the limited number of

meioses (Boehnke, 1994). Thus, we propose the use of a population-level model of

coancestry to supplement analysis of data on smaller pedigrees.

We begin by sampling descent patterns on several pedigrees, conditional

on genetic marker data, as in a Monte Carlo linkage analysis (Thompson, 2007).

These pedigree-based descent patterns are summarized in the form of a version of

the descent graph of Sobel and Lange (1996), the IBD graph (Thompson, 2011).

These sampled descent patterns are then connected using output from a population

model for IBD in pairs of individuals who are not known a priori to be related. We

calculate likelihood scores using these augmented samples, which incorporate rela-

tionships between pedigrees as well as those within. The augmentation is possible

because the IBD graph provides a common data structure for expressing inferences

from both pedigree and population models

Simulation studies demonstrate that this method allows linkage signals to

be recovered from pedigrees which do not show linkage when analyzed indepen-

dently. Additionally, broad weak signals can be significantly narrowed, and false

indications of signals can be eliminated. More generally, our method shows that the

IBD graph is a flexible and natural tool for modeling coancestry.
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of linkage lod scores and the use of the IBD graph to summarize marker-based

inferences of descent patterns. Our methods for inferring population-level IBD and

for combining pedigree-based and population based IBD inferences are described in

Section 3. The simulation of examples and the results of simulation studies appear

in Section 4.

2 Linkage analysis with IBD graphs
We observe marker data YM and trait data YT on two or more pedigrees. Our goal

is to compute the likelihood ratio between the two genetic models Γ and Γ0, where

Γ hypothesizes a trait location on the chromosome of the markers, and Γ0 assumes

that the trait and marker data are independently distributed on the pedigree. Both

models incorporate the pedigree structure and assume the same marginal models

for YM and YT , including the genetic marker map, allele frequencies, and other

parameters. The log of the likelihood-ratio is the lod score:

log10

Pr(YT ,YM;Γ)
Pr(YT ,YM;Γ0)

= log10

Pr(YT ,YM;Γ)
Pr(YT ;ΓT )Pr(YM;ΓM)

= log10

Pr(YT | YM;Γ)
Pr(YT ;ΓT )

,

where we can factor the denominator because of the independence assumed in Γ0.

On large pedigrees, the numerator cannot be calculated exactly. To approximate

the likelihood under Γ, we express it as an expectation over all possible inheritance

patterns S on the pedigree:

Pr(YT | YM;Γ) = ∑
S

Pr(YT | S;ΓT+)Pr(S | YM;ΓM) = ES|YM;ΓM
Pr(YT | S;ΓT+).

Here ΓT+ is the marginal trait model, ΓT , augmented by the trait location hypothe-

sized in Γ. (A realization of S may be expressed as a matrix specifying whether the

maternal or paternal allele segregated at each locus in each meiosis of the pedigree.)

By simulating from the conditional distribution of S given YM and computing the

likelihood of the trait data as a function of S, we obtain a Monte Carlo estimate of

Pr(YT |YM;Γ) (Lange and Sobel, 1991). Once a sample from S has been realized, it

can be used for different traits and trait models without resimulating. Sampling is

performed via Markov chain Monte Carlo, and recent methods allow sampling on

large pedigrees with 2 to 3 markers per cM (Tong and Thompson, 2008).

Equivalent patterns of descent S can be represented by descent graphs, which

were introduced by Sobel and Lange (1996). Each founder allele at a single locus is

assigned a founder genome label (FGL). Each node in the graph represents an FGL.

Both alleles carried by an individual can be traced back to a founder, so an individ-

ual is represented by an edge connecting the two FGLs he or she carries. Figure

In Section 2, we briefly describe our approach to the Monte Carlo estimation
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Figure 1: (a) A simple pedi-

gree labelled with FGLs. (b) An

IBD or descent graph represent-

ing one possible descent pattern

on the pedigree at a single locus.

The mother A passes her mater-

nal allele to both children, and

the father B gives a different al-

lele to each child.

1b shows a simple descent graph for a nuclear family. Each parent is a founder

and carries his or her two FGLs. One child receives FGLs 1 and 3, while the other

receives 1 and 4.

We refer to a set of descent graphs along the chromosome as an IBD graph.

IBD graphs additionally have the property that the nodes are unlabelled, so they

condense distinct but equivalent descent patterns into equivalence classes. A simple

example is that if the children in Figure 1 had both inherited their mother’s paternal

rather than maternal allele, the resulting IBD graph would be the same even though

the descent patterns are different. A major advantage the IBD graph has over a

matrix representation of S is that it encodes coancestry without reference to the

family structure. Once the IBD graphs have been sampled, both the pedigree and

the marker data can be discarded; the IBD graphs are sufficient for calculating the

lod score. The IBD graphs can be stored or shared with minimal privacy concerns,

and efficient likelihood computations for various trait models can be performed

using only the graphs and the trait data. IBD graphs can also be stored in less space

than an inheritance matrix S, because only points where the FGLs change must

be recorded. More details on the useful properties of IBD graphs can be found in

Thompson (2011).

Most importantly for the approach in this paper, an IBD graph, in contrast

to a pedigree, can express coancestry on any desired scale. The set of ancestors

which determine the IBD graph on the individuals can be as recent or as ancient

as desired. This flexibility in scope allows us to augment the IBD graphs obtained

from pedigrees by increasing the scope of the coancestry to encompass older and

hence more distant relationships.
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3 Methods
Typically, unconnected pedigrees are treated as independent and their lod scores are

simply added together. We propose instead to perform joint inference by estimating

the IBD between pedigrees. Our procedure involves three steps. First, we sample

IBD graphs on two or more pedigrees. Next, we estimate the IBD between all

possible pairs of individuals in the sample. Finally, the pairwise IBD inferences are

integrated into each of the sampled graphs, creating (possibly) connected graphs

which can be used as if they were the output of straightforward MCMC sampling.

3.1 Population IBD detection

The IBD between a pair of individuals can be modeled using a hidden Markov

model (HMM). The pattern of IBD along the chromosome follows a continuous

time Markov process as described in Thompson (2008, 2009). Four phased haplo-

types can be in 15 possible IBD states, which collapse to 9 states if we have un-

phased genotypes. (The number of states for n haplotypes grows large very quickly

with n, so this approach is only feasible for small numbers of individuals.) Two

parameters determine the rate matrix of the transitions between states: the average

relatedness in the population and the expected length of IBD segments. Simulation

studies indicate that estimation is not sensitive to changes in either value within a

reasonable range.

The symbols emitted by the model are the observed haplotypes or genotypes

of the pair of individuals at genetic markers along the chromsome. The markers are

assumed to be diallelic SNPs with known population frequencies. Alleles which are

IBD must be observed to be of the same allelic type unless there has been a mutation

or genotyping error, and each allele or set of IBD alleles is modeled as a random

draw from the population. An emission probability is calculated from the hidden

state and the genotype, which determine the number of independent draws, and the

allele frequencies. Table 1 shows the emission probabilities for genotypes given

underlying IBD states; each entry is the product of one or more binomial factors,

depending on the number of independently varying sets of alleles. Mutation can

be disregarded on the time scales of interest here. To incorporate genotyping error,

each state has a small probability (0.01) of emitting four independent allelic types.

The actual emission distribution of a state (when using genotypic data) is therefore

a mixture of the corresponding row in Table 1 and the final row of table.

The forward-backward algorithm (Rabiner, 1989) gives the marginal prob-

ability at each locus that a pair of individuals is in a particular state given all of the

observed marker data. When evaluating the model’s performance, we declared the
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Observed genotypes

IBD state 11,11 11,12 11,22 12,11 12,12 12,22 22,11 22,12 22,22

1 1 1 p − − − − − − − q
1 1 0 p2 − pq − − − pq − q2

1 0 1 p2 pq − − − − − pq q2

1 0 0 p3 2p2q pq2 − − − p2q 2pq2 q3

0 1 1 p2 − − pq − pq − − q2

0 1 0 p3 − p2q 2p2q − 2pq2 pq2 − q3

0 0 2 p2 − − − 2pq − − − q2

0 0 1 p3 p2q − p2q pq pq2 − pq2 q3

0 0 0 p4 2p3q p2q2 2p3q 4p2q2 2pq3 p2q2 2pq3 q4

Table 1: Emission probabilities for genotypes given IBD states, before allowing for

genotyping error. The first two digits of the IBD state indicate whether each indi-

vidual has two IBD alleles (1) or not (0), and the third gives the number of alleles

shared IBD by the two individuals (see notation in Thompson, 2008). The values p
and q = (1− p) are the population frequencies of alleles 1 and 2, respectively.

modal probability at each locus to be the estimate state, unless the probability was

less than 0.9. In that case, no estimate was made. We simulated a large population

of individuals over 200 generations of descent and tested the model performance

(Glazner et al., 2010) and compared the true IBD states to the estimated states. The

HMM analysis detected most segments longer than 1 cM, indicating that it provides

a useful framework for inferring coancestry on the scale of hundreds of years.

Our model does not account for linkage disequilibrium (LD) among mark-

ers. In principle, given a model for LD in the population, it would be possible to

created a joint model for LD and IBD. Not only would the model be much more

complex, but estimation of population LD requires large samples, so we have not

pursued this approach. Our approach may be contrasted with that of Browning and

Browning (2010), who fit an LD model using large population samples but adopt

a very simple 2-state IBD model. Since LD is the result of ancestral haplotypes

that have not been broken down by recombination, it can be considered ancient

IBD. In practice, we find that our model does detect more IBD in populations with

more LD. A detailed study of the impact of LD on inference of IBD in population

samples under our HMM IBD model is given by Brown et al. (2011).
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3.2 Merging IBD graphs

Once pairwise IBD between individuals has been estimated, the estimates must

be combined to produce an IBD model for the entire collection of families. This

task is complicated by the ambiguity in the IBD state inference when the data are

unphased. We may infer that two individuals share an allele IBD, but we cannot

distinguish between the two possible choices of maternal or paternal alleles for

each individual.

Suppose we have two families, with a set of stored IBD graph realizations

for each family. Merging is performed on a single pair of realizations, one from

each family. The nodes in the two IBD graphs at a given locus compose two disjoint

sets of FGLs. Combining the two graphs involves pairing nodes between them.

A particular way of merging the graphs can therefore be represented as a set of

Boolean variables, one for each pair of nodes. The inferred IBD states can then be

interpreted as Boolean expressions on these pairing variables. For example, suppose

an individual carries FGLs 1 and 2 and is inferred to share one allele IBD with an

individual carrying FGLs 3 and 4. The inference can be expressed as

p1,3 ∨ p1,4 ∨ p2,3 ∨ p2,4

where px,y denotes pairing between FGLs x and y. Additionally, further expressions

must be included to ensure that exactly one of the variables is true. If the same

individuals are inferred to share no alleles IBD, the resulting expression is

¬p1,3 ∧¬p1,4 ∧¬p2,3 ∧¬p2,4.

The inferences for each pair of individuals across the two families, along

with the two input graphs, define a Boolean formula whose solutions are pairing

arrangements compatible with the inferences. Determining the existence of solu-

tions to a Boolean formula is known as the Boolean satisfiability problem, or SAT

(Knuth, 2008). While the problem is computationally difficult in general, the in-

stances encountered here are quickly solved by existing software.

To merge two graphs at a locus, we first run the HMM on each pair of indi-

viduals across the two graphs. We then select the modal IBD state for each pair and

rank the pairs according to the modal probability. This step has no simple statistical

interpretation, but it roughly orders the state inferences according to our confidence

in them. Beginning with an empty Boolean formula, we successively add the ex-

pression induced by each pair and at each step test the result for consistency using

the MINISAT program (Eén and Sörensson, 2003). If there is a solution to the for-

mula, the expression is included in the formula; otherwise, the inference for that

pair is discarded. We proceed until we have attempted to include each pair in the
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Individuals Alleles Modal state Boolean statement Included

IBD probability in solution?

Scenario 1

A D 1 0.99 Exactly one of p1,4, p1,5, p2,4, p2,5 Yes

B D 1 0.95 ” p2,4, p2,5, p3,4, p3,5 Yes

C D 1 0.94 ” p1,4, p1,5, p3,4, p3,5 No

Scenario 2

A D 1 0.99 Exactly one of p1,4, p1,5, p2,4, p2,5 Yes

C D 1 0.95 ” p1,4, p1,5, p3,4, p3,5 Yes

B D 1 0.94 ” p2,4, p2,5, p3,4, p3,5 No

1

23

4

5

A

B

C D

Before merging

1

23 5

A

B

C
D

Scenario 1

1

23

5

A

B

C

D

Scenario 2

Figure 2: A example demonstrating the sensitivity of the merging procedure to

small differences in HMM output. Individuals B and C have nearly the same

marginal probability of sharing one allele IBD with individual D, but they cannot

both do so if A also shares with D. The priority in which the pairings are incorpo-

rated can affect the resulting IBD graph and the lod score at that locus.

formula, and the result is a formula with either one or many solutions. If the solu-

tion is not unique, an arbitrary solution is chosen, since all solutions are compatible

with the restrictions induced by the HMM inference.

Figure 2 shows a simple example of the merging process at a single locus.

Individuals A, B, and C are in one family and form the IBD graph shown in the

figure; individual D is in another family. The numbered nodes represent the two

FGLs carried by each individual. Each pairing of A, B, or C with D produces a set

of marginal probabilities for the IBD states which the two individuals may be in.

The most likely state for each pair is chosen; in this example, the selected state in

each case is one allele shared IBD. None of the individuals carries two IBD alleles

at this locus. As shown in the figure, the resulting merged IBD graph depends on

the order in which the pairs are considered, since at most two of A, B, and C can

share exactly one allele IBD with D. The two scenarios differ only slightly in the

modal probabilities of pairings B-D and C-D, but since the ranking is different,

different graphs are produced. (In the two scenarios, FGL 4 is merged with FGL 1
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or 2; merging FGL 5 would also produce a solution, which would be topologically

equivalent and therefore produce the same lod score.) Suppose that individuals A,

B, and D all have high trait values, and individual C has a low value. The graph

in scenario 1 would then provide evidence for trait linkage, with the high-value

individuals all sharing a potential disease allele, FGL 2. The scenario 2 graph shows

less of a trait association and would have a lower lod score. This example illustrates

that, because IBD states are estimated pairwise rather than jointly, the algorithm is

sometimes presented with incompatible inferences. Ranking the inferences and

discarding some of them produces valid solutions, but the results are sensitive to

the assigned ranks.

The merging algorithm imposes additional constraints on the set of solutions

to ensure that no node in either graph pairs with more than one in the other graph.

These constraints are included under the assumption that different nodes in the same

graph are not IBD. To make this assumption reasonable, before merging two graphs

we run the algorithm within each graph to condense any IBD among the founders.

The procedure is similar to merging between graphs, except that more than two

FGLs may be found to be IBD and merged; in the between-family setting, a node

can only be merged with a single node in the other family, so at most two nodes

are ever merged. Within a family, some Boolean solutions may not be transitive;

for example, p1,2 and p1,3 may be true, while p2,3 is false. Constraints are imposed

which require solutions to be transitive. Without the constraints, p1,2 and p1,3 would

be sufficient for FGLs 1,2, and 3 to be merged, even though the algorithm deduced

that 2 and 3 are not IBD. The constraints allow a solution that includes p1,2 or p1,3,

but not both.

This process is performed at a set of specified loci along the chromosome.

One choice of merging loci is the set of of IBD graph change points that occur

along the chromosome; this ensures that merging is performed on every distinct de-

scent graph that appears along the chromosome. It may be useful to merge at more

closely spaced markers, because while the two within-family IBD graphs are con-

stant between change points, the HMM output may model changing relationships

on the intervening segments.

An equal number of MCMC realizations are created for each family, and

each graph is merged with a graph from the other family. The algorithm produces

one IBD graph for every input pair. When more than two families are being an-

alyzed, the merging procedure is iterated: the graphs created by merging the first

two families are merged with a third set of graphs, these graphs are merged with a

fourth set of graphs, and so on.
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4 Examples

4.1 Haplotype simulation

Assessing the method required simulated marker data for which the true descent

pattern was known. The data were created by simulating inheritance on extended

pedigrees connecting several families. Haplotypes were then assigned to the pedi-

gree founders. founders. For the case of dense markers, as in our second example

below, we require haplotypes with realistic patterns of LD. To obtain a sufficient

number of such haplotypes while avoiding the direct use of confidential data, hap-

lotypes were simulated based on patterns of LD in real data.

The input data were X chromosome genotypes from males enrolled in the

Framingham Heart Study (Cupples et al., 2009). Since males carry only a single X

chromosome, the genotypes did not require a phasing step to produce haplotypes.

The markers were from an Affymetrix 500K SNP chip. After filtering out markers

with low minor allele frequency and a segment around the relatively uninformative

centromere, 6,913 markers over 140 cM were used. The individuals were filtered

to eliminate known close relationships in order to simulate an outbred founder pop-

ulation, leaving 1,917 chromosomes. Population allele frequencies were estimated

from this sample.

The LD in the sample was modeled using the BEAGLE program (Browning

and Browning, 2007). This software uses a large number of genotypes to construct

a variable length Markov chain model representing the haplotype clusters in the

population. At each marker, the model contains counts of the number of haplotypes

moving into and out of the various clusters. Simulation of a haplotype consists in

traversing the model from start to finish, with cluster transition probabilities ac-

cording to the counts in each cluster. This procedure produces haplotypes with

approximately the same LD pattern as the sample.

Both the Framingham sample and haplotypes simulated from the fitted BEA-

GLE model showed higher levels of LD than would be expected in a large outbred

population, as determined by pairwise R2 values. This result accords with the small

geographic area from which the individuals were sampled. To simulate a larger

population, the model traversal procedure was modified to include at each marker a

possibility of jumping to a random haplotype cluster. By breaking dependence on

path history, a jump simulates recombination within the population and reduces the

overall level of LD. The jump probability used was 0.2, limiting the simulated LD

to short distances (five markers on average). We have made available the R script,

beaglesim, that implements our simulation approach.
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(a) 44-member pedigree (b) Iceland pedigree

Figure 3: Pedigrees used in simulated examples. Inference was performed as if

only the connected sets of shaded individuals were known a priori to be related.

The circled founder in the Iceland pedigree is the origin of the disease gene.

4.2 Close relatives

The first simulated dataset examined was on a pedigree small enough that existing

MCMC methods (Tong and Thompson, 2008) could be used on the entire pedigree

and compared with our new approach. The 44-member pedigree shown in Figure

3 was used to simulate gene descent on a single 100 cM chromosome. The dis-

ease locus was close to the center of the chromosome, and the descent pattern and

genotypes assumed at this locus were taken from a previous study (Wijsman et al.,

2006) in which they provided a good linkage signal. A quantitative trait was sim-

ulated based on the genotypes at the diallelic disease locus; not all copies of the

“disease allele” in observed individuals had a single origin. The genotype means

and variances were chosen to allow detection of the linkage signal. Marker data on

the rest of the chromosome were simulated conditional on the disease locus descent

pattern; there were 201 SNP markers at 0.5 cM intervals. Each SNP had minor

allele frequency 0.3. Only the 22 final members of the pedigree were assumed

observed for trait and marker data.

For our current example, the pedigree was broken into three cousinships,

labeled A, B, and C, as depicted in Figure 3. This breaking represents a situation in

which the investigator does not know the true family relationships connecting the

cousinships. IBD graph realizations on both the single large pedigree and the three

cousinships were sampled; the sampler was run for 3× 104 MCMC scans, with

output every 30 scans. Thus, 1,000 IBD graphs were output for each cousinship.
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Figure 4: Lod scores on the simulated small dataset using the entire pedigree, sep-

arate cousinships, and cousinships after merging cousinships A and B. The trait

locus is marked by the “T”.

The merging algorithm was then used to connect cousinships A and C, since

this pair of families had the most IBD sharing. Cousinship B, although more closely

related to cousinship A, by chance received its “disease allele” from a different

founder origin. Figure 4 shows the lod curves obtained from analysis of the full

pedigree, the cousinships treated independently, and the cousinships after merging

A and C. Relative to the true lod score on the full pedigree, independent analy-

sis of the cousinships shows loss of signal in the neighborhood of the trait locus.

Additionally, there was an apparent weak signal at 75 to 85 cM. The merged lod

score closely tracks the score for the full pedigree, indicating that the hidden family

information was largely recovered using our method. The result shows that such in-

formation can not only strengthen true signals, but can also eliminate other signals

that are not supported by the joint data on the smaller pedigrees.

4.3 A large pedigree

A second, larger pedigree was used to test the ability of the method to detect shared

descent among more distant relatives using denser SNP marker data. The structure
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of the large pedigree in Figure 3 is based on one provided by Professor J. H. Ed-

wards in 1995 (Thompson, 2000). It was collected in Iceland for a genetic study

and spans twelves generations. On a pedigree such as this, direct analysis on the full

pedigree is intractable. Due to the multiple generations of unsampled individuals,

MCMC sampling of gene descent is unreliable (Thompson, 2000). Additionally,

such a pedigree is likely to contain errors in the recorded ancestry, and there are as-

certainment biases in limiting analysis to descent from a single founder couple 12

generations ago. In other populations, we would not normally even have a record

of the entire pedigree, but have sampled only families not known to be related. This

is the scenario we assume in our example; the three 3-generation families at the

bottom of the full pedigree constitute our data.

The quantitative disease trait was simulated as in the small example, con-

ditional on genotypes at the diallelic trait locus. In this case, the disease allele has

a single origin, entering with a founder in the fourth generation and segregating to

some members of each of the three descendant families. Again, descent across the

chromosome was simulated conditional on descent at the trait locus; in this case, the

trait locus was at position 105 cM in a 200 cM chromosome. Founder haplotypes

simulated as described in Section 4.1 were assigned in accordance with the descent

pattern. To expand our original 140 cM chromosome, we re-simulated markers

from the first 60 cM, ending with 10,188 markers over the 200 cM chromosome.

The higher density of these markers required that they be thinned before the

Monte Carlo analysis of the subpedigrees; the sampling process assumes markers

not in LD, and MCMC is prohibitive with dense markers. To provide the most in-

formation for within-pedigree IBD, we chose markers that were heterozygous in at

least half of the individuals. We then thinned these markers so that they were spaced

between 0.3 and 0.7 cM apart, with preference given to markers that provided het-

erozygous individuals in all three of the subpedigrees. In fact, only the largest of

the three pedigrees required MCMC analysis. For the two smaller components, in-

dependent realizations of IBD across the chromosome were sampled conditional on

the marker data. The sampler was run using a forward-backward algorithm on the

inheritance vectors (Thompson, 2000).

The IBD graphs obtained from the larger two families were merged first;

this output was then merged with the graphs from the smallest family. Merging was

performed at every marker in the set of breakpoints present in the two input graphs.

The lod curves from the merge appear in Figure 5. Also shown is the lod score that

would be obtained if the full true IBD within and among the three subpedigrees

were observable across the chromosome, and the very weak signal provided by

independent analysis of the three subpedigrees. With the exception of a spike at

about 140 cM, the lod score from the merged pedigrees roughly captures the true

curve. The location and magnitude of the peak at the trait locus are recovered.
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Figure 5: True lod score on the simulated Iceland dataset, and estimates using sep-

arate and merged pedigrees. The trait locus is marked by the “T”.

While the maximum occurs at the location of the anomalous spike, such a spike

in the lod score is improbable under normal recombination patterns on pedigrees.

Closer examination of the recombination events implied by the merged IBD graphs

shows the spike to be a statistical artifact. The presence of the spike highlights

a weakness of our approach: since each marker is merged independently, small

differences in the ordered IBD states between markers can lead to discontinuities in

the resulting lod score.

A second data set was also simulated on the Iceland pedigree using the same

inputs and parameters. The same trait-locus descent was assumed, but now located

at 25 cM. In addition, we simulated several confounding sources of coancestry. In

particular, at 175 cM, we forced descent with no trait effect from the oldest founder

generation to most members of all three families. Marker data were generated and

analyses performed exactly as in the first Iceland example.

Figure 6 shows that in this example the merging procedure recovered the

linkage signal at the trait locus where the subpedigrees showed almost no indication

of linkage. We also see that it detected the ancestral coancestry at 175 cM, which

has a very high lod score but is not causally tied to the trait. This signal is correct in

that the true IBD on the full pedigree shows the same result. By imposing descent to

the three families, IBD among the three families at 25 cM is highly correlated with
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Figure 6: Lod scores for simulated data on the Iceland pedigree with confounding

coancestry. The trait locus is marked by the “T”.

that at 175 cM. Interestingly, this has no impact on the within-family results; the

between-family correlation derives from the constrained ancestral structure. This

example provides a warning that expanding the scope of the IBD used to map a

trait can draw in coancestry not connected to the trait and lead to incorrect conclu-

sions. While the example presented here is extreme, this problem could arise among

families ascertained in a small or highly structured population. Long-distance cor-

relation between causal genes and other parts of the genome poses similar problems

for association mapping; see, for example, Di et al. (2011).

5 Discussion
We have presented a method for merging data from multiple families to enhance

pedigree-based linkage analysis. Simulated examples indicate that when families

carry a trait gene from the same recent ancestor, the shared ancestry can be detected

and used to augment the information in the pedigrees. The IBD graph is an essential

tool in our method, because it expresses coancestry without explicit reference to

family relationships.
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The merging algorithm at present is somewhat crude and satisfies only the

basic requirement of producing graphs broadly consistent with the HMM output.

A more sophisticated approach would treat the inference of connections between

graphs as an imputation problem and account for the uncertainty introduced by this

step. Doing so might remove some of the sharp discontinuities and outlying lod

scores caused by choosing extreme graph configurations at some loci.

Another modification which would reduce these outliers would be to use in-

formation from adjacent loci when merging, rather than to treat loci independently.

Including prior knowledge of the behavior of real lod scores, which do not jump so

dramatically, could allow for some smoothing of the merged lod scores.

Computational efficiency is a concern both with the current method and

potential modifications. The algorithm presented here is slow for large numbers

of loci, partly because of the brute force method of testing graph configurations.

Exploring the space of potential solutions in a more intelligent way would reduce

the computational burden.

While it would benefit from these improvements, our current implementa-

tion is adequate for demonstrating that linkage information can be recovered by

combining genetic models for pedigrees and populations. With further develop-

ment, we anticipate that this approach will be a useful tool in epidemiological ap-

plications.
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