
Module 17: Session 9: MORGAN computing session

Elizabeth Thompson

Department of Statistics, University of Washington.

1 Overview

MORGAN 2.6 was released to the web Feb 29, 2004. It can be found at
www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml. The version we are using
here is MORGAN 2.6, with three small bug fixes. Additionally, for simplicity, I have compiled a
version of lm markers for a quantitative trait, and called it lm quant. In the current MORGAN
2.6.1, to be released later this summer, the quantitative trait option in lm markers is via a
parameter statement, and does not require a separate program.
The structure of MORGAN is of numerous libraries of C-routines, grouped according to general
purpose (e.g. Sample, Nghds, Markers) and other directories of main programs, also grouped
(e.g. PedComp, Genedrop, Autozyg). The main set of programs we will use are actually in the
Autozyg directory, but for purposes of the lab you do not need to know exactly where the programs
are. We will focus on programs for the MCMC estimation of lod scores from multiple-marker data
on an extended pedigree.
The primary documentation in MORGAN is via plain text README files within the directories of
the package. In particular, each main program directory contains a README userdoc file, which
should be your primary resource if you become a MORGAN user. However, to get started, there is
also a tutorial available in numerous formats – see the web page for details. The version available
for release is still that for MORGAN 2.5, but we will have a pre-release version of the tutorial
updated for 2.6 available in html format.
Each main-program directory contains a subdirectory Gold, or Gold1 and Gold2, containing test
examples of use of each program. These are (mostly) different examples than the ones we will use
to illustrate the use of the package, but you may like to look at them.

2 Set-up

How much of this is true will depend on how/where things are installed.
Morgan 2.6 (with bug fixes) will have been installed in a directory whose full path name we may
need to know – I will here call itMorganpath. This means that all the executables will have been

1

created, and will be in their respective subdirectories of Morganpath.
In the Morganpath directory, I will also place a subdirectory morgan-tut-html containing a
(hopefully) up-to-date version of the MORGAN 2.6 tutorial. It is recommended you open the file

Morganpath/morgan-tut-html/morgan-tut.html
in your browser.
In your own file space for computing for this module, you will have a directory ncsu-examples.
This is where you will run the examples that have been set up for you, and look at parameter
statements etc. It is analogous to the examples directory described in the tutorial, except some
things have been modified for current purposes.
The following may or may not have been done for you. In the Makefile in ncsu-examples you
need to set

MORGANDIR = Morganpath

as the first (non-comment) line of the Makefile (actually line 4 ?). This should be the ONLY change
needed to the Makefile.
There are basically two ways to run MORGAN programs:
1. One is to run the specific examples which have been set up, using the make command. For
example: “make lm quant.out” will run the particular example of lm markers for a quantitative
trait that has been set up. This is the easiest way.
2. For the more ambitious who want to set up their own parameter files, programs can also be run
using the executable names directly. To do this you must first make linka (this is not a typo).
This make creates symbolic links to all the executable programs in the relevant subdirectories of
Morganpath. Now, for example, you could say

lm quant my-par-file > my-out-file

to run the lm quant program, using your parameter file my-par-file and producing output my-
out-file.
(This may not work on Solaris: there were problems in testing.)
Note that since most of these programs use Monte Carlo, we need random numbers, and hence seeds
for the random number generator. For the Gold standards, and for test examples I will provide
output for, we use default seeds. However, it will be more interesting for you to have varying seeds.
In MORGAN this is typically done by reading a starting seed from a seed file. There are several in
ncsu-examples, but I will mostly use seedfil. At the end of a run, a seed is output to (usually)
the same seed file, and this will become the seed for the next program. Since you will all start with
the same seedfil, if you all run the same programs in the same order you will get identical results.
But if you do things in different orders, then your seeds will be different and you will get different
results.
Finally, note that MCMC programs can take CPU time. For the Gold standard examples, runs
are very short, as these examples are simply to validate installation. For real analyses of real data,
sometimes runs are quite long! The examples in ncsu-examples are a compromise. The runs
should be long enough to give reasonable results, but don’t expect too much.

3 Basics of Morgan

The examples in this section are primarily to introduce a variety of MORGAN parameter
statements, which will then be used in our main example of MCMC lod-score estimation. For
more details of parameter statements, see the tutorial and/or the README documentation. Note
that parameters statements are to a very large extent free format. Each statement must be begun

2

on a new line and starts with a particular keyword – such as input, select, A statement may
occupy any number of lines; only the first 4 characters of keywords are significant; any amount of
“white space” may occur between items etc. The statements in these examples have been “tidied”
to make them easier to read, but items do not have to be alligned etc.

In our examples we will use the standard small
15-member pedigree used in the book and
other documentation. This gets a bit boring,
but it has the advantage of being
(a) small, so we can do exact and

Monte Carlo computation,
(b) will give results in reasonable time
(c) has enough loops to be interesting
(d) having pictures of it in the notes
(e) is familiar to you from the lectures, and
(f) has been very well studied by many people

as computational example.

Figure 1: JV pedigree. The pedigree structure derives from a real study of a rare recessive trait by
Goddard et al. (1996: Am J Hum Genet 58: 1286-1302).

3.1 Pedigree specification: Pedchk example

We start with pedigree specification: as an example we will run the pedchk1 example from the
tutorial examples. The program pedcheck checks validity of pedigrees (duplication of identifiers,
missing parent individuals, gender, etc.). Additionally, if requested (in fact, by default?), it will
reorder individuals into chronological order (i.e. parents before offspring) by component. The test
pedigree for this example consists of two copies of the JV pedigree: the second is not chronologically
ordered.
Here is the parameter file pedchk par for this example:

input pedigree file ’pedchk_ped’

input pedigree size 30

input pedigree record gender absent

input pedigree record observed present

assign gender

output pedigree chronological

output pedigree file ’pedchk_oped1’

Here are a few lines of the specified input pedigree file pedchk ped:

3

input pedigree record names 3 integers 1

132 0 0 0

131 0 0 0

236 0 0 0

231 131 132 0

232 131 132 0

....

Note that the dividing line of (at least) 4 asterisks is significant. All else is free format. Parameter
statements can be here (above the asterisks) or in the parameter file. Since we have told it there
are 30 individuals, if there are more in the file it will read only the first 30.
You may run the example by saying make pedchk1.out. Alternatively, if you have linked the
executables you may say pedcheck pedchk par > pedchk out1. Note that in either case your
standard output is in the file pedchk out1. If using make the standard error output is also in
the output file: otherwise it will come to the screen. In either case, the output pedigree file is as
specified in the parameter file: pedchk oped1. Here are the first few lines

input pedigree size 30

input pedigree record names 3 integers 2

input pedigree record father mother

input pedigree record gender present

input pedigree record observed present

132 0 0 2 0

131 0 0 1 0

236 0 0 1 0

231 131 132 2 0

232 131 132 1 0

234 0 0 2 0

...

Note it puts out the parameter statements relative to the file, so the file can be used directly for
other MORGAN programs. Note the second component has been ordered chronologically. Note
parent individuals now have gender assigned: non-parents remain of unknown gender.

3.2 Map specification: Genedrop example

To introduce the specification of marker maps and trait information we will use the genedrop
program. This is a straightforward simulation program to generate data at linked markers and on
quantitative traits with major gene and (in general) additive polygenic effects.
The example uses the pedigree file good ped which is two copies of JV, now reordered correctly.
In fact, there should be no difference between your generated pedchk oped1 and the provided
good ped file. Note in this example in the Makefile, make genedrop out specifies the command

genedrop genedrop par ped good ped oped genedrop oped > genedrop out

That is, input and output pedigree files are specified in the command line, not in the parameter
file.
Here is the parameter file genedrop par (reordered slightly):

4

input seed file ’mymarkseeds’

output marker seeds only

output seed file ’mymarkseeds’

simulate chrom 5 markers 5 traits 1

simulate chrom 7 markers 3

map chrom 5 marker dist 25.54 25.54 25.54 25.54

map chrom 7 marker recom frac 0.1 0.2

set chrom 5 markers 1 2 3 4 5 freqs 0.2 0.2 0.4 0.2

set chrom 7 markers 1 2 3 freqs 0.2 0.2 0.4 0.2

map chrom 5 trait 1 marker 2 recom frac 0.1127

set trait 1 freqs 0.95 0.05

set trait 1 geno means -10. 0.0 10.0

set trait 1 residual variance 50.

set trait 1 additive variance 0.0

output pedigree chronological

output pedigree record founder gene labels

output pedigree record trait latent variables

Note the specification of input and output seedfiles: similar for all programs using Monte Carlo.
Note the map statements, specified for each chromosome used, via recombination frequencies or
genetic distances. (See below for an example of gender-specific maps.) See the specification of trait
loci relative to the marker map. See the specification of marker and trait allele frequencies, and of
other items relating to a quantitative trait, potentially with a polygenic component (although in
this example the additive variance is 0).
If you wish you may run this example either via make genedrop.out or by

genedrop genedrop par ped good ped oped genedrop oped > genedrop out

3.3 MCMC specification: lm auto example

Finally we will look at a small MCMC example: this one is not lod scores, but the program lm auto

which estimates gene identity by descent pattern probabilities, given marker data. We include this
example mainly for the specification of MCMC variables.
Here is the parameter file (slightly rearranged):

input pedigree file ’ped15’

input seed file ’seed15’

map gender F markers recomb fract .2 .2 .2 .2

map gender M markers recomb fract .1 .3 .1 .3

map gender F trait 1 marker 2 recomb fract .1127

5

map gender M trait 1 marker 2 recomb fract .055

set markers 1 2 3 4 5 freqs .2 .2 .4 .2

set trait 1 freqs .95 .05

set marker data 5

333 1 3 1 3 1 3 1 3 1 3

331 3 4 3 4 3 4 3 4 3 4

334 2 3 2 3 2 3 2 3 2 3

431 3 4 3 4 3 4 3 4 3 4

531 3 3 3 3 3 3 3 3 3 3

select all markers traits 1

set L-sampler probability 0.2

set MC iterations 2000

set proband gametes 531 1 531 0 331 0 333 1

set window patterns 0 4

set locus window 3

Pedigree ped15 is one copy of JV pedigree – correctly ordered.
Note the gender-specific maps: note also that the trait location is in interval from marker 2 to 3,
but at the mid-point on the female map, but close to marker two on the larger male map interval.
(This might have been a mistake originally, but retained for demonstration purposes: the prograns
will check that male and female meioses have same locus order, but this is the only constraint.)
Note the specification of marker data: if preferred this information can be given in a separate
marker data file. Here the data are very simple and highly artificial: we have identical data at each
of the five loci. Note that only individuals who have data at any markers need be included. A
missing marker genotype is denoted “0 0”; individuals with no data (all genotypes “0 0”) can be
included if more convenient (for example for using the same files with non-MORGAN programs).
Here we select all markers – that is all 5 will be used. In the lod-score example below we will
choose to select a subset of the markers.
Note also the MCMC specification: here the simplest possible: a request for 2000 MCMC scans
and a proportion 20% of L-sampler (80% M-sampler). See the output for the used defaults on
starting configurations and burn-in. From the output:

Sequential imputation to be used for setup, using 20 samples

Sampling is to be by scan, with scores estimated every scan

L-sampler probability set to 0.200

The number of MC burn-in iterations is 200

Number of MC iterations requested is 2000

with progress checked every 2000 iterations

Finally, the parameter specifies which haplotypes are to be scored for gene identity by descent, and
how it is to be scored: see the tutorial if you are interested in this.

6

You may run the example using make lm auto.out or equivalently
lm auto par15a > lm auto out

The output file is lm auto out. See the tutorial for more information.

4 MCMC Lod score estimation

The three lod-score programs are lm lods, lm markers, and lm bayes. See the tutorial for a
bit of information about these programs. lm lods is the oldest, and is based on lielihood-ratio
estimation. lm markers is our implementation of the Lange-Sobel estimator, where sampling is
conditional only on marker data (hence the name). lm bayes is the pseudo-Bayes estimator of
George and Thompson (2003).
Additionally, there is a version of lm markers (here called lm quant) which does lod scores for a
quantitative trait. In MORGAN 2.6.1 lm quant is an option within lm markers, set by a parameter
statement

set trait data quantitative

but in 2.6 there is a hard-wired flag QUANT. The same quantitative trait option will be added,
eventually, for other programs based on the LM-sampler.

Ped 52 with Pheno trait

101102

201 2022010

301

302303

304

2020

305

306 307

3083010

401

402 403

404

3040

405

406 407

408

3050

410 411412

3080

414 415416

4010

501 502503504

4040

505 506 507508

4050

509 510 511512

4080

513514515 516

Pedigree drawing by Pedfiddler,
written by J.C.Loredo-Osti.
See www.stat.washington.edu/Genepi/

pangaea.shtml for details.

Grey: unobserved
For the phenotypic trait:

White: unaffected
Black: affected

Figure 2: Ped52-simulation pedigrees for lod scores

The pedigree used here is Ped52, a constructed 5-generation 52-member pedigree with 12 founders
and 80 meioses (Figure 2). Data are simulated, so the actual gene descents are known. One diallelic

7

locus corresponds to a quantitative trait, for which additive genetic effects and residual effects are
also simulated. 33 individuals are assumed observed at 10 equally spaced (10 cM) 4-allele (freqs
0.1, 0.2, 0.3, 0.4) marker loci. The trait locus is mid-way between markers 5 and 6. The same 33
individuals are assumed observed for the trait. To facilitate reasonable results in limited computing
time, in the analyses here only 4 markers are used, through the parameter statement

select markers 1 4 6 10 traits 1

In these analyses, three traits are constructed. The genotypic trait, is the standard coded version
of the trait locus genotype. A quantitative trait is formed by adding the residual effects (variance
25.0) to the genotypic mean values (90, 100, 110) at the trait locus. Here the additive polygenic
effects are ignored. A dichotomous trait with incomplete penetrance is formed by approximate
thresholding of the quantitative trait, including the additive effects. Broadly, individuals with
values of the full quantitative trait over 100.0 are affected (phenotype 2). Most other observed
individuals are phenotype 1. (However, the trait was modified slightly to segregate in each sibship
in which the trait alleles segregate.)
There are 7 combinations of program and genotypic/phenotypic trait than can be run, using the
command make xxxx where xxxx is as specified in the first column of the table below.

Make command program parameter files output file

===

lm_lods_g.out lm_lods ped52.par ped52_ge.par lm_lods_geno.out2

lm_mrks_g.out lm_markers ped52.par ped52_ge.par lm_mrks_geno.out2

lm_bayes_g.out lm_bayes ped52.par ped52_ge.par lm_bayes_geno.out2

lm_lods_p.out lm_lods ped52.par ped52_ph.par lm_lods_phen.out2

lm_mrks_p.out lm_markers ped52.par ped52_ph.par lm_mrks_phen.out2

lm_bayes_p.out lm_bayes ped52.par ped52_ph.par lm_bayes_phen.out2

lm_quant.out lm_markers ped52.par ped52_qu.par lm_quant.out2

with QUANT=1

==

The main parameter file is ped52.par, The additional small parameter files simply specify the
type of the trait, and which item it is in the pedigree data file. For example, for the phenotypic
trait we have:

input pedigree record trait 1 integer 8

set trait data phenotypic

telling us the trait is phenotypic and is the 8 th. integer column in the pedigree file. For a
phenotypic trait (now called discrete trait in MORGAN 2.6.1) penetrances are currently specified
on the end of the pedigree file.
Here is the main parameter file:

input pedigree file ’ped52.ped’

#For default seeds comment out the following lines

input seed file ’seedfil’

8

output seed file ’seedfil’

input marker data file ’ped52.markers’

select markers 1 4 6 10 trait 1

map trait 1 all interval proportions 0.3 0.7

map trait 1 external recomb fracts 0.05 0.15 0.3 0.4 0.45

set trait 1 freqs 0.5 0.5

Monte Carlo setup and requests

use locus-by-locus sampling for setup

sample by scan

set L-sampler probability 0.2

set MC iterations 3000

set burn-in iterations 150

check progress MC iterations 1000

Important new statements are the map trait statements, which specify the locations at which
lod scores are to be estimated. The external locations are outside the range of the markers, and
the interval proportions specify proportions within each marker interval. (These need not be
the same for each interval, although here they are.) Note these refer to intervals in the full set of
markers in the data set. If we select a subset of markers, the locations are not changed. This is
so that comparisons between estimates using different marker subsets can be readily made.
In this example, the marker information is in a separate marker data file ped52.markers. The
file begins

map markers dist 10 10 10 10 10 10 10 10 10

set markers 1 2 3 4 5 6 7 8 9 10 freqs 0.4 0.3 0.2 0.1

set marker data 10

302 1 1 1 2 1 3 1 2 2 4 3 4 1 2 1 1 1 2 4 4

303 1 1 1 2 1 1 1 2 2 4 3 4 2 3 2 3 2 4 1 4

....

Note that this file is just a collection of parameter statements relating to the markers. They could
just be included in the main parameter file, but since the same marker data may be used with
many different analyses it is usually more convenient to put them in a separate file.
The pedigree file is ped52.ped. Here are the first few, and last few, lines:

input pedigree size 52

input pedigree record names 3 integers 9 reals 1

simulated pedigree with 52 members

col 4 gender; cols 5 observed/unobs status

col 6,7 FGL at trait; cols 8,9 genotypes at trait

9

col 10, genotypic trait 1,3,4, with zeros for unobs

col 11, pheno: > 100 affected (2); < 100 unaff (1);

col 12, a dummy integer, to avoid a now-fixed bug

col 13: quant trait with no additive variance (999.5 = unobserved)

see ped52.all dat for full version:

**

101 0 0 1 0 1 2 1 2 0 0 0 999.5

102 0 0 2 0 3 4 1 1 0 0 0 999.5

201 101 102 1 0 2 4 1 2 0 0 0 999.5

202 101 102 2 0 2 3 1 2 0 0 0 999.5

....

....

515 4080 408 1 1 24 11 1 1 1 1 0 91.055

516 4080 408 2 1 24 6 1 2 3 2 0 98.456

0.05 0.6 0.95

The coded trait genotype is column 10, with code 1,3,4 for genotypes 11, 12, 22, respectively. A
dichotomous phenotype is column 11, and the final column of reals is the quantitative trait (with
a real with integer part 999 denoting unobserved). As a temporary measure, penetrances for a
dichotomous trait (Pr(Affected | genotype g), for g =11,12, 22), are placed at the end of the file
after any non-empty separating line. For simplicity, we use our standard “****” separator.
Hopefully, we will have time to run several of the 7 lod score runs that have been set up. In case
we do not, typical outputs from these runs have been given in the *.test files, and are plotted in
the following figures.

10

−100 −50 0 50 100 150 200

−
1

0
1

2
3

Position (cM)

Lo
d

S
co

re

M1 M4 M6 M10

MK−Ge
LD−Ge
BS−Ge

−100 −50 0 50 100 150 200

−
1

0
1

2
3

Position (cM)

Lo
d

S
co

re

M1 M4 M6 M10

MK−Ph
LD−Ph
BS−Ph

−100 −50 0 50 100 150 200

−
1

0
1

2
3

Position (cM)

Lo
d

S
co

re

M1 M4 M6 M10

MK−Ge
MK−Ph
MK−Qu

Figure 3: Comparison of MCMC lod-score programs on Ped52 traits. (a) 3 programs on Geno
trait; (b) 3 programs on Pheno trait; (c) lm markers program on all 3 traits.

11

