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1 Get Started

1.1 Overview of MORGAN

MORGAN (Monte Carlo Genetic Analysis) is a collection of programs and libraries devel-
oped at the University of Washington under the PANGAEA (Pedigree Analysis for Genetics
and Epidemiological Attributes) umbrella. This software implements a number of methods
for the analysis of data observed on members of a pedigree, with the main programs imple-
menting Markov Chain Monte Carlo (MCMC) methods. As of the date of this tutorial, the
latest MORGAN version is 2.9 which was released in August 2008. It is available for down-
load through the MORGAN V2.6 home page at the Department of Statistics, University of
Washington.

The MORGAN programs are grouped into four categories:

1. Programs using deterministic algorithms: pedcheck checks for errors in pedigree struc-
ture and data format, see Chapter 3 [Checking Pedigree Validity], page 12. kin com-
putes kinship and inbreeding coefficients for members of the pedigree, see Chapter 4
[Computing Kinship and One- or Two-Locus Inbreeding Coefficients], page 15.

2. Programs using simple Monte Carlo techniques (by simulating data on founders and
"dropping" genes down the pedigree): genedrop simulates data on a pedigree for anal-
ysis by other programs, see Chapter 5 [Simulating Marker and Trait Data in Pedigrees],
page 19. markerdrop simulates marker data at loci linked to a potential trait locus, see
Chapter 6 [Simulating Marker Data Conditional on Trait Data in Pedigrees], page 26.
ibddrop uses Monte Carlo to estimate gene ibd (identity by descent) probabilities in
the absence of data, see Chapter 7 [Estimating a priori IBD Probabilities by Monte
Carlo], page 33.

3. Programs using Markov chain Monte Carlo (MCMC) techniques: MORGAN’s MCMC
programs are split into two sections, "Autozyg" and "Lodscore". The Autozyg pro-
grams, lm_auto and lm_pval, estimate conditional gene ibd probabilities, see Chapter 9
[Estimating Conditional IBD Probabilities by MCMC], page 43. The Lodscore pro-
grams, lm_lods, lm_markers, lm_bayes and lm_schnell estimate multilocus LOD
scores, see Chapter 11 [Estimating Location LOD Scores by MCMC], page 58. A
brief introduction to the MCMC techniques employed by MORGAN can be found in
Chapter 8 [Using MCMC to Estimate Parameters of Interest in Pedigree Data], page 38.

4. Programs using EM algorithm for segregation analysis with quantitative traits: in-
cludes univar, unibig, bivar and multivar, see Chapter 12 [Polygenic Modeling of
Quantitative Traits by EM Algorithm], page 71.

This tutorial is based on the computing notes of Dr. Elizabeth Thompson. Descriptions
of the parameter statements are taken from the ‘README_userdoc’ files written by Myrna
Jewett. The original version of this document was written in 2002 by Michael Na Li, and
revised by Myrna Jewett and Adele Mitchell in 2006. It was revised again for MORGAN
2.8.3 with new Examples by Audrey Q. Fu. The current version together together with
updated Examples for MORGAN 2.9 was by Tia Lerud in 2009, further revised by Marshall
Brown in 2010.

http://www.stat.washington.edu/thompson/Genepi/pangaea.shtml
http://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml
http://www.stat.washington.edu/thompson/


Chapter 1: Get Started 2

Combined with hands-on examples, this tutorial gives a brief introduction to the usage
of the main MORGAN programs. For further information, please refer to the MORGAN
documentation and to the references cited.

1.2 Get the Tutorial

This tutorial is available on-line at
http://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml#tut

Several formats of this tutorial are also available to download for off-line reading or printing.

1.3 Get and set up the examples

This tutorial assumes that the MORGAN software has already been installed. If this is not
the case, please contact your local system administrator or download the software yourself
and follow the instructions therein.
Follow the following steps to download and set up the examples:
1. Unpack the examples by typing the following command in a shell window,

user$ tar zxvf morgan-examples_V29.tar.gz

Or if the above command fails (you don’t have GNU tar), use
user$ gunzip -c morgan-examples_V29.tar.gz | tar xvf -

This will produce a ‘MORGAN_Examples’ directory under your current directory.
(Note: Throughout the text, file and directory names are enclosed in single quotes;
these single quotes are not part of the file or directory name.)

2. Use ‘Makefile’ to establish links under the ‘MORGAN_Examples’ directory to the MOR-
GAN programs. A link under the ‘MORGAN_Examples’ directory serves as a shortcut to
a MORGAN program installed elsewhere.
Before making links, you first need to edit the ‘Makefile’ (using your favorite text
editor, for instance vi or pico) in the ‘MORGAN_Examples’ directory to make sure the
paths to your MORGAN programs and those to the ‘MORGAN_Examples’ directory are
correct. Most often, it is necessary to change the ‘MORGANDIR’ and ‘EXAMPLEDIR’ state-
ments to reflect the locations of the MORGAN files on your system and the examples,
respectively. Here is the relevant part of the ‘Makefile’,

# Change the following macros to where MORGAN and the examples
# are installed on your system.
# This is the only change you need to make in this file.

MORGANDIR = /castor/genepi/MORGAN_V2.9
EXAMPLEDIR = /h4/audrey/MORGAN_Examples
BINDIR = /h4/audrey/bin

# Note: the paths may happen to be same for MORGANDIR and EXAMPLEDIR.
# In general they are different:
# MORGANDIR is where MORGAN is installed on your system
# EXAMPLEDIR is the MORGAN_Examples directory you have made
# BINDIR is your bin directory

http://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml#tut
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# BINDIR is needed only if you prefer to link to executables from your
# bin directory, rather than running from a current directory: for
# example, if your current directory is not in your standard path.

For more information on how to use Makefile to build links, etc., you may type:
make help

To make symbolic links to those programs in the current directory, type
make links

Notes for Microsoft Windows users:
MORGAN may be (in principle) installed under Windows: executables should then be
placed in the directory in which programs are to be run. See the documentation for more
information. We cannot currently answer any questions regarding Windows installation.
Instead, we recommend the use of a linux-system emulator such as .

1.4 Overview of the pedigrees used in the examples

Except for some small pedagogical pedigrees for pedcheck under ‘Pedcheck’, two main
pedigree files are used to illustrate the usage of MORGAN programs.
File ‘jv_rep.ped’, located under ‘IBD’, is composed of two replicates of the JV pedigree.
The 30-individual 5-generation JV pedigree derives from a real study of a rare recessive
trait by Goddard et al (1996 AJHG 58: 1286-1302).
The other pedigree in ‘ped73.ped’, located under ‘MORGAN_Examples’, consists of three
components and 73 individuals: component one has 47 individuals from 6 generations,
component two 11 individualus from 3 generations, and component three 15 individuals
from 3 generations. In general, individuals from later generations are observed. The three
components are displayed in ‘ped47.pdf’, ‘ped11.pdf’ and ‘ped15.pdf’, which are located
under ‘PedInfo’.

1.5 Structure of the MORGAN package

It is not necessary to read this section in order to use MORGAN, to run the examples, or to
modify them for your own use. However, for those who wish to modify MORGAN code, or
to understand MORGAN more fully, it will be useful to have information on the directory
structure, the README documentation, and the GOLD-standard documentaion, Makefiles,
and examples. These are therefore described in this section, updated for the released version
of MORGAN 2.9.
1. README documentation files

Within the main MORGAN directory, there are program directories, and within these
there the Gold-standard directories. At each level there are README files which
provide additional documentation. In many cases, this information is duplicated in the
tutorial, but whereas the Tutorial is focused to the user, README documentation is
focused to the modifier and developer.
1. README files in the main MORGAN directory

These include README readme, README MORGAN, README install, and
README relnotes.
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• README readme describes the various README files throughout MOR-
GAN.

• README MORGAN lists the MORGAN programs and describes briefly the
analysis done by each program. It also lists the MORGAN V2.9 directories
and libraries.

• README relnotes contains a summary of the changes and additions in recent
releases of MORGAN.

• README install contains instructions for installing MORGAN executables.

In some MORGAN releases there may be additional main-directory
README files. For example, in the first release of MORGAN 2.9 there is a
README bugs v2.9: these bugs are now fixed.

2. README files in main program directories

The main program dirctories of MORGAN 2.9 are PedComp, Genedrop, Autozyg,
Lodscore, LR Lods, and PolyEM. Each main program directory contains its own
README userdoc. This describes the inputs to be prepared for the programs,
and the various program options. Most of this information is now included in the
tutorial, but the README files may contain more detail in some cases.

Occasionally, there may be additional README files. For example the Autozyg
main program directory contains a file README IMPORTANT, described the
(few) parameter statements that must be changed when moving from older to
newer versions of MORGAN.

Most subroutine directories do not contain README files. An exception is the li-
brary of subroutines for the lm twoqtl program, ‘/TwoQTL’. The README twoqtl
file in the ‘TwoQTL’ subdirectory contains information about running lm twoqtl.
This information is not yet incorporated into the relevant main-program directory
README userdoc file.

Additionally, the Autozyg main program directory contains a subdirectory
‘/Utils’ of routines specific to the programs lm ibdtests and lm map which have
not yet been incorporated into a library directory. There are two README files
in ‘Utils’: README ibdtests and README lm map written by the authors of
those programs. In this case, most of the relevant information is now incorporated
into the README userdoc in the Autozyg program directory.

3. README files in Gold and Test subdirectories.

Each main program directory contains a subdirectory, Gold, or in two cases both
a Gold and a Gold1 subdirectory. These directories include examples that may
be run to check correct installation of MORGAN, and to provide a wider array
of example parameter files than are currently in the MORGAN EXAMPLES files
used in the tutorial. Each Gold and Gold1 subdirectory contains a README gold
file detailing the examples in that directory.

Additionally, in some versions of MORGAN, Autozyg contains a TestGL subdi-
rectory, with an example for testing installation of the real-time graphics display
(if installed). The README display file in this subdirectory provides information
on this topic.
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2. The subroutine library directories

The subroutine library directories contain the code for the library routines. During
installation of MORGAN, each creates a library file from which the required subroutines
are loaded into the executable of each main program. The libraries can be divided
broadly into four groups:

• Lowest-level libraries required by all programs

− Stuff: Routines for printing, allocating, freeing

− Pars: Routines for processing MORGAN parameter statements

• Low-levels libaries performing various groups of functions

− CMF: A set of routines mainly for matrix manipulation, originally translated
from the FORTRAN CM library

− Peel: Routines for pedigree peeling computations

− Rans: Routines for random number generation

• Main libraries supporting genetic analysis programs

− Pedchk: Routines for checking validity of input pedigrees. Routines for the
the pedchk program in PedComp, but also called by all programs.

− Nghds: Routines for constructing the pedigree neighborhood structures from
input pedigree files. Used by all programs with input pedigree data files.

− Quant: Routines for handling quantitative trait data. Used by PolyEM pro-
grams and others that use quantitative trait data. Relies on the CMF matrix
manipulation library.

− Markers: Contains routines for sorting and analysing marker and trait data.
Also all the routines that allocate and set the underlying inheritance vector
arrays used by MCMC-based programs.

− Sample: Routines for MCMC sampling and related computations on pedi-
grees.

• Extra specialist libraries

− GLDisp: Routines for the real-time graphics display

− TwoQTL: Routines for the Lodscore program lm twoqtl

In addition to the subroutine libraries, the subdirectory ‘Utils’ of Autozyg con-
tains code for subroutines that are directly incorporated into the lm ibdtests and
lm map programs. Also, the subdirectory ‘NewRtnes’ of Lodscore includes code
directly incorporated into the lm_bayes program. These routines were written
by the authors of those programs. They may eventually be incorporated into the
MORGAN subroutine libraries.

The header files for all libraries and programs are contained in the Headers subdi-
rectory of MORGAN. Typically there is one or more header files associated with
each library, and named accordingly. For example, the file ‘nghds.h’ in ‘Headers’
corresponds to the Nghds subroutine library. More complex libraries such as Pars
have a large number of corresponding header files.
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• The main program directories
The main program directories of MORGAN 2.9 are PedComp, Genedrop, Autozyg,
Lodscore, LR Lods, and PolyEM. When MORGAN is installed these directories
contain the following executables:
• PedComp: pedcheck, kin
• Genedrop: genedrop, ibddrop, markerdrop
• Autozyg: lm auto, lm pval, lm ibdtests, lm map
• LR Lods: lm lods, lm schnell
• Lodscore: lm bayes, lm markers, lm multiple, lm twoqtl
• PolyEM: univar, unibig, bivar, multivar

More details about all of these executable programs can be found either in this
tutorial or in the README userdoc files of the relevant main program directory.
To make room for new Lodscore programs, with MORGAN V2.8.2, the new di-
rectory LR Lods was created to contain the two older programs lm_schnell and
lm_lods. These two programs differ in several ways from newer programs, but
the principal one is that they use the methods of combining likelihood ratios (LR)
along the chromosome in order to estimate lod scores (see Thompson & Guo, 1991,
IMA J Math Appl in Med & Biol).

• GOLD-STANDARD directories, Makefiles and examples
The Gold and Gold1 subdirectories of the main program directories PedComp,
Genedrop, PolyEM, Autozyg, LR Lods and Lodscore contain example runs of
all the main programs in order to test various aspects of code and installation.
Examples for a paticular main program are in the Gold and/or Gold1 subdirectory
of that main program directory.
In MORGAN V2.8.3, Gold replaces the previous Gold2 subdirectory, in Autozyg,
LR Lods, and Lodscore directories. Gold1 directories remain in Autozyg and
LR Lods directories since they provides the only tests of MCMC samplers on
looped pedigrees. Gold1 gold standards were omitted from the released MOR-
GAN V2.8.2, due to delays in checking looped pedigree peeling routines, but were
reinstated from MORGAN V2.8.3.
The Gold and Gold1 subdirectories typically contain numerous test parameter
files, pedigee files, and marker data files. The tests are run via Makefiles, and the
command make help.gold will provide details. Additionally, the ‘README_gold’
file in each directory will give details of the examples.
Examples may run using the make command. Typically the complete set of ex-
amples in any Gold or Gold1 directory is run using the command make all.gold.
More detailed information is given by using make help.gold or by viewing the
Makefile. Since the Gold tests and examples are intended primarily for develop-
ers, it is expected that viewing and modifying the Makefile examples will pose no
difficulties.
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2 Common Features and File Formats

All MORGAN programs use the same command line syntax, share many statements, and
use the same pedigree data format. Most of the MORGAN programs need at least two
input files in order to run: one parameter file and one pedigree data file. The parameter
file contains computing requests, model parameters and input/output file options. It may
also contain genotype data or other information specific to a particular MORGAN program.
The pedigree file contains, at minimum, information on family relationships among the
individuals in the sample. If the general syntax and format descriptions of this section
seem complex, readers may find it easier to proceed to the actual examples of the following
chapter. In the context of those examples, the general format may become clearer.
It is worth pointing out that white space in any input file is defined to be any of these
characters: ‘,’ (comma), ‘\t’ (horizontal tab), ‘\v’ (vertical tab), ‘\n’ (line feed, or newline),
‘\f’ (form-feed), ‘\r’ (carriage return).

2.1 Command syntax

The parameter file name must be passed to MORGAN on the command line when calling
the program. Other file names can be passed to MORGAN on the command line or in the
parameter file. The minimum syntax to call a MORGAN program is:

./progname parfile

In the statement above, progname is the name of one of several MORGAN main programs,
such as genedrop or lm_lods. The parfile is the name of the parameter file which must be
present. For example, to run genedrop using a parameter file named ‘genedrop.par’, the
command is:

./genedrop genedrop.par

Note that if the current directory is in your PATH, you may say
progname parfile

but the form ./progname is more universal, and used throughout this tutorial.
Additional file names can be passed to MORGAN on the command line, but these file names
must be accompanied by a file type to identify them. The syntax is:

./progname parfile [filetype filename]...

Square brackets indicate optional arguments. Possible filetype options include:

ped Input pedigree file

mark Input marker data file (Note that only Autozyg programs use marker data)

oped Output pedigree file

seed Input seeds for random number generator

oseed Output random seeds

oscor Output score file

If the name for a particular file type is given both in the command line and in a parameter
statement, the name in the command line takes precedence.
The programs put informational messages to stdout and error messages to stderr which
default to the screen. It is possible to redirect either or both to a named file.
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2.2 Parameter file

A MORGAN parameter file contains a series of statements. Many statements are common
to all MORGAN programs, particularly those that define the format of the pedigree file and
identify other files to be used for program input or output. Many statements are optional,
with some default behavior. If statements irrelevant to the MORGAN program called by the
user are included in the parameter file, those statements are ignored and a warning message
is issued.

Each statement must begin on a new line and begins with one of the MORGAN statement
keywords. A statement consists of any number of lines. Case is not significant for the
keywords. Only the first four letters of the keywords are significant; the remainder of the
word is ignored. The order of the statements does not matter. If the same statement is
repeated, the last one overrides previous ones and a warning is given in the output file. A
# starts a comment so that the rest of the line is ignored. Either single or double quotation
marks (’ or ") can be used to delimit strings such as file names. Look at the warnings
issued by MORGAN to make sure the parameters are as you intended.

The most common statements are for identifying input and output files (counterparts of
the command line options) and for describing the input pedigree file format.

Below is a simple parameter file, ‘check.par’, from the examples included with the MOR-
GAN software under the subdirectory ‘MORGAN_Examples/Pedcheck’.

input pedigree file ‘check.ped’
input pedigree size 30
input pedigree record gender absent
input pedigree record observed present
assign gender
output pedigree chronological
output pedigree file ‘check.oped’

A brief description of the most commonly used parameter file statements follows in the next
section. For a complete and more detailed description of MORGAN statements, please see the
sections of this tutorial relevant to specific MORGAN programs and the documentation that
comes with MORGAN in the files ‘README_userdoc’ in the various program subdirectories.

2.3 File identification statements

Within the parameter file, file names are delimited with single or double quotation marks (‘
or "). File names submitted on the command line are not delimited with quotation marks.
In a parameter file, either of the two statements below would identify ‘pedchk.ped’ as the
pedigree file to be read.

input pedigree file "pedchk.ped"
input pedigree file ‘pedchk.ped’

The most commonly used file identification statements are:

input pedigree file filename

The input pedigree file is required for most programs and may be specified
either in the parameter file or through command line options.
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output [overwrite] pedigree file filename

The output pedigree file is required by genedrop. Other programs also check
for errors in the pedigree. If there are errors that the program is able to correct
or if there are requested changes to the pedigree file format, the new pedigree
data is written to this file.

input marker data file filename

Marker data, such as marker allele frequencies, map distances between markers
and individuals’ genotypes, can be included in the parameter file itself or in
a separate file, called the marker data file. This statement is used when the
marker data are not included within the parameter file. The marker file contains
the ‘set marker data’ statements. Marker data are used by Autozyg programs.
See Section 9.6.7 [Autozyg computational parameters], page 51.

input seed file filename

This file contains statements to set random seeds for the Monte Carlo based
programs. The seed file may contain multiple lines (as in the case when the
input seed file is also used for the output seed file). If so, the seeds in the last
line override previous ones (with warnings issued). If no seed file is named on
the command line or in a parameter statement and there are no statements to
set random seeds in the parameter file, default seeds (12345, 1073 (hexadecimal
0x3039, 0x431)) are used.

output [overwrite] seed file filename

The final random seeds are saved if an output seed file is named. This file could
be the same as the input seed file. New entries are appended to the old file.

2.4 Pedigree file

The pedigree file may contain two sections, formatting statements and pedigree data, sep-
arated by the file separator ‘****’. The first section is optional; if present, it contains
statements that describe the contents and format of the pedigree file, as some MORGAN
users find it convenient to describe the pedigree data within the file itself. The alternative
is to put these formatting statements in the parameter file.

The pedigree data begin below the file separator. Data for each individual must be placed on
a separate line. Each line begins with three names, followed by integers, then real numbers.
The only required fields, the three "names", are identifiers for each individual and his or
her parents. Names may include up to 15 alphanumeric characters. Whitespace (comma,
space, tabs, linefeed), single (’) and double (") quotes, and the hash mark (#) cannot
be included in names. Names longer than 15 characters are truncated to 15 characters.
Pedigree founders should be given parents with names ‘0’.

Gender, if present, is the fourth item in each line. These three or four values may be followed
by an “observed” indicator, with values of ‘0’, indicating an unobserved individual, or ‘1’,
indicating an observed individual. The optional “observed” indicator is followed by other
integers, if present, and real numbers, if present. Integers and real numbers can represent
individuals’ trait data.

The format of the file is flexible and is specified by the user with ‘input pedigree record
...’ statements, described in the next section.
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Unlike LINKAGE format pedigree files, genotype data are not included in a MORGAN pedi-
gree file.

2.5 Pedigree file description statements

Any of the following statements can be placed either in the parameter file or in the top
section of the pedigree file, above the file separator, ‘****’. Most parameters have default
values, in which case the statement is usually not required.

allow pedigree size N

This statement overrides the program-defined maximum pedigree size (presently
20,000 individuals).

input pedigree size N

Here, N is the number of records to be read. It may be less than the actual
number of individuals in the pedigree file.

input pedigree record names 3 [integers I] [reals J]
This specifies the numbers of entries in each line of the pedigree file. There
must be three names (up to 12 alphanumeric characters each) identifying an
individual and his or her parents. Optional integers include gender and pheno-
typic or discrete trait data. Real numbers could be covariates or quantitative
trait values.

input pedigree record (father mother | mother father)
This statement specifies the order of parental names. ‘father mother’ is the
default.

input pedigree record gender (present | absent)
Gender, which follows the required triplet of names, is optional. If this state-
ment is not included, the default is ‘gender present’. Gender is coded as an
integer, such that ‘1’, ‘2’ and ‘0’ represent male, female, and unsexed, respec-
tively.

input pedigree record observed (absent | present)
The observed indicator designates which members of the pedigree are observed
and which are unobserved, indicated by ‘1’ and ‘0’, respectively. When the
observed indicator is present, it follows gender (or parents if gender is not
present). If this statement is absent, all pedigree members are assumed to be
observed.

input pedigree record traits K1 K2... integers I1 I2...
This statement is needed when integer data for traits are included, and the
trait values do not immediately and consecutively follow gender (if present).
Use this statement to specify the correspondence between trait numbers and
integers in the record.

Below are the first several lines of the sample pedigree file, ‘ped73.ped’ in
‘MORGAN_Examples’.

input pedigree size 73
input pedigree record names 3 integers 6 reals 1
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***************************************************
101 0 0 1 0 0 0 -1 -1 999.5
102 0 0 2 0 0 0 -1 -1 999.5
201 101 102 1 0 0 0 0 1 999.5

Note that genotype data are not contained in the pedigree file; genotype data, if required
for the MORGAN program invoked, are contained in the parameter file or in a marker
data file specified in the parameter file using the ‘input marker data file’ statement.
The second parameter statement in the file, ‘input pedigree record names 3 integers 9
reals 1’ describes the format of the data on each line (also called a record) in the file. The
first three values in each row, the names, give an individual’s identification number followed
by those of his or her father, then mother. Because there is no ‘input pedigree record
gender’ statement, gender is assumed to be present and to directly follow the three names.
Absence of an ‘input pedigree record observed’ statement means that all individuals
are assumed to be observed. The 8 integers following gender and the real number in the
final column represent trait data. Lack of an ‘input pedigree record traits integers’
statement indicates that the first integer following gender corresponds to trait 1, the second
to trait 2, etc. These (and other) parameter statement defaults apply only if there is no
overriding statement in any of the parameter files used. Programs will generally provide a
warning statement (coded “(W)”) when default values are being used due to absence of a
relevant parameter statement.
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3 Checking Pedigree Validity

3.1 Introduction to pedcheck

pedcheck reads the pedigree file and checks for errors in the pedigree structure. Specifically,
it checks for the following errors:
− duplicate names of individuals
− individuals (non–founders) with parents missing from the pedigree
− individuals with parents of the wrong gender
− impossible pedigrees, such as an individual who is her or his own ancestor
− invalid names, genders, integers or real numbers
− pedigree entries with missing data

If no errors are found, pedcheck reports the number of components (connected pedigrees)
found and lists for each component:
− number of individuals
− the number of founders
− the number of females
− the number of males
− the number of unsexed individuals
− the number of observed individuals
− the name of the first member of the component, in chronological order

If there are changes to the file, pedcheck writes an output pedigree file. Requested changes
may include reordering of the pedigree chronologically (by component, then by name), the
addition of gender, the addition of an observed indicator, and reversing the order of the
parental names.
Other MORGAN programs do their own pedigree checking by calling the relevant pedcheck
functions, but it is still useful to do preliminary processing of data files first.

3.2 Sample pedcheck parameter file

Files for pedcheck may be found in the ‘Pedcheck’ subdirectory of ‘MORGAN_Examples’.
Below is the sample parameter file ‘check.par’ for pedcheck:

input pedigree file ‘check.ped’
input pedigree size 30
input pedigree record gender absent
input pedigree record observed present
assign gender
output pedigree chronological
output pedigree file ‘check.oped’

The ‘assign gender’ statement requests that pedcheck determine gender, when possible,
and output that information to the output pedigree file. The gender determination is made
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based on the default order for the listing of parents, which is father followed by mother.
Individuals who are not parents will be assigned missing gender, ‘0’.
‘output pedigree chronological’ causes the pedigree to be sorted into chronological order
in the output pedigree file, first by component, then by individual name. MORGAN refers to
each connected pedigree (i.e., distinct family) in a file as a component. The first individual
in the input listing who is not genealogically connected to individual 1 defines component
2, and the first who is not connected to either of these defines component 3, etc. Although
pedcheck groups individuals by their MORGAN–assigned component numbers in the output
pedigree file, it does not list the component numbers. That is, the first three columns of the
output file are just as they were in the input file: individual name, father’s name, mother’s
name.

3.3 Running pedcheck examples

Examples for the program pedcheck are under the subdirectory ‘Pedcheck/’. The com-
mands using example files are listed below. Have a look inside the pedigree and parameter
files, then verify that the output files are as you would expect them to be. If error messages
are generated, verify that they make sense and see if you can make the necessary corrections
so that pedcheck will run.

./pedcheck check.par

runs on input pedigree file ‘check.ped’. The pedigree contains no errors, but
has no gender specified and is not in chronological order. Look at the parameter
file: you will see that it specifies the absence of gender, and requests that gender
be assigned and that the output pedigree be chronologically ordered. Then,
indeed, the output pedigree file ‘check.oped’ has gender assigned and has the
members reordered. Notice that individuals who are not parents (531 and 541)
have missing gender, ‘0’, in the fourth column of ‘check.oped’. You will get an
error message and the program will quit if ‘check.oped’ already exists. If this
occurs, delete the file and try again or use another output file name.

./pedcheck imp.par

runs on input pedigree file ‘imp.ped’. The pedigree contains an individual who
is his own ancestor.

./pedcheck empty.par ped sex.ped

runs with an empty parameter file, with input pedigree file ‘sex.ped’ specified
on the command line. What does the output say is wrong with this pedigree?

./pedcheck empty.par ped dup.ped

runs with an empty parameter file, with input pedigree file ‘dup.ped’ specified
on the command line. What does the output say is wrong with this pedigree?

3.4 pedcheck statements

pedcheck statements apply to other MORGAN programs since the programs call the
pedcheck functions first to check the pedigree file before doing computations on the
pedigree data.
• For specifying the pedigree file and the optional seed file, see Section 2.3 [File identifi-

cation statements], page 8.
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• For describing the format of the pedigree file, see Section 2.5 [Pedigree file description
statements], page 10.

(assign | ignore) gender
Optional. ‘assign gender’ causes gender to be determined by parentage,
whether or not gender is included in the pedigree file. ‘ignore gender’, causes
the program to not check or assign gender. The default action is to assign
gender when it is absent and to check gender if it is present.

output pedigree chronological
Optional. If this statement is present and if the input file is not in chronological
order, the pedigree is sorted and written out in chronological order. The pedi-
gree is sorted by components, and within each component, each non-founding
member is preceded by her or his parents. If this statement is not given, the
input order is preserved in the output file, if written. See the previous section
of this chapter for further discussion of pedigree components.

output pedigree record (father mother | mother father)
Optional. This statement causes the parents to be named in the specified order.
The default arrangement for each triplet of names is the input order.
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4 Computing Kinship and One- or Two-Locus
Inbreeding Coefficients

4.1 Introduction to kin

kin computes kinship coefficients for pairs of pedigree members. It also computes single-
locus and two-locus inbreeding coefficients for members of the pedigree. Briefly, the kinship
coefficient between individuals i and j is the probability that a randomly-drawn allele from i
is identical by descent (ibd) to randomly-drawn allele from individual j at the same locus. A
single-locus inbreeding coefficient is the probability that an individual carries two copies of
a gene that are ibd, at a given autosomal locus. In other words, an individual’s single-locus
inbreeding coefficient is equal to the kinship coefficient of his parents, as an individual’s
gametes can be thought of as random draws from his parents’ chromosomes. A two-locus
inbreeding coefficient is the probability that an individual carries two ibd copies of a gene
at each of two linked loci. kin presents two-locus inbreeding coefficients as a function of
the recombination fraction between the two loci.

Note: currently the kin program does not check for duplicate requests within a pedigree
component of any inbreeding or kinship coefficients. It does check (and quits with an error)
if a request is made for kinship of an individual with him/her self. These bugs will be fixed
in a future MORGAN release.

4.2 Sample kin parameter file

Files for kin may be found in the ‘IBD’ subdirectory of ‘MORGAN_Examples’. Below is a
sample kin parameter file, ‘jv_rep_kin.par’.

input pedigree file ’jv_rep.ped’
compute component 1 kinship coeff 531 431 431 432
compute component 1 inbreeding coeff 332 531
compute component 2 kinship coeff 341 442
compute component 2 inbreeding coeff 441 541
compute component 1 two-locus inbreed coeff 531
compute component 2 two-locus inbreed coeff 441
set recomb freqs .01 .05 .04 .10 .18 .30 .50 .0

The statements on lines 2 – 7 request computation of kinship coefficients for the pairs ‘531
431’ and ‘431 432’, and then inbreeding coefficients for individuals ‘332’ and ‘531’, from
component 1. It then requests kinship coefficients for the pair ‘341 442’ and inbreeding
coefficients for individuals ‘441’ and ‘541’ from component 2. Finally, it requests the two-
locus inbreeding coefficient for ‘531’ from component 1 and ‘441’ from component 2. The
two-locus inbreeding coefficient will be computed for two loci at distances specified in the
‘set recomb freqs’ statement. (Note these need not be ordered, but the program will
order them in the output.) If there is more than one component (connected pedigree) in
the file, the component number must be specified. MORGAN assigns component numbers
to the connected pedigrees within the pedigree file. If your data set contains more than one
component, you may first run pedcheck to determine which individuals are assigned which
component numbers.
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4.3 Running kin example and sample output

Under the subdirectory ‘IBD/’, run the example above using the command below. To send
the output to a file instead of the screen, include ‘> filename’ (without quotes) after the
parameter file name on the command line.

./kin jv_rep_kin.par

Below is the relevant part of the kin output.
Component 1:

Kinship coefficients:

531 431 .32031
431 432 .10938

Inbreeding coefficients:

332 .00000
531 .10938

2-locus inbreeding coefficients:
(g4link is probability of IBD at both of 2 linked loci)

proband recomb g4link
freq prob

531 .000 .10938
.010 .10234
.040 .08386
.050 .07849
.100 .05660
.180 .03455
.300 .01910
.500 .01196

Component 2:

Kinship coefficients:

341 442 .15625

Inbreeding coefficients:

441 .06250
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541 .10938

2-locus inbreeding coefficients:
(g4link is probability of IBD at both of 2 linked loci)

proband recomb g4link
freq prob

441 .000 .06250
.010 .05885
.040 .04905
.050 .04614
.100 .03388
.180 .02060
.300 .01008
.500 .00391

Note that when the recombination frequency is 0.0, the two-locus inbreeding coefficient is
the same as the one-locus inbreeding coefficient, as there is no recombination between the
loci, thus they act as a single locus. When the recombination frequency is 0.5, the two loci
are independent and the two-locus inbreeding coefficient is the squared one-locus inbreeding
coefficient.

4.4 kin statements

At least one of the following ‘compute ...’ statements are required to run program kin.
If there is more than one component (connected pedigree) in the file, the component num-
ber must be specified. MORGAN assigns component numbers to the connected pedigrees
within the pedigree file. If your data set contains more than one component, you may
first run pedcheck to determine which individuals are assigned which component numbers.
pedcheck will sort by component number in the output pedigree file, although it will not
list component numbers in the file. The screen output generated when running pedcheck
will give component numbers and the number of individuals in each component. Check the
error and warning messages when running kin to verify that component numbers were cor-
rectly specified. The program will quit if an individual’s component number is incorrectly
specified in the parameter file or if there is more than one component in the data set and
no component is specified.

compute [component M] kinship coefficient N1 N2...
This statement names one or more pairs of pedigree members for which the
kinship coefficient is to be computed.

compute [component M] inbreeding coefficient N1...
This statement names one or more pedigree members for whom the inbreeding
coefficient is to be computed.

compute [component M] two-locus inbreeding coefficient N1...
This statement requests the computation of two-locus inbreeding coefficients,
i.e. the probability of ibd at both loci, for the named individual. For the recom-
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bination frequencies at which the coefficients are computed, see the following
statement.

set recombination frequencies X1 X2...
Two-locus inbreeding coefficients are computed for each of the list of recombi-
nation frequencies, in the range of 0.0 to 0.5. If frequencies are not given, the
default values are: 0.0, 0.01, 0.04, 0.05, 0.10, 0.18, 0.30, and 0.50.
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5 Simulating Marker and Trait Data in Pedigrees

5.1 Introduction to genedrop.

genedrop simulates pedigree data for analysis by other programs. Given a genetic map,
it simulates genotypes at marker loci (linked or unlinked) and the discrete genotypes and
polygenic values contributing to quantitative traits. The trait loci may or may not be linked
to marker maps. Thus, one or more of three kinds of loci are simulated on a chromosome:
markers, traits linked to markers, and traits not linked to markers.
genedrop assigns marker and trait genotypes and polygenic trait values to the founders by
using a random number generator.Meiosis indicators are then simulated for non-founders
in chronological order, thus determining the genes inherited and the founder labels. Mark-
ers and traits, if present, are then simulated for each individual: First, marker genes are
simulated in the order mapped on the chromosome, then linked traits are simulated in map
order, and finally, unlinked traits are simulated.
Because founders of a pedigree are assumed to be unrelated, a unique identifier, a founder
gene label or founder label, is assigned to each of the two haploid genomes of each founder.
The user may choose to identify the ancestral source of each gene at each locus in non-
founders by including the founder labels in the output pedigree.
The user may provide random number seeds for both the marker simulation and the trait
simulation. This permits multiple simulations, for a pedigree, of identical marker genotypes,
but with different quantitative trait values.
The population and segregation model parameters (trait genotype means, additive and
residual variances) may be specified by the user and take default values if not specified.
Allele frequencies have no default values and must be specified by the user. Several different
trait models can be specified as in the following table:

Equal Genotypic Means Zero Additive Variance
non-genetic model YES YES
polygenic model YES NO
major gene model NO YES
mixed model NO NO

The trait locus must be diallelic and the trait residual variance must be greater than zero.
A very small residual variance can be specified if one desires to simulate a qualitative trait.
Genetic data on all individuals may be included in the simulated pedigree, or some individ-
uals may be specified as "missing". If any individuals are to be missing genetic data, an
"observed" indicator column must be included in the pedigree file. See Section 2.4 [Pedigree
file], page 9, for details.

5.2 Sample genedrop parameter file

Files for genedrop may be found in the ‘Simulation’ subdirectory of ‘MORGAN_Examples’.
The example here refers to ‘ped73_gdrop.par’. SEED FILE: The seed file is used to store
the random seeds used in the simulations. Occasionally one will want to use the same seed
with multiple runs, but most often one will want to use new seeds so as to obtain different
output with each run. The seed file contains one or more statements like ‘set marker seeds
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0xde5e8d39’. For more about the way genedrop handles seeds See Section 5.4.4 [genedrop
computational parameters], page 24.

The seed file can be specified in the command line or in the parameter file. The following
statements are needed to specify the seed file in the parameter file:

output marker seeds only
input seed file ’marker.seed’
output overwrite seed file ’marker.seed’

The first line specifies ‘marker.seed’ as the input seed file for the marker simulation. The
default behavior is to save both the marker and trait seeds. The second statement, ‘output
marker seeds only’, overrides this default behavior and so causes the program to save only
the marker seeds before exiting. The ‘overwrite’ option in line 3 enables the program
to replace the current seed file content with the newly generated random numbers, which
can be used for simulation in the future. When an overwrite is not requested, MORGAN
appends the new output seeds to the existing file at the end of the run. Thus, at the next
run, more than one ‘set marker seeds’ statement exists in the seed file. The program uses
only the last ‘set marker seeds’ statement in the file.

In the example, we have chosen to access the seed file from the command line, hence the
second and third lines in the above example are commented out in ‘ped73_gdrop.par’. See
the next section for command line implementation.

Other notes on the parameter file: The statement ‘output pedigree chronological’ is
included in the example ‘.par’ files so that the output pedigree will be in the chronological
order required for use with other MORGAN programs.

simulate chrom 1 markers 10 traits 1

The above statement asks genedrop to simulate ten markers loci and one trait locus on
chromosome 1. If no trait locus is to be simulated, the part ‘traits 1’ can be removed.

map chrom 1 marker dist 10 10 10 10 10 10 10 10 10

The above statement indicates a marker map on chromosome 1, with 10 equally spaced
markers, each at a distance of 10 (Haldane) centiMorgans from the preceding one.

A marker map can also be specified by recombination fractions. For example:

map chrom 1 marker recomb fracs 0.1 0.5 0.2

gives a map of four ordered markers, M1,M2,M3 and M4, with recombination fraction 0.1
between M1 and M2, 0.5 between M2 and M3, and 0.2 between M3 and M4.

Marker allele frequencies are set by the following lines:

set chrom 1 markers 1 freqs 0.13 0.66 0.16 0.05
set chrom 1 markers 2 freqs 0.06 0.23 0.41 0.25 0.05
set chrom 1 markers 3 freqs 0.11 0.02 0.01 0.06 0.24 0.56
set chrom 1 markers 4 freqs 0.07 0.04 0.89
set chrom 1 markers 5 freqs 0.12 0.11 0.03 0.03 0.50 0.21
set chrom 1 markers 6 freqs 0.50 0.44 0.06
set chrom 1 markers 7 freqs 0.01 0.33 0.62 0.04
set chrom 1 markers 8 freqs 0.20 0.05 0.42 0.27 0.06
set chrom 1 markers 9 freqs 0.18 0.18 0.25 0.16 0.08 0.15
set chrom 1 markers 10 freqs 0.17 0.35 0.04 0.29 0.15
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In the case where several markers have the same number of alleles and allele frequencies,
one can group those markers together into one line:

set chrom 1 markers 11 12 13 15 freqs 0.2 0.8

However, we consider it good practice to specify the frequencies separately for each marker.
The following five lines describe the trait locus. The trait locus is between markers 5 and
6 on chromosome 1, at a distance of 5 cM to marker 5. The trait locus can have only two
alleles; here the frequencies are 0.5 and 0.5, for alleles 1 and 2, respectively. The mean values
of the trait for each trait locus genotype are on the next line. Values correspond to the (1
1), (1 2) and (2 2) genotypes, respectively. The residual variance gives the within-genotype
variance of phenotypic values about the mean. The additive variance (0 in this example,
and by default if not specified) is the variance of an additive polygenic contribution to trait
values.

map chrom 1 trait 1 marker 5 dist 5
set trait 1 freqs 0.5 0.5

set trait 1 geno means 90 100 110
set trait 1 residual variance 25.0
set trait 1 additive variance 0.0

The following three lines may be included in the parameter file (we have commented them
out in the example so as to keep the output file small and easy to read).

output pedigree record founder gene labels
output pedigree record trait latent variables
output pedigree record unobserved variables

These lines request that the founder gene (or genome) labels and latent variable values for
the trait be included in the output file, and that the data be simulated for all (observed and
unobserved) individuals. Founder gene labels indicated, for all non-founders, which founder
alleles were passed to the individual. The latent and the additive and residual components
of the trait value. Latent trait variables will precede the trait value in the output file.

5.3 Running genedrop examples and sample output

Two examples are available under the subdirectory ‘Simulation/’. The commands to run
these examples are similar to the following (see the ‘README’ file in the ‘Simulation’directory
for additional options):

./<program> <parfile> [ped <pedfile>] [seed <seedfile>] [oped <opedfile>]
genedrop ped73_gdrop.par ped ../ped73.ped seed ../marker.seed oped gdrop.oped

When running the genedrop example, notice (but do not worry about) the appearance of a
warning message on the screen: ‘Overrides previous statement of same type (W)’. The
warning was triggered by the specification of ‘seeds’ as both the input and output seed
file, without inclusion of ‘overwrite’ in the ‘output seed file’ statement.Recall from the
previous section that, by default, MORGAN appends the new output seeds to the existing
seed file at the end of each run. To avoid this warning (and an ever-growing seed file),
one can access the seed file from the parameter file and use the ‘overwrite’ option when
outputting the seeds (see the previous section Section 5.2 [Sample genedrop parameter file],
page 19).
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Since the function of genedrop is to simulate marker and trait data, it, unlike other MOR-
GAN programs, always creates and output pedigree file. The output file ‘gdrop.oped’ is
structured similarly to the input file ‘ped73.ped’, with one individual per record (line).
However, the output file contains additional columns and does not include the parameter
statements found at the top of the input file. The first four items are the individual’s name,
the names of the parents, and gender. If no addition output options are set, the next items
are the genotypes of the markers (two items per marker) in the order they are found on the
chromosomes, followed by the trait values in the order of the trait labels.
Notice the three statements at the end of the parameter file. In order to save space and
make the output more readable, these statements have been commented out so that they
are not executed by the program.
If the statement ‘output pedigree record trait latent variables’ was included in the
parameter file, the output file would contain four additional columns preceding the trait
value. The first two of these columns would be the trait locus genotype, followed by the
additive component of the trait value and the residual component of the trait value. In
this example, everyone has a ‘0.000’ in the additive component column because we set the
additive variance to zero in the parameter file.
If the ‘output pedigree record founder gene labels’ is set, the founder gene labels
(FGLs) for markers precede the marker genotypes and the trait FGLs precede the trait
locus genotypes (only if latent variables are requested, as in this example).
Also, if the ‘output pedigree record unobserved variables’ statement is included in
‘gdrop.par’, an observed indicator would follow gender in the output pedigree file.

5.4 genedrop statements

5.4.1 genedrop computing requests

simulate [chromosome I] markers J [traits K]
One statement is given for each chromosome on which markers or both markers
and traits are to be simulated. Only unlinked traits are simulated if no such
statement is given. The ‘chromosome’ keyword can be omitted if all markers
and linked traits are on the same chromosome. The markers and traits are
labeled as positive integers. The marker labels are relative to each chromosome
whereas the trait labels are absolute. That is, the markers on chromosome 5 are
labeled 1, 2, . . . , and so are the markers on chromosome 7. The traits however
are labeled, for example, as 1 on chromosome 5 and as 2 on chromosome 7.
There can be at most 10 traits and 500 markers.

simulate unlinked traits K1...
Optional. This statement specifies traits to be simulated which are not linked
to markers, and hence, have no map specifications.

5.4.2 genedrop mapping model parameters

map [chromosome I] [gender (F | M)] marker ( [Kosambi] distances |
recombination fractions | [Kosambi] positions) X1 X2...

This statement is required if simulation of more than one marker is requested.
One statement is used per chromosome. This statement specifies the marker
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map or positions given in units of genetic distances (cM), or recombination
fractions between markers. Marker map or positions can be sex-specific if gender
is included in the statement. If ‘distances’ is chosen, intermarker distances
must be provided such that the number of distances is one less than the number
of markers. If ‘positions’ is chosen, the number of positions must equal the
number of markers, as these are absolute positions relative to a zero point to
the left of all of the markers. The Haldane mapping function is used to convert
between the genetic distances and recombination fractions unless Kosambi is
specified.

map [chromosome I] [gender (F | M)] traits K1 K2 ... markers J1 J2 ... (
[Kosambi] distances | recombination fractions) X1 X2...

This statement is required if simulated traits are to be linked to markers. That
is, it is not required if no traits or only unlinked traits are to be simulated. The
statement specifies the location of each trait locus with respect to one of the
marker loci. Thus, the number of traits listed in the statement must be equal to
the number of markers listed and to the number of distances (or recombination
fractions) listed. The trait locus will follow the corresponding marker locus (to
the right, so to speak) at the distance specified. To simulate a trait locus that
precedes all marker loci, list marker ‘0’ in the statement. For example, with
‘map trait 3 2 marker 6 0 distances 5 4’, traits 3 and 2 will be placed 5 cM
to the right of marker 6 and 4 cM to the left of marker 1, respectively.

5.4.3 genedrop population model parameters

set [chromosome I] markers K1... frequencies X1 X2...
This statement specifies markers allele frequencies. Allele frequencies for a
marker should sum to between 0.9999 and 1.0001. Otherwise they are normal-
ized. Multiple markers can be specified in a single statement if they reside on
the same chromosome and have the same number of alleles with the same allele
frequencies.

set traits K1... frequencies X1 X2

This statement specifies the trait allele frequencies. Allele frequencies for a
trait should sum to between 0.9999 and 1.0001. Otherwise they are normalized.
Multiple trait loci can be specified in a single statement if they have the same
allele frequencies. Trait loci must be biallelic.

set normalized frequencies
If the set of allele frequencies for each marker and trait is to be normalized,
this statement is given. Normalization of the frequencies is recommended when
simulating pedigree data, but not recommended when using the other programs.

set traits K1 ... genotype means X1 X2 X3

Since two alleles are simulated for each trait locus, three means must be specified
for the polygenic trait values: one each for the (1 1), the (1 2) or (2 1), and the
(2 2) genotypes. The default values 0.0, 0.0, and 0.0.

set traits K1 ... additive variance X

Here we specify the genetic variance for one or more trait. One of there state-
ments is given for each value assigned. The default variance is 0.0.
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set traits K1 ... residual variance X

This statement is like the preceding one. The environmental contribution to
the trait is set using this statement.

5.4.4 genedrop computational parameters

set marker seeds H1 H2

This statement initializes the seeds for the random number generator in the
gene dropping algorithms. The seeds are to be positive and no greater than
hexadecimal 0xFFFFFFFF, with the first seed (congruential seed) odd, and the
second seed (Tausworthe seed) nonzero. In genedrop, markers are simulated
before traits, so that, if no seeds are specified for marker simulation, default
seeds (0x3039 0x431) are used.

set trait seeds H1 H2

This statement initializes the seeds for trait simulation. If no seeds are given,
the starting seeds for trait simulation are the seeds returned by the random
number generator at completion of marker simulation. Note that if output of
marker seed is requested, this will be the same value as is output to the marker
seed file for a subsequent genedrop run.

5.4.5 genedrop output pedigree options

output pedigree record founder gene labels
When this option is selected, each record contains a pair of founder gene labels
for each locus. Each founder is assigned a pair of labels, which are in the same
order as the names of the parents. Then, for each locus of each descendant,
founder labels are determined by the simulated meiosis indicators.
This statement is useful in cases where we want the “disease” allele in the
pedigree to come from a particular founder.

output pedigree record trait latent variables
This statement requests that the quantitative trait value be included in the
output for each trait. The genotype at each trait locus, as well as the additive
and residual component of each quantitative trait, will appear in the output
record.

output pedigree record unobserved variables
If this option is set, genotypes, gene labels and trait values are output for
both observed and unobserved individuals. An additional data field, follow-
ing the gender indicator, specifies whether the individual is observed (‘1’) or
unobserved(‘0’).
When this option is not selected, unobserved individuals take on default val-
ues; the genotype at each locus represented as ‘0 0’, the founder gene label (if
requested) at each locus represented as ‘0 0’, and each quantitative trait value
is recorded as ‘999’.

input pedigree record observed (absent | present)
The observed indicator is used to designate which members are observed, with
’0’ indicating unobserved, ’1’ indicating observed. When the observed indicator
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is present in the pedigree file, it follows gender (or parents, if gender is not
present). If this statement is not given, all pedigree members are assumed to
be observed. See also the next statement ‘assume all observed’.
If individuals are flagged in the pedigree file as unobserved, the default behavior
is to indicate in the output pedigree file that the data for these individuals is
missing.

assume all observed
When this statement is used, all members of the pedigree are treated as “ob-
served” in the simulation. If an observed indicator column is present in the
input file, it is ignored by the simulation.

5.4.6 genedrop output seed file options

output (marker | trait) seeds only
If an output seed file is given, both ending marker and trait seeds are saved
unless one or the other is requested in this statement.



Chapter 6: Simulating Marker Data Conditional on Trait Data in Pedigrees 26

6 Simulating Marker Data Conditional on Trait
Data in Pedigrees

6.1 Introduction to markerdrop

markerdrop simulates marker data at markers linked to a potential trait locus. The user
must specify whether marker data simulation is to be conditional on a trait model or on
an inheritance pattern at the trait locus. The choice of a trait model or an inheritance
pattern will dictate which additional parameter statements must (or may) be included in
the parameter file.
• If marker data simulation is to be conditional on a trait model, parameters must be pro-

vided for trait locus allele frequencies using ‘set traits frequencies’, for genotypic
penetrances using ‘set incomplete penetrances’, and for the map position of the trait
locus using a ‘map’ statement see Section 6.5 [markerdrop statements], page 30. There
must be only one mapping statement for the trait; from this statement the trait num-
ber (name) is deduced. Phenotypic trait data are provided as affection status of each
individual in the pedigree file. An inheritance pattern at the trait locus is simulated
from the trait data; this becomes the trait model on which markers are simulated.

• If marker data simulation is to be conditional on an inheritance pattern at the trait
locus, the partially specified segregation pattern at the trait locus is provided in the
pedigree file using inheritance indicators. For more information on inheritance indica-
tors, see Section 6.5.1 [markerdrop computing requests], page 30 and Chapter 8 [Using
MCMC to Estimate Parameters of Interest in Pedigree Data], page 38. Location of
inheritance indicators in the pedigree file can be specified using the ‘input pedigree
record’ statement. Again, specification of a map position for the trait locus using a
‘map’ statement is required.

6.2 Sample markerdrop parameter file – conditional on trait

Files for markerdrop may be found in the ‘Simulation’ subdirectory of ‘MORGAN_Examples’.
The sample parameter file, ‘ped73_mdrop_trait.par’, requests simulation of marker data
conditional on a trait model. The trait is assumed to be discrete when simulation is condi-
tional on a trait model. The relevant section of the file is:

map trait 2 marker 5 distance 5.0
simulate markers 10 using trait
map marker positions 10 20 30 40 50 60 70 80 90 100
set incomplete penetrances .05 .6 .95
set trait 2 freqs 0.5 0.5

set markers 1 freqs 0.13 0.66 0.16 0.05
set markers 2 freqs 0.06 0.23 0.41 0.25 0.05
.
.
.
set markers 10 data

101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
202 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
301 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
302 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
.
.
.

The first three lines are required for markerdrop and must be included in the parameter
file. The ‘map trait’ statement identifies the trait locus to be used in the simulation and
gives its position relative to the markers on which we are simulating data. In this example,
the trait locus follows marker 5 at a distance of 5 centiMorgans. The ‘simulate markers 10
using trait’ statement indicates the number of markers to be simulated and specifies that
the markers will be conditional on a trait model. The ‘map marker positions’ statement
specifies the spacing of the markers to be simulated.

Note that the parameter file for running a simulation conditional on a trait model requires
two more lines than the parameter file for simulation conditional on an inheritance pattern
(see next section). These two additional lines (lines 4 and 5) are required for discrete traits
(the default for simulation on a trait). Line 4: ‘set incomplete penetrances’ specifies the
probability of exhibiting the trait for individuals with trait locus genotypes ‘1 1’, ‘1 2’ (or ‘2
1’) and ‘2 2’, respectively. Line 5: ‘set trait ... freqs’ specifies trait allele frequencies.

The ‘set markers’ statements beginning at line 6 must be included; they specify allele
frequencies at the first two markers.

Following the ‘set markers 10 data’ statement, the marker data availability is specified
for each of the two associated alleles. A ’0’ indicates the data is unobserved, while a ’1’
indicates the data is observed. This translates into a specification of which alleles are to be
used in simulating marker data.

The parameter file ‘ped73_mdrop_trait.par’ uses the pedigree file ‘ped73.ped’, which is
found in the ‘MORGAN_Examples’ directory. The file format section and first few lines of the
pedigree data section of this file are below.

input pedigree size 73
input pedigree record names 3 integers 6 reals 1

***************************************************
101 0 0 1 0 0 0 -1 -1 999.5
102 0 0 2 0 0 0 -1 -1 999.5
201 101 102 1 0 0 0 0 1 999.5
202 101 102 2 0 0 0 1 1 999.5
2010 0 0 2 0 0 0 -1 -1 999.5

The first three columns are indices are ’names’ which are character strings. They are unique
identifiers of each individual and his/her parents. By default, the parent order is father
followed by mother. The next four columns are sex (1=male, 2=female), observed status
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(0=unobserved, 1=observed) and affection status for two possible discrete traits (0=missing,
1=unaffected, 2=affected). The affection status is to be used is specified through statements
in the parameter file:

input pedigree record trait 2 integer 4

This statement specifies that "trait 2" is the fourth integer in the pedigree file, after the
three names (that is, the 7 th item). Traits may be given any integer label: here "2" is an
arbitrary choice.
If desired, this statement can be included in the pedigree file instead. Other columns is the
pedigree file are explained in the next section.
Note that markerdrop can simulate data for markers linked to only one trait locus, as
specified in the ‘map’ statement in the parameter file.

6.3 Sample markerdrop parameter file – conditional on
inheritance pattern

The sample parameter file, ‘ped73_mdrop_inhe.par’, requests simulation of marker data
conditional on an inheritance pattern. The relevant section of the file is:

map trait 3 marker 4 recomb frac 0.01
simulate markers 10 using inheritance
map marker positions 10 20 30 40 50 60 70 80 90 100

set markers 1 freqs 0.13 0.66 0.16 0.05
set markers 2 freqs 0.06 0.23 0.41 0.25 0.05
.
.
.
set markers 10 data

101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
202 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
301 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
302 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
.
.
.

The first three lines are required and must be included in the parameter file. The ‘map
trait’ statement identifies the trait locus to be used in the simulation and gives its position
relative to the markers on which we are simulating data. In this example, the trait locus
follows marker 4 with a recombination fraction of 0.01. The ‘simulate markers 10 using
inheritance’ statement indicates the number of markers to be simulated and specifies that
the markers will be conditional on the inheritance pattern. The ‘map marker positions’
statement specifies the spacing of the markers to be simulated. The ‘map marker positions’
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statements beginning at line 4 must be included; they specify allele frequencies at the first
two markers.

Following the ‘set markers 10 data’ statement, the marker data availability is specified
for each of the two associated alleles. A ’0’ indicates the data is unobserved, while a ’1’
indicates the data is observed. This translates into a specification of which alleles are to be
used in simulating the marker data.

The parameter file ‘ped73_mdrop_inhe.par’ uses pedigree file ‘ped73.ped’. The file format
section and first few lines of the pedigree data setion of this file are below.

input pedigree size 73
input pedigree record names 3 integers 4

***************************************************
101 0 0 1 0 0 0 -1 -1 999.5
102 0 0 2 0 0 0 -1 -1 999.5
201 101 102 1 0 0 0 0 1 999.5
202 101 102 2 0 0 0 1 1 999.5
2010 0 0 2 0 0 0 -1 -1 999.5
301 201 2010 1 0 0 0 1 1 999.5

The first three columns are indices of individuals and their parents. The next two are sex
and observation status. The last two integer columns are inheritance indicators with the
first being the paternal ones and the second the maternal ones. A founder’s inheritance
indicators are ‘-1 -1’.

The connection to these inheritance data is through the statement

input pedigree record trait 3 integer pair 5 6

in the parameter file. Recall that on counting the pedigree file columns the integers follow
the three names, so that integers 5 and 6 are indeed the last two integer columns in this
pedigree file.

Note that markerdrop can only simulate data for markers linked to exactly one trait locus,
as specified in the ‘map’ statement in the parameter file.

For more information on markerdrop options see Section 6.5 [markerdrop statements],
page 30.

6.4 Running markerdrop examples and sample output

The markerdrop examples can be run while in the ‘Simulation/’ subdirectory. The syntax
for running a MORGAN program is:

<./program> <parameter file> [> <output file>]
or

<program> <parameter file> [> <output file>]

if your PATH includes your current directory.

Note that if the output file command is not included, the results will print to the console.
To run a simulation of marker data conditional on a trait model, type the following into
the console:
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./markerdrop ped73_mdrop_trail.par > mdrop_trait.out

Likewise to simulate marker data conditional on an inheritance pattern, type the following:

./markerdrop ped73_mdrop_inhe.par > mdrop_inhe.out

After running markerdrop with the parameter file ‘mdrop_inhe.par’, and the pedigree file
‘ped73.ped’ (as in the above example), the output file ‘mdrop_inhe.out’ is generated. A
section of this output file is given below. Note that similar output would be generated using
‘ped73_mdrop_trait.par’.

Inter-locus distances in cM, using Haldane map function:

T3
----------------------------+------------------------------------------
10.0 10.0 10.0 1.0 9.0 10.0 10.0 10.0 10.0 10.0

+------+------+------+-------------+------+------+------+------+------+
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

assigned FGL in all listed individuals:
trait locus, followed by 10 marker loci
101 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
102 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3
201 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3
202 2 4 2 3 2 3 2 3 2 4 2 4 2 4 2 4 2 4 2 4 2 4
2010 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5
301 2 6 2 5 2 6 2 6 2 6 2 6 2 5 2 5 2 5 2 5 2 5
302 2 6 3 6 2 6 2 6 2 6 2 5 2 5 2 5 2 6 2 6 2 6

assigned marker genotypes in accordance with data availability:
101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
202 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
301 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
302 4 2 4 3 5 6 3 3 6 1 1 2 3 3 1 4 1 6 1 4

In the output file above, the marker map is shown, as specified in the parameter file. Below
the map, founder genome labels (FGLs) are listed. In this section of the pedigree, individuals
101, 102 and 2020 are founders and so each of them has been assigned two unique FGLs.
One of each founder’s FGLs has been randomly selected to be passed to their offspring.
Using the FGL, marker genotypes have been assigned to individuals on whom data were
specified as available in the parameter file, individual 302 for example.

6.5 markerdrop statements

6.5.1 markerdrop computing requests

markerdrop requires one of the following two statements:
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simulate markers J using trait
This statement requests the simulation of J markers conditional on a trait
model. If marker data are simulated conditional on a trait model, the user
must specify trait allele frequencies, genotypic penetrances and a map position
for the trait locus within the parameter file. Affection status of each individual
must be specified in the pedigree file following gender, if present.

simulate markers J using inheritance
This statement requests the simulation of J markers conditional on an inheri-
tance pattern at the trait locus. If marker data are to be simulated conditional
on an inheritance pattern, the user must specify a map position for the trait
within the parameter file. In addition, a pair of inheritance indicators for each
individual must be included in the pedigree file following gender, if present.
The first of the pair describes paternal inheritance at the trait locus and the
second describes maternal inheritance. Inheritance indicators are coded as ‘0’,
‘1’ or ‘-1’, corresponding to segregation of the trait allele from the individual’s
grandmother, grandfather, or unknown, respectively. For example, ‘0 0’ indi-
cates that the individual inherited the alleles carried by both grandmothers at
the trait locus, while ‘0 1’ indicates inheritance of the paternal grandmother’s
and maternal grandfather’s alleles.

6.5.2 markerdrop mapping model parameters

map [gender (F | M)] marker ( [Kosambi] distances | recombination fractions |
[Kosambi] positions) X1 X2 ...

This statement is required for markerdrop if more than one marker is to be
simulated. It specifies the marker map (optionally a sex-specific map), in units
of genetic distance (cM), marker position (cM), or recombination fraction. If
distance is selected, markerdrop will expect one fewer values than the number
of markers, as these are intermarker distances. If position is expected, the same
number of values as markers will be expected, as these are the positions of
the markers relative to some zero point to the left of marker 1. If Kosambi is
not specified, the Haldane mapping function is used to convert between genetic
distance and recombination fraction.

map [gender (F | M)] trait K marker J ( [Kosambi] distance | recombination
fraction ) X

This statement is required for markerdrop; it tells the program which trait to
use in the simulation of marker data and gives a location for the trait locus,
either as a map distance or recombination fraction, following the marker listed
in the statement. As with genedrop, to simulate a trait locus position that
precedes all markers, list the marker number as ‘0’.

6.5.3 markerdrop population model parameters

set trait K1 frequencies X1 X2

This statement specifies trait allele frequencies. Trait must be biallelic; both
allele frequencies must be listed and must sum to a value between 0.9999 and
1.0001. Otherwise markerdrop automatically normalizes the allele frequencies
and issues a warning. Only one trait may be included in this statement.
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set marker names N1 N2 ...
This statement specifies marker names in the order of their position along the
chromosome. Default names are marker-1, marker-2, etc.

set markers J1 ... frequencies X1 X2 ...
Marker allele frequencies are specified using this statement. A marker can have
up to 100 alleles and all allele frequencies must be listed. For each marker, the
allele frequencies should sum to between 0.9999 and 1.0001. Otherwise they
are automatically normalized and a warning message will be issued. Multiple
markers can be included in a single statement if they have the same number of
alleles with the same frequencies.

6.5.4 markerdrop computational parameters

set incomplete penetrances
This statement is required for markerdrop when using a trait model or when
using inheritance indicators with a discrete trait. A penetrance, the proba-
bility of expressing the trait given a particular trait locus genotype, must be
specified for each of the 3 possible genotypes at the trait locus. For example
‘set incomplete penetrances 0.15 0.85 0.99’ specifies that the probability
of expressing the trait is 0.15, 0.85 and 0.99 for (1,1), (1,2) and (2,2) trait locus
genotypes, respectively.

set trait data discrete
This statement is optional. A discrete trait is the default when simulating using
a trait model.

As with genedrop, marker seeds and trait seeds can be specified or the default values can
be used, See Section 5.4.4 [genedrop computational parameters], page 24.

6.5.5 markerdrop input file options

The statements below are optional for markerdrop; they are used to indicate a change from
the default order of trait values in the pedigree file. The first statement may be included
if marker data are to be simulated conditional on a trait model and the second may be
included if data are to be simulated conditional on an inheritance pattern.

input pedigree record traits K1 K2 K3 ... integers I1 I2 I3 ...
Unless this statement is present, the first integer following gender, if present, is
assumed to be data for trait 1, the next integer for trait 2, and so on. Use this
statement to specify an alternate correspondence between integer values in the
record and trait numbers.

input pedigree record traits K1 K2 ... integer pairs I11 I12 I21 I22 ...
Unless this statement is present, the first two integers following gender, if
present, in the pedigree file are assumed to be the inheritance indicators at
the locus for trait 1. The next two integers are assumed to be the inheritance
indicators at the locus for trait 2, and so on.
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7 Estimating a priori ibd Probabilities by Monte
Carlo

7.1 Introduction to ibddrop

ibddrop estimates probabilities of gene identity by descent, ibd, (such as kinship, inbreeding,
or multi-gene identities) by Monte Carlo in the absence of data. Given the pedigree and
a genetic map, ibddrop simulates meioses indicators and scores them to estimate the ibd
probabilities among a set of gametes.
The simplest example of estimation of ibd probabilities among a set of gametes is the
computation of an individual’s inbreeding coefficient. In this example, the set of gametes
in question are the maternal and paternal gametes that make up the individual. A set of
two gametes can be either ibd or not-ibd. To keep track of ibd status among the gametes,
we can label the paternal allele ‘1’. If the two alleles are ibd, the maternal allele would
also be labeled ‘1’, and the resulting ibd pattern would be ‘1 1’. If the two alleles are not
ibd, the maternal allele would be labeled ‘2’ and the resulting pattern would be ‘1 2’. The
individual’s inbreeding coefficient is the probability that the two alleles follow the ‘1 1’
pattern.
If there are three gametes in the set, there are five potential ibd patterns: ‘1 1 1’ (all three
gametes are ibd), ‘1 1 2’ (the first two are ibd and the third is not), ‘1 2 1’ (the first and
third are ibd) , ‘1 2 2’ (the last two are ibd), and ‘1 2 3’ (none are ibd). ibddrop can
estimate probabilities of ibd patterns among up to 10 gametes in a set. ibddrop outputs a
probability for each ibd pattern at each marker.
Gene identity can be scored either for each locus separately, in which patterns of identity
among up to ten haplotypes can be scored, or it can be scored jointly over a moving window
of several loci. If the moving window option is selected, genedrop calculates the probability
that the specified pair of gametes are ibd at all loci in the window. As a result, it is then
possible to determine the probability that all or some of the gametes are ibd for a particular
haplotype.

7.2 Sample ibddrop parameter file

Files for ibddrop may be found in the ‘IBD’ subdirectory of ‘MORGAN_Examples’. The sample
parameter file for ibddrop is ‘jv_rep_ibd.par’.

input pedigree file "jv_rep.ped"

simulate markers 5 trait 1

map markers distances 44.6 44.6 11.2 11.2
map trait 1 marker 2 distances 22.3

set component 1 proband gametes 331 0 333 1
set component 2 proband gametes 541 0 541 1 341 0 343 1

input seed file ’../sampler.seed’

set MC iterations 20000
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The parameter file specifies the pedigree file name ‘jv_rep.ped’ and then asks for five
markers and one trait locus. Since there are no data, the distinction between marker and
trait doesn’t mean anything – it is just a way to specify a set of loci, one of which may be
unlinked. ‘jv_rep.ped’ contains data on 30 individuals, including gender and one trait.
The two ‘map’ statements specify the genetic map. From the first statement, the genetic
distances between the markers are 44.6, 44.6, 11.2 and 11.2 centiMorgans. From the second
statement, the trait lies between markers 2 and 3, at 22.3 centiMorgans with marker 2.
The ‘set proband gametes’ statements tell ibddrop which gametes to score: that is, the
gametes among which the ibd probabilities will be estimated. In this example, we selected,
from component 1 (the first family in the data set), the maternal (0) gamete of ‘331’ and
the paternal (1) gamete of ‘333’. The next statement selected four gametes to score from
family 2. Note that characters are allowed in the names of individuals.
The ‘input seed file’ statement enables the file to use the seeds from file ‘sampler.seed’.
The ‘output overwrite seed file’ statement allows the program to replace the contents
of the seed file with the newly generated seeds. If this options were omitted, when the
program finished running, new seeds would be appended to the end of the file. Seeds can
also be set using the ‘set sampler seeds’ statement (see Section 7.4 [ibddrop statements],
page 36).
The number of Monte Carlo iterations is set to be 20,000 by the ‘set MC iterations’
statement.
Note that if one would like to compute multilocus ibd probability, the statement ‘set locus
window’ can be used to specify number of loci to score simultaneously. ibddrop has limited
functionality for computing multilocus probabilities, it can only examine two gametes to
determine whether or not the two are ibd. For instructions on how to implement windows
in this example, see the parameter file. For additional options, including specific patterns
over two or more gametes, see Section 9.2 [Sample lm auto parameter file], page 43.

7.3 Running ibddrop example and sample output

The syntax for running this MORGAN program is:
<./program> <parameter file> [ > <output file name> ]
where , optionally, ‘>’ redirects the standard output (<stdout>) to an output file instead of
to the screen.
The ‘ibddrop’ example can be run under the subdirectory ‘IBD/’ with the following com-
mand:

./ibddrop jv_rep_ibd.par > ibddrop.out

The genetic map specified by the statements ‘map markers distances’ and ‘map trait 1
marker 2 distances’ is below. Note the position of the trait locus (T1) with respect to
the marker loci.

Distances (cM):

T1
--------------+---------------------
44.6 22.3 22.3 11.2 11.2

+------+-------------+------+------+
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M1 M2 M3 M4 M5

Since the parameter file contains two ‘set proband gametes’ statements, ibddrop will pro-
duce two sets of results in the output file (here ‘ibddrop.out’).

The exact probability estimates will, of course, depend on the random seed used. Some
example results for the second component are detailed below.

Summary for component 2:

Probabilities of IBD patterns

Proband gamete set 1: 541 0 541 1 341 0 343 1

pattern marker-1 marker-2 trait-1 marker-3 marker-4 marker-5 label

1 1 1 1 .0322 .0312 .0289 .0301 .0294 .0306 0
1 1 1 2 .0291 .0294 .0295 .0284 .0299 .0295 1
1 1 2 1 .0129 .0143 .0147 .0140 .0142 .0134 3
1 1 2 2 .0103 .0098 .0097 .0097 .0089 .0092 4
1 1 2 3 .0273 .0280 .0263 .0269 .0276 .0267 5
1 2 1 1 .0654 .0638 .0634 .0652 .0633 .0649 6
1 2 1 2 .0060 .0063 .0057 .0062 .0062 .0058 7
1 2 1 3 .0571 .0576 .0581 .0601 .0602 .0584 8
1 2 2 1 .0692 .0680 .0661 .0685 .0703 .0728 9
1 2 2 2 .0483 .0527 .0488 .0493 .0486 .0485 10
1 2 2 3 .1389 .1405 .1386 .1384 .1371 .1326 11
1 2 3 1 .1348 .1366 .1354 .1379 .1369 .1391 12
1 2 3 2 .0267 .0250 .0259 .0266 .0267 .0285 13
1 2 3 3 .0949 .0945 .0980 .0949 .0968 .0975 14
1 2 3 4 .2469 .2424 .2508 .2437 .2442 .2427 15

The probabilities are summarized by the ibd pattern. Each integer in the pattern represents
one of the gametes that ibddrop was asked to score. Same numbers indicate gametes that
are ibd. For instance, ‘1 1 1 1’ means all four gametes are ibd ; ‘1 2 1 1’ means gametes 1,
3, and 4 are ibd, while gamete 2 is not ibd with the others; ‘1 2 3 4’ means all four gametes
are not ibd.

The ibd patterns are scored for each locus separately; there is a column for each of the five
markers and one for the trait.

To compute multilocus ibd probabilities, say for 3 loci, follow the instructions to use ‘set
locus window 3’ in the parameter file and re-run the example using the same command
line. The interesting part of the output is:

Summary for component 2:

Probabilities of IBD patterns for windows of 3 loci

Proband gamete set 1: 541 0 541 1

IBD wndw 1 wndw 2 wndw 3 wndw 4
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0 0 0 .7291 .7443 .7657 .7881
0 0 1 .0698 .0655 .0482 .0478
0 1 0 .0640 .0532 .0365 .0266
0 1 1 .0279 .0252 .0369 .0284
1 0 0 .0806 .0696 .0703 .0493
1 0 1 .0087 .0080 .0067 .0049
1 1 0 .0135 .0238 .0177 .0268
1 1 1 .0063 .0105 .0180 .0281

This time, ibddrop was asked to compute ibd probabilities in windows of three loci at
a time. This was done using the ‘set locus window’ statement. Since the trait locus is
unlinked to the marker loci in this example, it is placed to the left of the five marker loci
on the map. Thus the first window, ‘wndw 1’ in the table above, includes the trait locus
and the first two marker loci, ‘wndw 2’ includes the first three marker loci, ‘wndw 3’ includes
marker loci 2, 3 and 4, etc. The values in the ‘ibd’ column at the left of the table represent
‘ibd’ patterns. The pattern ‘0 0 0’ means that the selected gametes are not ibd at the three
loci in each window. The pattern ‘0 0 1’ means that the selected gametes are not ibd at
the first two loci in the window, but are ibd at the third. The values in the columns give
the probability of the ibd pattern at the left for each of the four windows. For example, the
probability that the maternal and paternal gametes of individual 541 are ibd at marker loci
3 and 5, but not at marker locus 4 is 0.0049.

Note that there are two additional example parameter files in the ‘IBD/’ subdirectory; these
examples are not discussed in the tutorial but are there for the interested user.

7.4 ibddrop statements

• Use the ‘simulate’ statement to specify simulation of markers and one linked or un-
linked trait, for each of one or more chromosomes (see Section 5.4.1 [genedrop comput-
ing requests], page 22).

• Use ‘map’ statements to specify the marker and trait maps (see Section 5.4.2 [genedrop
mapping model parameters], page 22).

Note that ibddrop does not simulate or use marker or trait data. The statements are used
only to specify the map of the loci at at which descent is to be simulated and ibd scored. The
locations of loci are specified in this way so that direct comparisons can be made between
output of ibddrop and of lm_auto (see Section 9.3 [Running lm auto example and sample
output], page 46), where simulation is conditional on marker and trait data.

set [component M] proband gametes N1 K1 N2 K2...
In this statement, the user specifies which gametes ibddrop is to score. Each
statement must contain gametes from a single component, as the components
are assumed to be independent, i.e. the probability of ibd between gametes
from different components is zero. Pairs consisting of an individual’s name
and a meiosis indicator are listed, with ‘0’ indicating the individual’s maternal
gamete and ‘1’ indicating their paternal gamete.

In the current version of MORGAN, the number of proband gametes in a set is
limited to 10.
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set [chromosome I] locus window K

This statement gives the window size (number of loci) for which the multilocus
ibd probabilities are scored. If no size is given, each locus is scored separately.

set sampler seeds H1 H2

This statement initializes a pair of seeds for the random number generator. The
seeds must be positive and no greater than ‘0xFFFFFFFF’, with the first seed
(congruential seed) odd, and the second seed (Tausworthe seed) nonzero. If no
seeds are specified, default seeds are used.

set MC iterations I

Required. This statement specifies the total number of Monte Carlo iterations.

simulate markers K1 trait 1
This statement specifies the number of markers to be simulated, as well as a
linked trait. A linked or unlinked trait must be specified.

simulate unlinked trait 1
This statement specifies a trait to be simulated that is not linked to markers.
Only one trait can be simulated and this trait will be placed to the left of all
markers.
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8 Using MCMC to Estimate Parameters of
Interest in Pedigree Data

8.1 Specifying inheritance

For MORGAN programs, genetic relationships between individuals in a data set are specified
in the pedigree file. Individuals at the top of a pedigree (family), whose parents are unspec-
ified, are the founders of the pedigree; other individuals are non-founders. By definition,
founders are unrelated to one another. Descent through the pedigree of genes at marker
and trait loci is tracked by meiosis indicators, also called inheritance indicators. At each
locus, non-founders are assigned two 0/1 meiosis indicators, representing genes inherited
from the individual’s father and mother. The first indicator is coded as ‘0’ if the non-
founder inherited the gene carried by her father’s mother and ‘1’ if she inherited the gene
carried by her father’s father, i.e. her paternal grandmother and grandfather, respectively.
The second indicator is coded as ‘0’ if the non-founder inherited the gene carried by her
mother’s mother and ‘1’ if she inherited the gene carried by her mother’s father, i.e., her
maternal grandmother and grandfather, respectively. We use the term gene to refer to a
segment of DNA that is copied from parents to offspring, the concept captured by Mendel’s
term factor.
The set of all inheritance indicators is notated as S = ( Sij ) where

Sij = 0 if DNA involved in meiosis i at locus j is the gamete’s parent’s maternal DNA
1 if DNA involved in meiosis i at locus j is the gamete’s parent’s paternal DNA

S.j is referred to as the inheritance vector at locus j. It is the list of the inheritance indicators
for all meioses in the sample at a single locus (locus j ). The elements of S.j are independent
of one another, as they represent the grandmaternal or grandpaternal inheritance for each
gamete at the locus and meiosis events are independent of one another. Si. is the list of
the inheritance indicators at all loci for a single meiosis (i.e., within a single gamete). The
elements of Si. have first–order Markov dependence. That is, the probability of a ‘0’ or
‘1’ at locus j + 1 is a function of the the value at locus j and the recombination fraction
between the loci. In other words, the value at locus j + 1 is conditionally independent of
all other loci, given the value at locus j.
If inheritance indicators are known, identity by descent (ibd) is also known. If probabilities
can be assigned to patterns of inheritance indicators in a pedigree, the probability that any
two gametes in the pedigree are ibd can be computed.

8.2 Genetic model

In earlier versions of MORGAN there were three genetic data types. Data could be geno-
typic, typically used for marker data, discrete, a data type for binary data requiring speci-
fication of incomplete penetrances, or quantitative, using a Gaussian penetrance with spec-
ification of genotypic means and residual variance.
As yet, loci are either multiallelic marker loci assumed observed without error, or trait loci
which may have general penetrance functions but are diallelic. Gradually, available models
are being generalized:
1. Pedigree peeling for multiallelic loci with general penetrance;

In order to allow models for “non-genotypic” markers, general joint peeling programs
have been implemented, based on Thompson (1976: University of Utah, Bioinformatics
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Tech Rept, #6). For zero-loop pedigrees, these peeling routines are used by the lm_map
program which allows for errors in marker data. For general pedigrees, they are not
yet released, as they are still in process of testing.

2. Penetrance functions and trait models:
From MORGAN V2.8.2, liability classes (previously available only for lm_bayes) have
been implemented for the discrete-trait penetrance model in lm_markers and lm_
multiple. Penetrances for each liability class are now read from an input file using
the "input extra data file S" parameter statement.
Additionally, an age-based penetrance function for a qualititative trait has been imple-
mented. That is, penetrances are directly dependent on age, rather than going through
a liability class specification.

3. Traits and trait loci:
The new program lm_twoqtl allows two (linked or unlinked) quantitative trait loci to
contribute additively or epistatistically to a single trait (see Sung et al., 2007, Genetic
Epidemiology 31: 103-114). A polygenic component may also be also be included. In
two-locus penetrances may be specified as additive, with a genotypic mean for each
trait genotype for each locus. Alternatively, a matrix array of 2-locus genotypic means
may be specified, allowing for epistasis (see Sung & Wijsman, 2007, Human Heredity
63: 144-152.).
With more these more complex trait models, including those of lm_twoqtl (see Sung
et al., 2007, Genetic Epidemiology 31: 103-114), a more general specification of traits is
required. In MORGAN V3.0, completely new structures have been introduced, separat-
ing traits (phenotypes) from trait loci (“tlocs”). Traits may be affected by genotypes
at several tlocs; the genotypes at a tloc may affect several traits.

8.3 Exact HMM computations

Using the inheritance vectors or meiosis indicators, the structure of the problem is that of
a hidden Markov model (HMM) with the Markov latent state being the S.j, Markov over
markers j. When the pedigree is small, so that each S.j takes only a practical number of
values, standard exact HMM computational methods apply. Likelihoods and lod scores can
be computed exactly. Alternatively, a single forwards computation followed by (repeated)
backwards sampling provides (multiple independent) realizations from the joint distribution
of all the Sij given the marker data, or given the marker and trait data, if the latter is
included in the set of loci j.
From MORGAN 2.8, exact computation is performed on small pedigree components. Fur-
ther, these HMM computations are also a component of MCMC sampling on larger pedigree
components (see next section).
Note that in fact Sij are independent over meioses i, so that the structure is that of a
factored HMM. In MORGAN V2.8.2, forward HMM computation for multiple meioses has
been replaced by a factored version (FHMM), enabling much faster exact computation on
small pedigree components and multiple-meiosis sampling for larger numbers of meioses.
Exact computation of lodscores on small pedigree components has been implemented for lm_
markers and lm_multiple: computation uses the FHMM version of the Baum algorithm.
In MORGAN V2.8.2, Gold standards for exact computation are added in the Lodscore/Gold2
subdirectory.
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8.4 LM-sampler and LMM-sampler

MORGAN’s Autozyg and Lodscore programs use MCMC to estimate ibd probabilities and
multilocus LOD scores, respectively, in pedigrees. The latent (unobserved) parameters of
interest in MCMC estimation of ibd probabilities and LOD scores are the meiosis indicators
at marker and/or trait loci for each non-founder in the pedigree. Observed data are trait
values and unphased marker genotypes for some or all pedigree members. With unphased
genotypes, it may or may not be possible to determine the grandparental source (i.e. the in-
heritance indicator) of each allele unambiguously. MORGAN uses MCMC to sample meiosis
indicators (S) conditional on observed data (Y).
MORGAN implements two different block Gibbs samplers, a locus- and a meiosis-sampler,
for sampling from S conditional on Y. Each method updates a subset, S u, of S conditional
on Y and on the rest of S (S f ). The difference between the two methods is the choice of
S u.
The locus-sampler (or L-sampler) chooses S u to be S.j for some j. In other words, a single
locus is selected and inheritance indicators at that locus are updated based on the genotype
data at all loci and on the current realization of inheritance indicators at all loci other than
j. The MORGAN user can determine whether a locus is to be selected at random each time
or if loci are taken in a pre-determined random order, as described in the next section.
This method is a modification of the Elston-Stewart algorithm (Elston RC and Stewart
J (1971) Human Heredity 21:523-542) and it can be used whenever single locus pedigree
peeling is possible. If inter-locus recombination fractions are strictly positive, the L-sampler
is irreducible. On the downside, mixing is poor if loci are tightly linked.
The meiosis-sampler (or M-sampler) chooses S u to be Si. for some i. It is, in a sense,
perpendicular to the L-sampler in that at each iteration a single meiosis is selected and
inheritance indicators for that meiosis are updated conditional on the genotype data at
all loci and the current realization of inheritance indicators for all other meioses. The M-
sampler is a modification of the Lander-Green algorithm (Lander ES and Green P (1987)
PNAS 84:2363-2367) for peeling along a chromosome using the Baum algorithm (Baum LE
(1972) in O. Shea, ed., ‘Inequalities-III; Proceedings of the Third Symposium on Inequal-
ities, UCLA, 1969’, Academic Press, NY pp. 1-8). At each iteration, a single meiosis is
randomly selected or meioses can be updated sequentially. As with locus selection in the
L-sampler, MORGAN allows the user to choose the meiosis selection The M-sampler mixes
well in the presence of tightly linked loci, but it can perform poorly in large pedigrees with
missing data.
MORGAN’s Autozyg and Lodscore programs use a combination of the L- and M-samplers,
referred to as the LM-sampler. The user may choose the fraction of updates that are of each
type; the default is 20% L-sampler, 80% M-sampler. The recommendation is 20/80, 50/50 or
80/20, depending on which sampler is, in any particular example, the more computationally
intensive.
For mathematical details on the L-, M- and LM-samplers, see Thompson EA (2000) Statis-
tical Inference from Genetic Data on Pedigrees, in ‘NSF-CBMS Regional Conference Series
in Probability and Statistics, Volume 6. Institute of Mathematical Sciences, Beachwood
OH and American Statistical Association, Alexandria VA.
Multiple meiosis (MM) sampler updates multiple meioses jointly and is therefore a gen-
eralization of the meiosis sampler (M-sampler). There are four types of update in MM-
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sampler: random meiosis update, individual update, sib update and 3-generation update.
This is based on work by Liping Tong (Tong L and Thompson EA (2008) Human Heredity
65: 152-163). The LMM-sampler is a combination of L-sampler and MM-sampler, analo-
gous to the LM-sampler. The LMM-sampler is implemented in the program lm_multiple,
and from MORGAN 2.8.3, lm_markers is compiled as a special case of lm_multiple. The
LMM-sampler can also be used in the program gl_auto, a MORGAN 3.0 program to sample
inheritance patterns conditional on marker data.

From MORGAN V2.8.2, Gold standards for lm_multiple are added in the Lodscore/Gold2
subdirectory.

The lm_haplotype program is a generalization of lm_multiple in which haplotypes of key
individuals dividing the pedigree are sampled in addition to meiosis indicators. To facilitate
efficient implementation of this algorithm, new peeling-by-component routines need to be
implemented and checked. This program is also the work of Liping Tong. This program is
not yet released.

Up to MORGAN V2.8.2, MCMC was performed globally over pedigree components (except
those small enough for exact computation). The L-sampler peeling and lod score estimation
could be done either by component (using “set peeling by component”) or globally (the
default).

With MORGAN V2.8.3, and specifically to accommodate the new lm_haplotype program,
the preferred option is to do both MCMC and pedigree peeling (lod score estimation) by
component, and to use exact computation on all sufficiently small component pedigrees. The
alternative, retained so that older data sets can be rerun, is to use “set global MCMC”, in
which case no exact computation will be done, and MCMC will be done globally over all
component pedigrees. In this case, the “set peeling by component” option is retained.

8.5 MCMC parameters and options

MORGAN can obtain a starting configuration for S in one of two ways. The default method
is by sequential imputation. The alternative is to contruct an L-sampler realization inde-
pendently for each locus, conditional on the genotype data at that locus only (the locus-
by-locus option). Sequential imputation tends to produce initial configurations that have
higher conditional probabilities, but locus-by-locus sampling can sometimes reveal other
modes in the complex space of S values. The MORGAN user can select the L-sampler setup
method by including the ‘use locus-by-locus for setup’ statement. If sequential impu-
tation is selected, the user can specify the number of sequential imputation samples from
which the starting configuration of meiosis indicators is to be selected, using the ‘use I

sequential imputation realizations for setup’ statement. The default is 10% of the
total MC iterations.

At each MCMC iteration, MORGAN selects a locus (with L-sampler) or meiosis (with M-
sampler) to update. Two different selection methods are available: sample by step and
sample by scan. If ‘sample by scan’ is chosen, all loci or meioses are updated one-at-a-
time in a predetermined random order. This option is the default. If ‘sample by step’ is
chosen, a single locus or meiosis is randomly selected for updating at each iteration. The
sampling method selected applies to the entire MCMC run, including burn-in, pseudo-prior
computation and main iterations.
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When running a MORGAN MCMC program, the user must specify the desired number of
several types of iterations. For all programs, some number of initial burn-in iterations must
be performed. These realizations are discarded and, if the burn-in period is sufficiently
long, subsequent points will be dependent samples from the desired stationary distibution.
The ‘set burn-in iterations’ statement is used to specify the number of desired burn-
in iterations, with the default value varying by program. The desired number of "main"
iterations must be specified using the ‘set MC iterations’ statement; there is no default
number of main iterations. Recommended number of iterations is on the order of 10^5. lm_
bayes performs a third type of iteration to calculate pseudo-priors. Alternatively, pseudo-
priors can be read from an input file. They encourage the MC sampler to visit test positions
of low conditional probability. The number of iterations for calculation of pseudo-priors is
set using the ‘set pseudo-prior iterations’ statement, or the default value of 50% of the
number of main iterations can be used.
Specific Autozyg and Lodscore programs have additional parameters and options that are
described in the relevant sections of the next two chapters of the tutorial.
In addition to the main program-specific outputs described in the following chapters, the
MCMC process accumulates diagnostic counts, scoring the configuration of inheritance in-
dicators at intervals determined by the same statement compute scores every I iterations
as is used for scoring for the primary output. (By default, scores and diagnostic output are
computed every iteration.)
There are three components to this diagnostic output:
1. Average total log-probability of segregations:

This is the average (over the scored iterations) of the total (over meioses) of the log-
probability of the meiosis indicators. For the first locus this is simply the marginal
probability log((1/2)^m) for m meioses, and for each successive locus is log P(S.j |
S.(j-1)) for locus j conditional on locus (j-1).

2. Average total log-probability of penetrances, by locus
This is the average (over the scored iterations) of the combined (over observed individu-
als) log-probability of the observed data at the locus given the inheritance configuration
(S.j).

3. Recombination counts for map intervals
This is the total count over (male and female) meioses and over MCMC iterations of
realizations of configurations of inheritance indicators that are recombinant and non-
recombinant in each interval of the map.

In these diagnostic scores, for the programs lm_pval, lm_markers and lm_multiple only
marker loci and marker map intervals are included in these diagnostic scores. For lm_auto,
the trait locus (designated ‘0’) is included in the correct position, if it is included in the
MCMC. For programs lm_schnell and lm_lods the trait locus (designated ‘0’) is included
in its position in that cycle of MCMC. If poor MCMC mixing is suspected, it can be useful
to see if these diagnostic probabilities and counts differ significantly among MCMC runs.
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9 Estimating Conditional ibd Probabilities by
MCMC

9.1 Introduction to lm_auto and lm_pval

The MORGAN programs lm_auto and lm_pval are referred to as “Autozyg” programs, as
they estimate autozygosity, or identity by descent (ibd). The Autozyg programs use MCMC
to perform multipoint linkage analysis on large pedigrees where many individuals may be
unobserved and exact computation is infeasible. The data are the genotypes at marker loci
of observed individuals in pedigrees and affectation status (affected / unaffected / unknown)
for the trait of interest. lm_auto and lm_pval estimate conditional probabilities of gene ibd
states, given the trait and marker data.
lm_auto uses the LM-sampler to realize ibd configurations from their conditional distribu-
tion given the marker data. Given marker data, it estimates conditional probabilities of
genome sharing patterns (gene ibd) among specified haplotypes, usually from affected indi-
viduals. The marker data are used jointly in the sampling, but the resulting ibd is scored
marginally at each marker locus.
lm_pval also uses LM-sampling to provide the conditional distribution of an ibd measure
given marker data. In principle it can be used to provide Monte Carlo estimates of any
NPL (Non-Parametric Linkage) statistics for detecting linkage. Trait information provided
to the program consists of the list of affected members of the pedigree, provided either as
a list of names in the parameter file or as the phenotypic status in the pedigree file.
The version of the program lm_pval released in MORGAN V.2.8 and subsequent, and de-
scribed in this tutorial, uses the latent p-value distribution of Thompson & Geyer (2007,
Biometrika). In lm_pval, marker data are assumed available on some pedigree members,
at some of the marker loci. The distribution of the ibd measure conditional on marker
data is compared to the unconditional distribution under the null hypothesis of no linkage
to produce quantiles of a latent (fuzzy) p-value distribution. A latent p-value distribution
corrected for multiple testing is also produced, by scoring the maximum of the ibd measure
over loci.
Additional programs using latent p-values are under development, including programs for
the distribution of latent lod scores obtained in MCMC sampling (lm_fuzlod), p-values
and randomized tests based on latent lod score statistics (lm_fzplod), and randomized
confidence sets for the location of a trait locus (lm_fzconf). These are working names only;
versions of the programs will be released under MORGAN 3. The methods are described in
Thompson (2008: JSM 2007 proceedings, Pp. 3751-3758). The MORGAN 3 program civil
also uses latent p-values (Di and Thompson, 2009, Human Heredity 68: 139-150).

9.2 Sample lm_auto parameter file

lm_auto uses the parameter file ‘jv_rep_auto.par’:
input pedigree file ’jv_rep.ped’
input seed file ’../sampler.seed’

select all markers traits 1

map gender F markers distances 25.5 25.5 25.5 25.5
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map gender M markers distances 11.2 45.8 11.2 45.8
map gender F trait 1 marker 2 distances 12.8
map gender M trait 1 marker 2 distances 5.8

set markers 1 2 3 4 freqs .2 .2 .4 .1 .06 .04
set markers 5 freqs .3 .2 .3 .1
set trait 1 freqs .95 .05

set marker data 5
333 1 3 1 3 1 3 1 3 1 3
331 3 4 3 4 3 4 3 4 3 4
334 2 3 2 3 2 3 2 3 2 3
431 3 4 3 4 3 4 3 4 3 4
531 3 3 3 3 3 3 3 3 3 3

343 1 3 1 3 1 3 1 3 1 3
341 3 5 3 5 3 5 0 0 3 3
344 4 6 4 6 4 6 2 4 2 4
441 3 4 3 4 0 0 3 4 3 4
541 3 3 3 3 3 3 3 3 3 3

set window patterns 0 4
set locus window 3

set component 1 proband gametes 531 1 531 0 331 0 333 1
set component 2 proband gametes 541 1 541 0

set L-sampler probability 0.2
set MC iterations 2000

The trait values are specified in the parameter file and are coded as ‘1’, ‘3’, ‘4’ or ‘0’, cor-
responding to trait locus genotypes of ‘1 1’, ‘1 2’ (or ‘2 1’), ‘2 2’ or ‘missing’, respectively.
Since there is no ‘input pedigree record trait’ statement in the example parameter file,
the default behavior is implemented and so the trait value is listed after the names and
gender in the pedigree file. The specified pedigree file, ‘jv_rep.ped’, is a 30-member, two-
component pedigree in which the final individuals (named 531 and 541) have trait value ‘4’.
All other individuals in the file have trait value ‘0’. Because the trait type is not specified
in the parameter file via a ‘set trait data’ statement, the trait type is assumed to be
genotypic. This means that the trait locus genotype can be inferred from the trait value,
i.e. there are three distinct trait values, each corresponding to a distinct genotype at the
trait locus.

The ‘map’ statements specify the marker map and trait position in terms of genetic distances
(centiMorgan). In this example there are five markers with gender-specific maps. The trait
locus position is measured from the marker to its left. In this example, the trait locus
for males is between markers 2 and 3 at a distance of 12.8 cM to the left of marker 2
(See See Section 5.4.2 [genedrop mapping model parameters], page 22. The ‘set markers’
statements specify the number and frequency of alleles for each marker. In the example,
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the first four markers each have six alleles (labeled 1–6) with frequencies 0.2, 0.2, 0.4, 0.1,
0.06 and 0.04. The fifth marker has four alleles with frequencies 0.3, 0.2, 0.3 and 0.1. The
trait locus has two alleles; alleles ‘1’ and ‘2’ have frequencies 0.95 and 0.05, respectively.
The ‘select’ statement is analogous to genedrop’s ‘simulate’ statement (see Section 5.4.1
[genedrop computing requests], page 22).

The ‘set marker data’ statement specifies the number of markers to be five. Following
the ‘set marker data’ statement are genotype data for typed individuals. Alternatively,
lm_auto can read genotype data from a separate file specified with an ‘input marker data
file’ statement.

The ‘set window patterns’ and ‘set locus window’ statements instruct lm_auto to com-
pute the probabilities that the gametes named in the ‘set proband gametes’ statement
have a particular ibd pattern (also called state) accross several loci.

Recall that in ibddrop, one can compute the probability of two gametes being ibd or not.
The values in the ‘IBD’ column of the output indicate whether the gametes specified in the
‘set proband gametes’ statement are ibd (indicated by a ‘1’) or not (indicated by a ‘0’).
With lm_auto, the user can specify ibd patterns of interest over two or more loci.

The ‘set locus window’ statement specifies the number of loci to be examined simultane-
ously, in this case 3. This statement was discussed briefly in the ibddrop example,(See
Section 7.3 [Running ibddrop example and sample output], page 34. The ‘set window
patterns’ statement indicates that we are interested in patterns ‘0’ and/or ‘4’, which cor-
respond to ibd patterns ‘1 1 1 1’ and ‘1 1 2 2’, respectively. That is, in component 1, we
are interested in the probability that all four of the gametes named in the ‘set proband
gametes’ statement are ibd across 3-locus windows or that the first and second gametes
(maternal and paternal haplotypes of individual 531) are ibd and the third and fourth ga-
metes (maternal haplotype of individual 531 and paternal haplotype of individual 333) are
ibd, but these two pairs are not ibd with each other.

Recall the output of the ibddrop program generated when using the parameter file
‘ibd.par’. In the section of the program output headed ‘Probabilities of IBD
patterns’, each of the ibd patterns listed in the leftmost column is associated with a label
in the right-most column.

Probabilities of IBD patterns

Proband gamete set 1: 541 0 541 1 341 0 343 1

pattern marker-1 marker-2 trait-1 marker-3 marker-4 marker-5 label

1 1 1 1 .0287 .0298 .0310 .0273 .0287 .0298 0
1 1 1 2 .0290 .0275 .0292 .0282 .0302 .0305 1
1 1 2 1 .0132 .0135 .0138 .0140 .0139 .0132 3

The ‘set window patterns’ statement in the parameter file for lm_auto expects one or more
of these labels, which instruct it to calculate the probabilities of the associated pattern(s).
This means that you must run ibddrop before using lm_auto to compute multi-locus prob-
abilities.
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The ‘set proband gametes’ statement is the key statement for lm_auto. It specifies which
haplotypes are to be scored with ibd probabilities. The syntax is as follows, where N1, N2,
... are individual ID’s and K1, K2, ... indicate the haplotype as paternal (1) or maternal
(0):

set [component M proband gametes N1 K1 N2 K2 ...

In the example, ‘531 1’ refers to the paternal (1) haplotype of individual ‘531’. The first
statement requests scoring both haplotypes of 531, the maternal (0) haplotype of 331, and
the paternal (1) haplotype of 333. Note that as of MORGAN V2.9, the number of proband
gametes is limited to 10. See Section 7.4 [ibddrop statements], page 36, for more discussion
of the ‘set proband gametes’ statement.

As with all of MORGAN’s MCMC-based programs, the user can specify the desired number
of MC iterations using the ‘set MC iterations’ statement, the desired number of burn-in
iterations using ‘set burn-in iterations’, and the probability that the L-sampler is se-
lected instead of the M-sampler using ‘set L-sampler probability’. In this example, 2000
sampling iterations are to be performed, using the L-sampler 20 percent of the time. These
iterations are preceded by burn-in iterations. Because the number of burn-in iterations is
not specified, lm_auto will use the default value of 10 percent of the number of main itera-
tions. In practice, one would run the MCMC sampler much longer than 2000 iterations (on
the order of 10^5).

9.3 Running lm_auto example and sample output

The syntax for running a MORGAN program is:

./<program> <parfile> [> <output file name>]

The lm_auto example can be run under the subdirectory ‘IBD/’

./lm_auto jv_rep_auto.par > auto.out

Below are sections of the output file ‘auto.out’, generated by running lm_auto using the
parameter file ‘jv_rep_auto.par’. Note, as for the program ibddrop, the exact values of
the probability estimates will depend on the value of the random seed. The first table of
calculations (about halfway through the output) gives probabilities of gene ibd patterns for
each marker and the trait locus (in the map order).

Probabilities of IBD patterns

Proband gamete set 1: 531 1 531 0 331 0 333 1

pattern marker-1 marker-2 trt-geno marker-3 marker-4 marker-5 label

1 1 1 1 .1985 .2960 .3480 .2920 .2430 .1840 0
1 1 1 2 .1400 .2280 .2690 .2205 .1720 .1145 1
1 1 2 1 .1265 .1495 .2050 .1225 .0975 .0985 3
1 1 2 2 .0145 .0165 .0200 .0145 .0125 .0070 4
1 1 2 3 .0340 .0350 .0515 .0255 .0220 .0130 5
1 2 1 1 .0235 .0150 .0030 .0095 .0185 .0275 6
1 2 1 2 .0755 .0425 .0110 .0640 .0705 .0775 7
1 2 1 3 .0595 .0330 .0085 .0310 .0515 .0570 8
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1 2 2 1 .0380 .0260 .0030 .0275 .0300 .0435 9
1 2 2 2 .1035 .0605 .0255 .0860 .1175 .1530 10
1 2 2 3 .0540 .0370 .0150 .0385 .0490 .0580 11
1 2 3 1 .0200 .0080 .0035 .0060 .0140 .0210 12
1 2 3 2 .0495 .0255 .0155 .0385 .0645 .0700 13
1 2 3 3 .0100 .0045 .0060 .0030 .0095 .0170 14
1 2 3 4 .0530 .0230 .0155 .0210 .0280 .0585 15

Probabilities of IBD for pattern set for windows of 3 loci

Proband gamete set 1

Pattern set: 0 4

IBD wndw 1 wndw 2 wndw 3 wndw 4

0 0 0 .5325 .4900 .4740 .5385
0 0 1 .0975 .0870 .0625 .0685
0 1 0 .0295 .0440 .0400 .0550
0 1 1 .1275 .0665 .0555 .0315
1 0 0 .0445 .0465 .1330 .1125
1 0 1 .0130 .0085 .0240 .0250
1 1 0 .0255 .1130 .0975 .1030
1 1 1 .1300 .1445 .1135 .0660

Interpretation of these results is similar to that of ibddrop See Section 7.3 [Running ibddrop
example and sample output], page 34. Briefly, the probabilities are summarized by ibd
pattern. A pattern is a series of integers, one representing each gamete listed in the ‘set
proband gametes’ statement. The order of gametes in the output file patterns is the same
as the order in which the gametes were listed in ‘set proband gametes’. Numbers that are
the same indicate gametes that are ibd. For instance, in the first row of the table above,
the pattern is ‘1 1 1 1’, which means that the values in the first row represent probabilities
that all four gametes are ibd at each marker locus and at the trait locus. Likewise, ‘1 2 1
1’ means gametes 1, 3, and 4 are ibd while gamete 2 is not ibd with the others; ‘1 2 3 4’
means all four gametes are not ibd.

The second table in the above output is a result of the window size and ibd pattern state-
ments in the parameter file. Its interpretation is similar to the output of ibddrop when
statement ‘set locus window’ was used, See Section 7.3 [Running ibddrop example and
sample output], page 34. Recall that in ibddrop, the values in the ‘IBD’ column of the
output indicate whether the two gametes specified in the ‘set proband gametes’ statement
are ibd (indicated by a ‘1’) or not (indicated by a ‘0’). With lm_auto, the user can specify
additional ibd patterns of interest over two or more gametes. In this example, the parameter
file ‘jv_rep_auto.par’ includes the statement ‘set window patterns 0 4’, which indicates
that we are interested in ibd patterns ‘0’ and ‘4’, corresponding to ‘1 1 1 1’ and ‘1 1 2 2’,
respectively, as discussed in the previous section. That is, we would like to know the proba-
bility that either all four gametes are ibd or that the first two are ibd and the second two are
ibd, but the pairs are not ibd with one another for each window of three loci. Consequently,
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interpretation of the ‘IBD’ column of the lm_auto output is as follows. The row headed by
‘0 0 0’ gives probabilities that the gametes do not follow either of the two ibd patterns of
interest at all three loci for each window. The row headed by ‘0 0 1’ gives probabilities that
the gametes do not follow either of the two ibd patterns of interest at the first two loci in
the window, but at the third loci either all four gametes are ibd or the first two are ibd and
the last two are ibd, but the pairs are not ibd with one another.
In this section of the lm_auto output, the order of the marker and trait loci is the same
as above. In this example, the trait locus was between markers 2 and 3. Therefore, the
windows are as below:

window loci

wndw 1 marker 1, marker 2, trait

wndw 2 marker 2, trait, marker 3

wndw 3 trait, marker 3, marker 4

wndw 4 marker 3, marker 4, marker 5

For more information regarding the MCMC parameters and diagnostic output, See
Section 8.5 [MCMC parameters and options], page 41.

9.4 Sample lm_pval parameter file

Files for lm_pval may be found in the ‘TraitTests’ subdirectory of ‘MORGAN_Examples’.
The parameter file, ‘ped73_pval.par’ is similar to the parameter file used for lm_auto. An
abbreviated version of ‘ped73_pval.par’ is given below:

input pedigree file ’../ped73.ped’

set component 1 affected individuals 302 307 406 407 408 411 414 416 505 507 508 511 512 513 514 516 601 602
set component 2 affected individuals 1301 1302 1304
set component 3 affected individuals 2301 2302 2306 2307 2308 2305

#input pedigree record trait 1 integer 4
#set affected individuals trait 1

input seed file ’../sampler.seed’

input marker data file ’../ped73.marker.missing’
select all markers

set L-sampler probability 0.2
set MC iterations 2000

For lm_pval, markers are selected, but no trait locus is selected. Therefore, no ‘map trait
marker’ statements are included and the trait locus is not included in the ‘select’ state-
ment. The file ‘ped73.marker.missing’ contains the marker map and genotypes, and is
accessed by the statement ‘input marker data file’. Pedigree members affected with the
disease must be specified when using lm_pval. Affected individuals may be specified explic-
itly or determined by using trait data. In the above example, the three ‘set component []
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affected individuals’ statements explicitly name each affected individual for each compo-
nent. Below these three statements are two commented out statements, which can be used
instead of the ‘set component [] affected individuals’ statements to specify affected
individuals based on trait data. The first of these statements, ‘set affected individuals
trait 1’, instructs the program to determine the affected individuals by using the trait data
for trait 1 in the pedigree file. Recall that the second commented out statement, ‘input
pedigree record traits’, is needed to define the correspondence between trait numbers
and integers in the pedigree record, so that the program knows where to find the desired
trait data. See the parameter file for further instruction on how to implement the two
methods for specifying the affected individuals.

9.5 Running lm_pval example and sample output

Under the subdirectory ‘TraitTests/’, run the lm_pval example by typing:
./lm_pval ped73_pval.par > pval.out

A portion of the output giving latent (fuzzy) p-values is below. See ‘pval.out’ for the
entire output file.

Combined distribution of fuzzy p-values, by locus:
pval maxim marker-1 marker-2 marker-3 marker-4 marker-5 marker-6 marker-7

marker-8 marker-9 marker-10
0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001

0.000 0.000 0.000
0.01 0.004 0.000 0.000 0.000 0.004 0.000 0.009 0.011

0.000 0.000 0.000
0.02 0.008 0.000 0.000 0.000 0.009 0.005 0.020 0.024

0.005 0.005 0.005
0.03 0.011 0.000 0.000 0.000 0.016 0.019 0.033 0.036

0.019 0.019 0.019
0.04 0.015 0.000 0.000 0.000 0.023 0.032 0.045 0.049

0.032 0.032 0.032
0.05 0.019 0.000 0.000 0.000 0.029 0.046 0.058 0.062

0.046 0.046 0.046

The output table shows the cumulative distribution of the latent (fuzzy) p-values generated
at each marker position, as well as the cumultative distribution of the maximum latent p-
value over the markers. These distributions are over the latent inheritance patterns sampled,
given the marker data. That is, for each value of ‘pval’ in the left column, the table gives
the proportion of sampled inheritance vectors at each marker that yeild a p-value less than
‘pval’. In the last row of the example output, when pval = 0.05, 4.6% of the realizations
have a p-value less than 0.05 at marker-5; at marker-7 this value is 6.2%. Overall, 1.9%
of the realizations have a maximum p-value over the markers that is less than pval = 0.05
(shown in the second column labeled ’maxim’).
Recall again, that exact values in the output will depend on the random seed. In the case
of a relatively short run of lm_pval there may be substantial differences in the estimated
latent p-value distributions.
For more information regarding the MCMC parameters and diagnostic output, See
Section 8.5 [MCMC parameters and options], page 41.
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9.6 Autozyg statements

Many of the lm_auto and lm_pval statements following are also used for the location LOD
scores programs.

9.6.1 Autozyg computing requests

select [chromosome I] all markers [traits 1]
This statement selects all markers on the chromosome for the computation; if
not all markers are to be used, use the next statement. If the trait for lm_auto
is linked, ‘traits 1’ is included in the statement. Omit ‘traits 1’ for lm_pval.

select [chromosome I] markers J1 J2... [traits 1]
This alternate form of the ‘select markers’ statement specifies a subset of the
markers. As in the previous statement, specify a linked trait for lm_auto, but
not for lm_pval here.

select unlinked trait K

Use this statement for lm_auto if the trait is unlinked. K is the trait number.

9.6.2 Autozyg file identification statements

All of the general MORGAN file identification statements can be used with the Autozyg
programs. For a list of these statements, see Section 2.3 [File identification statements],
page 8. Some additional file identification statements are specific to Autozyg.

output scores file filename

This statement, optional for lm_auto, is used to save interim scores.

input rescue file filename

A rescue file may be used to continue an lm_auto run instead of restarting at
the beginning. This file contains intermediate data, which is periodically saved
when an output rescue file has been specified in a preceding run.

output rescue file filename

This statement, which is optional for lm_auto, specifies the periodic dumping of
intermediate results to files that may be used to restart the program midstream.
Data are written alternately to files with "1" and "2" appended to the file name.

input seed file filename

This statement is optional for both lm_auto and lm_pval. It specifies random
number seeds for L- and M- samplers.

9.6.3 Autozyg pedigree file description

Both Autozyg programs use the general MORGAN pedigree file description statements; see
Section 2.5 [Pedigree file description statements], page 10.

9.6.4 Autozyg output file description

Two output file description statements are optional for lm_auto.

output rescue data I iterations
This statement can be used to specify the frequency of dumping program data
if an output rescue file is specified.
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output scores every I MC iterations
If an output scores file is specified, but this statement is not present, lm_auto
writes the scores file at the conclusion of the last iteration only (see ‘set MC
iterations’ statement).

9.6.5 Autozyg mapping model parameters

• For specifying the marker map, see Section 5.4.2 [genedrop mapping model parameters],
page 22.

• To specify a trait map for lm_auto, (see Section 5.4.2 [genedrop mapping model pa-
rameters], page 22).
The trait number specifies its position in the pedigree record; you may need to use
the ‘input pedigree record traits’ statement (see Section 2.5 [Pedigree file descrip-
tion statements], page 10) to establish the correspondence between trait numbers and
integers in the pedigree record.

9.6.6 Autozyg population model parameters

• See Section 5.4.3 [genedrop population model parameters], page 23, for statements
specifying the allele frequencies for the markers and traits.

set [chromosome I] marker names N1 N2...
This statement, which is optional for both lm_auto and lm_pval, specifies the
names of the markers in the order of their position in the marker data file, for
example, ‘set marker names D1S306 D1S249 D1S245’.

9.6.7 Autozyg computational parameters

• See Section 7.4 [ibddrop statements], page 36, for statements specifying the proband
gametes and locus window for lm_auto.

• See Section 7.4 [ibddrop statements], page 36, for the statement for setting the seeds
for the LM-sampler.

set [chromosome I] markers K data N1 M11 M12 ... [N2 M21 M22 ...] ...
Individuals with at least one observed marker are named, together with their
marker genotypes. The number of allele pairs for an individual is the same as
the number of markers mapped on the chromosome. Marker loci not observed
for an individual are given alleles ‘0 0’. (Those individuals with no observed
markers need not be included in this statement.)
In the example, there are 5 markers mapped for the chromosome:

set markers 5 data 343 1 3 1 3 1 3 1 3 1 3
331 3 4 3 4 3 4 3 4 3 4
334 2 3 2 3 2 3 2 3 2 3
431 3 4 3 4 3 4 3 4 3 4
531 3 4 3 3 0 0 3 3 3 3

set [component M] [scoreset N] proband gametes N1 K1 N2 K2...
This statement is required for lm_auto. One or more scoring sets may be
given for each pedigree component, where a scoring set consists of two or more
haplotypes. If there is more than one set for the component, each set is assigned
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a number 1 or greater. The maximum number of haplotypes in each set is
limited to 10, due to computer memory considerations.

Pairs of names and meiosis indicators are given, with 0 indicating maternal
inheritance and 1 indicating paternal inheritance. In the example, there are
two sets for the component:

set component 1 scoreset 2 proband gametes 531 1 531 0 331 0 331 1
set component 1 scoreset 4 proband gametes 561 1 362 0 364 1

At least one proband gamete set must be specified when running lm_auto.

set [chromosome I] locus window K

This statement is optional for lm_auto and gives the window size (number of
loci) for which the multi-locus ibd probabilities are scored. If no size is given,
each locus is scored separately.

set [component M] [scoreset N] window patterns L1...
This statement is a companion to ‘set locus window’ and is required for lm_
auto when the window option is chosen. It identifies the ibd patterns to be
jointly scored for the proband gamete set N assigned by the ‘set proband
gametes’ statement. A prior run, with the same proband gametes, but without
the window option is needed to select the ibd patterns. That is, the user is
required to list ibd patterns of interest by label; the labeling of the patterns is
not obvious without first running lm_auto. In the example, we were interested
in ibd patterns ‘1 1 1 1’ and ‘1 1 2 2’, which are assigned labels ‘0’ and ‘4’, re-
spectively, in the output table headed ‘Probabilities of IBD patterns’. One
needs to run lm_auto to obtain these labels.

set trait data (genotypic | discrete | quantitative)
Trait data are specified as genotypic, discrete (phenotypic), or quantitative
(continuous). With a genotypic trait, the trait locus genotype can be inferred
from the trait value. There are four possible trait values: ‘0’ = missing, ‘1’ =
homozygous for allele 1, ‘3’ = heterozygous, and ‘4’ = homozygous for allele
2. There are three possible trait values with a discrete (or phenotypic trait):
‘0’ = missing, ‘1’ = unaffected, and ‘2’ = affected. If a discrete trait is chosen,
the next statement, ‘set incomplete penetrances’, must be included. With
a quantitative trait, a missing value is denoted as a real number with integer
portion ‘999’. For example, ‘999’, ‘999.3’ and ‘999.543’ all mean ‘missing’.
The default trait type is genotypic.

set incomplete penetrances X1 X2 X3

This statement is required for discrete trait data. Penetrances (probability
of expressing the trait) are provided for the (1 1), the (1 2), and the (2 2)
genotypes, respectively.

set [component M] affected individuals N1 N2 ...
lm_pval needs to know which members of the pedigree are affected with the
disease: there are two ways to specify this. Affected individuals (for at least one
component) may be named in this statement. Or, use the following statement
if the affected individuals are to be determined from the pedigree data file.
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set affected individuals trait K

Here, lm_pval is to determine the affected individuals from the trait data in the
pedigree file. A trait genotypic code of 3 (genotype (1 2) or (2 1)) or 4 (genotype
(2 2)) indicates an affected individual. The trait number, K, determines the
position of this genotypic code in the pedigree records (see Section 2.5 [Pedigree
file description statements], page 10).

9.6.8 Autozyg MCMC parameters and options

These statements which set the parameters for the MCMC algorithms, apply to both Au-
tozyg programs, and to the location LOD score programs, lm_lods, lm_markers, lm_bayes
and lm_schnell unless otherwise noted.

use (locus-by-locus sampling | sequential imputation) for setup
There are two setup methods available to find a starting configuration for the
meiosis indicators prior to the MCMC: using sequential imputation (with the
trait treated as unlinked), or using locus-by-locus sampling (by assuming all
markers and trait are unlinked). Sequential imputation is the default method.

use I sequential imputation realizations for setup
When sequential imputation is selected above, this statement specifies the num-
ber of sequential imputation samples from which the starting configuration of
meiosis indicators is to be selected. The default is 20 iterations.

set MC iterations I

Required. It specifies the total number of main L- and M-sampling iterations.
There is no default number of MCMC iterations; the total number of "main"
L- and M- sampling iterations must be specified for all Autozyg programs. The
total MCMC run length is the sum of the number of burn-in iterations specified
by the ‘set burn-in iterations’ statement and the number of main iterations
specified in ‘set MC iterations’.

set burn-in iterations I

Burn-in iterations are performed initially, with the trait locus (if any) unlinked
to the marker map. The default number of burn-in iterations is specific to each
program.

sample by (scan | step)
By default (sample by scan), all loci (L-sampler) or all meioses (M-sampler) are
updated successively in an order determined by random permutation. When
sampling by step, a single locus (L-sampler) or single meiosis (M-sampler) is
randomly selected for updating. lm_bayes presently samples by scan only.

set L-sampler probability X

The L-sampler probability, between 0.0 and 1.0, specifies the probability in each
MCMC iteration, of locus-sampling rather than meiosis-sampling. The default
is 0.0, that is, to use M-sampler only.

compute scores every I iterations
The default is to score recombinations, total log-probabilities or the
Rao-Blackwellized estimator every MCMC iteration. This statement specifies
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the frequency with which to compute the contributions to the ibd scores or the
location LOD scores.

check progress I MC iterations
Use this statement to monitor the progress of the program as it is running. It
will print out the iteration number every Ith iteration.
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10 Estimating ibd Based Test Statistics by
MCMC

10.1 Introduction to lm_ibdtests

The program lm_ibdtests uses identity-by-descent (ibd) based and likelihood-ratio based
statistics to construct linkage detection tests. The current version allows only discrete trait
data (affected or unaffected or unknown phenotypic status).
The ibd scoring approach involves construction of an ibd measure (S) that is a function of
the inheritance vectors and affectation status of the individuals in pedigrees. The program
uses realizations of the inheritance vectors conditional only on the marker data (Y) to
compute a Monte Carlo estimate of the test statistic E(S|Y). Four different ibd measures
are implemented in the program. Two of these measures, Slambda and Saffunaff (developed
by Saonli Basu), allow incorporation both of affected and of unaffected individuals in the
analysis. The test statistic is used to test the null hypothesis of no linkage between the
trait and a set of markers. For this approach, two different testing options have been
implemented; one is a normality-based test and the other is a permutation test. The
permutation test keeps the observed marker data unchanged and permutes the affectation
status. In the normality-based test, test statistics (Spairs, for example) are computed for
each realization and averaged over realizations. The program then reports the p-values
from each test at the marker loci. For more details of these methods see Basu et al. (2008)
Annals of Human Genetics 72: 676-682
A new (lambda,p) model has been implemented in lm_ibdtests. The (lambda,p) model
models the trait-dependent segregation of inheritance vectors at a locus given the trait data
on individuals and constructs a chi-square test for linkage detection. The (lambda,p) model
incorporates both affected and unaffected individuals in the analysis. The delta model is
also implemented in the program. The current version of lm_ibdtests only allows the
ibd measure Spairs in the delta model set-up. The program returns the p-values of the
likelihood-ratio statistics under each of these two models. (For a detailed description of the
(lambda,p) and delta models, see Basu et al (2009) Biometrics 66: 205-213;for a real data
analysis using lm_ibdtests, see Sieh et al. 2005. Comparison of marker types and map
assumptions using Markov chain Monte Carlo-based linkage analysis of COGA data. BMC
Genetics 2005, 6 Suppl 1 S11)

10.2 Sample lm_ibdtests parameter file

The example parameter file for lm_ibdtests, ‘ped73_ibdt_IBD.par’, may be found in the
‘TraitTests’ subdirectory of ‘MORGAN_Examples’. Several lines in the example parameter
file have been explained in previous sections of the tutorial, only the sections requiring
additional explanation are shown below.

sample by scan
set L-sampler probability 0.5
set burn-in iterations 1000
check progress MC iterations 1000

compute ibd statistics
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set ibd measures Spairs Srobdom
set ibd tests norm permu
set ibd permutations 999

compute scores every 100 iterations

The statement ‘sample by scan’ indicates that all loci or all meioses are updated succes-
sively in an order determined by random permutation. The alternative ‘sample by step’
updates only one locus (L-sampler) or one meiosis (M-sampler) in each iteration. The ‘set
L-sampler probability’ statement specifies that the L-sampler method will be used in-
stead of the M-sampler method with a probability of 0.5. The ‘set burn-in iterations’
statement specifies 1000 iterations to be performed initially, with one trait locus (if any)
unlinked to the marker map. The ‘check progress’ statement instructs the program to
print the iteration number every 1000 iterations.

The ‘compute ibd statistics’ statement must be included in the parameter file when
running lm_ibdtests. The next line instructs the program to use Spairs and Srobdom to
perform the ibd tests. The ‘set ibd tests’ command calls for both normal and permutation
tests to be run. The next line is needed since permutation test were requested in the previous
line; it specifies how many permutations are to be used in the calculations. In this case, the
default (999) is specified; it is recommended that at least 50 permutations are used. The
last line in the parameter file is used to specify when to compute scores, the default is every
MCMC iteration.

10.3 Sample lm_ibdtests output

Under the subdirectory ‘TraitTests/’, run the example with the following command

./lm_ibdtests ped73_ibdt_IBD.par

The part of the output that tabulates test statistics and p values is shown below. The
upper table provides the permutation-test p-values for each of the two test statistics Spairs
and Srobdom at each of the 10 marker-locus positions, these positions being given for both
the male and female genetic maps. It is apparent that there is no significant association of
the trait with any of these marker positions; the p-values at markers 5 and 6 are somewhat
smaller, but do not achieve (e.g.) a 0.05 significance level. The lower table gives the same
result, but this time using a Normal distribution approximation to obtain the p-value.
In this case the standardized (N(0,1)) value of the test statistic is given, as well as the
corresponding p-value. Again there are no significant results in this small example. There
is a broad qualitative correspondence between the p-values of the two tables, but the results
are not close. This may be due to the small number of permutations used, or, more likely,
due to the inadequacies of the Normal approximation.

************************************
p Value for Permutation Test for IBD
************************************

pos(Haldane cM) Spairs Srobdom
locus male female p-value p-value

marker-1 0.000 0.000 0.9020 0.9300
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marker-2 10.000 10.000 0.8780 0.8450
marker-3 20.000 20.000 0.8130 0.7800
marker-4 30.000 30.000 0.5080 0.5190
marker-5 40.000 40.000 0.2550 0.2480
marker-6 50.000 50.000 0.2950 0.2510
marker-7 60.000 60.000 0.3850 0.5090
marker-8 70.000 70.000 0.5100 0.6660
marker-9 80.000 80.000 0.6610 0.7750
marker-10 90.000 90.000 0.5640 0.7470

*******************************
p Value for Normal Test for IBD
*******************************

pos(Haldane cM)
locus male female Spairs p-value Srobdom p-value

marker-1 0.000 0.000 -0.7843 0.7951 -0.2867 0.6167
marker-2 10.000 10.000 -0.9574 0.8166 -0.3841 0.6567
marker-3 20.000 20.000 -1.1825 0.8816 -0.2260 0.5692
marker-4 30.000 30.000 -0.6437 0.7381 -0.1272 0.5552
marker-5 40.000 40.000 0.2478 0.4103 0.0986 0.4743
marker-6 50.000 50.000 -0.2270 0.5752 -0.3275 0.6252
marker-7 60.000 60.000 -0.1503 0.5612 -0.3514 0.6437
marker-8 70.000 70.000 -0.3096 0.6372 -0.3587 0.6557
marker-9 80.000 80.000 -0.4877 0.6902 -0.2706 0.6037
marker-10 90.000 90.000 -0.2924 0.6222 -0.1136 0.5662

Your values may be different due to different random seed files.
For more details about the lm ibdtest methods see Basu et al. (2008) Annals of Human
Genetics 72: 676-682.

10.4 lm_ibdtests statements

compute ibd statistics
Required.

set ibd measures [Spairs] [Srobdom] [Saffect] [Slambda]
Optional. lm_ibdtests uses 1 to 4 measures to perform ibd tests for linage;
these are specified in the order [Spairs] [Srobdom] [Saffect] [Slambda]. Spairs,
Srobdom, and Slambda may be specified for both normal and permutation tests;
Saffect may not currently be specified with the normal tests option.

set ibd tests [normal] [permutation]
Optional. Normal and/or permutation tests may be specified.

set ibd permutations I

Optional. Need to be specified when the permutation test is requested through
‘set ibd tests’. The default is 999. It is recommended that at least 50 per-
mutations are used.
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11 Estimating Location LOD Scores by MCMC

11.1 Introduction to lm_lods, lm_markers and lm_multiple,
lm_bayes and lm_schnell

The programs lm_lods, lm_markers, lm_multiple, lm_bayes and lm_schnell are referred
to as "Lodscore" programs. The Lodscore programs use MCMC to perform multipoint
linkage analysis and trait mapping on large pedigrees where many individuals may be un-
observed and exact computation is infeasible. The data are the genotypes of observed
individuals in the pedigree at marker loci and discrete or continuous trait data. As with
exact methods of computing lod scores, the genetic model is assumed known. The only
unknown parameter is the location of the trait locus. Therefore, the user is required to
specify the marker locations, trait and marker allele frequencies and penetrance function.
Presently, users are very limited in their choice of penetrance function, but this is currently
under revision and will change in future releases of MORGAN.
lm_lods estimates location LOD scores for genotypic or discrete traits by working along
the chromosome, estimating likelihood ratios between adjacent locations of the trait locus,
starting from unlinked and proceeding through the linkage group to unlinked again. We have
three methods of combining these local likelihood ratios into an overall LOD score method.
One reduces to an eigenvalue method used by Thompson (2000: sec 9.2, P.118). Other
alternatives are simply to combine the ratios from the left, or from the right. Weighted
combinations do a better job (William Stewart), but we do not pursue this here as better
methods are available in lm_bayes and lm_markers.
lm_markers and lm_multiple are implementations of the Lange-Sobel estimator, using our
LM-sampler and the new LMM-sampler respectively. The program lm_markers is so-named
because only the meiosis indicators at marker loci are sampled, and only conditional on the
marker data. The Lange-Sobel estimate works reasonably well in reasonable time, provided
a good MCMC sampler is used, and provided the trait data do not have strong impact on
the conditional distribution of meiosis indicators. Recall that the method samples meiosis
indicators conditionally only on the marker data. Because of this the method can produce
quite accurate LOD scores in the absence of linkage, but can be inaccurate in estimating
the strength of linkage signals. As well as producing the LOD score, our current method
provides a batch-means pointwise estimate of the Monte Carlo standard error of the LOD-
score estimate. lm_markers can work with genotypic, discrete or quantitative traits.
lm_multiple generalizes the lm_markers program in various ways. In fact, from MOR-
GAN 2.8.2 (Spring 2006), the executable lm_markers is compiled as a special case of the
more general lm_multiple program. As well as including better exact computation and
pedigree peeling options for use in the lod score estimator (see Section 8.3 [Exact HMM
computations], page 39), the lm_multiple uses the new multiple-meiosis (MM) sampler in
conjunction with the L-sampler. The lm_multiple program and MM-sampler are the work
of Liping Tong (Tong & Thompson, 2008, Human Heredity 65: 142-153). Both lm_markers
and lm_multiple code optionally perform exact lodscore computations on small pedigree
components.
lm_bayes is an alternative method implemented for genotypic or discrete traits. The MCMC
performance is better than for lm_markers, but it has other computational overheads. lm_
bayes samples trait locations from a posterior distribution, and then divides it by the
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prior to produce the likelihood and hence the LOD score. Estimation is in two phases. A
preliminary run with discrete uniform prior gives order-of-magnitude relative likelihoods.
Then, using the inverse of these likelihoods as prior weights (to produce an approximately
uniform posterior) a second run is made to estimate the likelihood. It is important that the
initial run is long enough for all points to be sampled, and for the unlinked trait position
to have a reasonable number of realizations. For locations at which LOD scores are very
negative, or for the unlinked position when there is some location with strong positive LOD
score this can be problematic.

Our current implementation of lm_bayes provides two LOD score estimates. The first is a
crude estimate which counts realizations of locations sampled to estimate the posterior: as
can be seen from the output this can be quite erratic. The Rao-Blackwellized estimator is
much preferred, and produces good estimates in reasonable time.

lm_schnell uses MCMC realizations of segregation indicators, conditional on marker and
quantitative trait data, to estimate local likelihood ratios between alternative hypothesized
trait locations. It is based on the program SCHNELL (Single CHromosome Non-Exponential
Linkage Likelihoods), originally written by Greg Snow. Because lm_schnell uses the same
local-likelihood-ratio based method of lodscore estimation as lm_lods, it suffers from the
same disadvantages, namely extensive MCMC requirements and frequent difficulty estimat-
ing local likelihood ratios across the positions of highly polymorphic markers. However,
because lm_schnell models a quantitative, rather than qualitative trait, MCMC mixing
performance should be better. Also, uniquely among our currently released programs, lm_
schnell models a polygenic component in addition to the major trait locus. The sampling
of this component is by single-site updating, and testing of this feature has been limited.
Joint updating of polygenic values is implemented in programs under development, and
lm_schnell will be improved or replaced in future releases.

11.2 Sample parameter files for lm_lods, lm_markers, lm_
bayes and lm_schnell

There are three example parameter files in the ‘Lodscores’ subdirectory: ‘ped73_ge.par’,
‘ped73_ph.par’ and ‘ped73_qu.par’. These files are examples of how to analyze genotypic,
discrete, and quantitative traits, respectively. Each of these files is written for use with
lm_markers since it is our preferred program and it can analyze genotypic, discrete, and
quantitative traits. The programs lm_lods, lm_bayes, and lm_schnell each require slight
modifications to the parameter files, and may be limited in the trait data types they can
handle. These modifications are included in each of the parameter files (see commenting).

The three parameter files share the following statements:

input pedigree file ’../ped73.ped’

input seed file ’../sampler.seed’
output overwrite seed file ’../sampler.seed’

input marker data file ’../ped73.marker.missing’
select all markers traits 1

map trait 1 all interval proportions 0.3 0.7
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map trait 1 external recomb fracts 0.05 0.15 0.3 0.4 0.45
set trait 1 freqs 0.5 0.5

sample by scan
set burn-in iterations 150
set L-sampler probability 0.2
set MC iterations 3000
check progress MC iterations 1000

The pedigree file specified by the ‘input pedigree file’ statement can contain multiple
traits. As discussed in previous sections, the marker map, allele frequencies and genotypes
can be contained in the parameter file or in a separate file specified by the ‘input marker
data file’ statement like in the example above.
The two ‘map trait’ statements give trait locus positions at which the LOD scores should
be calculated. When the trait locus is located between two markers, the trail position
is specified in terms of the proportional genetic distance between the two markers (this
option makes handling gender-specific maps easy). In this example, the trait positions are
specified to be at 30 and 70 percent of the interval. The second ‘map trait’ statement
allows trial trait positions located before the first marker or after the last marker to be
specified; the postitions are specified explicitly in terms of recombination fractions with the
nearest marker locus. Note that an external recombination fraction of 0.5 is not necessary
since the likelihood of an unlinked trait locus is always used as a reference when computing
the LOD scores.
The ‘set trait ... freqs’ statement specifies allele frequencies at the trait locus. If the
allele frequencies sum to less than 1, a warning message will be issued:

Sum of allele frequencies is not in range .9999, 1.0001 (W)

If the allele frequencies sum to above 1.0001, the program quits and generates an error
message.
The final five statements give MCMC specifications. The ‘sample by scan’ statement in-
structs the program to update all the meiosis indicators, S, at each iteration, in an order
determined by random permutation. The alternative ‘sample by step’ updates only one
locus (L-sampler) or only one meiosis (M-sampler) in each iteration. In the ‘set burn-in
iterations’ statement, 100 burn-in iterations, with an unlinked trait, are requested. The
L-sampler probability is set at 20 percent, which seems to be a good choice. For a detailed
discussion of effects of varying L- to M-sampler ratio, see section 10.6 in Thompson (2000).
The next statement requests 3000 MCMC iterations per test position of the trait locus.
This is for demonstration purposes only. For real data analysis, use longer runs, on the
order of 10^5 iterations per test position. The last statement tells the program to check the
progress every 1000 iterations.
Specifying Trait Data Type

Trait data type is set by using the ‘set trait data’ statement. Recall that the ‘input
pedigree record trait’ statement must be used to specify which column in the file is to
be used as the trait value (see Section 2.5 [Pedigree file description statements], page 10).
The three trait data types discussed in this example are implemented by including the
following statements in the parameter file discussed above.
‘ped73_ge.par’ specifies a genotypic trait with the following statements:
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set trait data genotypic
input pedigree record trait 1 integer 3

‘ped73_ph.par’ specifies a phenotypic trait with the following statements:
set trait data discrete
input pedigree record trait 1 integer 3
set incomplete penetrance 0.05 0.6 0.95

Recall that for discrete data, one must specify the penetrances see Section 9.6.7 [Autozyg
computational parameters], page 51.
‘ped73_qu.par’ specifies a quantitative trait with the following statements:

set trait data quantitative
input pedigree record trait 1 real 1

set trait 1 genotype mean 90.0 100.0 110.0
set trait 1 residual variance 25.0

When using a quantitative trait, genotypic means and residual variance must be specified.
Additive variance may be needed to run lm_schnell and can be specified with the state-
ment ‘set trait ... additive variance’. The default value is zero. Note that the ‘set
peeling by component’ statement can be used with lm_markers to compute LOD scores
for each component separately, as well as jointly over all components; see the parameter file
‘ped73_qu.par’ for this option.
The parameter files ‘ped73_ge.par’ and ‘ped73_ph.par’ may be used with lm_bayes, since
the program works for genotypic and discrete traits.
With lm_lods and lm_schnell, MCMC is performed at each position, and so the number
of MC iterations needed is less.
Below is a summary of the trait data types accepted for each program:

Genotypic
ped73 ge.par

Phenotypic
ped73 ph.par

Quantitative
ped73 qu.par

Notes

lm markers Yes Yes Yes
lm bayes Yes Yes No
lm schnell No No Yes Less MC

Iterations
Required

lm lods Yes Yes No Less MC
Iterations
Required

11.3 Running lm lods example and sample output

To run the lm_lods example with the phenotypic trait data, open the parameter file
‘ped73_ph.par’ in the ‘Lodscores/’ subdirectory. Then follow the instructions for changing
the number of MC iterations. The relevant section of the parameter file is below:

#For actual analyses, recommended number of iterations is
#on the order of 10^5
set MC iterations 3000 #1
check progress MC iterations 1000
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set global MCMC

#TO RUN LM_LODS, comment out the line marked #1 (above),
#and uncomment the line marked #2 (below). This effectively
#reduces the number of MC iterations

#Recall that lm_lods and lm_shnell require less iterations
#(order of 10^4) than other programs

#set MC iterations 300 #2

Recall that since MCMC is performed at each position, the number of MC iterations needed
is less. Once the parameter file has been changed, run the lm_lods example under the
subdirectory ‘Lodscores’ by typing:

./lm_lods ped73_ph.par

The most important parts of the output are the LOD scores; these are given at the end
of the output for each component (connected pedigree) at each position requested. Since
there are 73 individuals in the pedigree, this example takes a while to run.
Below are the LOD scores outputs from this example (some outputs have been omitted to
save space):

ESTIMATED LOD SCORES

Component 1

The largest eigenvalue : 1.86626

The second largest eigenvalue : 1.57587

Cumulative from left : 2.21620

Cumulative from right : 0.45122

LodScore estimates:

Trait pos # position (Haldane cM)
or marker male female eigen left right

1 -115.129 -115.129 0.04481 0.00015 -0.34546
2 -80.472 -80.472 0.13091 -0.00410 -0.34971
3 -45.815 -45.815 0.28046 -0.05817 -0.40378
4 -17.834 -17.834 0.43549 -0.18552 -0.53113
5 -5.268 -5.268 0.83469 -0.13949 -0.48510

marker-1 0.000 0.000 NA NA NA
6 3.000 3.000 1.33851 0.00175 -0.34386
7 7.000 7.000 1.68532 0.05630 -0.28931

marker-2 10.000 10.000 NA NA NA
8 13.000 13.000 2.30193 0.17720 -0.16841
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9 17.000 17.000 2.58626 0.23244 -0.11317
marker-3 20.000 20.000 NA NA NA

10 23.000 23.000 3.46676 0.62422 0.27861
11 27.000 27.000 3.95936 0.78769 0.44208

marker-4 30.000 30.000 NA NA NA
12 33.000 33.000 5.05419 0.97612 0.63051
13 37.000 37.000 5.42606 1.08006 0.73445

marker-5 40.000 40.000 NA NA NA
14 43.000 43.000 6.14399 1.17323 0.82762
15 47.000 47.000 6.39609 1.23478 0.88917

marker-6 50.000 50.000 NA NA NA
16 53.000 53.000 5.68067 1.06031 0.71470
17 57.000 57.000 5.37402 0.98868 0.64307

marker-7 60.000 60.000 NA NA NA
18 63.000 63.000 4.32190 1.05923 0.71362
19 67.000 67.000 3.91308 1.05841 0.71280

marker-8 70.000 70.000 NA NA NA
20 73.000 73.000 3.35744 1.01417 0.66856
21 77.000 77.000 3.07940 1.04257 0.69696

marker-9 80.000 80.000 NA NA NA
22 83.000 83.000 2.96763 1.33124 0.98563
23 87.000 87.000 2.79748 1.45101 1.10540

marker-10 90.000 90.000 NA NA NA
24 95.268 95.268 1.78970 1.13057 0.78496
25 107.834 107.834 1.13899 0.95320 0.60759
26 135.815 135.815 0.41807 0.59170 0.24609
27 170.472 170.472 0.10067 0.43978 0.09417
28 205.129 205.129 0.01432 0.39120 0.04559

Note that your output may be slightly different due to differences in the random seed.
Note also that lm_lods does not estimate LOD scores at marker positions; the markers are
included in the list of positions for reference, but the lodscore is given as "NA".

As mentioned in the introduction to this chapter, there are three methods to combine the
likelihood ratios (for each test position over the position to the left, and over the position
to the right): the eigenvalue method, simple averaging starting from the left, and simple
averaging starting from the right.

In theory, the largest real eigenvalue should be equal to 2.0. The eigenvector correspond-
ing to the largest real eigenvalue is given as the LOD scores. However, when the second
largest eigenvalue is very close to the largest one, the eigenvector can be very unstable and
sometimes gives very bad LOD scores. When that happens, the “left” and “right” method,
although simpler, actually perform better.

Ideally the ‘Cumulative from left’ and ‘Cumulative from right’ values at the ends of the
chromosome should be log(1) or 0. In practice, the two values rarely equal one and LOD
scores differ a lot for these three methods, as can be seen in the output above. This example
performed a very short MCMC run. For longer runs, the LOD scores for the three methods
may be more consistent with each other.
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For more information regarding the MCMC parameters and diagnostic output, See
Section 8.5 [MCMC parameters and options], page 41.

11.4 Running lm_markers examples and sample output

lm_markers can be run with all three parameter files in the ‘Lodscores/’ subdirectory. As
usual, the syntax for running the program is:

./lm_markers <parameter file>

This section describes the output obtained my using the parameter file ‘ped73_qu.par’.
Note that this file contains an option for peeling by component, see commenting at the end
of the parameter file for implementation. The peeling by component option allows for LOD
scores to be computed for each component separately, as well as jointly over all components.
To run the example, type:

./lm_markers ped73_qu.par

The interesting part of the output is the LodScore estimates. For each test position, we
have the LOD score and the standard deviation.

LodScore estimates by Rao-Blackwellized computation:

Trait pos # position (Haldane cM)
or marker male female LodScore StdErr

1 -115.129 -115.129 0.0312 0.0006
2 -80.472 -80.472 0.0532 0.0012
3 -45.815 -45.815 0.0561 0.0031
4 -17.834 -17.834 -0.0989 0.0078
5 -5.268 -5.268 -0.3636 0.0160

marker-1 0.000 0.000 -0.5626 0.0248
6 3.000 3.000 -0.5639 0.0248
7 7.000 7.000 -0.6048 0.0280

marker-2 10.000 10.000 -0.6660 0.0316
8 13.000 13.000 -0.6474 0.0208
9 17.000 17.000 -0.6788 0.0133

marker-3 20.000 20.000 -0.7628 0.0147
10 23.000 23.000 -0.4993 0.0183
11 27.000 27.000 -0.2416 0.0292

marker-4 30.000 30.000 -0.0863 0.0407
12 33.000 33.000 0.5250 0.0352
13 37.000 37.000 0.9361 0.0275

marker-5 40.000 40.000 1.1317 0.0182
14 43.000 43.000 0.9977 0.0165
15 47.000 47.000 0.7870 0.0153

marker-6 50.000 50.000 0.5955 0.0153
16 53.000 53.000 0.4909 0.0152
17 57.000 57.000 0.2737 0.0151

marker-7 60.000 60.000 0.0359 0.0181
18 63.000 63.000 -0.2081 0.0103
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19 67.000 67.000 -0.6324 0.0066
marker-8 70.000 70.000 -1.0908 0.0080

20 73.000 73.000 -0.6078 0.0125
21 77.000 77.000 -0.3453 0.0109

marker-9 80.000 80.000 -0.2890 0.0083
22 83.000 83.000 -0.0640 0.0064
23 87.000 87.000 0.1769 0.0068

marker-10 90.000 90.000 0.3237 0.0107
24 95.268 95.268 0.4945 0.0070
25 107.834 107.834 0.5835 0.0037
26 135.815 135.815 0.3911 0.0014
27 170.472 170.472 0.1810 0.0004
28 205.129 205.129 0.0812 0.0001

For more information regarding the MCMC parameters and diagnostic output, See
Section 8.5 [MCMC parameters and options], page 41.

11.5 Running lm_bayes examples and sample output

If you have been following the tutorial in order, you have altered the parameter file
‘ped73_ph.par’ in order to reduce the number of MCMC iterations for running the
lm_lods example. Since lm_bayes DOES NOT perform MCMC at each position, it is
not advisable to reduce the number of iterations like we did in the lm_lods example.
Before running the example for lm_bayes, ensure that the parameter file ‘ped73_ph.par’
has the larger MC iterations option selected. The relevant section of your parameter file
should look like this, with the ‘set MC iterations 300’ commented out and the ‘set MC
iterations 3000’ not commented out:

#For actual analyses, recommended number of iterations is
#on the order of 10^5
set MC iterations 3000 #1
check progress MC iterations 1000
set global MCMC

#TO RUN LM_LODS, comment out the line marked #1 (above),
#and uncomment the line marked #2 (below). This effectively
#reduces the number of MC iterations

#Recall that lm_lods and lm_shnell require less iterations
#(order of 10^4) than other programs

#set MC iterations 300

Under the subdirectory ‘Lodscores/’, run the lm_bayes example by typing:

./lm_bayes ped73_ph.par

The results from lm_bayes are the LOD scores toward the end of the output. Two methods
of computing the LOD scores are available: (1) count realizations of locations sampled to
estimate the posterior probability (crude) and (2) Rao-Blackwellized estimator (R-B). The
latter is the preferred method.
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LodScore estimates:

Trait pos # position (Haldane cM) pseudo freq LodScore
or marker male female prior visited crude R-B

0 unlinked unlinked 0.020178 116 NA NA
1 -115.129 -115.129 0.020560 100 -0.0726 -0.0080
2 -80.472 -80.472 0.021170 143 0.0700 -0.0203
3 -45.815 -45.815 0.023718 165 0.0828 -0.0681
4 -17.834 -17.834 0.035627 122 -0.2250 -0.2402
5 -5.268 -5.268 0.060088 122 -0.4520 -0.4592

marker-1 0.000 0.000 NA NA NA NA
6 3.000 3.000 0.089923 127 -0.6097 -0.6299
7 7.000 7.000 0.098887 150 -0.5786 -0.6763

marker-2 10.000 10.000 NA NA NA NA
8 13.000 13.000 0.106325 102 -0.7776 -0.7095
9 17.000 17.000 0.105926 111 -0.7393 -0.7091

marker-3 20.000 20.000 NA NA NA NA
10 23.000 23.000 0.067969 93 -0.6234 -0.5206
11 27.000 27.000 0.043461 105 -0.3765 -0.3216

marker-4 30.000 30.000 NA NA NA NA
12 33.000 33.000 0.022509 118 -0.0401 -0.0447
13 37.000 37.000 0.014511 87 0.0182 0.1340

marker-5 40.000 40.000 NA NA NA NA
14 43.000 43.000 0.009146 157 0.4751 0.3324
15 47.000 47.000 0.007793 82 0.2625 0.4142

marker-6 50.000 50.000 NA NA NA NA
16 53.000 53.000 0.010758 101 0.2130 0.3376
17 57.000 57.000 0.017022 121 0.0922 0.1807

marker-7 60.000 60.000 NA NA NA NA
18 63.000 63.000 0.025113 117 -0.0913 -0.0129
19 67.000 67.000 0.027450 45 -0.5449 -0.1115

marker-8 70.000 70.000 NA NA NA NA
20 73.000 73.000 0.027063 83 -0.2729 -0.1503
21 77.000 77.000 0.026552 67 -0.3576 -0.1337

marker-9 80.000 80.000 NA NA NA NA
22 83.000 83.000 0.023659 96 -0.1513 -0.0742
23 87.000 87.000 0.019262 55 -0.3039 0.0179

marker-10 90.000 90.000 NA NA NA NA
24 95.268 95.268 0.012658 81 0.0465 0.2023
25 107.834 107.834 0.011441 87 0.1215 0.2475
26 135.815 135.815 0.014517 76 -0.0406 0.1441
27 170.472 170.472 0.017645 90 -0.0520 0.0588
28 205.129 205.129 0.019069 81 -0.1314 0.0248
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11.6 Running lm_schnell example and sample output

Recall that lm_schnell works with quantitative traits only, and that because MCMC is
performed at each position, the number of MC iterations needed is less. Since the number
of MC iterations required is less, we must edit the parameter file ‘ped73_qu.par’ to reflect
this (just like we did when running the lm_lods example). Instructions are located near
the end of the parameter file, and are given below:

#For actual analyses, recommended number of iterations is
#on the order of 10^5
set MC iterations 3000 #1
check progress MC iterations 1000
set global MCMC

#TO RUN LM_SCHNELL, comment out the line marked #1 (above),
#and uncomment the line marked #2 (below). This effectively
#reduces the number of MC iterations

#Recall that lm_lods and lm_shnell require less iterations
#(order of 10^4) than other programs

#set MC iterations 300 #2

Under the subdirectory ‘Lodscores/’, run the example with the following command:

./lm_schnell ped73_qu.par

Since additive variance is not specified in the parameter file, the default value 0 is used.
This example takes a while to finish.

ESTIMATED LOD SCORES

Component 1

The largest eigenvalue: 2.38058

The second largest eigenvalue: 1.84655

Cumulative from left : 3.47316

Cumulative from right : 0.28792

LOD scores:
position female male eigen left right

0 -115.12925 -115.12925 0.04135 0.01177 -0.52896
1 -80.47190 -80.47190 -0.04939 0.04327 -0.49746
2 -45.81454 -45.81454 -0.20917 0.10753 -0.43320
3 -17.83375 -17.83375 -0.72080 0.20552 -0.33520
4 -5.26803 -5.26803 -1.42463 -0.11293 -0.65366
5 3.00000 3.00000 -1.90715 -0.16779 -0.70852
6 7.00000 7.00000 -2.20055 -0.23907 -0.77979



Chapter 11: Estimating Location LOD Scores by MCMC 68

7 13.00000 13.00000 -2.78293 -0.06788 -0.60860
8 17.00000 17.00000 -3.33181 -0.14982 -0.69055
9 23.00000 23.00000 -4.36919 0.01748 -0.52324
10 27.00000 27.00000 -4.61200 0.09763 -0.44309
11 33.00000 33.00000 -4.76603 0.93494 0.39421
12 37.00000 37.00000 -4.92469 1.19967 0.65894
13 43.00000 43.00000 -5.47771 1.22628 0.68555
14 47.00000 47.00000 -5.74826 1.36085 0.82013
15 53.00000 53.00000 -6.35674 0.74257 0.20184
16 57.00000 57.00000 -6.15321 0.48212 -0.05860
17 63.00000 63.00000 -6.19531 -0.03028 -0.57100
18 67.00000 67.00000 -6.27084 -0.56559 -1.10631
19 73.00000 73.00000 -4.94832 -0.61375 -1.15447
20 77.00000 77.00000 -4.35057 -0.29956 -0.84028
21 83.00000 83.00000 -3.34770 0.11962 -0.42110
22 87.00000 87.00000 -2.86960 0.22810 -0.31263
23 95.26803 95.26803 -1.58121 0.97457 0.43385
24 107.83375 107.83375 -0.68635 1.08899 0.54826
25 135.81454 135.81454 -0.36267 0.83854 0.29781
26 170.47190 170.47190 -0.24994 0.67770 0.13698
27 205.12925 205.12925 -0.08595 0.61535 0.07462

The ‘eigen’, ‘left’ and ‘right’ columns have the same interpretation as in lm_lods.

For more information regarding the MCMC parameters and diagnostic output, See
Section 8.5 [MCMC parameters and options], page 41.

11.7 Location LOD scores statements

New statements for these programs include maps for test positions, and parameters for
some additional MCMC algorithms.

11.7.1 Location LOD scores computing requests

• For the ‘select’ statement for your MCMC simulation, See Section 9.6.1 [Autozyg
computing requests], page 50. Select all or some of the markers and ‘traits 1’ (this is
the trait to be assigned varying test positions).

11.7.2 Location LOD scores file identification statements

All Lodscore programs use the general MORGAN file identification statements (see
Section 2.3 [File identification statements], page 8) and the Autozyg rescue file statements
(see Section 9.6.2 [Autozyg file identification statements], page 50). One additional
statement is optional for lm_bayes:

output Rao-Blackwellized estimates file
If this file is specified, the set of Rao-Blackwellized lod score estimates at each
trait position is written at the frequency specified in the ‘compute scores’
statement.
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11.7.3 Location LOD scores pedigree file description

All Lodscore programs use the general MORGAN pedigree file description statements; See
Section 2.5 [Pedigree file description statements], page 10. One additional statement is
optional for lm_markers and lm_schnell.

input pedigree record traits K1 K2... reals I1 I2...
This statement is analogous to ‘input pedigree record traits K1 K2...
integers I1 I2...’ (see Section 2.5 [Pedigree file description statements],
page 10), when the trait is quantitative, rather than discrete.

11.7.4 Location LOD scores output file description

All Lodscore programs use the Autozyg output file description statements; See Section 9.6.4
[Autozyg output file description], page 50.

11.7.5 Location LOD scores mapping model parameters

• See Section 5.4.2 [genedrop mapping model parameters], page 22, for statements spec-
ifying the genetic map for the markers.

map [chromosome I] [gender (M | F)] trait K all interval proportions X1 X2...
Interval proportions specify the proportional genetic distance between markers
for the trial positions for the trait. The same ratios are used between each
marker pair, regardless of the inter-genetic distance (in cM).

map [chromosome I] [gender (M | F)] trait K intervals J1... proportions X1

X2...
This statement specifies interval proportions, but between specific pairs of
markers. Interval 1 is between markers 1 and 2, interval 2 is between markers
2 and 3, etc.

map [chromosome I] [gender (M | F)] trait K (beginning | ending | external)
([Kosambi] distances | recombination fractions) X1 X2...

This statement specifies trial trait positions on the chromosome before the first
marker and/or after the last marker.

11.7.6 Location LOD scores population model parameters

• See Section 5.4.3 [genedrop population model parameters], page 23, for statements spec-
ifying the allele frequencies for the markers and traits, and See Section 9.6.6 [Autozyg
population model parameters], page 51, for statements specifying marker names.

11.7.7 Location LOD scores computational parameters

• See Section 7.4 [ibddrop statements], page 36, for setting the sampler seeds.

• See Section 9.6.7 [Autozyg computational parameters], page 51, for specifying the
marker data.

• See Section 9.6.7 [Autozyg computational parameters], page 51, for specifying the trait
data as genotypic, quantitative or discrete and for specifying penetrances when trait
data are discrete.
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set pseudo-priors X1 X2 ...
This statment is optional for lm_bayes. The number of pseudo-priors is the
number of trial trait positions plus one. The first pseudo-prior is for the unlinked
position; this should be assigned a positive value. All other pseudo-priors must
be positive or zero. The set of pseudo-priors need not be normalized.

11.7.8 Location LOD scores MCMC parameters and options

• All statements described in Section 9.6.8 [Autozyg MCMC parameters and options],
page 53, for specifying the MCMC parameters are also used for the location LOD scores
programs.

As with the Autozg programs, the number of desired MC iterations must be specified, as
there is no default value.

set MC iterations I

This statement sets the total number of "main" L- and M-sampler iterations.
For lm_markers, the total MCMC run length is the sum of the number of
burn-in iterations and main iterations. For lm_lods and lm_schnell, the total
MCMC run length is the number of burn-in iterations, plus the product of the
number of test positions for the trait, (see Section 11.7.5 [Location LOD scores
mapping model parameters], page 69), and the number of main iterations. For
lm_bayes, the total MCMC run length is the sum of the number of burn-in,
pseudo-prior (see below) and main iterations.

Additional statements for lm_bayes include the following:

set pseudo-prior iterations I

Following burn-in, lm_bayes performs iterations to calculate the pseudo-priors.
These pseudo-priors are used to encourage the MCMC sampler to visit test
positions of low posterior probability. The default number of iterations to
compute pseudo-priors is 50% of the number of main iterations specified in
the ‘set MC iterations’ statement.

set sequential imputation proposals every I iterations
This option applies to lm_bayes’s pseudo-prior and main MCMC iterations. It
allows the MCMC chain to “restart” every Ith iteration. Sequential imputation
is used to propose potential restart configurations which are accepted/rejected
with Metropolis-Hastings probability.

set test position window I

This lm_bayes statement specifies the window size for the Metropolis-Hastings
algorithm. I is the number of hypothesized trait positions on either side of the
current position, with equal weight given to the 2*I + 1 trait positions. The
default is window size is 6.
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12 Polygenic Modeling of Quantitative Traits by
EM Algorithm

12.1 Introduction to PolyEM programs

PolyEM is a set of programs to evaluate the likelihood and compute MLEs for polygenic
models of quantitative traits by EM algorithms. There are four main programs whose
features are summarized below:
• univar: This program fits a univariate trait model. It is primarily for test purposes.

The likelihood is computed by three methods including polygenic peeling, which does
not extend to looped pedigrees, and by a matrix method which does not extend to
large pedigrees.

• unibig: An extension of univar to big pedigrees that implements a method compute
the likelihood for large looped pedigrees too.

• bivar: An extension of unibig for bivariate traits.
• multivar: An extension of bivar for multivariate traits.

All programs can work with looped pedigrees. The exception is that looped pedigrees
cannot be used for the polygenic peeling algorithm in univar. The other programs do not
use polygenic peeling to evaluate the likelihood.
Only examples and statement references for multivar are given since it has the most com-
plete features. The statements for other programs are similar with some exceptions (e.g.,
any statements with covariances do not apply to univar or unibig).

12.2 Sample multivar parameter file

The pedigree file for PolyEM programs is similar to ‘ped73.ped’, which was used in most
of the previous examples.
The first three entries in each line consist of the individual’s name, father’s name and
mother’s name. Integers starting with the fourth column (usually gender) can be fixed
effects (gender, age class, etc.) or discrete phenotypes.
For quantitative traits, real numbers follow the names and integers. These real numbers
represent trait measurements. Missing values are coded with integer part ‘999’, such as
999.5 in the following example.
Here is part of the pedigree file ‘polyem.ped’. This file can be found in the ‘PolyEM’
subdirectory of ‘MORGAN_Examples’.

input pedigree size 90
input pedigree record names 3 integers 3 reals 2

****************************************
1 0 0 1 1 0 0.0246 -1.0125
2 0 0 2 1 0 -0.5978 1.5963
3 0 0 1 1 0 -0.8124 0.5662
4 0 0 2 1 0 0.4334 1.7721
5 1 2 1 1 0 0.1802 -1.4672
6 1 2 1 1 0 -1.7557 0.8091
7 3 4 2 1 0 999.5 999.5
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8 3 4 2 1 0 1.9128 0.9780
9 0 0 2 1 0 0.9530 2.3473
...

Below is the example multivar parameter file, ‘polyem.par’.
input pedigree file ‘polyem.ped’

select trait 1
select trait 2 effects 1 2

start residual covariance -0.09
start additive covariance -0.0017
start residual variance 1.10 0.65
start additive variance 0.037 0.0288

fit residual covariance
1

fit additive covariance
1

fit environmental model

output spacing 20 EM iterations
limit EM iterations 200

multivar can fit a polygenic model with one to five traits, which can be modeled as de-
pendent and/or independent. A ‘select trait’ statement is required for each trait to be
modeled (up to 5 traits). This statement indicates which column of real numbers the pro-
gram is to examine. In the example, the statement ‘select trait 1’ indicates that the first
column of real numbers is to be examined. The statement ‘select trait 2 effects 1 2’
indicates that the second column of real numbers is to be examined as well. The additional
‘effects 1 2’ portion of the statement is optional and indicates that two fixed effects (also
called covariates) are to be modeled for trait 2. The integers give the location of the fixed
effects (covariates) starting with column 4 in the pedigree file. In this example, the fixed
effects are to be found in columns 4 and 5. Important: a fixed effect location of ‘1’ indicates
that the effect value will be found in column 4. The most commonly modeled fixed effect
is gender, which, if present, resides in column 4 of a MORGAN pedigree file.
The statement ‘start trait mean’ allows the user to specify the starting trait mean for
a selected trait. Since no ‘start trait mean’ statement is included after either of the
‘select trait’ statements, both of the initial means are computed by the PolyEm program.
Similarly, one may specify the initial values for each effect with the statement ‘start trait
I effect M X1 X2 ...’, where ‘I’ is the trait number, ‘M’ is the effect number and ‘Xi’ is the
starting value of the ith level (i = 1, 2, 3, ...). These starting values represent deviations
from the global mean. The starting values are normalized so that their weighted sum is
zero (weighted by the number of individuals in that level). When using the ‘start trait I
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effect M X1 X2 ...’ it is important to know that if more levels are present in the column of
numbers corresponding to the trait ‘I’ in the pedigree file than are specified in the ‘start
trait’ statement, PolyEm programs will compute the starting value(s) for these additional
levels. Since the program will not issue a warning or error message, it is important to always
check the output to confirm that the number of levels present in the file was as intended.
Since the ‘start trait I effect M X1 X2 ...’ statement is not included in this example,
thePolyEm program will compute the initial values of the effect.
Initial values for additive and residual variances and covariances are specified in the next
four statements. These statements are required. With the variance statements, the number
of arguments must be the same as the number of traits selected and must be in order of
increasing trait number. With the covariance statements, the number of arguments must be
the same as the number of pairs of traits selected. See Section 12.4.2 [multivar segregation
model parameters], page 75, for discussion of the order of arguments.
multivar can also fit a purely environmental model with no genetic component. The
‘fit environmental model’ statement tells multivar to fit a purely environmental model,
with no genetic variance. This null hypothesis model is produced in addition to the ge-
netic/environmental model.
The final two statements specify the number of EM iterations and how often the EM
estimates are printed out.
Note that one has the opportunity to provide predetermined eigenvalues of the G-matrix of
observed individuals. The ‘set eigenvalues’ statement is used to specify the eigenvalues,
with the number of values equal to the number of observed individuals. If desired, the
eigenvalues can be provided through an input file accessed with a ‘input eigenvalue file’
statement in the parameter file, or through the command line. (See Section 12.4.3 [multivar
computational parameters], page 75).

12.3 Running multivar example and sample output

The command to run multivar (unibig and bivar have the same set of options) is:
./multivar parfile [ped pedfile] [eigen eigenfile]

where parfile is the name of the parameter file and is required. pedfile overrides the ‘input
pedigree file’ statement, and eigenfile overrides the ‘input eigenvalue file’ statment
in the parameter file.
Under the subdirectory ‘PolyEM/’, run the example by typing:

./multivar polyem.par

Toward the end of the multivar output, are the parameter estimates and the log-likelihood
from the last iteration of the EM algorithm. If you chose to fit a null (purely environmental)
model, using the ‘fit environmental model’ statement, those parameter estimates and log-
likelihood are also given. A likelihood ratio test can then be performed, with test statistic
equal to the absolute value of 2 times the difference between the log-likelihoods of the two
models. A conservative test is provided by comparing the test statistic to a chi-squared
distribution, with the degrees of freedom being the difference in the numbers of estimated
parameters between these two models.

iteration #201:
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additive variance estimates (traits 1, 2)
0.816 0.037

covariances
0.138

residual variance estimates (traits 1, 2)
0.223 0.610

covariances
-0.239

trait 1
overall mean -0.063

trait 2
overall mean 1.780
fixed effect 1 -0.717 0.546
fixed effect 2 -1.008 -0.552 1.167

current log-likelihood = -183.098

estimates of environmental model

residual variance estimates (traits 1, 2)
1.136 0.642

covariances
-0.102

trait 1
overall mean 0.062

trait 2
overall mean 1.801
fixed effect 1 -0.773 0.589
fixed effect 2 -1.010 -0.553 1.170

environmental model log-likelihood = -197.799

12.4 multivar statements

12.4.1 multivar computing requests

select trait I [effects M1...]
One ‘select trait’ statement is required for each trait to be modeled. Up to
five traits are allowed for multivar.

The trait number, I, corresponds to the column of real numbers in the pedigree
file, with the first column of real numbers being trait 1, the second column trait
2 and so on.
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M ’s are the fixed effects to be modeled for a specified trait I. They are the
columns in which they appear in the pedigree file, with fixed effect 1 in the 4th
column (usually gender), effect 2 in column 5, and so on.

12.4.2 multivar segregation model parameters

start trait I mean X

There is one statement per trait, specifying the starting value for the mean trait
values. The PolyEM programs will compute the initial values if not given.

start trait I effect M X1 X2...
Starting values for the fixed effect levels for the traits are computed, unless
specified in this statement.

start additive variances X1 X2...
The starting values for the variances of the traits are required. The number
of values must be the same as the number of traits selected, in the order of
increasing trait number.

start residual variances X1 X2 ...
Starting values for residual variances are also required.

start additive (covariances | correlations) X12...
Starting values for the covariances (or correlations) between the traits are re-
quired. They are given the order: X12, X13, . . . , X1n, X23, . . . , X2n, . . . ,
where Xij is the covariance for the ith and j th selected traits from the pedigree
file.

start residual (covariances | correlations) X12...
See the ‘start additive...’ statements.

12.4.3 multivar computational parameters

fit additive (covariances | correlations) X12...
This statement specifies which covariances to be estimated and which to be fixed
at 0. The order of values is the same as the ‘start additive covariances’
statement with ’1’ indicating a covariance to be fit and ’0’ a covariance to be
fixed.
Note that if trait 1 is correlated with trait 3, and so is trait 2 with trait 3, the
correlation between 1 and 2 cannot be zero. So we have to be a bit careful in
specifying the correlation structure.

fit residual (covariances | correlations) X12...
Similar statement for residual covariances.

set eigenvalues X1 X2...
Optional. This statement is used to provide predetermined eigenvalues of the
G-matrix of observed individuals, with the number of values the same as the
number of observed individuals.

input eigenvalue file eigenfile

Optional. If present, it overrides the ‘set eigenvalues’ statements.
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limit breeding iterations I

This statement specifies the maximum number of breeding–values iterations.
The default number currently is 20.

set breeding convergence X

This statement specifies the convergence criterion for breeding–values iterations.
The default number is currently is 1.0e-8.

limit EM iterations I

This statement specifies the number of EM iterations. The default number
presently is 200. There is no option to specify convergence criterion. If conver-
gence has not been achieved, the final estimates can be used as starting values
to rerun the program.

12.4.4 multivar computational options

compute eigenvalues
If this statement is present, the values given in either the eigenfile or the state-
ment ‘set eigenvalues’ are ignored and the eigenvalues are computed by the
program. This is the default action if no eigenvalues are given.

use (full | partitioned) EM
Use this statement to choose between two iterative procedures in maximum
likelihood estimates. With the ‘full EM’ option, the fixed effects, additive and
residual variance and covariance are simultaneously updated. This is the default
action.
With the ‘partitioned EM’ option, the maximization step is partitioned into
two parts. The first part is to maximize the likelihood over additive and residual
variances/covariances; the second part over residual variances/covariances and
fixed effects. The expectation step is run after each part. Partitioned EM takes
more computer time.

fit environmental model
This statement asks a purely environmental model with no genetic variances to
be fit, in additional to the genetic/environmental model.

12.4.5 multivar output options

output statistics (covariances | correlations)
By default, covariances are printed out.

output final adjusted phenotypes
If this option is specified, trait values adjusted for all fixed effects are computed
and output.

output spacing I EM iterations
This statement requests a print out of the EM estimates every Ith iteration.
The default number is defined in the program header file.

check gmatrix
This statement requests a print out of the G matrix for observed individuals
and quit without doing the likelihood computation.
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check ginverse
This statement requests a print out of the G inverse matrix and the program
quits unless ‘check eigenvalues’ has also been specified.

check eigenvalues
This statement requests the program to print out of the eigenvalues, whether
computed or input, and then to quit. These eigenvalues can then be used as
input in subsequent runs.

check eigenvalue computation
This statements causes some comments to be printed by the function that
computes the eigenvalues.

check trace
This statements requests the trace of the G–inverse matrix to be printed.
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13 Estimating Genetic Map from Marker Data

13.1 Introduction to lm_map

The program lm_map finds the maximum likelihood estimate (MLE) of the marker map,
estimates the variance of the MLE, and tests hypotheses about the true map. All inference is
based on the analysis of multilocus marker data obtained from some (possibly all) members
of a set of independent families.
To find the MLE, lm map uses either Monte Carlo expectation-maximization (MCEM) or
a hybrid of MCEM and stochastic approximation (SA). In either case, the user must supply
an initial map estimate, and an initial Monte Carlo (MC) sample size for the MCEM
algorithm. The MCEM sample size is automatically increased with each successive step of
the algorithm, and only a small number of MCEM steps are needed to estimate the MLE.
If the hybrid option is chosen, lm_map uses the MCEM estimate to seed the SA algorithm.
Then, a relatively large number of SA steps are used to estimate the MLE with greater
precision.
Once the MLE is obtained, a long Markov chain is used to estimate the variance of the
MLE. Finally, a slight adaptation of the MC likelihood ratio formula is used to estimate the
likelihood ratio test (LRT) statistics for testing the simple and/or composite null hypotheses.
For more details, see Stewart, WCL and Thompson, EA (2006) Improving estimates of
genetic maps: A maximum likelihood approach. Biometrics 62, 728-734.

13.2 Sample lm_map parameter file

The two sample parameter files for lm_map can be found in the directory
‘/MORGAN_Examples/Map’. The two files are ‘map_G.par’ and ‘map_P.par’, along with the
corresponding marker data files ‘map_G.markers’ and ‘map_P.markers’. Thus there are
two examples, one for genotypic markers (G) and one for phenotypic markers (P). "G"
denotes that marker genotypes are observed without error. "P" denote the possibility
of error, so that the observed marker phenotype is not the same as the underlying true
marker genotype. This example uses the pedigree file ‘map.ped’.
‘map_G.par’ and ‘map_P.par’ have the following statements in common:

input pedigree file ’./map.ped’
input marker data file ’./map_[G|P].markers’

select all markers
set marker 1 2 3 freqs .2 .2 .2 .2 .2
set marker names DS123 DS456 DS789

map gender F marker recomb fract .18 .18 # true F map (cM): 20 20
map gender M marker recomb fract .08 .08 # true M map (cM): 10 10

limit recomb fracts .001

use sequential imputation for setup
use 100 sequential imputation realizations for setup
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set burn-in iterations 100
sample by scan
set L-sampler probability .8
set MC iterations 50 # The initial number of MCMC scans per step
limit EM iterations 10 # The total number of MCEM steps

As seen in previous examples, the ‘select all markers’ statement instructs the program
to use all markers on the chromosome for computation. The alternative is to use only
selected markers for computation, which can be achieved by using the ‘select markers’
statement (see Section 9.6.1 [Autozyg computing requests], page 50). The ‘set marker 1 2
3 freqs .2 .2 .2 .2’ statement specifies the marker allele frequencies for markers 1, 2, and
3. This statement, as constructed, requires markers 1, 2, and 3 to each have five alleles with
frequencies of 0.2 for each allele. If the number of alleles per marker varies from marker
to marker, or if the allele frequencies vary from marker to marker, a separate ‘set marker
freqs’ statement is needed for each marker (see Section 6.5.3 [markerdrop population model
parameters], page 31 ). The ‘set marker names’ statement overrides the default behavior,
which labels markers consequtively: marker-1, marker-2, etc.

The two ‘map gender [] marker recomb fract’ statements specify the marker map in terms
of recombination fractions.

The ‘limit recomb fracts 0.001’ statement is optional and places lower and upper bounds
on the estimated recombination fractions of the map. For markers that are separated
by little or no recombination, the MCEM algorithm may yield estimated recombination
fractions of zero which could lead to a severe bias in the results. As a safeguard against
such events, this statement places a lower bound 0.001 and an upper bound 0.5 - 0.001 on
the estimated recombination fractions of the map.

The statement ‘use sequential imputation for setup’ instructs lm_map to initialize the
set of maternal and paternal meiosis indicators for all members of the pedigree who are
not founders; this is done prior to the Monte Carlo simulation. The default behavior is
specified in this statement, with the alternative being to ‘use locus-by-locus sampling
for setup’. The statement ‘use 100 sequential imputation realizations for setup’
is optional and modifies the default behavior for setup by sequential imputation (which is
10% of the MC iterations). The next three lines in the parameter files contain statements
introduced in the Autozyg examples of this tutorial. For explanation of ‘set burn-in
iterations’, ‘sample by scan’, and ‘set L-sampler probability’ see Section 9.6.8 [Au-
tozyg MCMC parameters and options], page 53. The statement ‘set MC iterations 50’
indicates how many MC iterations are to be performed at each step. The statement ‘limit
EM iterations’ was introduced in the multivar example and puts an upper bound on the
number of MCEM iterations.

Now we’ll take a look at the remaining statements in ‘map_G.par’:

output maps gender averaged specific
set map estimation model with no mistyping
set EM convergence .01

use MCEM and SA for maximization
set SA curvature iterations 10
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set SA ascent iterations 10
set SA gradient iterations 10
set SA convergence .001

The ‘output maps gender averaged specific’ statement specifies the type of map to be
estimated by lm_map. In this example, the default behavior is specified, which instructs
lm_map to automatically compute the likelihood ratio test statistic for testing the null
hypothesis of a sex-averaged map. The statement ‘set map estimation model with no
mistyping’ instructs lm_map to assume that the genotypes are observed without error.
The ‘set EM convergence’ statement instructs lm_map to stop the MCEM algorithm if all
recombination fraction updates are within 0.01 of their previous values.

The statement ‘use MCEM and SA for maximization’ instructs lm_map to attempt to refine
its MCEM-based estimate of the MLE by performing additional SA steps. The alternative
is to ‘use MCEM only for maximization’, with no further refining. There are several state-
ments that allow additional control of the SA algorithm. First, an estimate of the curvature
of the likelihood is needed to initiate the SA algorithm. The statement ‘set SA curvature
iterations 10’ instructs lm_map to use at least 10 MCMC realizations to estimate the cur-
vature of the likelihood. Also, lm_map will not initiate the SA algorithm with a step that
decreases likelihood. So, when the SA algorithm is used for refining the likelihood estimate,
the statement ‘set SA ascent iterations 10’ instructs lm_map to use at least 10 MCMC
realizations to determine whether a proposed first step increases the likelihood. The SA
algorithm also requires an estimate of the gradient of the likelihood at each SA step. The
statement ‘set SA gradient iterations 10’ instructs lm_map to use at least 10 MCMC
realizations to estimate the gradient of the likelihood. Finally, the map estimate obtained
from the final step of the MCEM algorithm is used to seed the SA algorithm. The ‘set
SA convergence 0.001’ statement instructs lm_map to terminate the SA algorithm when
the absolute change in successive map estimates is less than 0.001 for each recombination
fraction in the map.

Now we’ll take a look at the remaining statements in ‘map_P.par’:

output maps gender averaged
set map estimation model with mistyping
set genotyping error rate .02
use MCEM only for maximization

In this parameter file, a gender averaged map is specified by using the ‘output maps gender
averaged’ statement. Unlike in the previous parameter file, ‘map_P.par’ does not as-
sume the genotypes are recorded without error; this is indicated by the statement ‘set map
estimation model with mistyping’. When ‘with mistyping’ is chosen, one has the op-
tion of specifying an estimate of the error rate with the statement ‘set genotyping error
rate E ’. In this example, the error rate is set at 0.02. Finally, the statement ‘use MCEM
only for maximization’ instructs lm_map not to use the SA algorithm to further refine the
MCEM-based estimate of the MLE. Since the SA algorithm will not be used, none of the
‘SA’ statements are used in ‘map_P.par’.
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13.3 Running lm_map with genotypic data

Run the genotypic example in the ‘Map’ subdirectory of the ‘MORGAN-examples’ directory
with the following command

./lm_map map_G.par

The lm_map program is one of the more computationally intensive MORGAN programs.
Even running this small example takes about 30 seconds to run (depending on the computer
used, of course). Again, different random seeds will result in different outputs with each
run.

Here is the output from one of the runs: The maximum likelihood estimates (MLEs) of
marker map recombination frequencies are given for each marker interval and for male
and female meioses. Also given is the estimated variance-covariance matrix of the MLEs.
Of course, the MLE will not be identical to the true parameter value, but the variance-
covariance matrix gives an estimate of the precision. The ‘effective number of meioses’
is also a measure of this precision, giving the number of fully informative meioses required
for the same precision of the MLEs.

MAXIMUM LIKELIHOOD ESTIMATES

Interval Female (RF) Male (RF)
-------- ----------- ---------

1 0.2231 0.0264
2 0.2745 0.0801

ESTIMATED VARIANCE OF SEX-SPECIFIC MAP [F1,M1,F2,M2,... x F1,M1,F2,M2,...]

0.004402 -0.000034 -0.000422 -0.000040
-0.000034 0.000621 0.000075 -0.000025
-0.000422 0.000075 0.006546 -0.000136
-0.000040 -0.000025 -0.000136 0.001482

EFFECTIVE NUMBER OF MEIOSES

Interval Female Male
-------- -------- -------

1: 40 42
2: 31 50

13.4 Running lm_map with phenotypic data

./lm_map map_P.par

Running this example takes a noticeable amount of time. Given are the MLEs of the sex-
averaged recombination frequency in each of the two marker intervals and of the mistyping
(error) rate. Also given is the estimated variance-covariance matrix of these MLEs and the
effective number of meioses (see the previous section).

MAXIMUM LIKELIHOOD ESTIMATES
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Interval Sex-Averaged (RF)
-------- ----------------
1 0.1510
2 0.1787

MISTYPING RATE: 1.479401%

ESTIMATED VARIANCE OF (MAP,MISTYPING RATE) SEX-AVERAGED
------------------------------------------------------

0.001432 -0.000482 0.000007
-0.000482 0.001517 -0.000016
0.000007 -0.000016 0.000072

Following this section, there is a table of the estimated error probability for each individual
at each marker. From your output you should see that the program detects errors in
individual 32 and individual 49 for marker-3 and in individual 90 for marker-1. Some other
instances of data with low (non-error) probability also show non-zero estimated probability
of error. The exact values of these probabilities will depend on the random seeds used in
the run.

13.5 lm_map statements

limit recombination fractions L
This statement is optional and places lower and upper bounds on the estimated
recombination fractions of the map. For markers that are separated ny little
or no recombination, the MCEM algorithm may yield estimated recombination
fractions of zero which could lead to a severe bias in the results. As a safeguard
against such events, this statement places a lower bound L and an upper bound
0.5 - L on the estimated recombination fractions of the map.

output maps gender [averaged] [specific]
This statement specifies the type of map to be estimated. The default behavior
is to select both options, which instructs lm map to automatically compute the
likelihood ratio test statistic for testing the null hypothesis of a sex-averaged
map.

use MCEM and SA for maximization
If the statement ‘use MCEM only for maximization’ is replaced by this state-
ment, lm_map will attempt to refine its MCEM based estimate of the MLE by
performing additional SA steps.

set genotyping error rate E
When the statement ‘set map estimation with mistyping’ is used, the geno-
type observations are assumed to have an associated error rate. This statement
allows for the specification of the ‘mistyping’ rate.
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set SA curvature iterations I

An estimate of the curvature of the likelihood is needed to initiate the SA
algorithm. This statement tells lm_map to use at least I MCMC realizations to
estimate the curvature of the likelihood. The curvature is only estimated once.

set SA ascent iterations I

lm_map will not initiate the SA algorithm with a step that decreases the like-
lihood. This statement tells lm_map to use at least I MCMC realizations to
determine whether a proposed first step increases the likelihood.

set SA gradient iterations I

If SA is initiated, this tells lm_map to use at least I MCMC realizations to
estimate the gradient of the likelihood. An estimate of the gradient is needed
for each SA step.

set SA convergence R

The SA algorithm is terminated, if all recombination fraction updates are within
R of their previous values. In addition, the maximum possible runtime for the
SA algorithm is proportional to the total runtime of the MCEM algorithm.

set map estimation [with] [with no] mistyping
This statement can be used to specify whether or not errors were made during
the observation of genotype. If ‘with no’ is selected, the gentypes are assumed
to have been observed without error. If ‘with’ is selected, the genotype obser-
vations are assumed to have some error associated with them, which can be
specified using the ‘set genotyping error rate’ statement.

set LRT stat iterations I

This statement tells lm_map to use at least I MCMC realizations to estimate the
LRT statistics. If only one option is used in ‘output maps gender ...’, then the
estimated LRT statistic compares the MLE to the initial map. Otherwise, two
LRT statistics are estimated. The first compares the MLE of the sex-averaged
map to the initial sex-averaged map, while the second compares the MLE of
the sex-specific map to the MLE of sex-averaged map.

compute estimates I times
This statement tells lm_map to conduct its entire analysis I times, and to report
the map with the highest likelihood. While this statement offers some protection
against convergence to local modes, the default value is 1.
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