
IBDcreate Documentation

November 27, 2013

Authors

Programs simu, ibd states, create, and beaglesim written by Chris Glazner, together
with examples written/compiled by Marshall Brown, Also included are the beaglesim
R-code and test examples.

The C/R routines were written by Chris Glazner; 2010 The original version of this
README was created on 4/15/2011 by Marshall Brown

Resorting of the programs and functions, and rewriting of README was by Eliz-
abeth Thompson 7/22/2011

This version, including renaming of programs and update of README is by Fiona
Grimson.

Contents

1 Simulation of haplotypes 2
1.1 beaglesim . 2

2 Simulation of IBD 2
2.1 simpop fgl . 2
2.2 fgl2haplo . 4
2.3 fgl2ibd . 6

3 Makefile 6

4 Gold Subdirectory contents 7

1

1 Simulation of haplotypes

1.1 beaglesim

Summary: beaglesim is a function for the simulation of haplotypes at varying levels
of LD, based upon a BEAGLE model.

1. Make the executable by using make beaglesim in the main directory.

2. Run BEAGLE on your haplotype data to create the model .dag.gz file.

3. Put the name of the .dag.gz file into beagle config.txt in the Gold subdirectory,
and edit any other items of config.txt as desired (for details, see the comments in
that file)

4. Run in the Gold subdirectory:

../beaglesim beagle_config.txt

an output file ”myhaps.txt” will be created.

2 Simulation of IBD

The C programs in this section deal with the simulation of identity by descent (IBD).

2.1 simpop fgl

Summary: Simulates patterns of identity by descent in a population after a user-
specified number of generations. simpop fgl assigns founder genome labels (FGL) to the
founder generation, and simulates new generations under a 2-sex diploid population
model that approximates random mating. The program uses a user-specified avg.
number of recombinations/Morgan.

Compared to the earlier version (simu.c), simpop fgl also has the option of specify-
ing a remating fraction to reduce the probability of multiple marriages per individual,
thereby reducing the number of half-siblings in the population.

For each simulated chromosome, identification information is printed (to stdout)
along with chromosome junction data in [FGL endpoint] format.

Usage: in the Gold subdirectory

../simpop_fgl [generation size/2][# generations][avg. # recombs/Morgan]

[# of generations to print][chrom. length in base pairs]

[remating fraction][(optional) seed]

The inputs are

• generation size/2: i.e. number of females in each generation

• # generations: number generations after founders

• # recombs/Morgan: average number of recombinations per Morgan

2

• # of generations to print: prints at the end, starting from the last genera-
tion

• chrom. length in base pairs

• remating fraction: This input is a parameter affecting the selection of parents
for each mating. If the remating fraction is r ∈ (0, 1], the probability of a ran-
domly sampled individual being accepted as a parent in a mating is rm, where
m is the number of previous matings of that individual. If the individual is not
accepted, another is sampled at random and the process repeats until a parent is
accepted.

• (optional) seed: set from system clock if omitted

The output prints one line to stdout for each chromosome in the following format:

[person id #] [generation #] [mother id #] [father id #]

[sex (0=female)] [which chromsome (0=maternal)]

followed by the chromosome junction data in the form:

[fgl label] [endpoint] [fgl label] [endpoint] ...

Note that the females are printed first, then the males, before progressing to the next
generation.

Example: In the Gold subdirectory

../simpop_fgl 1 4 1.0 5 100000000 1 7654

This is a simulated population that began with one male and one female (four founder
genome labels) and produced 5 generations, each consisting of the two offspring of the
two individuals in the previous generation. My computer produces:

1 0 0 0 0 0 1 100000000

1 0 0 0 0 1 2 100000000

2 0 0 0 1 0 3 100000000

2 0 0 0 1 1 4 100000000

3 1 1 2 0 0 1 67366937 2 100000000

3 1 1 2 0 1 4 98753700 3 100000000

4 1 1 2 1 0 2 100000000

4 1 1 2 1 1 4 100000000

5 2 3 4 0 0 4 98753700 3 100000000

5 2 3 4 0 1 2 100000000

6 2 3 4 1 0 1 66920241 4 98753700 3 100000000

6 2 3 4 1 1 4 14424740 2 100000000

7 3 5 6 0 0 2 100000000

7 3 5 6 0 1 4 14424740 2 100000000

8 3 5 6 1 0 4 94850878 2 100000000

8 3 5 6 1 1 1 13587054 4 14424740 2 100000000

3

9 4 7 8 0 0 2 100000000

9 4 7 8 0 1 4 38591150 2 100000000

10 4 7 8 1 0 2 100000000

10 4 7 8 1 1 1 13587054 4 14424740 2 39641642 4 81801489 2 100000000

For example, if we look at the fifth line of output we see that on the first chromosome
of individual 3, there is a recombination between bases 67366937 and 67366938, with
the fgl 1 being allocated to the [1,67366937] segment of chromosome, and fgl 2 over
[67366938, 100000000].

If the seed is not specified, it is set from the system clock and output will differ
from run to run.

The remating fraction here is set to 1, but may be any value in (0,1] and will default
to 1 if a larger value is supplied.

This example output is given in the file sim Gold in the Gold subdirectory. An
example of 100 individuals from a larger simulation is in the file fglhaps first100.txt

2.2 fgl2haplo

Summary: Assigns haplotype segments to the output of simpop fgl to create chro-
mosomes with simulated patterns of coancestry.

This function was derived from create.c, without the calculation of patterns of
genotypic and haplotypic IBD states which can now be found in fgl2ibd. Some im-
provements were also made to memory usage, as well as the addition of the recycling
option.

Usage: In the Gold subdirectory:

../fgl2haplo [simulated_fgl_file] [founderhap_file] [SNPs_metadata_file]

[Which_to_create] [Output with spaces and labels?]

The inputs are:

• simulated_fgl_file: output from simpop fgl

• founderhap_file: Haplotype data – one row for each marker, no spaces between
alleles. These data can be created by beaglesim. If the program requires more
haplotypes than are provided to create this many individuals, an error will be
printed.

• SNPs_metadata_file: contains the following data, each on a new line.

[number of haplotypes to input]

[number of SNPs]

[marker pos 1 in bp]

[marker pos 2 in bp]

...

• Which_to_create: either an integer or a file name.

4

If it is an integer value, say n, the first n individuals from simulated fgl file will
be created.

If a file is named, the file should specify which individuals are required from
simulated fgl file in the order in which they should be printed. Each index appears
on a new line. For example, if the third, fifth, then fourth individuals are required,
the file would read

3

5

4

Note that the index of the individual indicating their position in simulated fgl file
should be supplied, not their ID number.

• Output with spaces and labels?: should the id number of the individual be
printed at the start of each of their haplotypes, and spaces placed between each
allele?

Example: In the Gold subdirectory

../fgl2haplo fglhaps_first100.txt rawalleles_broken_Gold.txt

metadata_Gold.txt 10 1> haplo_examp.out

which produces the (stdout) output file haplo_examp.out. A ”Gold” version of this
files is given in the Gold subdirectory.

Recycling Example: The ability to supply the Which_to_create file with a shuf-
fled list of haplotypes to print was to allow the “recycling” of a simulated pedigree.
The idea is to

1. Create founder haplotypes using beaglesim

e.g. 1917 founder haplotypes in myhaps.txt

2. Create m generation pedigree using simpop fgl and save the final generation.

e.g. A 10-person 10-generation pedigree

../simpop_fgl 5 10 1 1 1000000000 1 1234 > simfgl_10.txt

3. Combine founder haplotypes and pedigree to create mth generation halotypes.
Shuffle the order of the mth generation haplotypes.

e.g. Using randomOrder1.txt as the order in which to output the 10 individuals
of generation 10. Note that we do not print with spaces and labels if the output
is to be used again in fgl2haplo as it must look like beaglesim output.

../fgl2haplo simfgl_10.txt myhaps.txt metadata_Gold.txt

randomOrder1.txt 0 > myhapsRecycle10.txt

4. Combine the shuffled mth generation haplotpes with the pedigree to create the
2mth generation hapolotypes

e.g. Now use myhapsRecycle10.txt as the “founders” and randomOrder2.txt

as output ordering for generation 20.

5

../fgl2haplo simfgl_10.txt myhapsRecycle10.txt metadata_Gold.txt

randomOrder2.txt 0 > myhapsRecycle20.txt

5. etc

2.3 fgl2ibd

Summary: This program produces files that contain the pairwise patterns of geno-
typic (nine) and haplotypic (fifteen) IBD states among the created individuals at the
given marker positions.

Usage:

../fgl2ibd [simulated_fgl_file] [SNPs_metadata_file] [# of people to create]

The inputs are:

• simulated_fgl_file: output from simpop fgl

• SNPs_metadata_file: contains the following data, each on a new line.

[number of haplotypes to input]

[number of SNPs]

[marker pos 1 in bp]

[marker pos 2 in bp]

...

• # of people to create: This should be an integer, say n, the first n individuals
from simulated fgl file will be created.

Example: In the Gold subdirectory:

../fgl2ibd fglhaps_first100.txt metadata_Gold.txt 10

The outputs are:

• outfifteenibd.txt : pairwise IBD for haplotypic data

• outnineibd.txt: pairwise IBD for genotypic data

“Gold” versions of these files are found in the Gold subdirectory.

3 Makefile

The Makefile provides the make commands for the C programs: beaglesim, simpop fgl,
fgl2haplo and fgl2ibd. The following tasks can be performed using the Makefile:

• make <progname> Make each program

• make all Make all four programs

• make clean_progs Remove the 4 executables

6

• make clean_beagle Removes the files created by beaglesim

• make clean_fgl2haplo Removes the files created br fgl2haplo

• make clean_fgl2ibd Removes the files created br fgl2ibd

• make clean_data Removes all these data files

• make ultraclean Remove both executables and created data files.

4 Gold Subdirectory contents

The Gold subdirectory contains the following files:

• beagle_phased.dag.gz beaglesim input: the BEAGLE model

• beagle_config.txt beaglesim config file

• myhaps.txt beaglesim output

• sim_Gold.txt small example output from simpop fgl

• fglhaps_first100.txt simpop fgl output used in fgl2haplo and fgl2ibd

• rawalleles_broken_Gold.txt beaglesim output haplotypes used by fgl2haplo

• metadata_Gold.txt marker positions; used by fgl2haplo and fgl2ibd

• haplo_examp_Gold.out output haplotype data from fgl2haplo

• outnineibd_Gold.txt ibdstate output from fgl2ibd

• outfifteenibd_Gold.txt ibdstate output from fgl2ibd

• randomOrder1.txt random ordering used in Recycling example

• randomOrder2.txt random ordering used in Recycling example

• simfgl_10.txt simulated pedigree from Recycling example

• myhapsRecycle10.txt output from Recycling example

• myhapsRecycle20.txt output from Recycling example

7

	Simulation of haplotypes
	beaglesim

	Simulation of IBD
	simpop_fgl
	fgl2haplo
	fgl2ibd

	Makefile
	Gold Subdirectory contents

