
MORGAN V3.4 Tutorial
Version 3.4

Last Updated: 6 September 2019

i

Table of Contents

1 Get Started . 1
1.1 Overview of MORGAN . 1
1.2 Get the Tutorial . 3
1.3 Get and set up the examples . 3
1.4 Overview of the pedigrees used in the examples 5
1.5 Structure of the MORGAN package . 5

2 Common Features and File Formats 9
2.1 Command syntax . 9
2.2 Parameter file . 10
2.3 File identification statements . 11
2.4 Limit overriding . 12
2.5 Input extra variables . 13
2.6 Output control . 13
2.7 Pedigree file . 14
2.8 Individuals file . 15
2.9 Pedigree file description statements . 15

3 Checking Pedigree Validity . 18
3.1 Introduction to pedcheck . 18
3.2 Sample pedcheck parameter file . 18
3.3 Running pedcheck examples . 19
3.4 Creating an individuals file . 20
3.5 pedcheck statements . 20

4 Computing Kinship and Other
Pedigree Computations . 22
4.1 Introduction to kin . 22
4.2 Sample kin parameter file . 22
4.3 Running kin example and sample output . 23
4.4 kin statements . 24
4.5 The translink utility . 25
4.6 The ibd_class utility . 26

5 Simulating Marker and Trait Data in Pedigrees . . 29
5.1 Introduction to genedrop. 29
5.2 Sample genedrop parameter file . 30
5.3 Running genedrop examples and sample output 32
5.4 genedrop statements . 33

5.4.1 genedrop computing requests . 33
5.4.2 genedrop mapping model parameters . 33

ii

5.4.3 genedrop population model parameters 34
5.4.4 genedrop computational parameters . 35
5.4.5 genedrop output pedigree options . 35
5.4.6 genedrop output seed file options . 36

6 Simulating Marker Data Conditional on
Trait Data in Pedigrees . 37
6.1 Introduction to markerdrop . 37
6.2 Sample markerdrop parameter file – conditional on trait 37

6.3 Sample markerdrop parameter file –
conditional on inheritance pattern . 40

6.4 Running markerdrop examples and sample output 41
6.5 markerdrop statements . 43

6.5.1 markerdrop computing requests . 43
6.5.2 markerdrop mapping model parameters 44
6.5.3 markerdrop population model parameters 44
6.5.4 markerdrop computational parameters . 45
6.5.5 markerdrop input file options . 45

7 Estimating a priori ibd
Probabilities by Monte Carlo 46
7.1 Introduction to ibddrop . 46
7.2 Sample ibddrop parameter file . 47

7.2.1 Classic ibddrop parameter file . 47
7.2.2 Using dense marker simulation . 48
7.2.3 Selection against autozygosity . 50

7.3 Running ibddrop example and sample output 51
7.4 ibddrop statements . 54

8 Using MCMC to Estimate Parameters of
Interest in Pedigree Data . 56
8.1 Specifying inheritance . 56
8.2 Genetic model . 56
8.3 Exact HMM computations . 57
8.4 Single and multiple meiosis LM-samplers . 58
8.5 MCMC computational options . 59
8.6 MCMC parameter statements . 61

iii

9 Estimating Conditional ibd
Probabilities by MCMC . 63
9.1 Introduction to lm_auto, gl_auto and lm_pval 63
9.2 Sample lm_auto parameter file . 64
9.3 Running lm_auto example and sample output 67
9.4 Sample gl_auto parameter file . 69
9.5 Running gl_auto example and sample output 71
9.6 Sample lm_pval parameter file . 73
9.7 Running lm_pval example and sample output 73
9.8 Autozyg statements . 74

9.8.1 Autozyg computing requests . 74
9.8.2 Autozyg file identification statements . 75
9.8.3 Autozyg pedigree file description . 76
9.8.4 Autozyg output file description . 76
9.8.5 Autozyg mapping model parameters . 76
9.8.6 Autozyg population model parameters . 77
9.8.7 Autozyg computational parameters . 77
9.8.8 Autozyg MCMC parameters and options 79

10 Estimating ibd Based Test
Statistics by MCMC . 80
10.1 Introduction to lm_ibdtests and civil . 80
10.2 Sample lm_ibdtests parameter file . 81
10.3 Sample lm_ibdtests output . 82
10.4 Sample civil parameter file . 83
10.5 Sample civil output . 85
10.6 lm_ibdtests and civil statements . 87

11 Estimating Location lod Scores by MCMC . . 89
11.1 Introduction to lm_linkage, lm_bayes, lm_twoqtl,
gl_lods and base_trait_lods . 89

11.2 Sample parameter files for lm_linkage and lm_bayes 91
11.3 Running lm_linkage examples and sample output 95
11.4 Running lm_bayes examples and sample output 96
11.5 Running lm_twoqtl examples and sample output 97
11.6 Parameter files for the gl_lods program . 101
11.7 Running gl_lods examples and sample output 105
11.8 Running the base_trait_lods program . 109
11.9 Location lod scores statements . 111

11.9.1 Location lod scores computing requests 111
11.9.2 Location lod scores file identification statements 111
11.9.3 Location lod scores pedigree file description 112
11.9.4 Location lod scores output file description 112
11.9.5 Location lod scores mapping model parameters 112
11.9.6 Location lod scores population model parameters 113
11.9.7 Location lod scores computational parameters 113
11.9.8 Location lod scores MCMC parameters and options 115

iv

12 Population-based inference of IBD 117
12.1 Introduction to ibd create and ibd haplo . 117

12.2 Sample parameter files for ibd create;
beaglesim and beagledag . 120

12.3 Running ibd create examples and sample
output; beaglesim and beagledag . 121

12.4 Sample parameter files for ibd create; simpop fgl 122
12.5 Running ibd create examples and sample output; simpop fgl . . 123

12.6 Sample parameter files for ibd create;
fgl2ibd and fgl2haplo and fgl2dgl . 123

12.7 Running ibd create examples and sample output;
fgl2ibd and fgl2haplo and fgl2dgl . 126

12.8 Sample parameter files for ibd haplo . 127
12.9 Running ibd haplo examples and sample output 129
12.10 Population-based IBD inference parameter statements 130

12.10.1 beaglesim and beagledag parameter statements 130
12.10.2 simpop fgl parameter statements . 131
12.10.3 fgl2ibd and fgl2haplo and fgl2dgl parameter statements . . 132
12.10.4 ibd haplo parameter statements . 133

13 Polygenic Modeling of Quantitative
Traits by EM Algorithm . 135
13.1 Introduction to PolyEM programs . 135
13.2 Sample multivar parameter file . 135
13.3 Running multivar example and sample output 137
13.4 multivar statements . 139

13.4.1 multivar computing requests . 139
13.4.2 multivar segregation model parameters 139
13.4.3 multivar computational parameters . 140
13.4.4 multivar computational options . 141
13.4.5 multivar output options . 141

14 Estimating Genetic Maps from Marker Data . . 143
14.1 Introduction to lm_map . 143
14.2 Sample lm_map parameter file . 143
14.3 Running lm_map with genotypic data . 146
14.4 Running lm_map with phenotypic data . 146
14.5 lm_map statements . 147

References . 149

Concept Index . 151

Statement Index . 155

1

1 Get Started

1.1 Overview of MORGAN

MORGAN (Monte Carlo Genetic Analysis) is a collection of programs and libraries developed
at the University of Washington under the PANGAEA (http://www.stat.washington.
edu/thompson/Genepi/pangaea.shtml) (Pedigree Analysis for Genetics and Epidemiolog-
ical Attributes) umbrella. This software implements a number of methods for the analysis
of data observed on members of a pedigree, with the main programs implementing Markov
Chain Monte Carlo (MCMC) methods. As of the date of this tutorial, the latest MORGAN

version is 3.4 which was released in August 2016. It is available for download through
the MORGAN (http://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.
shtml) home page at the Department of Statistics, University of Washington.

The MORGAN programs are grouped into five categories:

1. Programs using deterministic algorithms: pedcheck checks for errors in pedigree struc-
ture and data format, see Chapter 3 [Checking Pedigree Validity], page 18. kin com-
putes kinship and inbreeding coefficients for members of the pedigree, see Chapter 4
[Computing Kinship and Other Pedigree Computations], page 22. Additionally, the
utility programs translink and ibd_class are also included in this group of pro-
grams.

2. Programs using simple Monte Carlo techniques (by simulating data on founders and
‘dropping’ genes down the pedigree): genedrop simulates data on a pedigree for anal-
ysis by other programs, see Chapter 5 [Simulating Marker and Trait Data in Pedigrees],
page 29. markerdrop simulates marker data at loci linked to a trait locus, see Chapter 6
[Simulating Marker Data Conditional on Trait Data in Pedigrees], page 37. ibddrop

uses Monte Carlo to estimate gene ibd (identity by descent) probabilities in the absence
of data, see Chapter 7 [Estimating a priori IBD Probabilities by Monte Carlo], page 46.

3. Programs using Markov chain Monte Carlo (MCMC) techniques: MORGAN’s MCMC
programs are split into two sections, Autozyg and Lodscore. These programs typically
have the prefix ‘lm_’ indicating that they use the MCMC LM-sampler. In fact, most of
these programs now have the option to use the improved multiple-meiosis LM-sampler.
A brief introduction to the MCMC sampling techniques employed by MORGAN can
be found in Chapter 8 [Using MCMC to Estimate Parameters of Interest in Pedigree
Data], page 56.

The Autozyg and Lodscore programs may be categorized into five subsets:

• The Autozyg programs lm_auto, gl_auto and lm_pval, estimate conditional gene
ibd probabilities; see Chapter 9 [Estimating Conditional IBD Probabilities by
MCMC], page 63.

• The Autozyg programs lm_ibdtests and civil realize inheritance conditional on
genetic marker data and uses these realizations to estimate ibd -based test statistics
for linkage detection; see Chapter 10 [Estimating IBD Based Test Statistics by
MCMC], page 80.

• The Lodscore programs lm_linkage, lm_bayes and lm_twoqtl, estimate multi-
point lod scores; see Chapter 11 [Estimating Location lod Scores by MCMC],
page 89.

http://www.stat.washington.edu/thompson/Genepi/pangaea.shtml
http://www.stat.washington.edu/thompson/Genepi/pangaea.shtml
http://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml
http://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml

Chapter 1: Get Started 2

• The Lodscore program gl_lods is analogous to lm_linkage but uses IBD gener-
ated by gl_auto to compute lod scores directly from IBD generated conditional
on marker data. The base trait_lods program may be used to compute a nor-
malizing base log-likelihood for the log-likelihoods produced by gl_lods. Added
for MORGAN V3.4, the gl lods program now provides the 5th and 95th quantiles
of the lod score realizations, rather than attempting a Monte V=Carlo standard
error computation.

• The Autozyg program lm_map realizes inheritance conditional on genetic marker
data, and uses these realizations in the estimation of genetic maps; see Chapter 14
[Estimating Genetic Maps from Marker Data], page 143.

4. Programs that use population-based models rather than pedigree information; see
Chapter 12 [Population-based inference of IBD], page 117. These programs are in
the IBD Haplo program directory.

• The IBD Haplo ibd_create program consists of seven subprograms. These sim-
ulate population or pedigree descent of IBD, generate or analyze haplotypes in a
population, and convert IBD to other forms of IBD specification, or haplotypic
information. For details, see Chapter 12 [Population-based inference of IBD],
page 117.

• The IBD Haplo program ibd_haplo produces estimates of IBD given genetic
marker data, but uses a population model rather than pedigree information.

5. Programs using EM algorithm for segregation analysis with quantitative traits: in-
cludes univar, unibig, bivar and multivar, see Chapter 13 [Polygenic Modeling of
Quantitative Traits by EM Algorithm], page 135.

This tutorial is based on the tutorial and examples for MORGAN 2.9 developed over the
years 2002-2010 by Elizabeth Thompson, Michael Na Li, Myrna Jewett, Adele Mitchell,
Audrey Fu, Tia Lerud, and Marshall Brown. MORGAN 2.9 and its accompanying tutorial
remain available for download. Adam Gustafson updated the examples and tutorial for the
new parameter statements of MORGAN 3.0 in 2011, and the text has subsequently been
significantly updated and revised by Elizabeth Thompson.

The version for MORGAN 3.1.1 (December 2012), contains a new Chapter and examples for
the new ibd_haplo program, while the updated version for MORGAN 3.2 (January 2014)
contains a variety of updates, mainly associated with ibd_haplo and gl_lods. The version
for MORGAN 3.3 of May 2015 greatly expands the Chapter on population-based ibd, with
text and examples for the seven subprograms of ibd_create. Additionally the examples for
ibd_haplo and gl_lods have been updated, and the MORGAN_Examples directory has been
expanded to include these new examples for all three programs. A number of other small
edits and updates were made. For version 3.3.2 (August 2016) there are additional changes
and improvements to the ibd_create subprograms, including the addition of two new
subprograms simped_fgl and fgl2dgl. A new program base_trait_lods has also been
added. This program provides the probability of trait data on a pedigree. This probability
can be used to normalize the ibd-based lod score computed by gl_lods. Some other minor
changes to parameter statements (for example in lm_twoqtl have been made to improve
clarity. ’MC’ in parameter statements now refers only to MCMC, with ’realizations’ or
’simulation’ being used in other cases.

Chapter 1: Get Started 3

Finally, for version 3.4 (December 2017). simped_fgl is replaced by a completely new
ibddrop program, which simulates descent of founder genome labels (FGL) at dense loca-
tions, by simulating breakpoints of chromosome segments. Analogous changes for the use
of dense markers were made to the markerdrop program. New features of ibddrop allow
selection to be imposed at a specified locus, and a new beta-test program ibd_trios in
the IBD_haplo directory allows the analysis of parent-offspring trios for detection of pos-
sible causal regions for inbreeding depression. Additionally, in all the Lodscore programs,
specification of liability penetrances and age-dependent penetrances is much improved, and
realization quantiles were added to the output of the gl_lods program. A new ’select all
markers except ...’ statement was implemented. The graphics option in lm_auto is no
longer supported.

Combined with hands-on examples, this tutorial gives a brief introduction to the usage
of the main MORGAN programs. For further information, please refer to the MORGAN

documentation and to the references cited. Note also that the test Gold standards also
provide many examples of parameter files. However, the Gold standards use short runs of
MCMC and default seeds, and so should not be taken as useful for real analyses in this
regard.

See [Concept Index], page 151, for: MORGAN, overview of MORGAN.

1.2 Get the Tutorial

This tutorial is available on-line at
http://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml#tut

Several formats of this tutorial may also be available to download for off-line reading or
printing. (These may not all be made available for all releases; the html, PDF, and plain
text versions are recommended.)

• Single HTML file (http://faculty.washington.edu/eathomp/Anonftp/PANGAEA/
MORGAN/morgan3-tut/morgan-tut.html).

• Gzipped multiple HTML files (http://faculty.washington.edu/eathomp/Anonftp/
PANGAEA/MORGAN/morgan3-tut/morgan-tut.zip) (one file per section).

• Hyperlinked PDF file (http: / / faculty . washington . edu / eathomp / Anonftp /
PANGAEA/MORGAN/morgan3-tut/morgan-tut.pdf).

• Gzipped Postscript file (http: / / faculty . washington . edu / eathomp / Anonftp /
PANGAEA/MORGAN/morgan3-tut/morgan-tut.ps.gz).

• Gzipped info file (http://faculty.washington.edu/eathomp/Anonftp/PANGAEA/
MORGAN/morgan3-tut/morgan-tut.info.gz).

• Plain text file (http://faculty.washington.edu/eathomp/Anonftp/PANGAEA/
MORGAN/morgan3-tut/morgan-tut.txt).

See [Concept Index], page 151, for: how to get the tutorial.

1.3 Get and set up the examples

This tutorial assumes that the MORGAN software has already been installed. If this is not
the case, please contact your local system administrator or download the software yourself
and follow the instructions therein.

http://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml#tut
http://faculty.washington.edu/eathomp/Anonftp/PANGAEA/MORGAN/morgan3-tut/morgan-tut.html
http://faculty.washington.edu/eathomp/Anonftp/PANGAEA/MORGAN/morgan3-tut/morgan-tut.html
http://faculty.washington.edu/eathomp/Anonftp/PANGAEA/MORGAN/morgan3-tut/morgan-tut.zip
http://faculty.washington.edu/eathomp/Anonftp/PANGAEA/MORGAN/morgan3-tut/morgan-tut.zip
http://faculty.washington.edu/eathomp/Anonftp/PANGAEA/MORGAN/morgan3-tut/morgan-tut.pdf
http://faculty.washington.edu/eathomp/Anonftp/PANGAEA/MORGAN/morgan3-tut/morgan-tut.pdf
http://faculty.washington.edu/eathomp/Anonftp/PANGAEA/MORGAN/morgan3-tut/morgan-tut.ps.gz
http://faculty.washington.edu/eathomp/Anonftp/PANGAEA/MORGAN/morgan3-tut/morgan-tut.ps.gz
http://faculty.washington.edu/eathomp/Anonftp/PANGAEA/MORGAN/morgan3-tut/morgan-tut.info.gz
http://faculty.washington.edu/eathomp/Anonftp/PANGAEA/MORGAN/morgan3-tut/morgan-tut.info.gz
http://faculty.washington.edu/eathomp/Anonftp/PANGAEA/MORGAN/morgan3-tut/morgan-tut.txt
http://faculty.washington.edu/eathomp/Anonftp/PANGAEA/MORGAN/morgan3-tut/morgan-tut.txt

Chapter 1: Get Started 4

Follow the following steps to download and set up the examples:

1. Download the examples (gzipped tar files) for MORGAN 3.4. morgan34-examples.tar.gz
(http: / / faculty . washington . edu / eathomp / Anonftp / PANGAEA / MORGAN /

morgan34-examples.tar.gz)

(Note these examples are based on those for MORGAN 3.3., but have been updated
for MORGAN 3.4 where at most minimal update is required. Other Examples have
been removed for the Examples directory and from the tutorial text.).

2. Unpack the examples by typing the following command in a shell window,

tar zxvf morgan3-examples.tar.gz

Or if the above command fails (you don’t have GNU tar), use

gunzip -c morgan33-examples.tar.gz | tar xvf -

This will produce a MORGAN_Examples directory under your current directory.

(Note: Throughout the text, file and directory names are enclosed in single quotes;
these single quotes are not part of the file or directory name.)

3. Use Makefile to establish links under the MORGAN_Examples directory to the MORGAN

programs. A link under the MORGAN_Examples directory serves as a shortcut to a
MORGAN program installed elsewhere.

Before making links, you first need to edit the Makefile (using your favorite text editor,
for instance vim or nano) in the MORGAN_Examples directory to make sure the paths
to your MORGAN programs and those to the MORGAN_Examples directory are correct.
Most often, it is necessary to change the ‘MORGANDIR’ and ‘EXAMPLEDIR’ statements to
reflect the locations of theMORGAN files on your system and the examples, respectively.
Here is the relevant part of the Makefile,

Change the following macros to where MORGAN and the examples

are installed on your system. This is the only change you

need to make in this file.

MORGANDIR = ~/morgan/MORGAN_V34_Release

EXAMPLEDIR = ‘pwd‘

BINDIR = ~/bin

Note: the paths may happen to be same for MORGANDIR and

EXAMPLEDIR. In general they are different:

MORGANDIR is where MORGAN is installed on your system

EXAMPLEDIR is the MORGAN_Examples directory you have made

(we have used the BASH command ‘pwd‘ to automate this)

BINDIR is your bin directory

BINDIR is needed only if you prefer to link to executables from

your bin directory, rather than running from executables in

a current directory.

For more information on how to use Makefile to build links, etc., you may type:

make help

To make symbolic links to those programs in the current directory, type

make links

http://faculty.washington.edu/eathomp/Anonftp/PANGAEA/MORGAN/morgan34-examples.tar.gz
http://faculty.washington.edu/eathomp/Anonftp/PANGAEA/MORGAN/morgan34-examples.tar.gz
http://faculty.washington.edu/eathomp/Anonftp/PANGAEA/MORGAN/morgan34-examples.tar.gz

Chapter 1: Get Started 5

Notes for Microsoft Windows users:

MORGAN may be (in principle) installed under Windows: executables should then be
placed in the directory in which programs are to be run. See the documentation for more
information. We cannot currently answer any questions regarding Windows installation.
Instead, we recommend the use of a linux-system emulator such as Cygwin (http://www.
cygwin.com).

See [Concept Index], page 151, for: how to get the examples.

1.4 Overview of the pedigrees used in the examples

Except for some small pedagogical pedigrees for pedcheck under Pedcheck, two main pedi-
gree files are used to illustrate the usage of MORGAN programs.

File jv_rep.ped, located under IBD, is composed of two replicates of the JV pedigree. The
15-individual 5-generation JV pedigree derives from a real study of a rare recessive trait by
Goddard et. al. [GYO96].

The other pedigree in ped73.ped, located under MORGAN_Examples, consists of three compo-
nents and 73 individuals: component one has 47 individuals over 6 generations, component
two 11 individuals over 3 generations, and component three 15 individuals over 3 genera-
tions. In general, individuals from later generations are observed. The three components are
displayed in ped47.pdf, ped11.pdf and ped15.pdf, which are located in the subdirectory
PedInfo.

The pedigree file ped73.ped is used in many examples throughout the tutorial: including
Section 5.2 [Sample genedrop parameter file], page 30, Section 9.4 [Sample gl auto param-
eter file], page 69, and the lod score programs Section 11.2 [Sample parameter files for
lm linkage and lm bayes], page 91.

See [Concept Index], page 151, for: examples using pedigree file ped73.ped.

1.5 Structure of the MORGAN package

It is not necessary to read this section in order to use MORGAN, to run the examples,
or to modify them for your own use. However, for those who wish to modify MORGAN

code, or to understand MORGAN more fully, it will be useful to have information on the
directory structure, the README documentation, and the GOLD-standard documentation,
Makefiles, and examples. These are therefore described in this section, updated for the
released version of MORGAN 3.4.

1. README documentation files

Within the main MORGAN directory, there are program directories, and within these
there the Gold-standard directories. At each level there are README files which
provide additional documentation. In many cases, this information is duplicated in the
tutorial, but whereas the Tutorial is focused to the user, README documentation is
focused to the modifier and developer.

1. README files in the main MORGAN directory

These include README_readme, README_MORGAN, README_install, and README_

relnotes.

• README_readme describes the various README files throughout MORGAN.

http://www.cygwin.com
http://www.cygwin.com

Chapter 1: Get Started 6

• README_MORGAN lists the MORGAN programs and describes briefly the analysis
done by each program. It also lists the MORGAN 3.4 directories and libraries.

• README_relnotes contains a summary of the changes and additions in recent
releases of MORGAN.

• README_install contains instructions for installing MORGAN executables.

In some MORGAN releases there may be additional main-directory README files.

2. README files in main program directories

The main program directories of MORGAN 3.4 are PedComp, Genedrop, Autozyg,
Lodscore, IBD Haplo, and PolyEM. Each main program directory contains its
own README_userdoc. This describes the inputs to be prepared for the programs,
and the various program options. Most of this information is now included in the
tutorial, but the README files may contain more detail in some cases.

Each of the main program directories Genedrop, Autozyg and Lodscore contains
a file README_convert2_3.0 which specifies the changes one must make in order
to convert parameter files from MORGAN 2.9 to 3.0.

The Library Subroutine directories do not contain README files.

3. README files in Gold and Test subdirectories.

Each main program directory contains a subdirectory Gold. These directories
include examples that may be run to check correct installation of MORGAN, and to
provide a wider array of example parameter files than are currently in the example
files used in the tutorial. Each Gold subdirectory contains a README_gold file
detailing the examples in that directory.

2. The subroutine library directories

The subroutine library directories contain the code for the library routines. During
installation of MORGAN, each creates a library file from which the required subroutines
are loaded into the executable of each main program.

The header files for all libraries and programs are contained in the Headers subdirectory
of MORGAN. Typically there is one or more header files associated with each library,
and named accordingly. For example, the file nghds.h in Headers corresponds to the
Nghds subroutine library. More complex libraries such as Pars have a large number of
corresponding header files.

The libraries can be divided broadly into four groups:

1. Lowest-level libraries required by all programs

• Stuff: Routines for printing, allocating, freeing

• Pars: Routines for processing MORGAN parameter statements

2. Low-levels libraries performing various groups of functions

• CMF: A set of routines mainly for matrix manipulation, originally translated
from the FORTRAN CM library

• Peel: Routines for pedigree peeling computations

• Rans: Routines for random number generation

3. Main libraries supporting genetic analysis programs

• Pedchk: Routines for checking validity of input pedigrees. Routines for the
pedchk program in PedComp, but also called by all programs.

Chapter 1: Get Started 7

• Nghds: Routines for constructing the pedigree neighborhood structures from
input pedigree files. Used by all programs with input pedigree data files.

• Quant: Routines for handling quantitative trait data. Used by PolyEM pro-
grams and others that use quantitative trait data. Relies on the CMF matrix
manipulation library.

• Markers: Contains routines for sorting and analyzing marker and trait data.
Also all the routines that allocate and set the underlying inheritance vector
arrays used by MCMC-based programs.

• Sample: Routines for MCMC sampling and related computations on pedi-
grees.

4. Extra specialist libraries

• TwoQTL: Routines for the Lodscore program lm_twoqtl

• IBDgraph: Library to find equivalent IBD graphs; used by the Lodscore pro-
gram gl_lods, and also by the ibd_class utility.

• IBD Create: Library containing the six subprograms of the ibd_create suite
of programs, for use in simulating ibd graphs and structures, and haplotype
data that can then be used in test analyses of other programs.

In addition to the subroutine libraries, the subdirectory Utils of Autozyg contains
code for subroutines that are directly incorporated into the lm_ibdtests, lm_map and
civil programs. Also, the subdirectory NewRtnes of Lodscore includes code directly
incorporated into the lm_bayes program. These routines were written by the authors of
those programs, and have not been incorporated into theMORGAN subroutine libraries.

3. The main program directories

The main program directories of MORGAN 3.4 are PedComp, Genedrop, Autozyg, Lod-
score, IBD Haplo and PolyEM. When MORGAN is installed these directories contain
the following executables:

• PedComp: pedcheck, kin, translink, ibd class

• Genedrop: genedrop, ibddrop, markerdrop

• Autozyg: lm auto, gl auto, lm pval, lm ibdtests, civil, lm map

• Lodscore: lm linkage, lm bayes, lm twoqtl, gl lods, base trait lods

• IBD Haplo: ibd create, ibd haplo, ibd trios

• PolyEM: univar, unibig, bivar, multivar

More details about all of these executable programs can be found either in this tutorial
or in the README userdoc files of the relevant main program directory.

4. GOLD-STANDARD directories, Makefiles and examples

The Gold subdirectories of the main program directories PedComp, Genedrop, Au-
tozyg, Lodscore, IBD Haplo and PolyEM contain example runs of all the main pro-
grams in order to test various aspects of code and installation. Examples for a particular
main program are in the Gold subdirectory of that main program directory.

The Gold subdirectories typically contain numerous test parameter files, pedigree files,
and marker data files. The tests are run via Makefiles, and the command make

help.gold will provide details. Additionally, the README_gold file in each directory
will give details of the examples.

Chapter 1: Get Started 8

Examples may run using the make command. Typically the complete set of examples
in any Gold directory is run using the command make all.gold. More detailed infor-
mation is given by using make help.gold or by viewing the Makefile. Since the Gold
tests and examples are intended primarily for developers, it is expected that viewing
and modifying the Makefile examples will pose no difficulties.

See [Concept Index], page 151, for: MORGAN package structure, README documenta-
tion files, MORGAN program libraries, MORGAN subroutine libraries, MORGAN Gold
standards.

9

2 Common Features and File Formats

All MORGAN programs use the same command line syntax, share many statements, and
use the same pedigree data format. Most of the MORGAN programs need at least two
input files in order to run: one parameter file and one pedigree data file. The parameter
file contains computing requests, model parameters and input/output file options. It may
also contain genotype data or other information specific to a particular MORGAN program.
The pedigree file contains, at minimum, information on family relationships among the
individuals in the sample. If the general syntax and format descriptions of this section
seem complex, readers may find it easier to proceed to the actual examples of the following
chapter. In the context of those examples, the general format may become clearer.

It is worth pointing out that white space in any input file is defined to be any of these
characters: ‘,’ (comma), ‘\t’ (horizontal tab), ‘\v’ (vertical tab), ‘\n’ (line feed, or newline),
‘\f’ (form-feed), ‘\r’ (carriage return).

See [Concept Index], page 151, for: whitespace.

2.1 Command syntax

The parameter file name must be passed to MORGAN on the command line when calling
the program. Other file names can be passed to MORGAN on the command line or in the
parameter file. The minimum syntax to call a MORGAN program is:

./progname parfile

In the statement above, progname is the name of one of several MORGAN main programs,
such as genedrop or lm_bayes. The parfile is the name of the parameter file which must
be present. For example, to run genedrop using a parameter file named genedrop.par, the
command is:

./genedrop genedrop.par

Note that if the current directory is in your PATH, you may say

progname parfile

but the form ./progname is more universal, and used throughout this tutorial.

Additional file names can be passed to MORGAN on the command line, but these file names
must be accompanied by a file type to identify them. The syntax is:

./progname parfile [filetype filename]...

Square brackets indicate optional arguments. Possible filetype options include:

ped Input pedigree file

xtra input extra file

mark Input marker data file (Note that not all programs use marker data)

oped Output pedigree file

seed Input seeds for random number generator

oseed Output random seeds

oscor Output score file

Chapter 2: Common Features and File Formats 10

oxtr Output extra file

If the name for a particular filetype is given both in the command line and in a parameter
statement, the name in the command line takes precedence.

The programs put informational messages to stdout and error messages to stderr which
default to the screen. It is possible to redirect either or both to a named file.

See [Concept Index], page 151, for: MORGAN files, command syntax, command line options,
filetype codes.

2.2 Parameter file

A MORGAN parameter file contains a series of statements. Many statements are common
to all MORGAN programs, particularly those that define the format of the pedigree file and
identify other files to be used for program input or output. Many statements are optional,
with some default behavior. If statements irrelevant to the MORGAN program called by the
user are included in the parameter file, those statements are ignored and a warning message
is issued.

Each statement must begin on a new line and begins with one of the MORGAN statement
keywords. A statement consists of any number of lines. Case is not significant for the
keywords. Only the first four letters of the keywords are significant; the remainder of the
word is ignored. The order of the statements does not matter. If the same statement is
repeated, the last one overrides previous ones and a warning is given in the output file. A
starts a comment so that the rest of the line is ignored. Either single or double quotation
marks (’ or ") can be used to delimit strings such as file names. Look at the warnings
issued by MORGAN to make sure the parameters are as you intended.

Note that the parameter statement form is extremely flexible. There is a limit on the
line input buffer (set to 30,000 characters), but this does not impose any restriction as a
statement may extend over multiple lines. The parameter files described in this tutorial
and MORGAN Examples and Gold standards are generally aligned and words stated in full
for clarity, but this is not necessary. As an example, a parameter file for the lm_linkage

program is given both in clear form and edited to show this flexibility in Section 11.2 [Sample
parameter files for lm linkage and lm bayes], page 91.

The most common statements are for identifying input and output files (counterparts of
the command line options) and for describing the input pedigree file format.

Below is a simple parameter file, check.par, from the examples included with the MORGAN

software under the subdirectory MORGAN_Examples/Pedcheck.

set printlevel 5

input pedigree file ‘check.ped’

input pedigree size 30

input pedigree record gender absent

input pedigree record observed present

assign gender

output pedigree chronological

output overwrite pedigree file ‘check.oped’

output overwrite individuals file ’indiv_oped’

Chapter 2: Common Features and File Formats 11

A brief description of the most commonly used parameter file statements follows in the next
section. For a complete and more detailed description ofMORGAN statements, please see the
sections of this tutorial relevant to specific MORGAN programs and the documentation that
comes with MORGAN in the files README_userdoc in the various program subdirectories.

See [Concept Index], page 151, for: line length limit, parameter file, parameter statements,
parameter statement flexibility.

2.3 File identification statements

Within the parameter file, file names are delimited with single or double quotation marks (‘
or "). File names submitted on the command line are not delimited with quotation marks.
In a parameter file, either of the two statements below would identify pedchk.ped as the
pedigree file to be read.

input pedigree file "pedchk.ped"

input pedigree file ‘pedchk.ped’

The most commonly used file identification statements are:

input pedigree file filename

The input pedigree file is required for most programs and may be specified
either in the parameter file or through command line options.

input extra file filename

The input extra file is used by some programs to input additional information,
typically information needed by the program but for which parameter state-
ments have not yet been implemented.

input individuals file filename

Several newerMORGAN programs do not use a pedigree file but may still require
a list of the individuals to be used in the analysis. Such a list is provided by
the individuals file. See Section 2.8 [Individuals file], page 15.

input marker data file filename

Marker data, such as marker allele frequencies, map distances between markers
and individuals’ genotypes, can be included in the parameter file itself or in
a separate file, called the marker data file. This statement is used when the
marker data are not included within the parameter file. The marker file contains
the ‘set marker data’ statements. Marker data are used by Autozyg programs.
See Section 9.8.7 [Autozyg computational parameters], page 77.

input seed file filename

This file contains statements to set random seeds for the Monte Carlo based
programs. The seed file may contain multiple lines (as in the case when the
input seed file is also used for the output seed file). If so, the seeds in the last
line override previous ones (with warnings issued). If no seed file is named on
the command line or in a parameter statement and there are no statements to
set random seeds in the parameter file, default seeds (12345, 1073 (hexadecimal
0x3039, 0x431)) are used.

output [overwrite] pedigree file filename

The output pedigree file is required by genedrop. Other programs also check
for errors in the pedigree. If there are errors that the program is able to correct

Chapter 2: Common Features and File Formats 12

or if there are requested changes to the pedigree file format, the new pedigree
data is written to this file.

output [overwrite] individuals file filename

An individuals file may be created for those downstream programs that require
is by using the output individuals file option out of the pedcheck program. See
Section 3.4 [Creating an individuals file], page 20.

output [overwrite] seed file filename

The final random seeds are saved if an output seed file is named. This file could
be the same as the input seed file. New entries are appended to the old file,
unless the overwrite option is specified.

output [overwrite] score file filename

The output score (or scores) file is used by several programs to output numerical
results, typically in a format for input to another analysis program.

output [overwrite] extra file filename

The output extra file is used by some programs to output additional results.

Note that with MORGAN 3.0 several overwrite options have been added for output files,
including pedigree and output scores files. Previously output scores were appended to
existing output, if the file already existed, leading to confusion. This remains so, unless
the overwrite option is used. Users should be cautious is using (and in not using) the
overwrite option, and should, if using the option, be careful to copy previous output to
another filename should they wish to retain it.

See [Concept Index], page 151, for: file names, pedigree file, individuals file, extra file,
overwrite file options, marker data file, seed file.

2.4 Limit overriding

Many global constants are set in the header file limdefs.h in the Headers directory. Limits
on variables may be altered by editing this file, but caution is recommended! Other limits
may be set in other header files, for example parseprog_opts.h, and may be program-
specific.

Additionally, there are three parameter statements which allow overriding of the preset
limit values for the pedigree and trait-data file:

allow component size N

This statement overrides the program-defined maximum pedigree component
size (presently 400 individuals for most programs).

allow observed individuals N

This statement overrides the program-defined maximum number of observed
individuals; this applies only to some programs.

allow pedigree size N

This statement overrides the program-defined maximum pedigree size (presently
20,000 individuals for most programs).

Finally there are three ‘limit’ statements, relating to specific programs which will be
detailed in the relevant chapters (Chapters 12 and 13).

See [Concept Index], page 151, for: limit overriding, limit statements, allow statements,

Chapter 2: Common Features and File Formats 13

2.5 Input extra variables

There are two statements that are provided as development tools. These allow the user to
input any number of integers and any number of reals into the program. These variables are
counted (counts in global variables ‘NumbDummyInts’ and ‘NumbDummyReals’) and placed in
global vectors ‘DummyInts’ and ‘DummyReals’. The values of these integers/reals can then
be accessed in any program.

These dummy variables should not be confused with ‘dummy statements’ in some parameter
files. These are statements which not relevant to the program in question, but are required
in the parameter file in some programs which have been developed from other programs
which use the statements.

set dummy integers I1 I2...

Any number of integer variables may be entered into the program using this
statement

set dummy reals X1 X2...

Any number of reals variables may be entered into the program using this
statement

See [Concept Index], page 151, for: dummy statements, dummy variables

2.6 Output control

By default, MORGAN sends its main output to standard output, stdout, and most warning
and error messages to standard error, stderr. By default, both these will go to the ter-
minal screen. Some programs use additional output files, such as the output score file

or output extra file, to produce additional output, typically in a format for input for
subsequent analyses.

Standard output may be redirected to a file, using the ‘>’ symbol. For example

./genedrop genedrop.par > output-filename

The way in which standard output and standard error may both be redirected to the output
file depends on the shell in use, but typically the ‘>&’ redirect, or something similar, should
work. For example

./genedrop genedrop.par >& output-filename

It is strongly recommended that users study the output warnings (W) produced, to check
the program is interpreting parameter statements as expected.

Additionally, the standard output from each program is controlled by the following state-
ment:

set printlevel N

The level of output produced by all MORGAN programs is controlled by a
printlevel ranging from 0 to 5. The value 5 leads to full output. For larger
runs, particularly with large numbers of genetic markers, the user may prefer
to suppress some output. It is recommended that users initially run their test
data with printlevel 5, to check their input is being interpreted as expected.

While the set printlevel statement may be used to suppress unwanted output, the set

debug statements can be used to obtain additional output. These statements are available

Chapter 2: Common Features and File Formats 14

for all main programs and libraries, but their result depends on what has been coded by
developers in checking the software. The statements are intended primarily for developers,
not the general user.

set debug main

The set debug main statement applied in each main program to print additional
information to stdout as coded in that specific program. Some programs may
contain no such additional debug output code.

set debug libname

The set debug libname statement is available for each library, where libname is
one of cmf, ibdgraph, markers, nghds, pars, pedchk, peel, quant, rans,

sample, stuff or twoqtl, corresponding to the relevant library name. The
statement will cause additional information to be printed to stdout as coded
in the subroutine files of that specific library.

set debug level

The set debug level statement can be used in any program to, in principle, set
the required level of additional debugging statements. However, currently only
the lm_twoqtl program and TwoQTL library include code making use of the
debug level.

In some earlier releases ofMORGAN run-time display was available for the lm_auto program,
using the GLUT library system, and the MORGAN library, GLDisp identified as gldisp.
The display output is controlled by a set of 6 display statements. The run-time display,
while in theory operational if GLUT libraries are installed, are not currently maintained,
and are omitted from the current tutorial.

See [Concept Index], page 151, for: output control, debug control, printlevel control, output
–redirect, output warnings (W), display options, display –GLUT runtime.

2.7 Pedigree file

The pedigree file may contain two sections, formatting statements and pedigree data, sep-
arated by the file separator ‘****’. The first section is optional; if present, it contains
statements that describe the contents and format of the pedigree file, as many MORGAN

users find it convenient to describe the pedigree data within the pedigree file itself. The
alternative is to put these formatting statements in the parameter file.

The pedigree data begin below the file separator. Data for each individual must be placed on
a separate line. Each line begins with three names, followed by integers, then real numbers.
The only required fields, the three ‘names’, are identifiers for each individual and his or her
parents. Names may include up to 15 alphanumeric characters.

Whitespace (comma, space, tabs, linefeed), single (’) and double (") quotes, and the hash
mark (#) cannot be included in names. Names longer than 15 characters are truncated to
15 characters. Pedigree founders should be given parents with names ‘0’.

Gender, if present, is the fourth item in each line. Gender is coded as an integer, such that
‘1’, ‘2’ and ‘0’ represent male, female, and unsexed, respectively.

These three or four values may be followed by an “observed” indicator, with values of
‘0’, indicating an unobserved individual, or ‘1’, indicating an observed individual. The

Chapter 2: Common Features and File Formats 15

optional “observed” indicator is followed by other integers, if present, and real numbers,
if present. Integers and real numbers can represent individuals’ trait data, covariates, or
other information (for example, year of birth).

The format of the file is flexible and is specified by the user with ‘input pedigree record

...’ statements, described in the next section.

Unlike LINKAGE format pedigree files, marker genotype data are not included in aMORGAN

pedigree file.

See [Concept Index], page 151, for: pedigree file, parameter statements in pedigree files,
pedigree file separator, whitespace, individuals –names, observed individuals, unobserved
individuals.

2.8 Individuals file

Several newer MORGAN programs do not use a pedigree file, but still require a list of the
individuals to be used in the analysis, potentially together with information such as gender,
other covariate information or trait values. One such program is ibd_haplo which uses
marker data to infer IBD using a population-based model. See Chapter 12 [Population-
based inference of IBD], page 117.

Another program using the individuals file is gl_lods. See Section 11.6 [Parameter files
for the gl lods program], page 101. In this program, ibd graphs inferred from marker data
using the gl_auto program are used to provide lod scores, given a trait model and trait
data on some of the individuals in the ibd graphs. The goal is first to enable analysis of
multiple trait models and even traits without re-running marker-based MCMC. Second,
data security is enhanced by separating the pedigree information from the trait data.

The individuals file has similar format to the pedigree file, except that father and mother
specifications for each individual are replaced by a component indicator. Since ibd graphs
are generally produced by component, the gl_lods program does require this specification
of pedigree component.

To assist users, the individuals file may be produced using the pedcheck program, using, for
example, the same pedigree specification as is used for gl_auto. This will ensure consistency
of component specification between the individuals file and the ibd graph input to gl_lods.
See Section 3.4 [Creating an individuals file], page 20.

See [Concept Index], page 151, for: individuals file

2.9 Pedigree file description statements

Any of the following statements can be placed either in the parameter file or in the top
section of the pedigree file, above the file separator, ‘****’. Most parameters have default
values, in which case the statement is usually not required.

allow pedigree size N

This statement overrides the program-defined maximum pedigree size (presently
20,000 individuals).

input pedigree size N

Here, N is the number of records to be read. It may be less than the actual
number of individuals in the pedigree file.

Chapter 2: Common Features and File Formats 16

input pedigree record names 3 [integers I] [reals J]

This specifies the numbers of entries in each line of the pedigree file. There
must be three names (up to 15 alphanumeric characters each) identifying an
individual and his or her parents. Optional integers include gender and pheno-
typic or discrete trait data. Real numbers could be covariates or quantitative
trait values.

input pedigree record (father mother | mother father)

This statement specifies the order of parental names. ‘father mother’ is the
default.

input pedigree record gender (present | absent)

Gender, which follows the required triplet of names, is optional. If this state-
ment is not included, the default is ‘gender present’. Gender is coded as an
integer, such that ‘1’, ‘2’ and ‘0’ represent male, female, and unsexed, respec-
tively.

input pedigree record observed (absent | present)

The observed indicator designates which members of the pedigree are observed
and which are unobserved, indicated by ‘1’ and ‘0’, respectively. When the
observed indicator is present, it follows gender (or parents if gender is not
present). If this statement is absent, all pedigree members are assumed to be
observed.

input pedigree record traits K1 K2... integers I1 I2...

This statement is needed when integer data for traits are included, and the
trait values do not immediately and consecutively follow gender (if present).
Use this statement to specify the correspondence between trait numbers and
integers in the record.

input pedigree record traits K1 K2... reals X1 X2...

This statement is needed when real (non-integer) data for traits are included.
The statement provides a correspondence between the trait and the column of
the pedigree input file that contains those trait values. A real value with integer
part 999 indicates a missing value.

Below are the first several lines of the sample pedigree file, ped73.ped in MORGAN_Examples.

input pedigree size 73

input pedigree record names 3 integers 7 reals 1

101 0 0 1 0 0 0 -1 -1 0 999.5

102 0 0 2 0 0 0 -1 -1 0 999.5

201 101 102 1 0 0 0 0 1 0 999.5

202 101 102 2 0 0 0 1 1 0 999.5

2010 0 0 2 0 0 0 -1 -1 0 999.5

301 201 2010 1 0 0 0 1 1 0 999.5

302 201 2010 2 1 3 2 1 1 0 105.945

304 201 2010 2 0 0 0 1 0 0 999.5

Chapter 2: Common Features and File Formats 17

Note that marker genotype data are not contained in the pedigree file. These data, if re-
quired for the MORGAN program invoked, are contained in the parameter file or in a marker
data file specified in the parameter file using the ‘input marker data file’ statement.
The second parameter statement in the file, ‘input pedigree record names 3 integers 7

reals 1’ describes the format of the data on each line (also called a record) in the file. The
first three values in each row, the names, give an individual’s identification number followed
by those of his or her father, then mother.

Because there is no ‘input pedigree record gender’ statement, gender is assumed to be
present and to directly follow the three names. Absence of an ‘input pedigree record

observed’ statement means that the genedrop program assumes all individuals are ob-
served. This statement is not relevant to most other MORGAN programs although it can
be used also by pedcheck.

The 6 integers following gender and the real number in the final column represent individual
data. Lack of an ‘input pedigree record traits integers’ statement would imply that
the first integer following gender corresponds to trait 1, the second to trait 2, etc. However,
these parameter statements are typically provided in the parameter file, not in the pedigree
file.

These (and other) parameter statement defaults apply only if there is no overriding state-
ment in any of the parameter files used. Programs will generally provide a warning state-
ment (coded “(W)”) when default values are being used due to absence of a relevant pa-
rameter statement.

See [Concept Index], page 151, for: pedigree file descriptions, pedigree size, pedigree record
format, individuals –gender, pedigree trait data order.

18

3 Checking Pedigree Validity

3.1 Introduction to pedcheck

pedcheck reads the pedigree file and checks for errors in the pedigree structure. Specifically,
it checks for the following errors:

• duplicate names of individuals

• individuals (non–founders) with parents missing from the pedigree

• individuals with parents of the wrong gender

• impossible pedigrees, such as an individual who is her or his own ancestor

• invalid names, genders, integers or real numbers

• pedigree entries with missing data

Note that, unlike some other packages, name identifiers must be unique across the entire
data set, not only within pedigree components. If using pedigree files from other packages
we recommend that new name identifiers be created if necessary, for example by combining
pedigree (family) and individual identifiers: for example ‘pedname_indname’. In MORGAN

names are arbitrary strings (subject to no whitespace) up to 15 characters in length to
accommodate this translation easily.

If no errors are found, pedcheck reports the number of components (connected pedigrees)
found and lists for each component:

• number of individuals

• the number of founders

• the number of females

• the number of males

• the number of unsexed individuals

• the number of observed individuals (if the ‘observed’ indicator is present)

• the name of the first member of the component, in chronological order

If there are changes to the file, pedcheck writes an output pedigree file. Requested changes
may include reordering of the pedigree chronologically (by component, then by individual),
the addition of gender, the addition of an observed indicator, and reversing the order of the
parental names.

Other MORGAN programs do their own pedigree checking by calling the relevant pedcheck
functions, but it is still useful to do preliminary processing of data files first.

See [Concept Index], page 151, for: pedcheck introduction, pedigree validity, component,
pedigree component.

3.2 Sample pedcheck parameter file

Files for pedcheck may be found in the Pedcheck subdirectory of MORGAN_Examples. Below
is the sample parameter file check.par for pedcheck:

set printlevel 5

Chapter 3: Checking Pedigree Validity 19

input pedigree file ’check.ped’

input pedigree size 30

input pedigree record gender absent

input pedigree record observed present

assign gender

output pedigree chronological

output overwrite pedigree file ’check.oped’

output overwrite individuals file ’indiv_oped’

The ‘assign gender’ statement requests that pedcheck determine gender, when possible,
and output that information to the output pedigree file. The gender determination is made
based on the default order for the listing of parents, which is father followed by mother.
Individuals who are not parents will be assigned missing gender, ‘0’.

‘output pedigree chronological’ causes the pedigree to be sorted into chronological order
in the output pedigree file, first by component, then by individual name. MORGAN refers to
each connected pedigree (i.e., distinct family) in a file as a component. The first individual
in the input listing who is not genealogically connected to individual 1 defines component
2, and the first who is not connected to either of these defines component 3, etc. Although
pedcheck groups individuals by their MORGAN–assigned component numbers in the output
pedigree file, it does not list the component numbers. That is, the first three columns of the
output file are just as they were in the input file: individual name, father’s name, mother’s
name.

‘output overwrite pedigree file ’check.oped’’ specifies the output pedigree file. The
overwrite option permits a previously existing check.oped to be overwritten. You should be
cautious is using this option, in order not to overwrite files you wish to keep. However, if this
option is not used, you will get an error message and the program will quit if check.oped
already exists. If this occurs, you may delete the file and try again or use another output
file name.

Finally, the ‘output overwrite individuals file ’indiv_oped’’ in this version of
check.par provides for the additional creation of an individuals file. See see Section 3.4
[Creating an individuals file], page 20.

See [Concept Index], page 151, for: pedcheck sample parameter file, component, individuals
file, overwrite file options.

3.3 Running pedcheck examples

Examples for the program pedcheck are under the subdirectory Pedcheck/. The commands
using example files are listed below. Have a look inside the pedigree and parameter files,
then verify that the output files are as you would expect them to be. If error messages are
generated, verify that they make sense and see if you can make the necessary corrections
so that pedcheck will run.

./pedcheck check.par

runs on input pedigree file check.ped. The pedigree contains no errors, but has
no gender specified and is not in chronological order. Look at the parameter file:
you will see that it specifies the absence of gender, and requests that gender
be assigned and that the output pedigree be chronologically ordered. Then,

Chapter 3: Checking Pedigree Validity 20

indeed, the output pedigree file check.oped has gender assigned and has the
members reordered. Notice that individuals who are not parents (531 and 541)
have missing gender, ‘0’, in the fourth column of check.oped. The overwrite
option permits a previously existing check.oped to be overwritten.

./pedcheck imp.par

runs on input pedigree file imp.ped. The pedigree contains an individual who
is his own ancestor.

./pedcheck empty.par ped sex.ped

runs with an empty parameter file. The input pedigree file sex.ped is specified
on the command line, and includes the set printlevel 5 request. What does
the output say is wrong with this pedigree?

./pedcheck empty.par ped dup.ped

runs with an empty parameter file, with input pedigree file dup.ped specified
on the command line. (in this case there is no printlevel statement.) What
does the output say is wrong with this pedigree?

See [Concept Index], page 151, for: pedcheck examples.

3.4 Creating an individuals file

An individuals file may be created for those downstream programs that require it by using
the output individuals file parameter statement. Inclusion of the statement

output overwrite individuals file "indiv.oped"

in any pedcheck parameter file will cause pedcheck to produce a list of individuals, their
component numbers, and any integer and real covariate or trait information that was in-
cluded in the input pedigree file.

If an individuals file with the name already exists, the program will append the output to
the end of the file unless the overwrite option is specified. Since appending the output to a
previous individuals file is probably not what the user wants it is highly recommended that
the overwrite option is used.

The ordering of individuals is that of the output pedigree file (or input file, if this is un-
changed): see Section 2.3 [File identification statements], page 11, and Section 3.2 [Sample
pedcheck parameter file], page 18.

As an example you may add this line into the file check.par in the Pedcheck subdirectory
of MORGAN_Examples. Compare the output individuals file indiv.oped with the output
pedigree file check.oped.

3.5 pedcheck statements

pedcheck statements apply to other MORGAN programs since the programs call the
pedcheck functions first to check the pedigree file before doing computations on the
pedigree data.

• For specifying the pedigree file and the output pedigree file, see Section 2.3 [File iden-
tification statements], page 11.

• For describing the format of the pedigree file, see Section 2.9 [Pedigree file description
statements], page 15.

Chapter 3: Checking Pedigree Validity 21

(assign | ignore) gender

Optional. ‘assign gender’ causes gender to be determined by parentage,
whether or not gender is included in the pedigree file. ‘ignore gender’, causes
the program to not check or assign gender. The default action is to assign
gender when it is absent and to check gender if it is present.

output pedigree chronological

Optional. If this statement is present and if the input file is not in chronological
order, the pedigree is sorted and written out in chronological order. The pedi-
gree is sorted by components, and within each component, each non-founding
member is preceded by her or his parents. If this statement is not given, the
input order is preserved in the output file, if written. See the previous section
of this chapter for further discussion of pedigree components.

output pedigree record (father mother | mother father)

Optional. This statement causes the parents to be named in the specified order.
The default arrangement for each triplet of names is the input order.

output [overwrite] individuals file filename

An individuals file may be created for those downstream programs that require
is by using this pedcheck parameter statement. See Section 3.4 [Creating an
individuals file], page 20.

See [Concept Index], page 151, for: pedcheck statements, pedcheck statements, pedigree
options, individuals –gender, pedigree order, component, individuals file.

22

4 Computing Kinship and Other Pedigree
Computations

4.1 Introduction to kin

kin computes kinship coefficients for pairs of pedigree members. It also computes single-
locus and two-locus inbreeding coefficients for members of the pedigree. Briefly, the kinship
coefficient between individuals i and j is the probability that a randomly-drawn allele from i
is identical by descent (ibd) to randomly-drawn allele from individual j at the same locus. A
single-locus inbreeding coefficient is the probability that an individual carries two copies of
a gene that are ibd, at a given autosomal locus. In other words, an individual’s single-locus
inbreeding coefficient is equal to the kinship coefficient of his parents, as an individual’s
gametes can be thought of as random draws from his parents’ chromosomes. A two-locus
inbreeding coefficient is the probability that an individual carries two ibd copies of a gene
at each of two linked loci. kin presents two-locus inbreeding coefficients as a function of
the recombination fraction between the two loci.

Note: The kin program does check for duplicate requests within a pedigree component
of any inbreeding or kinship coefficients; each will be computed once only, even if the
individuals are specified in reverse order. However, it does check (and quits with an error)
if a request is made for kinship of an individual with him/her self. This bug will be fixed
in a future MORGAN release.

See [Concept Index], page 151, for: kin introduction, kinship coefficient, inbreeding coeffi-
cient, ibd,

4.2 Sample kin parameter file

Files for kin may be found in the IBD subdirectory of MORGAN_Examples. Below is a sample
kin parameter file, jv_rep_kin.par.

set printlevel 5

input pedigree file ’jv_rep.ped’

compute component 1 kinship coeff 531 431 431 432

compute component 1 inbreeding coeff 332 531

compute component 2 kinship coeff 341 442

compute component 2 inbreeding coeff 441 541

compute component 1 two-locus inbreed coeff 531

compute component 2 two-locus inbreed coeff 441

set recomb freqs .01 .05 .04 .10 .18 .30 .50 .0

The statements on lines 3 – 8 request computation of kinship coefficients for the pairs ‘531
431’ and ‘431 432’, and then inbreeding coefficients for individuals ‘332’ and ‘531’, from
component 1. It then requests kinship coefficients for the pair ‘341 442’ and inbreeding
coefficients for individuals ‘441’ and ‘541’ from component 2. Finally, it requests the two-
locus inbreeding coefficient for ‘531’ from component 1 and ‘441’ from component 2. The
two-locus inbreeding coefficient will be computed for two loci at distances specified in the
‘set recomb freqs’ statement. (Note these need not be ordered, but the program will
order them in the output.) If there is more than one component (connected pedigree) in
the file, the component number must be specified. MORGAN assigns component numbers
to the connected pedigrees within the pedigree file. If your data set contains more than one

Chapter 4: Computing Kinship and Other Pedigree Computations 23

component, you may first run pedcheck to determine which individuals are assigned which
component numbers.

See [Concept Index], page 151, for: kin sample parameter file.

4.3 Running kin example and sample output

Under the subdirectory IBD/, run the example above using the command below. To send
the output to a file instead of the screen, include ‘> filename’ (without quotes) after the
parameter file name on the command line:

./kin jv_rep_kin.par or

./kin jv_rep_kin.par > out-file-name

When you run this example you should get two warnings, ’(W)’, as there are two duplicate
requests in the parameter file: kin recognizes these duplicates even though the order of
individuals is reversed.

Below is the relevant part of the kin output.

Component 1:

Kinship coefficients:

531 431 .32031

431 432 .10938

Inbreeding coefficients:

332 .00000

531 .10938

2-locus inbreeding coefficients:

(g4link is probability of IBD at both of 2 linked loci)

proband recomb g4link

freq prob

531 .000 .10938

.010 .10234

.040 .08386

.050 .07849

.100 .05660

.180 .03455

.300 .01910

.500 .01196

Component 2:

Chapter 4: Computing Kinship and Other Pedigree Computations 24

Kinship coefficients:

341 442 .15625

Inbreeding coefficients:

441 .06250

541 .10938

2-locus inbreeding coefficients:

(g4link is probability of IBD at both of 2 linked loci)

proband recomb g4link

freq prob

441 .000 .06250

.010 .05885

.040 .04905

.050 .04614

.100 .03388

.180 .02060

.300 .01008

.500 .00391

Note that when the recombination frequency is 0.0, the two-locus inbreeding coefficient is
the same as the one-locus inbreeding coefficient, as there is no recombination between the
loci, thus they act as a single locus. When the recombination frequency is 0.5, the two
loci are independent and the two-locus inbreeding coefficient is the square of the one-locus
inbreeding coefficient.

See [Concept Index], page 151, for: running kin example, kin sample output.

4.4 kin statements

At least one of the following ‘compute ...’ statements are required to run program kin.
If there is more than one component (connected pedigree) in the file, the component num-
ber must be specified. MORGAN assigns component numbers to the connected pedigrees
within the pedigree file. If your data set contains more than one component, you may
first run pedcheck to determine which individuals are assigned which component numbers.
pedcheck will sort by component number in the output pedigree file, although it will not
list component numbers in the file. The screen output generated when running pedcheck

will give component numbers and the number of individuals in each component. Check the
error and warning messages when running kin to verify that component numbers were cor-
rectly specified. The program will quit if an individual’s component number is incorrectly
specified in the parameter file or if there is more than one component in the data set and
no component is specified.

Chapter 4: Computing Kinship and Other Pedigree Computations 25

compute [component M] kinship coefficient N1 N2...

This statement names one or more pairs of pedigree members for which the
kinship coefficient is to be computed.

compute [component M] inbreeding coefficient N1...

This statement names one or more pedigree members for whom the inbreeding
coefficient is to be computed.

compute [component M] two-locus inbreeding coefficient N1...

This statement requests the computation of two-locus inbreeding coefficients,
i.e. the probability of ibd at both loci, for the named individual. For the recom-
bination frequencies at which the coefficients are computed, see the following
statement.

set recombination frequencies X1 X2...

Two-locus inbreeding coefficients are computed for each of the list of recombi-
nation frequencies, in the range of 0.0 to 0.5. If frequencies are not given, the
default values are: 0.0, 0.01, 0.04, 0.05, 0.10, 0.18, 0.30, and 0.50.

See [Concept Index], page 151, for: kin statements, component, kinship coefficient, inbreed-
ing coefficient, recombination.

4.5 The translink utility

The translink program converts MORGAN-style input files, including pedigree, trait, and
marker data, marker map etc., into a LINKAGE-style input file.

The current format of the output dat file is for linkmap program. Since LINKAGE format
requires integer IDs, if individuals are output by index, they are renamed 1 through n.
However, recoding may still be required for some LINKAGE programs, if there are multiple
component pedigrees.

The MORGAN statements used to specify the marker and trait information are those
used by the ‘Autozyg’ programs among others: see Section 5.4.2 [genedrop mapping model
parameters], page 33. Note that because the program runs as an ‘Autozyg’ programs various
dummy statements not relevant to translink are required in the parameter file.

Here is an example of a translink parameter file:

Version of pedigree and markers data for testing translink program.

It includes 2 components, selection of markers, various traits.

Include everything in the output file.

set printlevel 5

input pedigree file ’linkage.ped’

input marker data file ’linkage.markers’

input extra file ’translink.xtra’

select markers 3 4 6 7

select trait 1

set trait 1 tloc 6

Chapter 4: Computing Kinship and Other Pedigree Computations 26

set tloc 6 allele freqs 0.5 0.5

ONE of the following three statements is required,

depending on the interval in which the trait locus is to be mapped

map tloc 6 marker 1 recom frac 0.08 # First locus; final recom.

map tloc 6 marker 4 recom frac 0.01 # Within marker interval; "frac" ignored.

map tloc 6 marker 7 recom frac 0.1 # Last locus; initial recom.

Note; getting the left-side tloc position if markers are selected is a real

pain as specification is w.r.t original marker map. Here 0.08 recombination

right of marker 1 is little bit left of marker 2, which is 10 cM from

marker 3: the first selected marker.

Right hand side much easier -- just use last selected marker.

input pedigree record trait 1 integer 8

set trait 1 data discrete

set trait 1 for tloc 6 incomplete penetrances 0.05 0.6 0.95

The following are DUMMY statements, required but irrelevant to translink

use single meiosis sampler

set MC iterations 1

set proband gametes 202 0 202 1

set sampler seeds 0x53f78285 0xdfbca001

The formats of these statements will be described in relevant sections later in the tutorial.

See [Concept Index], page 151, for: translink utility, LINKAGE package format, dummy
statements.

4.6 The ibd_class utility

See [References], page 149, for details of the cited papers.

An ibd graph is a compact specification of the patterns of identity by descent among a set of
individuals and across a chromosome [Tho11]. Chromosomal locations of changes in bd are
indexed by integers; typically these are either marker or base-pair indices, The ibd graphs
may be realized conditional on marker data (for example by using the program gl_auto),
and used in subsequent analyses of trait data (for example by using the program gl_lods).

Normally the requirement of the trait analysis is to compute the probability of trait data
given the ibd graph. However, on a given subset of individuals observed for the trait, many
different realization of the graph, at many different marker loci, and even different graphs
may give rise to identical trait probabilities. Recognizing when ibd graphs are equivalent
in terms of their trait probabilities is key to efficient analysis: clearly probabilities should
be computed once only for each set of equivalent graphs. The IBDgraph library, written
by Hoyt Koepke [KT13], determines equivalence classes of graphs, across loci and across
realizations.

The IBDgraph library can be accessed through the gl_lods program, but (from MORGAN
3.2.1) the utility ibd_class provides a direct standalone interface to the library.

Chapter 4: Computing Kinship and Other Pedigree Computations 27

There are five basic options in the ibd class program. The following table described them
using an input file of ibd graphs subpedb.dat in which there are are 1000 graphs and marker
indices range from 1 to 201. The output is directed to ibd_class.out (appended in the
case of examples after the first).

(1) ../ibd_class subpedb.dat -m 77 > ibd_class.out

The -m option gives the equivalence classes at the specified index: here at
marker 77.

The first part of the output for this example is

Testing at specified marker location 77.

1 : 254

1 : 414

1 : 639

6 : 9, 11, 105, 117, 122, 852

495 : 1, 3, 4, 17,

showing 3 classes of size 1, one of size 6, and then two large classes of size 495
and 496. Classes are listed in increasing size order.

(2) ../ibd_class subpedb.dat -r 156 160 >> ibd_class.out

The -r options gives the classes that equivalent over a specified index range;
here the range of markers 156 to 160. If the range is beyond the index range in
the file, then the final graph specified (here marker 201) is assumed.

For this example the 72 classes range in size from 1 (24 classes) to 41.

(3) ../ibd_class subpedb.dat -s 155 99 >> ibd_class.out

The -s options gives the range around the specified index (here marker 99) for
which the specified graph (here graph 155) is invariant. For example, the result
returned here is ‘IBD graph 155 is invariant on the interval [86,116).’

(4) ../ibd_class subpedb.dat -a 544 >> ibd_class.out

The -a option gives all the index ranges over which the specified graph (here
graph 544) is invariant. In this example the following output is produced:

IBD graph 544 is invariant on: [0,1),

[1,27),

[27,31), [36,57),

[31,36),

[57,78),

[78,86),

[86,112), [113,117),

[112,113),

[117,121),

[121,137),

[137,138),

[138,155),

[155,156),

Chapter 4: Computing Kinship and Other Pedigree Computations 28

[156,160),

[160,170),

[170,173),

[173,177),

[177,184),

[184,197),

[197,inf)

Note that the sets of indices need not be contiguous. In this example, the
graph at markers 31 to 35 differs from same graph on each side, and the graph
at marker 112 also provides a break to a different graph.

(5) ../ibd_class subpedb.dat >> ibd_class.out

Without any option specified, the program produces the classes of graph that
are equivalent across all indices. In this example. there are no graphs equivalent
across all 201 markers, so the program produces a list of 1000 classes each of
size 1.

(6) ../ibd_class subpedb.dat -e >> ibd_class.out

The -e option is the most complex, giving the equivalence classes both across
marker ranges and across graphs. The output is not easy to parse by hand, but
it is the option required for most efficient use of the software. The program
gl_lods uses this option to ensure that lod score contributions are computed
once only for each equivalence class of graphs in the entire set.

See [Concept Index], page 151, for: IBDgraph library, ibd_class utility, ibd graph

29

5 Simulating Marker and Trait Data in Pedigrees

See [Concept Index], page 151, for: simulating marker and trait data.

5.1 Introduction to genedrop.

genedrop simulates pedigree data for analysis by other programs. Given a genetic map,
it simulates genotypes at marker loci (linked or unlinked) and the discrete genotypes and
polygenic values contributing to quantitative traits. The trait loci may or may not be linked
to marker maps. Thus, one or more of three kinds of loci are simulated on a chromosome:
markers, traits linked to markers, and traits not linked to markers.

genedrop assigns marker and trait genotypes and polygenic trait values to the founders by
using a random number generator. Meiosis indicators are then simulated for non-founders
in chronological order, thus determining the founder genome labels inherited. Markers and
traits, if present, are then simulated for each individual: First, marker genes are simulated
in the order mapped on the chromosome, then linked traits are simulated in map order,
and finally, unlinked traits are simulated.

Because founders of a pedigree are assumed to be unrelated, a unique identifier or founder
genome label is assigned to each of the two haploid genomes of each founder. The user
may choose to identify the ancestral source of each gene at each locus in non-founders by
including the founder labels in the output pedigree.

The user may provide random number seeds for both the marker simulation and the trait
simulation. This permits multiple simulations, for a pedigree, of identical marker genotypes,
but with different quantitative trait values.

The population and segregation model parameters (trait genotype means, additive and
residual variances) may be specified by the user and take default values if not specified.
Allele frequencies have no default values and must be specified by the user. Several different
trait models can be specified as in the following table:

Equal Genotypic Means Zero Additive Variance
non-genetic model YES YES
polygenic model YES NO
major gene model NO YES
mixed model NO NO

The trait locus must have two alleles and the trait residual variance must be greater than
zero. A very small residual variance can be specified if one desires to simulate a qualitative
trait.

Genetic data on all individuals may be included in the simulated pedigree, or some indi-
viduals may be specified as ‘missing’. If any individuals are to be missing genetic data, an
‘observed’ indicator column must be included in the pedigree file. See Section 2.7 [Pedigree
file], page 14, for details.

See [Concept Index], page 151, for: genedrop introduction, quantitative trait, polygenic
model, major gene model, mixed model, non-genetic model, founder genome labels, seeds
for data simulation, additive variance, unobserved individuals.

Chapter 5: Simulating Marker and Trait Data in Pedigrees 30

5.2 Sample genedrop parameter file

Files for genedrop may be found in the Simulation subdirectory of MORGAN_Examples.
The example here refers to ped73_gdrop.par.

The seed file is used to store the random seeds used in the simulations. Occasionally one
will want to use the same seed with multiple runs, but most often one will want to use
new seeds so as to obtain different output with each run. The seed file contains one or
more statements like ‘set marker seeds 0xde5e8d39’. For more about the way genedrop

handles seeds See Section 5.4.4 [genedrop computational parameters], page 35.

The seed file can be specified in the command line or in the parameter file. The following
statements are needed to specify the seed file in the parameter file:

input seed file ’../marker.seed’

output marker seeds only

output overwrite seed file ’../marker.seed’

The first line specifies marker.seed in the main examples directory as the input seed file
for the marker simulation. The second statement, ‘output marker seeds only’, overrides
the default behavior of saving both the marker and the trait seeds and causes the program
to save only the marker seeds before exiting. The overwrite option in line 3 enables the
program to replace the current seed file content with the newly generated random num-
bers, which can be used for simulation in the future. When an overwrite is not requested,
MORGAN appends the new output seeds to the existing file at the end of the run. Thus,
at the next run, more than one ‘set marker seeds’ statement exists in the seed file. The
program uses only the last ‘set marker seeds’ statement in the file.

In the example, we have chosen to access the seed file from the command line, which will
overrule the parameter file statement and generate a warning. See the next section for
command line implementation.

Note: The statement ‘output pedigree chronological’ is included in the example ped73_
gdrop.par file so that the output pedigree will be in the chronological order required for
use with other MORGAN programs.

The next statements in the parameter file are the simulation requests:

simulate chrom 1 markers

simulate traits 1

set traits 1 tlocs 1

The above statement asks genedrop to simulate marker loci on chromosome 1. Additionally,
one quantitative trait controlled by one tloc will be simulated. The number of markers, and
the relative locations of tloc and marker loci will be determined from the ‘map’ statements
below. In MORGAN-3, traits are distinguished from trait loci, and thus the statement ‘set
traits 1 tlocs 1’ assigns trait 1 to trait locus 1. In general one or more traits may be
assigned to any given trait locus. If no trait locus is to be simulated, the lines ‘simulate
traits 1’ and ‘set traits 1 tlocs 1’ can be removed.

map chrom 1 marker dist 10 10 10 10 10 10 10 10 10

map chrom 1 tlocs 1 marker 5 dist 5

The above statement indicates a marker map on chromosome 1, with 10 equally spaced
markers, each at a distance of 10 (Haldane) centiMorgans from the preceding one. Note

Chapter 5: Simulating Marker and Trait Data in Pedigrees 31

that the number of markers is inferred from this statement. The trait locus is between
markers 5 and 6 on chromosome 1, at a distance of 5 cM to marker 5.

A marker map or tloc position can also be specified by recombination fractions. For example,

map chrom 1 marker recomb fracs 0.1 0.5 0.2

gives a map of four ordered markers, M1,M2,M3 and M4, with recombination fraction 0.1
between M1 and M2, 0.5 between M2 and M3, and 0.2 between M3 and M4.

Marker allele frequencies are set by the following lines:

set chrom 1 markers 1 allele freqs 0.13 0.66 0.16 0.05

set chrom 1 markers 2 allele freqs 0.06 0.23 0.41 0.25 0.05

set chrom 1 markers 3 allele freqs 0.11 0.02 0.01 0.06 0.24 0.56

set chrom 1 markers 4 allele freqs 0.07 0.04 0.89

set chrom 1 markers 5 allele freqs 0.12 0.11 0.03 0.03 0.50 0.21

set chrom 1 markers 6 allele freqs 0.50 0.44 0.06

set chrom 1 markers 7 allele freqs 0.01 0.33 0.62 0.04

set chrom 1 markers 8 allele freqs 0.20 0.05 0.42 0.27 0.06

set chrom 1 markers 9 allele freqs 0.18 0.18 0.25 0.16 0.08 0.15

set chrom 1 markers 10 allele freqs 0.17 0.35 0.04 0.29 0.15

In the case where several markers have the same number of alleles and allele frequencies,
one can group those markers together into one line:

set chrom 1 markers 11 12 13 15 allele freqs 0.2 0.8

However, we consider it good practice to specify the frequencies separately for each marker.

The following five lines describe the trait model. The trait locus can have only two alleles;
here the frequencies are 0.5 and 0.5, for alleles 1 and 2, respectively. The mean values of
the trait for each trait locus genotype are on the next line. Values correspond to the (1
1), (1 2) and (2 2) genotypes, respectively. The residual variance gives the within-genotype
variance of phenotypic values about the mean. The additive variance (0 in this example,
and by default if not specified) is the variance of an additive polygenic contribution to trait
values.

set trait 1 allele freqs 0.5 0.5

set trait 1 for tlocs 1 geno means 90 100 110

set trait 1 residual variance 25.0

set trait 1 additive variance 0.0

The following three lines may be included in the parameter file (we have commented them
out in the example so as to keep the output file small and easy to read).

output pedigree record founder genome labels

output pedigree record trait latent variables

output pedigree record unobserved variables

These lines request that the founder genome labels and latent variable values for the trait be
included in the output file, and that the data be output for all (observed and unobserved)
individuals. Founder gene labels indicate, for all non-founders, which founder alleles were
passed to the individual. For the trait variables, the latent founder genome labels, the trait
locus genotype, and the additive and residual contributions to the trait value are given.
Latent trait variables will precede the trait value in the output file.

Chapter 5: Simulating Marker and Trait Data in Pedigrees 32

See [Concept Index], page 151, for: genedrop sample parameter file, seed file, additive
variance, residual variance, founder genome labels.

5.3 Running genedrop examples and sample output

Two examples are available under the subdirectory Simulation/. The only difference is in
whether command line options are to replace some parameter statements (see the README

file in the Simulation directory).

The command to run the first example is:

./<program> <parfile> [ped <pedfile>] [seed <seedfile>] [oped <opedfile>]

./genedrop ped73_gdrop.par ped ../ped73.ped seed ../marker.seed oped gdrop.oped

For the parameter file ped73_gdrop_2.par’ the three files (input and output pedigree, and
seed) are given in the file, and so are not needed as command line options. This file may
be run simply as

./genedrop ped73_gdrop_2

The output is the same as for ped73_gdrop.par.

When running the genedrop example, we here use an (unchanging) input marker seed file
../marker.seed but output to the current directory file marker.seed. However, in practice
a file such as marker.seed can be specified as both the input and output seed file. If a
overwrite option if not included in the ‘output seed file’ statement, successive runs will
generate warnings (W), but this is not a concern. Recall from the previous section that,
by default, MORGAN appends the new output seeds to the existing seed file at the end of
each run. In the next run, the last (most recent) seed will be used. To avoid this warning
(and an ever-growing seed file), either use the overwrite when outputting the seeds (see
the previous section Section 5.2 [Sample genedrop parameter file], page 30), or manually
edit the seed file removing earlier lines.

Since the function of genedrop is to simulate marker and trait data, it, unlike other
MORGAN programs, always creates and outputs a pedigree file. The output file gdrop.oped
is structured similarly to the input file ped73.ped, with one individual per record (line).
However, the output file contains additional columns and does not include the parameter
statements found at the top of the input file. The first four items are the individual’s name,
the names of the parents, and gender. If no addition output options are set, the next items
are the genotypes of the markers (two items per marker) in the order they are found on the
chromosomes, followed by the trait values in the order of the trait labels.

Notice the three statements at the end of the parameter file. In order to save space and
make the output more readable, these statements have been commented out so that they
are not executed by the program.

If the statement ‘output pedigree record trait latent variables’ was included in the
parameter file, the output file would contain four additional columns preceding the trait
value. The first two of these columns would be the trait locus genotype, followed by the
additive component of the trait value and the residual component of the trait value. In
this example, everyone has a ‘0.000’ in the additive component column because we set the
additive variance to zero in the parameter file.

Chapter 5: Simulating Marker and Trait Data in Pedigrees 33

If the ‘output pedigree record founder gene labels’ is set, the founder genome labels
(FGL) for markers precede the marker genotypes and the trait FGL precede the trait values
(or the trait latent variables, if these are requested).

Also, if the ‘output pedigree record unobserved variables’ statement is included in
gdrop.par, an observed indicator would follow gender in the output pedigree file. Also,
marker and trait data would be output for all individuals, not only those indicated as
‘observed’.

See [Concept Index], page 151, for: running genedrop examples, genedrop sample output,
seeds for data simulation.

5.4 genedrop statements

See [Concept Index], page 151, for: genedrop statements.

5.4.1 genedrop computing requests

simulate [chromosome I] markers

One statement is given for each chromosome on which markers or both markers
and traits are to be simulated. Only unlinked traits are simulated if no such
statement is provided. The ‘chromosome’ keyword can be omitted if all markers
and linked traits are on the same chromosome. Note that the number of markers
is inferred from the number mapped on the chromosome in the parameter file.

simulate traits K1

The linked traits to be simulated are specified here. The linked traits are
specified as positive integers.

set traits K1... tlocs L1...

This statement establishes the correspondence between traits and trait loci.
Presently in genedrop each trait may have only one trait locus, but more than
one trait may be assigned to the same locus. The trait loci are specified as
positive integers.

map tlocs L1... unlinked

Optional. This statement specifies trait loci which are unlinked to specific
traits, and hence have no map specification.

See [Concept Index], page 151, for: genedrop computing requests.

5.4.2 genedrop mapping model parameters

map [chromosome I] [gender (F | M)] marker ([Kosambi] distances |

recombination fractions | [Kosambi] positions) X1 X2 ...

This statement is required if simulation of more than one marker is requested.
One statement is used per chromosome. This statement specifies the marker
map or positions given in units of genetic distances (cM), or recombination
fractions between markers. Marker map or positions can be sex-specific if gender
is included in the statement. If ‘distances’ is chosen, intermarker distances
are provided such that the number of distances is one less than the number of
markers. If ‘positions’ is chosen, the number of positions is equal the number

Chapter 5: Simulating Marker and Trait Data in Pedigrees 34

of markers, as these are absolute positions relative to a zero point to the left of
all of the markers. The Haldane mapping function is used to convert between
the genetic distances and recombination fractions unless Kosambi is specified.

map [chromosome I] [gender (F | M)] tlocs K1 K2 ... markers J1 J2 ... (

[Kosambi] distances | recombination fractions) X1 X2 ...

This statement is required if simulated trait loci are to be linked to markers; i.e.,
it is not required if no trait loci or only unlinked trait loci are to be simulated.
The statement specifies the location of each trait locus with respect to one of
the marker loci. Thus, the number of trait loci listed in the statement must
be equal to the number of markers listed and to the number of distances (or
recombination fractions) listed. The trait locus will follow the corresponding
marker locus (to the right, so to speak) at the distance specified. To simulate
a trait locus that precedes all marker loci, list marker ‘0’ in the statement.
For example, with ‘map tlocs 3 2 marker 6 0 distances 5 4’, trait loci 3 and
2 will be placed 5 cM to the right of marker 6 and 4 cM to the left of marker
1, respectively.

See [Concept Index], page 151, for: genedrop mapping model parameters, gender–specific
maps, Haldane map function, Kosambi map function.

5.4.3 genedrop population model parameters

set [chromosome I] markers K1 ... allele frequencies X1 X2 ...

This statement specifies markers allele frequencies. Allele frequencies for a
marker should sum to between 0.9999 and 1.0001. Otherwise they are normal-
ized. Multiple markers can be specified in a single statement if they reside on
the same chromosome and have the same number of alleles with the same allele
frequencies.

set tlocs K1 ... allele frequencies X1 X2 ...

This statement specifies the trait loci allele frequencies. Allele frequencies for
a trait locus should sum to between 0.9999 and 1.0001. Otherwise they are
normalized. Multiple trait loci can be specified in a single statement if they
have the same allele frequencies. Trait loci must have two alleles.

set normalized allele frequencies

If the set of allele frequencies for each marker and trait is to be normalized,
this statement is given. Normalization of the frequencies is recommended when
simulating pedigree data, but not recommended when using the other programs.

set traits K1 for ... tlocs L1... genotype means X1 X2 X3

Since two alleles are simulated for each trait locus, three means must be specified
for the polygenic trait values: one each for the (1 1), the (1 2) or (2 1), and the
(2 2) genotypes. The default values 0.0, 0.0, and 0.0.

set traits K1 ... additive variance X

Here we specify the genetic variance for one or more trait. One of there state-
ments is given for each value assigned. The default variance is 0.0.

Chapter 5: Simulating Marker and Trait Data in Pedigrees 35

set traits K1 ... residual variance X

This statement is like the preceding one. The environmental contribution to
the trait is set using this statement.

See [Concept Index], page 151, for: genedrop population model parameters, allele frequen-
cies, additive variance, residual variance.

5.4.4 genedrop computational parameters

set marker seeds H1 H2

This statement initializes the seeds for the random number generator in the
gene dropping algorithms. The seeds are to be positive and no greater than
hexadecimal 0xFFFFFFFF, with the first seed (congruential seed) odd, and the
second seed (Tausworthe seed) nonzero. In genedrop, markers are simulated
before traits, so that, if no seeds are specified for marker simulation, default
seeds (0x3039 0x431) are used.

set trait seeds

H1 H2 This statement initializes the seeds for trait simulation. If no seeds
are given, the starting seeds for trait simulation are the seeds returned by the
random number generator at completion of marker simulation. Note that if
output of marker seed is requested, this will be the same value as is output to
the marker seed file for a subsequent genedrop run.

See [Concept Index], page 151, for: genedrop computational parameters, seeds for data
simulation, simulating marker and trait data.

5.4.5 genedrop output pedigree options

output pedigree record founder gene labels

When this option is selected, each record contains a pair of founder genome
labels for each locus. Each founder is assigned a pair of labels, which are in the
same order as the names of the parents. Then, for each locus of each descendant,
founder genome labels are determined by the simulated meiosis indicators.

This statement is useful in cases where the founder origins or descent of trait
locus alleles are required, for example in assessing the results of subsequent
analyses of the simulated data.

output pedigree record trait latent variables

This statement requests that the quantitative trait latent variables be included
in the output. The genotype at each trait locus, as well as the additive and
residual component of each quantitative trait, will appear in the output record.

output pedigree record unobserved variables

If this option is set, genotypes, gene labels and trait values are output for
both observed and unobserved individuals. An additional data field, follow-
ing the gender indicator, specifies whether the individual is observed (‘1’) or
unobserved(‘0’).

When this option is not selected, unobserved individuals take on default values;
the genotype at each locus represented as ‘0 0’, the founder genome label (if

Chapter 5: Simulating Marker and Trait Data in Pedigrees 36

requested) at each locus represented as ‘0 0’, and each quantitative trait value
is recorded as ‘999’.

input pedigree record observed (absent | present)

The observed indicator is used to designate which members are observed, with
’0’ indicating unobserved, ’1’ indicating observed. When the observed indicator
is present in the pedigree file, it follows gender (or parents, if gender is not
present). If this statement is not given, all pedigree members are assumed to
be observed. See also the next statement ‘assume all observed’.

If individuals are flagged in the pedigree file as unobserved, the default behavior
is to indicate in the output pedigree file that the data for these individuals is
missing.

assume all observed

When this statement is used, all members of the pedigree are treated as “ob-
served” in the simulation. If an observed indicator column is present in the
input file, it is ignored by the simulation.

See [Concept Index], page 151, for: genedrop output pedigree options, founder genome
labels, meiosis indicators, inheritance indicators, unobserved individuals.

5.4.6 genedrop output seed file options

output (marker | trait) seeds only

If an output seed file is given, both ending marker and trait seeds are saved
unless one or the other is requested in this statement.

See [Concept Index], page 151, for: genedrop output seed file, seeds for data simulation.

37

6 Simulating Marker Data Conditional on Trait
Data in Pedigrees

6.1 Introduction to markerdrop

markerdrop simulates marker data at markers linked to a hypothetical trait locus. The
user must specify whether marker data simulation is to be conditional on a trait model and
trait data (the trait option) or as a (possibly partial) specification in the pedigree file of the
inheritance at the trait location (the inheritance option). The choice of a trait model or an
inheritance pattern will dictate which additional parameter statements must (or may) be
included in the parameter file. For the trait option, the pedigree file contains trait data;
for the inheritance option, the pedigree file contains meiosis (inheritance) indicators. See
Section 8.1 [Specifying inheritance], page 56.

• If marker data simulation is to be conditional on a trait model, parameters must be
provided for trait locus allele frequencies using ‘set tlocs allele frequencies’, for
genotypic penetrances using ‘set trait for tlocs incomplete penetrances’, and for
the map position of the trait locus using a ‘map’ statement see Section 6.5 [markerdrop
statements], page 43. There must be only one mapping statement for the trait locus;
from this statement the trait locus number (name) is deduced. Phenotypic trait data
are provided as affection status of each individual in the pedigree file. An inheritance
pattern at the trait locus is simulated from the trait data; this becomes the trait model
on which markers are simulated.

• If marker data simulation is to be conditional on an inheritance pattern at the trait
locus, the partially specified segregation pattern at the trait locus is provided in the
pedigree file using meiosis indicators. For more information on meiosis indicators, see
Section 6.5.1 [markerdrop computing requests], page 43, and Chapter 8 [Using MCMC
to Estimate Parameters of Interest in Pedigree Data], page 56. Location of meio-
sis indicators in the pedigree file can be specified using the ‘input pedigree record’
statement. Again, specification of a map position for the trait locus using a ‘map’
statement is required.

The program markerdrop first generates descent at the trait locus, and then, conditionally
on this, descent at marker locations across the chromosome. At the requested locations,
founder genome labels of observed individuals are determined, and then marker genotypes
are imposed at each locus given the realized FGL and marker allele frequencies. InMORGAN

V3.4, a new option to simulate ’dense markers’ is provided. In this case, the simulation of
descent across the chromosome, instead of being generated marker-ti-marker, is done by sim-
ulating recombination breakpoints, and an ibd graph; See Section 12.5 [Running ibd create
examples and sample output; simpop fgl], page 123. Only the descent determination uses
this algorithm; thereafter, at each requested marker, founder genome labels are determined
and alleles and genotypes assigned as before.

See [Concept Index], page 151, for: markerdrop introduction, trait model, incomplete pen-
etrances, meiosis indicators, dense markers, founder genome labels.

6.2 Sample markerdrop parameter file – conditional on trait

Files for markerdrop may be found in the Simulation subdirectory of MORGAN_Examples.
The sample parameter file ped73_mdrop_trait.par requests simulation of marker data

Chapter 6: Simulating Marker Data Conditional on Trait Data in Pedigrees 38

conditional on a trait model. The trait is assumed to be discrete when simulation is con-
ditional on a trait model. Examples using the ’dense marker’ option may be found in the
‘Genedrop’ Gold standards.

Note that the ped73_mdrop_trait.par parameter file contains a ‘set printlevel’ state-
ment. MORGAN programs will produce varying levels of output given the print level. We
recommend setting the print level to 5 for initial testing purposes. However, if the ’dense
markers’ option is selected, it is best to suppress printing of the marker map, by, for example,
‘set printlevel 3’.

Many of the statements for simulation of the markers conditional on trait data are similar
to those used in genedrop: See Section 5.2 [Sample genedrop parameter file], page 30. How-
ever, rather than simulating trait loci or trait data, these are provided to the markerdrop

program.

The relevant section of the file is:

simulate markers

select trait 2

set traits 2 tlocs 1

map marker positions 10 20 30 40 50 60 70 80 90 100

map tlocs 1 marker 5 dist 5.0

set trait 2 data discrete

set traits 2 for tlocs 1 incomplete penetrances 0.05 0.8 0.95

set tlocs 1 allele freqs 0.5 0.5

set markers 1 allele freqs 0.13 0.66 0.16 0.05

set markers 2 allele freqs 0.06 0.23 0.41 0.25 0.05

.

.

set markers 10 data

101 0

102 0

201 0

202 0

2010 0

301 0

302 1

304 0

.

.

.

The first four lines are required for markerdrop and must be included in the parameter file.
The ‘map tlocs’ statement identifies the trait locus to be used in the simulation and gives
its position relative to the markers on which we are simulating data. In this example, the
trait locus follows marker 5 at a distance of 5 centiMorgans. The ‘simulate markers’ and
‘select trait’ statement indicates that the markers will be conditional on a trait model.

Chapter 6: Simulating Marker Data Conditional on Trait Data in Pedigrees 39

The ‘map marker positions’ statement specifies the spacing of the markers to be simulated,
from which the number of markers is also inferred.

Note that the parameter file for running a simulation conditional on a trait model requires
two more lines than the parameter file for simulation conditional on an inheritance pattern
(see next section). These two additional lines are required for discrete traits (the default for
simulation conditional on a trait). The statement ‘set traits 2 for tlocs 1 incomplete

penetrances ...’ specifies the probability of exhibiting the trait for individuals with trait
locus genotypes ‘1 1’, ‘1 2’ (or ‘2 1’) and ‘2 2’, respectively. The statement ‘set tlocs ...

allele freqs’ specifies trait locus allele frequencies.

The ‘set markers...allele freqs’ statements be included; they specify allele frequencies
at each markers.

The markerdrop program uses the ‘set markers 10 data’ statement to specify which in-
dividuals and at which loci marker data are required. This is the same statement used by
other programs in the analysis of marker data; see, for example Section 9.8.7 [Autozyg com-
putational parameters], page 77. Marker data are specified for each marker locus as a pair
of integer alleles, and ‘0’ indicates a missing value. For markerdrop any non-zero value will
indicate that the data are to be observed. Typically, one may enter regular marker data, in
order to generate other marker data with the same missingness pattern. Alternatively, as
here, a ‘1’ may be used to indicate that the corresponding marker data are observed. Note
that individual ‘302’ is the first observed member in this data set, and is observed for all
10 markers.

The parameter file ped73_mdrop_trait.par uses the pedigree file ped73.ped, which is
found in the MORGAN_Examples directory. The file format section and first few lines of the
pedigree data section of this file are below.

input pedigree size 73

input pedigree record names 3 integers 7 reals 1

101 0 0 1 0 0 0 -1 -1 0 999.5

102 0 0 2 0 0 0 -1 -1 0 999.5

201 101 102 1 0 0 0 0 1 0 999.5

202 101 102 2 0 0 0 1 1 0 999.5

2010 0 0 2 0 0 0 -1 -1 0 999.5

301 201 2010 1 0 0 0 1 1 0 999.5

302 201 2010 2 1 3 2 1 1 0 105.945

The first three columns are indices are ’names’ which are character strings. They are
unique identifiers of each individual and his/her parents. By default, the parent order is
father followed by mother. The next four columns are sex (1=male, 2=female), observed
status (0=unobserved, 1=observed) and possible trait or other data. Recall that in the
parameter file we had

select trait 2

Now we see also in the parameter file

input pedigree record trait 2 integer 4

Chapter 6: Simulating Marker Data Conditional on Trait Data in Pedigrees 40

This statement specifies that ‘trait 2’ is the fourth integer in the pedigree file, after the
three names (that is, the 7 th item). Traits may be given any integer label: here ‘2’ is an
arbitrary choice. This column of the pedigree file contains the affection status for a discrete
traits (0=missing, 1=unaffected, 2=affected).

If desired, this statement can be included in the pedigree file instead. Other columns is the
pedigree file are explained in the next section.

Note that markerdrop can simulate data for markers linked to only one trait locus, as
specified in the ‘map’ statement in the parameter file.

See [Concept Index], page 151, for: markerdrop parameter file – conditional on trait, print-
level control.

6.3 Sample markerdrop parameter file – conditional on
inheritance pattern

The sample parameter file, ped73_mdrop_inhe.par, requests simulation of marker data
conditional on an inheritance pattern. The relevant section of the file is:

simulate markers

select inheritance 1

set inheritance 1 tlocs 1

map marker positions 10 20 30 40 50 60 70 80 90 100

map tlocs 1 marker 4 recomb frac 0.01

set markers 1 allele freqs 0.13 0.66 0.16 0.05

set markers 2 allele freqs 0.06 0.23 0.41 0.25 0.05

.

.

.

set markers 10 data

101 0

102 0

201 0

202 0

2010 0

301 0

302 1

304 0

.

.

.

The first five lines are required and must be included in the parameter file. The ‘simulate
markers’ and ‘select inheritance 1’ statement indicates that we are simulating marker
data conditional on inheritance, and identifies the inheritance pattern to simulate. The
‘set inheritance 1 tlocs 1’ maps this inheritance pattern to the first trait locus. In
this example, the trait locus follows marker 4 with a recombination fraction of 0.01, as
is indicated by the statement ‘map tlocs 1 marker 4 ...’. The ‘map marker positions’

Chapter 6: Simulating Marker Data Conditional on Trait Data in Pedigrees 41

statement specifies the spacing of the markers to be simulated, and also implicitly indicates
the number of markers. The ‘map marker positions’ statements beginning at line 4 must
be included; they specify allele frequencies at the first two markers.

Following the ‘set markers 10 data’ statement, the marker data availability is specified
for each of the two associated alleles. A ’0’ indicates the data is unobserved, while a ’1’
indicates the data is observed. This specifies which alleles are to be output as data in the
output simulated marker data.

The parameter file ped73_mdrop_inhe.par uses pedigree file ped73.ped. The file format
section and first few lines of the pedigree data section of this file are below.

input pedigree record names 3 integers 7 reals 1

101 0 0 1 0 0 0 -1 -1 0 999.5

102 0 0 2 0 0 0 -1 -1 0 999.5

201 101 102 1 0 0 0 0 1 0 999.5

202 101 102 2 0 0 0 1 1 0 999.5

2010 0 0 2 0 0 0 -1 -1 0 999.5

301 201 2010 1 0 0 0 1 1 0 999.5

302 201 2010 2 1 3 2 1 1 0 105.945

The first three columns are indices of individuals and their parents. The next two are sex
and observation status. Integer columns 5 and 6 are inheritance indicators with the first
being the paternal ones and the second the maternal ones. A founder’s meiosis indicators
are ‘-1 -1’.

The connection to these inheritance data is through the statement

input pedigree record trait 3 integer pair 5 6

in the parameter file. Recall that on counting the pedigree file columns the integers follow
the three names, so that integers 5 and 6 are columns 8 and 9 overall.

Note that markerdrop can only simulate data for markers linked to exactly one trait locus,
as specified in the ‘map’ statement in the parameter file.

For more information on markerdrop options see Section 6.5 [markerdrop statements],
page 43.

See [Concept Index], page 151, for: markerdrop parameter file – conditional on inheritance
pattern.

6.4 Running markerdrop examples and sample output

The markerdrop examples can be run while in the Simulation/ subdirectory. The syntax
for running a MORGAN program is:

<./program> <parameter file> [> <output file>]

or

<program> <parameter file> [> <output file>]

if your PATH includes your current directory.

Note that if the output file command is not included, the results will print to the console.
To run a simulation of marker data conditional on a trait model, type the following into
the console:

Chapter 6: Simulating Marker Data Conditional on Trait Data in Pedigrees 42

./markerdrop ped73_mdrop_trail.par > mdrop_trait.out

Likewise to simulate marker data conditional on an inheritance pattern, type the following:

./markerdrop ped73_mdrop_inhe.par > mdrop_inhe.out

After running markerdrop with the parameter file mdrop_inhe.par, and the pedigree file
ped73.ped (as in the above example), the output file mdrop_inhe.out is generated. Some
sections of this output file are given below. Note that similar output would be generated
using ped73_mdrop_trait.par.

Inter-locus distances in cM, using Haldane map function:

T1

----------------------------+--

10.0 10.0 10.0 1.0 9.0 10.0 10.0 10.0 10.0 10.0

+------+------+------+-------------+------+------+------+------+------+

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

......

Assigned FGL in all listed individuals:

trait locus, followed by 10 marker loci

101 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

102 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3

201 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3

202 2 4 2 3 2 3 2 3 2 4 2 4 2 4 2 4 2 4 2 4 2 4

2010 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5

301 2 6 2 5 2 6 2 6 2 6 2 6 2 5 2 5 2 5 2 5 2 5

302 2 6 3 6 2 6 2 6 2 6 2 5 2 5 2 5 2 6 2 6 2 6

......

Assigned marker genotypes in accordance with data availability:

101 0

102 0

201 0

202 0

2010 0

301 0

302 4 2 4 3 5 6 3 3 6 1 1 2 3 3 1 4 1 6 1 4

......

In the output file above, the marker map is shown, as specified in the parameter file. Below
the map, founder genome labels (FGL) are listed. In this section of the pedigree, individuals
101, 102 and 2020 are founders and so each of them has been assigned two unique FGL. One
of each founder’s FGL has been randomly selected to be passed to their offspring. Using

Chapter 6: Simulating Marker Data Conditional on Trait Data in Pedigrees 43

the FGL, marker genotypes have been assigned to individuals on whom data were specified
as available in the parameter file, individual 302 for example.

The FGL and genotypes output by markerdrop are ordered (or phased). That is at each
locus the paternal allele precedes the maternal allele. When these marker data are read by
another MORGAN program they are read as unphased.

Also note that the printlevel has been set to 5 in this example; without doing so, the
default behavior would be to omit printing the marker map as well as the FGL data.

See [Concept Index], page 151, for: running markerdrop examples, markerdrop output,
founder genome labels, phased and unphased genotypes.

6.5 markerdrop statements

See [Concept Index], page 151, for: markerdrop statements.

6.5.1 markerdrop computing requests

markerdrop always requires the following statement:

simulate [chromosome I] [dense] markers

This statement requests that markers are to be simulated. Whether the sim-
ulation is conditional on a trait model or on an inheritance pattern is inferred
from the following statements. If the option to use dense markers is selected,
descent is simulated by creating the recombination breakpoints in a meiosis,
rather than simulating inheritance from marker to marker using recombination
fractions.

markerdrop always requires one of the following two statements to establish whether the
trait option or inheritance option is to be used.

select trait K

This statement requests the simulation of markers conditional on a trait model
using trait K. If marker data are simulated conditional on a trait model, the
user must specify trait allele frequencies, genotypic penetrances and a map
position for the trait locus within the parameter file. Affection status of each
individual must be specified in the pedigree file following gender, if present.

select inheritance H

This statement requests the simulation of markers conditional on an inheri-
tance pattern at the trait locus. If marker data are to be simulated conditional
inheritance pattern, the user must specify a map position for the trait locus
within the parameter file. In addition, a pair of meiosis indicators for each
individual must be included in the pedigree file following gender, if present.
The first of the pair describes paternal inheritance at the trait locus and the
second describes maternal inheritance. Inheritance indicators are coded as ‘0’,
‘1’ or ‘-1’, corresponding to segregation of the trait allele from the individual’s
grandmother, grandfather, or unknown, respectively. For example, ‘0 0’ indi-
cates that the individual inherited the alleles carried by both grandmothers at
the trait locus, while ‘0 1’ indicates inheritance of the paternal grandmother’s
and maternal grandfather’s alleles.

Chapter 6: Simulating Marker Data Conditional on Trait Data in Pedigrees 44

set traits K1... tlocs L1...

This statement establishes the correspondence of traits to trait loci; it is used
when the trait option is selected.

set inheritance H1... tlocs L1...

This statement establishes the correspondence between loci and sets of partial
inheritance indicators; it is used for the inheritance option. there may be more
than one set of inheritance indicators assigned to a specific trait locus.

See [Concept Index], page 151, for: markerdrop computing requests marker simulation,
marker simulation using trait, marker simulation using meiosis indicators.

6.5.2 markerdrop mapping model parameters

map [gender (F | M)] marker ([Kosambi] distances | recombination fractions |

[Kosambi] positions) X1 X2 ...

This statement is required for markerdrop if more than one marker is to be
simulated. It specifies the marker map (optionally a sex-specific map), in units
of genetic distance (cM), marker position (cM), or recombination fraction. If
distance is selected, markerdrop will expect one fewer values than the number
of markers, as these are intermarker distances. If position is expected, the same
number of values as markers will be expected, as these are the positions of
the markers relative to some zero point to the left of marker 1. If Kosambi is
not specified, the Haldane mapping function is used to convert between genetic
distance and recombination fraction.

map [gender (F | M)] tlocs K marker J ([Kosambi] distance | recombination

fraction) X

This statement is required for markerdrop; it tells the program which trait
locus to use in the simulation of marker data and gives a location for the trait
locus, either as a map distance or recombination fraction, following the marker
listed in the statement. As with genedrop, to simulate a trait locus position
that precedes all markers, list the marker number as ‘0’.

See [Concept Index], page 151, for: markerdrop mapping model parameters

6.5.3 markerdrop population model parameters

set tlocs K1 allele frequencies X1 X2

This statement specifies trait locus allele frequencies. Trait loci must have
two alleles; both allele frequencies must be listed and must sum to a value
between 0.9999 and 1.0001. Otherwise markerdrop automatically normalizes
the allele frequencies and issues a warning. Only one trait may be included in
this statement.

set [chromosome I] marker names N1 N2...

This statement specifies marker names in the order of their position along the
chromosome. Default names are marker-1, marker-2, etc.

set [chromosome I] markers K1 ... allele frequencies X1 X2 ...

Marker allele frequencies are specified using this statement. A marker can have
up to 100 alleles and all allele frequencies must be listed. For each marker, the

Chapter 6: Simulating Marker Data Conditional on Trait Data in Pedigrees 45

allele frequencies should sum to between 0.9999 and 1.0001. Otherwise they
are automatically normalized and a warning message will be issued. Multiple
markers can be included in a single statement if they have the same number of
alleles with the same frequencies.

See [Concept Index], page 151, for: markerdrop population model parameters, trait allele
frequencies, marker names, marker allele frequencies.

6.5.4 markerdrop computational parameters

set traits K1 ... for tlocs L1 ... incomplete penetrances X1 X2 X3

This statement is required for markerdrop when using a trait model or when
using meiosis indicators with a discrete trait. A penetrance, the probability of
expressing the trait given a particular trait locus genotype, must be specified
for each of the 3 possible genotypes at the trait locus. For example ‘incomplete
penetrances 0.15 0.85 0.99’ specifies that the probability of expressing the
trait is 0.15, 0.85 and 0.99 for (1,1), (1,2) and (2,2) trait locus genotypes,
respectively.

set trait K data discrete

This statement is optional. A discrete trait is the default when simulating
conditional on trait data.

As with genedrop, marker seeds and trait seeds can be specified or the default values can
be used, See Section 5.4.4 [genedrop computational parameters], page 35.

See [Concept Index], page 151, for: markerdrop computational parameters, penetrance,
incomplete penetrance, discrete trait, trait data, marker seeds, trait seeds.

6.5.5 markerdrop input file options

The statements below are optional for markerdrop; they are used to indicate a change from
the default order of trait values in the pedigree file. The first statement may be included
if marker data are to be simulated conditional on a trait model and the second may be
included if data are to be simulated conditional on an inheritance pattern.

input pedigree record traits K1 K2 K3 ... integers I1 I2 I3 ...

Unless this statement is present, the first integer following gender, if present, is
assumed to be data for trait 1, the next integer for trait 2, and so on. Use this
statement to specify an alternate correspondence between integer values in the
record and trait numbers.

input pedigree record inheritance K1 K2 ... integer pairs I11 I12 I21 I22 ...

Unless this statement is present, the first two integers following gender, if
present, in the pedigree file are assumed to be the meiosis indicators at the
locus for trait 1. The next two integers are assumed to be the inheritance
indicators at the locus for trait 2, and so on.

See [Concept Index], page 151, for: markerdrop input file options, pedigree record format.

46

7 Estimating a priori ibd Probabilities by Monte
Carlo

See [Concept Index], page 151, for: a priori ibd probabilities, identity by descent, ibd.

7.1 Introduction to ibddrop

ibddrop estimates probabilities of gene identity by descent, ibd, (such as kinship, inbreed-
ing, or multi-gene identities) by Monte Carlo in the absence of data. Given the pedigree
and a genetic map, ibddrop simulates meioses indicators and scores them to estimate the
ibd probabilities among a set of gametes. As originally written, the parameter format of
ibddrop was set up to parallel that of the program lm_auto See Chapter 9 [Estimating
Conditional IBD Probabilities by MCMC], page 63. The lm_auto program also estimates
ibd probabilities, but does so conditionally on marker and (if requested) trait data. This
format has been retained in the current ibddrop but it is important to recognize that in
ibddrop ’markers’ and ’tloc’ (trait locus) refers only to a location on the chromosome, and
not to any allelic or phenotypic entities.

The simplest example of estimation of ibd probabilities among a set of gametes is the
computation of an individual’s inbreeding coefficient. In this example, the set of gametes
in question are the maternal and paternal gametes that make up the individual. A set of
two gametes can be either ibd or not-ibd. To keep track of ibd status among the gametes,
we can label the paternal allele ‘1’. If the two alleles are ibd, the maternal allele would
also be labeled ‘1’, and the resulting ibd pattern would be ‘1 1’. If the two alleles are
not ibd, the maternal allele would be labeled ‘2’ and the resulting pattern would be ‘1 2’.
The individual’s inbreeding coefficient is the probability that the two alleles follow the ‘1 1’
pattern.

If there are three gametes in the set, there are five potential ibd patterns: ‘1 1 1’ (all three
gametes are ibd), ‘1 1 2’ (the first two are ibd and the third is not), ‘1 2 1’ (the first and
third are ibd) , ‘1 2 2’ (the last two are ibd), and ‘1 2 3’ (none are ibd). ibddrop can
estimate probabilities of ibd patterns among up to 10 gametes in a set. ibddrop outputs a
probability for each ibd pattern at each marker.

Gene identity can be scored either for each locus separately, in which patterns of identity
among up to ten gametes can be scored, or it can be scored jointly over a moving window
of several loci. If the moving window option is selected, ibddrop estimates the probabilities
of each ibd/non-ibd pattern at loci across the window, for the specified pair of gametes.

For MORGAN V3.4, the ibddrop program has been extensively revised.

• Descent is simulated at specific ’marker’ locations. Inclusion of a trait locus position is
optional. If included it may be either linked or unlinked to the marker msp. IBD may
be scored either at each locus, or an IBD patters over a window of several markers may
be scored.

• For clarity, ’MC’ in MORGAN now refers to MCMC realizations only. The parameter
statement ’set MC iterations’ in ibddrop has been change to ’simulate ibd realizations’.

• A "dense" option was added to the "simulate ... markers" parameter statement. Using
this option causes simulation of meioses, with recombination breakpoints occurring in
a continuum down to 10^-6 centiMorgans (effectively, one base pair). The scoring of
IBD patterns over loci and outputting of IBD probabilities remain the same as before.

Chapter 7: Estimating a priori ibd Probabilities by Monte Carlo 47

The capability of scoring jointly over a moving window is not currently available for
the "dense" option.

• Optionally, implemented as a beta-test option, selection resulting in segregation dis-
tortion can be imposed at the trait locus, when this is specified as the left-most locus.
The parameters of this genetic selection process are entered using the ’dummy reals’
statement See Section 2.5 [Input extra variables], page 13.

• An additional beta-test option is implemented post-MORGAN 3.4 release. In this
option kinships and inbreeding coefficients only are output to an output scores file.
The ’dummy integers’ statement input the numbers of individuals in two lists ’P’ and
’D’. The pedigree indices of individuals in the two lists are read from the input extra
file. Output are the estimated inbreeding coefficients of the individuals in both lists,
and the kinship of each individual in list-D with each in list-P.

See [Concept Index], page 151, for: ibddrop introduction, ibd pattern, meiosis indicators,
simulation of descent in a pedigree.

7.2 Sample ibddrop parameter file

See the [Concept Index], page 151, for: ibddrop sample parameter file,

7.2.1 Classic ibddrop parameter file

The example parameter file jv_ped_ibd.par in the IBD subdirectory of MORGAN_Examples
has been updated so that it will run under MORGAN V3.4. So also have examples parameter
files ibddrop1.par and ibddrop2.par. Details may be found in README_ibd in that same
subdirectory. However, for convenience, we describe here examples in the Gold subdirectory
of the Genedrop program directory. One such example is the parameter file parIBD_LL:

set printlevel 5

input pedigree file "ped45"

simulate markers

simulate tloc 11

map markers recomb fract .18 .1 .1 .1

map tloc 11 marker 2 recomb fract .06

set component 1 scoreset 1 proband gametes 331 0 333 1

set component 1 scoreset 2 proband gametes 531 0 531 1 331 0 333 1

set component 2 scoreset 1 proband gametes 3v1 0 3v3 1

set component 2 scoreset 2 proband gametes 5v1 0 5v1 1 3v1 0 3v3 1

set component 3 scoreset 2 proband gametes 5w1 0 5w1 1 3w1 0 3w3 1

set component 3 scoreset 1 proband gametes 3w1 0 3w3 1

set sampler seeds 0x8a226a51 0xd2978c71

simulate 20000 ibd realizations

Chapter 7: Estimating a priori ibd Probabilities by Monte Carlo 48

The parameter file specifies the pedigree file name ped45 and then asks simulation at mark-
ers and at one trait locus. The number of markers is determined by the map statement:
since there are 4 recombination parameters provided, there will be 5 marker locations in
addition to the trait location. Note that, since there are no data, this is simply a way to
specify 6 locations, one of which (the tloc) may play a special role and/or may be unlinked.
ped45 contains 45 individuals, who are 3 replicates of the JV pedigree. The file includes
also gender and a ’trait’ but trait data are ignored by ibddrop. (Other programs which
use the trait data, such as lm_auto may also used this same pedigree file. See Chapter 9
[Estimating Conditional IBD Probabilities by MCMC], page 63.)

The two ‘map’ statements specify the genetic map. From the first statement, the genetic
distances between the markers are 44.6, 44.6, 11.2 and 11.2 centiMorgans. From the second
statement, the trait lies between markers 2 and 3, at 22.3 centiMorgans with marker 2.

The ‘set proband gametes’ statements tell ibddrop which gametes to score: that is, the
gametes among which the ibd probabilities will be estimated. In this example, we selected,
from component 1 (the first family in the data set), the maternal (0) gamete of ‘331’ and
the paternal (1) gamete of ‘333’. The next statement selected four gametes to score from
family 2. Note that characters are allowed in the names of individuals.

The ‘input seed file’ statement enables the file to use the seeds from file sampler.seed.
The ‘output overwrite seed file’ statement allows the program to replace the contents
of the seed file with the newly generated seeds. If this options were omitted, when the
program finished running, new seeds would be appended to the end of the file. Seeds can
also be set using the ‘set sampler seeds’ statement (see Section 7.4 [ibddrop statements],
page 54).

The number of Monte Carlo realizations is set to be 20,000 by the ‘simulate ibd

realizations’ statement.

Note that to compute a multilocus ibd probability, the statement ‘set locus window’ can
be used to specify the number of loci to score jointly. ibddrop has limited functionality for
computing multilocus probabilities, it can only examine two gametes to determine whether
or not the two are ibd. For an example see the parameter file parIBD_WL where the statement
‘set locus window 3’ is included, and each proband gamete set is of two gametes only. For
additional options, including scoring of a specific multi-gamete ibd pattern over two or more
loci, see the file Section 9.2 [Sample lm auto parameter file], page 64: lm_auto has this more
general option of scoring multi-gamete ibd patterns.

See [Concept Index], page 151, for: map function, proband gametes, seeds for sampler, seed
file.

7.2.2 Using dense marker simulation

An example of the ’dense’ simulation is given in the ‘Gold’ file dense markers.par:

set printlevel 5

map chromosome 2 markers recomb fract .1 .05 .15 .2

map chromosome 3 markers recomb fract .04 .12 .1 .1

map chromosome 4 markers recomb fract .18 .1 .1 .1

set component 1 scoreset 1 proband gametes 331 0 333 1

Chapter 7: Estimating a priori ibd Probabilities by Monte Carlo 49

set component 1 scoreset 2 proband gametes 531 0 531 1 331 0 333 1

set component 2 scoreset 1 proband gametes 3v1 0 3v3 1

set component 2 scoreset 2 proband gametes 5v1 0 5v1 1 3v1 0 3v3 1

set component 3 scoreset 1 proband gametes 3w1 0 3w3 1

set component 3 scoreset 2 proband gametes 5w1 0 5w1 1 3w1 0 3w3 1

simulate chromosome 4 dense markers

simulate 100 ibd realizations

Tell ibddrop where to read the pedigree from.

input pedigree file "./ped45"

Provide a file name for the ibddrop ibdgraphs results file.

output overwrite scores file "./dense_markers.ibdgraphs"

Set the sampler seeds.

set sampler seeds 0x8a226a51 0xd2978c71

The following select markers parameter statement tells ibddrop

where to score and output IBD probabilities at.

select chromosome 4 markers 1 3 5

Here the pedigree ‘ped45’ and proband gametes are as before. Locations on 3 different
chromosomes are given, but just one (here ‘Chromosome 4’ must be chosen for simulation of
ibd. the ‘simulate dense markers’ option specifies that simulation will be by generating
recombination breakpoints in a continuum, rather than using marker-to-marker computa-
tions, and again a number of ‘ibd realizations’ is requested. An ‘output scores file’
is optionally provided. If it is, the simulated ‘ibdgraphs’ will be output in compact for-
mat. See Section 4.6 [The ibd class utility], page 26. The scoring of IBD patterns over loci
and outputting of IBD probabilities remain the same as before. Optionally, the ‘select
markers’ statement can be used to specify a subset of the original ’marker’ locations at
which to score ibd. If this statement is not present, ibd will be scored at all the mapped
locations for that chromosome. The length of the simulated chromosome is determined by
the distance between the first and the last selected markers.

Although here in this small example only a few locations are specified, this ’dense’ option is
intended for cases where there are many marker locations, so marker-to-marker simulation
is inefficient. If the ‘ibdgraph’ is output, subsets of marker locations for later scoring
may later be selected without re-simulation. See Section 12.6 [Sample parameter files for
ibd create; fgl2ibd and fgl2haplo and fgl2dgl], page 123. Since scoring is done at each
specified location, this part of the computation will be linear in the number of markers
selected. With very large numbers of selected markers, it is suggested that ‘printlevel 3’
is a better option than ‘printlevel 5’ to avoid attempts to print the marker map. The
capability of scoring jointly over a moving window is not currently available for the "dense"
option.

Chapter 7: Estimating a priori ibd Probabilities by Monte Carlo 50

See [Concept Index], page 151, for: dense markers

7.2.3 Selection against autozygosity

Examples in which selection is imposed at the first location (the ‘tloc’) are provided
in the two Gold files ibd_cleo_sparse.par and ibd_cleo_dense.par. An additional
example, cleo_segments.par, is included in the IBD subdirectory of MORGAN_Examples.
These examples are so named because they use the very highly inbred Cleopatra pedigree,
cleopatra.ped.

for running "ibddrop" with selection against autozygosity and against

mom-identity, at target locus 0, on Cleopatra pedigree

Aug 6, 2017 -- new version for Gold standard

Note this version prints the FGL statistics both to file and to output

It also prints autozygosity to the extra output file

#

input pedigree file ’cleopatra.ped’

Include everything in the output file.

set printlevel 5

simulate markers

simulate tloc 11

map markers distances 1 1 2 3 5 8 13 21 34 55

map tloc 11 marker 0 distance 1

set component 1 scoreset 1 proband gametes

Ptolemy-VIII 0 Ptolemy-VIII 1 Cleopatra-III 0 Cleopatra-III 1

set component 1 scoreset 2 proband gametes

Berenice-III 0 Berenice-III 1 Cleopatra-VII 0 Cleopatra-VII 1

set component 1 scoreset 4 proband gametes

Cleopatra-V 0 Cleopatra-V 1 Cleopatra-VII 0 Cleopatra-VII 1

set sampler seeds 0x8a226a51 0xd2978c71

simulate 100000 ibd realizations

output overwrite extra file "ibd_cleo_sparse.scor"

set dummy reals 0.9, 0.5, 0.9 # selection at 0.9 against autozygosity

selection of 0,5 against mom-identity

and 0.9 for both

Much of the parameter file is as before, but note that the tloc at which selection is to
be imposed should be at the left end of the set of markers at which ibd is to be scored.
As before, ibd probabilities among the proband gametes is printed to the standard output.
Since in ibddrop, the ‘output scores file’ (if requested) is used to save the realized ibd

Chapter 7: Estimating a priori ibd Probabilities by Monte Carlo 51

graphs, the ‘ioutput extra file’ is used to print the autozygosity statistics to file for
possible later analyses.

Selection is imposed at the target tloc by means of three selection indices input via the
‘set dummy reals’ statement. See Section 2.5 [Input extra variables], page 13. The three
numbers (0.9, 0.5 and 0.9 in the above example) are viability weights relative to a norm
of 1. The first is for a potentially autozygous offspring (ibd between the two offspring
gametes), the second for a potential offspring being identical (ibd at both gametes) to the
mother, and the third is for a potential offspring with both characteristic (so that all four
gametes of offspring and mother are ibd). Selection at the ‘tloc’ is imposed by modifying
the segregation at this location. Descent at the linked markers is then simulated conditional
on descent at the ‘tloc’. Note that selection does not change the pedigree structure, but
only the segregation of DNA within the pedigree. The Cleopatra pedigree is chosen for the
example, because its extreme inbreeding results in major effects of both types of selection.

The parameter file for dense marker simulation in this example is ibd_cleo_dense.par. It
differs only in the statements:

simulate dense markers

output overwrite extra file "ibd_cleo_dense.scor"

Modulo variation due to randomness, the results for these two versions are identical. Only
the methods of simulation of meiosis across the chromosome differs, with the ‘sparse’
realizations being done marker to marker using recombination fractions, and the ‘dense’
version generating recombination breakpoints.

An alternative is provided in the parameter file cleo_segments.par. This file was not
included in the MORGAN V3.4 release, but instead is now added to MORGAN_Examples/IBD.
This is very similar to the cleo_dense.par file, but differs in that the FGL graphs are
additionally printed. The output scores file is used for these FGL graphs. From the
FGL graphs, segments of ibd among any set of gametes can be reconstructed and scored,
rather than scoring marker-by-marker.

See [Concept Index], page 151, for: Cleopatra pedigree, selection against autozygosity,
selection against maternal identity.

7.3 Running ibddrop example and sample output

The syntax for running this MORGAN program is:

<./program> <parameter file> [> <output file name>]

where , optionally, ‘>’ redirects the standard output (<stdout>) to an output file instead of
to the screen.

For example, the parIBD_LL example can be run in the Gold subdirectory of Genedrop with
the following command:

../ibddrop parIBD_LL > ibddrop.out

The genetic map specified by the statements ‘map markers recomb fract’ and ‘map tlocs

11 marker 2 recomb fract’ is below. Note the position of the trait locus (T11) with respect
to the marker loci.

Chromosome map

..............

Chapter 7: Estimating a priori ibd Probabilities by Monte Carlo 52

Inter-locus distances in cM, using Haldane map function:

T11

--------------+---------------------

22.3 6.4 4.8 11.2 11.2

+------+-------------+------+------+

M1 M2 M3 M4 M5

Since the parameter file contains six‘set proband gametes’ statements, ibddrop will pro-
duce six sets of results in the output file (here ‘ibddrop.out’).

The exact probability estimates will, of course, depend on the random seed used. Some
example results for the second component are detailed below.

Summary for component 2:

Probabilities of IBD patterns

Proband gamete set 1: 3v1 0 3v3 1

pattern marker-1 marker-2 tloc-11 marker-3 marker-4 marker-5 label

1 1 .2526 .2497 .2517 .2509 .2495 .2500 0

1 2 .7473 .7503 .7483 .7491 .7506 .7500 1

Probabilities of IBD patterns

Proband gamete set 2: 5v1 0 5v1 1 3v1 0 3v3 1

pattern marker-1 marker-2 tloc-11 marker-3 marker-4 marker-5 label

1 1 1 1 .0314 .0300 .0309 .0303 .0290 .0294 0

1 1 1 2 .0284 .0272 .0278 .0288 .0290 .0289 1

1 1 2 1 .0149 .0144 .0135 .0129 .0137 .0143 3

1 1 2 2 .0100 .0087 .0092 .0092 .0092 .0092 4

1 1 2 3 .0263 .0301 .0283 .0277 .0271 .0263 5

1 2 1 1 .0658 .0649 .0637 .0627 .0631 .0625 6

1 2 1 2 .0056 .0051 .0060 .0060 .0056 .0063 7

1 2 1 3 .0589 .0593 .0583 .0590 .0588 .0594 8

1 2 2 1 .0648 .0678 .0697 .0701 .0714 .0698 9

1 2 2 2 .0494 .0505 .0503 .0507 .0486 .0493 10

1 2 2 3 .1366 .1416 .1389 .1386 .1393 .1387 11

1 2 3 1 .1366 .1348 .1349 .1346 .1330 .1349 12

1 2 3 2 .0296 .0279 .0265 .0251 .0260 .0280 13

1 2 3 3 .0961 .0955 .0975 .0979 .0995 .0995 14

1 2 3 4 .2455 .2420 .2444 .2464 .2469 .2434 15

Chapter 7: Estimating a priori ibd Probabilities by Monte Carlo 53

The probabilities are summarized by the ibd pattern. Each integer in the pattern represents
one of the gametes that ibddrop was asked to score. Same numbers indicate gametes that
are ibd. For instance, ‘1 1 1 1’ means all four gametes are ibd ; ‘1 2 1 1’ means gametes 1,
3, and 4 are ibd, while gamete 2 is not ibd with the others; ‘1 2 3 4’ means all four gametes
are not ibd.

The ibd patterns are scored for each locus separately; there is a column for each of the five
markers and one for the trait locus. The final column ’label’ is a label for the state that can
be easily inverted to obtain the ibd pattern; its main use is internal to the program. However,
the in lm_auto program one may request scoring of specific ibd patterns by specifying the
desired state labels (see Section 9.2 [Sample lm auto parameter file], page 64).

To compute multilocus ibd probabilities, say for 3 loci, use the parameter file parIBD_

WL which contains the line ‘set locus window 3’. The interesting part of the output for
component 2 is:

Probabilities of IBD patterns for windows of 3 loci

Proband gamete set 1: 5v1 0 5v1 1

IBD wndw 1 wndw 2 wndw 3 wndw 4

0 0 0 .7826 .7680 .7902 .7919

0 0 1 .0255 .0459 .0473 .0471

0 1 0 .0712 .0377 .0264 .0249

0 1 1 .0109 .0374 .0257 .0274

1 0 0 .0312 .0694 .0488 .0484

1 0 1 .0496 .0062 .0050 .0047

1 1 0 .0045 .0161 .0267 .0268

1 1 1 .0244 .0192 .0300 .0288

This time, ibddrop was asked to compute ibd probabilities in windows of three loci at a
time. The four windows can be seen from the marker map: (M1,M2,T11), (M2,T11,M3),
(T11,M3, M4), (M3, M4, M5). If the trait locus were unlinked to the marker loci, it would
be placed to the left of the five marker loci on the map. Thus the first window, ‘wndw 1’,
would include the trait locus and the first two marker loci. The values in the ‘ibd’ column
at the left of the table represent ‘ibd’ patterns. The pattern ‘0 0 0’ means that the selected
gametes are not ibd at the three loci in each window. The pattern ‘0 0 1’ means that the
selected gametes are not ibd at the first two loci in the window, but are ibd at the third.
The values in the columns give the probability of the ibd pattern at the left for each of
the four windows. For example, the probability that the maternal and paternal gametes of
individual 5v1 are ibd at marker loci 3 and 5, but not at marker locus 4 is 0.0047.

The format of output for the dense marker options is effectively identical to the above:
only the simulation of meioses and recombination breakpoints differ. Example outputs for
the beta-test version of ibddrop with selection may be found in the Gold subdirectory
of Genedrop. The relevant files all contain the string cleo, since the examples use the
Cleopatra pedigree. The output for this beta-test program will not be further discussed
here.

The alternative of outputting FGL graphs, and scoring ibd directly by segments as men-
tioned in see Section 7.2.3 [Selection against autozygosity], page 50, is provided in the

Chapter 7: Estimating a priori ibd Probabilities by Monte Carlo 54

parameter file cleo_segments.par. For reference this is included in the IBD subdirectory
of MORGAN_Examples. Note that, for compatibility with MORGAN V3.4, it is also necessary
to output minimal regular scoring output. However, the intention would be to use the
simulated FGL graphs in any downstream analyses.

See [Concept Index], page 151, for: running ibddrop example, ibddrop sample output, ibd
pattern.

7.4 ibddrop statements

• Use the ‘simulate markers’ statements to specify simulation of markers and one linked
or unlinked trait, for each of one or more chromosomes (see Section 5.4.1 [genedrop
computing requests], page 33). For convenience these key statements are repeated
below.

• Use ‘map’ statements to specify the marker and trait locus maps (see Section 5.4.2 [gene-
drop mapping model parameters], page 33). Note also one additional ‘map’ statement
below.

Note that ibddrop does not simulate or use marker or trait data. The statements are used
only to specify the map of the loci at at which descent is to be simulated and ibd scored. The
locations of loci are specified in this way so that direct comparisons can be made between
output of ibddrop and of lm_auto (see Section 9.3 [Running lm auto example and sample
output], page 67), where simulation is conditional on marker and trait data.

The additional ibddrop statements are:

simulate [chromosome I] [dense] markers

This statement requests that markers are to be simulated. For ‘ibddrop’ the
name ’markers’ refers only to chromosome locations, not to actual alleles or
individual genotypes. The number of markers (i.e. locations) is inferred from
the marker map. If the option to use dense markers is selected, descent is
simulated by creating the recombination breakpoints in a meiosis, rather than
simulating inheritance from marker to marker using recombination fractions.

simulate tloc L

This statement, which typically follows the simulate markers statement, es-
tablishes the trait locus to be simulated. Note that this trait locus must be
mapped onto the chromosome selected for marker simulation.

map tlocs L1 ... unlinked

This statement specifies a trait to be simulated that is not linked to markers.
Only one trait can be simulated and this trait will be placed to the left of all
markers.

set [component M] proband gametes N1 K1 N2 K2...

In this statement, the user specifies which gametes ibddrop is to score. Each
statement must contain gametes from a single component, as the components
are assumed to be independent, i.e. the probability of ibd between gametes
from different components is zero. Pairs consisting of an individual’s name
and a meiosis indicator are listed, with ‘0’ indicating the individual’s maternal
gamete and ‘1’ indicating their paternal gamete.

Chapter 7: Estimating a priori ibd Probabilities by Monte Carlo 55

In the current version of MORGAN, the number of proband gametes in a set is
limited to 10.

set [chromosome I] locus window K

This statement gives the window size (number of loci) for which the multilocus
ibd probabilities are scored. If no size is given, each locus is scored separately.

set sampler seeds H1 H2

This statement initializes a pair of seeds for the random number generator. The
seeds must be positive and no greater than ‘0xFFFFFFFF’, with the first seed
(congruential seed) odd, and the second seed (Tausworthe seed) nonzero. If no
seeds are specified, default seeds are used.

simulate K ibd realizations

This statement is requited for ibddrop.

See [Concept Index], page 151, for: ibddrop statements, proband gametes, meiosis indica-
tors, seeds for sampler.

56

8 Using MCMC to Estimate Parameters of
Interest in Pedigree Data

See [Concept Index], page 151, for: MCMC introduction, Markov chain Monte Carlo.

8.1 Specifying inheritance

See [References], page 149, for details of the cited papers.

For MORGAN programs, genetic relationships between individuals in a data set are spec-
ified in the pedigree file. Individuals at the top of a pedigree (family), whose parents are
unspecified, are the founders of the pedigree; other individuals are non-founders. In pedi-
grees, identity by descent is defined relative to the founders of the pedigree, so that, by
definition, founders are unrelated to one another. Descent through the pedigree of genes at
marker and trait loci is tracked by meiosis indicators, also known as inheritance indicators
or segregation indicators [Don83]. At each locus, non-founders are assigned two 0/1 meiosis
indicators, representing genes inherited from the individual’s father and mother. The first
indicator is coded as ‘0’ if the non-founder inherited the gene carried by her father’s mother
and ‘1’ if she inherited the gene carried by her father’s father, i.e. her paternal grandmother
and grandfather, respectively. The second indicator is coded as ‘0’ if the non-founder in-
herited the gene carried by her mother’s mother and ‘1’ if she inherited the gene carried by
her mother’s father, i.e., her maternal grandmother and grandfather, respectively. We use
the term gene to refer to a segment of DNA that is copied from parents to offspring, the
concept captured by Mendel’s term factor.

The set of all meiosis indicators is denoted S = (Sij) where

Sij = 0 if DNA involved in meiosis i at locus j is the gamete’s parent’s maternal DNA
1 if DNA involved in meiosis i at locus j is the gamete’s parent’s paternal DNA

The vector of meiosis indicators at a single locus j over all the meioses of a pedigree is
known as the inheritance vector at locus j [LG87] and is denoted S.j. The elements of S.j
are independent of one another, as they represent the inheritance to gametes resulting from
different (and hence independent) meioses. Si. is the vector of meiosis indicators at all loci
for a single meiosis i (that is, in the formation of a single gamete). Assuming the absence of
genetic interference [Hal19], the elements of Si. have first–order Markov dependence. That
is, the value ‘0’ or ‘1’ at locus j + 1, given the values at loci 1, 2,, j depends only on
the value at locus j. Specifically, this probability is a function of the value at locus j and
the recombination fraction between the loci j and j+1.

If meiosis indicators are known, identity by descent (ibd) is also known. If probabilities can
be assigned to patterns of meiosis indicators in a pedigree, the probability that any set of
gametes in the pedigree are ibd can in principle be computed.

See [Concept Index], page 151, for: specifying inheritance, meiosis indicators, founder
genome labels, inheritance vector, ibd.

8.2 Genetic model

See [References], page 149, for details of the cited papers.

InMORGAN there are three basic genetic data types. These are: be genotypic, typically used
for marker data; discrete, a data type for binary data requiring specification of incomplete

Chapter 8: Using MCMC to Estimate Parameters of Interest in Pedigree Data 57

penetrances; and quantitative, using a Gaussian penetrance with specification of genotypic
means and residual variance.

As yet, loci are either multiallelic marker loci assumed observed without error, or trait
loci which may have general penetrance functions but must have two alleles. Gradually,
available models are being generalized:

1. Pedigree peeling for multiallelic loci with general penetrance;

In order to allow models for “non-genotypic” markers, general joint peeling programs
have been implemented, based on Thompson in [Tho77]. For zero-loop pedigrees (see
[Tho76]), these peeling routines are used by the lm_map program which allows for errors
in marker data. For general pedigrees, they are not yet released, as they are still in
process of testing.

2. Penetrance functions and trait models:

Liability classes been implemented for the discrete-trait penetrance model. A parame-
ter statement specifies the number of liability classes and the 3 genotype-specific pene-
trances in each class. Additionally, an age-based penetrance function for a qualitative
trait has been implemented, with age specified as a covariate for the discrete trait. The
mean ages of onset for each genotype are provides via the genotypic means parameter
statement, and standard deviations are separately provides. An additional parameter
statement specifies a window-width for the age-of-onset data.

3. Traits and trait loci:

The program lm_twoqtl allows two (linked or unlinked) quantitative trait loci to con-
tribute additively or epistatically to a single trait [STW07]. A polygenic component
may also be also be included. Two-locus penetrances may be specified as additive, with
a genotypic mean for each trait genotype for each locus. Alternatively, a matrix array
of 2-locus genotypic means may be specified, allowing for epistasis [SW07].

With more these more complex trait models, including those of lm_twoqtl [STW07], a more
general specification of traits is required. From MORGAN V3.0, completely new structures
have been introduced, separating traits (phenotypes) from trait loci (“tlocs”). Traits may
be affected by genotypes at several tlocs; the genotypes at a tloc may affect several traits.

See [Concept Index], page 151, for: genetic model, penetrance.

8.3 Exact HMM computations

Using the inheritance vectors or meiosis indicators, the structure of the problem is that of
a hidden Markov model (HMM) with the Markov latent state being the S.j, Markov over
markers j. When the pedigree is small, so that each S.j takes only a practical number of
values, standard exact HMM computational methods apply. Likelihoods and lod scores can
be computed exactly. Alternatively, a single forwards computation followed by (repeated)
backwards sampling provides multiple independent realizations from the joint distribution
of all the Sij given the marker data (or given the marker and trait data, if the latter is
included in the set of loci j).

Note that in fact Sij are independent over meioses i, so that the structure is that of a factored
HMM. Forward HMM computation for multiple meioses has been replaced by a factored
version (FHMM), enabling much faster exact computation on small pedigree components
and multiple-meiosis sampling for larger numbers of meioses.

Chapter 8: Using MCMC to Estimate Parameters of Interest in Pedigree Data 58

Exact computation of lodscores on small pedigree components has been implemented for
lm_linkage using the FHMM version of the Baum algorithm. Additionally, these FHMM
computations are also a component of MCMC sampling on larger pedigree components (see
next section).

Gold standards for exact computation are added in the Lodscore/Gold2 subdirectory.

See [Concept Index], page 151, for: exact computations, HMM computations.

8.4 Single and multiple meiosis LM-samplers

See [References], page 149, for details of the cited papers.

MORGAN’s Autozyg and Lodscore programs use MCMC to estimate ibd probabilities and
multilocus lod scores, respectively, in pedigrees. The latent (unobserved) parameters of
interest in MCMC estimation of ibd probabilities and lod scores are the meiosis indicators
at marker and/or trait loci for each non-founder in the pedigree. Observed data are trait
values and unphased marker genotypes for some or all pedigree members. With unphased
genotypes, it may or may not be possible to determine the grandparental source (i.e. the
meiosis indicator) of each allele unambiguously. MORGAN uses MCMC to sample meiosis
indicators (S) conditional on observed data (Y).

MORGAN implements two different block Gibbs samplers, a locus- and a meiosis-sampler,
for sampling from S conditional on Y. Each method updates a subset, S u, of S conditional
on Y and on the currently fixed values of the rest of S (S f). The difference between the
two methods is the choice of S u.

The locus-sampler (or L-sampler) chooses S u to be S.j for some j. In other words, a single
locus is selected and meiosis indicators at that locus are updated based on the genotype
data at all loci and on the current realization of meiosis indicators at all loci other than j.
The MORGAN user can determine whether a locus is to be selected at random each time
or if loci are taken in a pre-determined random order, as described in the next section.
The update computations use a modification of the Elston-Stewart algorithm [ES71] and
can be used whenever single locus pedigree peeling is possible. If inter-locus recombination
fractions are strictly positive, the L-sampler is irreducible. On the downside, mixing is poor
if loci are tightly linked.

The single-meiosis sampler (or M-sampler) chooses S u to be Si. for some i. It is, in a
sense, perpendicular to the L-sampler in that at each iteration a single meiosis is selected
and meiosis indicators for that meiosis are updated conditional on the genotype data at all
loci and the current realization of meiosis indicators for all other meioses. The M-sampler is
a modification of the Lander-Green algorithm [LG87] for peeling along a chromosome using
the Baum algorithm [Bau72]. At each iteration, a single meiosis is randomly selected or
meioses can be updated sequentially. As with locus selection in the L-sampler, MORGAN

allows the user to choose the meiosis selection The M-sampler mixes well in the presence of
tightly linked loci, but it can perform poorly in large pedigrees with missing data.

The multiple meiosis sampler updates several meioses jointly and is therefore a generaliza-
tion of the old single-meiosis sampler. There are four types of multiple-meiosis updates:
random meiosis update, individual update, sib update and 3-generation update. This is
based on work by Liping Tong in [TT08]. The new LM-sampler is a combination of L-
sampler and multiple-meiosis M-sampler. This new LM-sampler is implemented in the
program lm_linkage, which combines the earlier programs lm_markers and lm_multiple.

Chapter 8: Using MCMC to Estimate Parameters of Interest in Pedigree Data 59

The new LM-sampler can also be used in the programs lm_auto and gl_auto, and in the
program lm_twoqtl. All these MORGAN 3.0 programs sample inheritance patterns condi-
tional on marker data for use in subsequent lod score or ibd computations. They all have
the option to use either the old (single-meiosis) or new (multiple-meiosis) LM-sampler.

MORGAN’s Autozyg and Lodscore programs use a combination of the L- and M-samplers,
referred to as the LM-sampler. The user may choose the fraction of updates that are of each
type; the default is 20% L-sampler, 80% M-sampler. The recommendation is 20/80, 50/50 or
80/20, depending on which sampler is, in any particular example, the more computationally
intensive.

For original descriptions of the L-sampler see [He97], and for the M-sampler and LM-
sampler see [TH99]. For additional mathematical details on the L-, M- and single-meiosis
LM-samplers, see [Tho00]. For the new multiple-meiosis sampler see [TT08].

Up to MORGAN V2.8.2, MCMC was performed globally over pedigree components (except
those small enough for exact computation). The L-sampler peeling and lod score estimation
could be done either by component (using “set peeling by component”) or globally (the
default).

With MORGAN V3.0, the preferred option is to do both MCMC and pedigree peeling (lod
score estimation) by component, and to use exact computation on all sufficiently small
component pedigrees. The alternative, retained so that older data sets can be rerun, is to
use ‘set global MCMC’, in which case no exact computation will be done, and MCMC will
be done globally over all component pedigrees.

The lm_haplotype program is a generalization of lm_multiple in which haplotypes of key
individuals dividing the pedigree are sampled in addition to meiosis indicators. To facilitate
efficient implementation of this algorithm, new peeling-by-component routines need to be
implemented and checked. This program is also the work of Liping Tong. This program is
not yet released.

See [Concept Index], page 151, for: LM-sampler, pedigree peeling, multiple meiosis sampler,
block Gibbs sampler, L-sampler, M-sampler, L-sampler probability.

8.5 MCMC computational options

MORGAN can obtain a starting configuration for S in one of two ways. The default method
is by sequential imputation. The alternative is to construct an L-sampler realization inde-
pendently for each locus, conditional on the genotype data at that locus only (the locus-
by-locus option). Sequential imputation tends to produce initial configurations that have
higher conditional probabilities, but locus-by-locus sampling can sometimes reveal other
modes in the complex space of S values. The MORGAN user can select the independent-loci
setup method by including the ‘use locus-by-locus for setup’ statement. If sequential
imputation is selected, the user can specify the number of sequential imputation samples
from which the starting configuration of meiosis indicators is to be selected, using the ‘use
I sequential imputation realizations for setup’ statement. The default is 10% of the
total MC iterations.

At each MCMC iteration, MORGAN selects a locus (with L-sampler) or set of meioses (with
M-sampler) to update. Two different selection methods are available: sample by step and
sample by scan. If ‘sample by scan’ is chosen, all loci or meioses are updated one-at-a-
time in a predetermined random order. This option is the default. If ‘sample by step’ is

Chapter 8: Using MCMC to Estimate Parameters of Interest in Pedigree Data 60

chosen, a single locus or meiosis is randomly selected for updating at each iteration. The
sampling method selected applies to the entire MCMC run, including burn-in, pseudo-prior
computation and main iterations.

When running a MORGAN MCMC program, the user must specify the desired number of
several types of iterations. For all programs, some number of initial burn-in iterations must
be performed. These realizations are discarded and, if the burn-in period is sufficiently long,
subsequent points will be dependent samples from approximately the desired stationary
distribution. The ‘set burn-in iterations’ statement is used to specify the number of
desired burn-in iterations, with the default value varying by program. The desired number
of ‘main’ iterations must be specified using the ‘set MC iterations’ statement; there is
no default number of main iterations. For real-data analyses the recommended number of
iterations is on the order of 10^5.

The lm_bayes program samples not only meiosis indicators, but also the location of the
trait locus. This is done via a third type of MCMC Metropolis-Hastings update. The counts
of sampled trait-locus locations is used to calculate pseudo-priors, which are then used in
lod score estimation. Alternatively, pseudo-priors can be read from an input file. The goal
of this two-stage procedure is to weight locations in order to encourage the MC sampler to
visit test positions of low conditional probability. The number of iterations for calculation
of pseudo-priors is set using the ‘set pseudo-prior iterations’ statement, or the default
value of 50% of the number of main iterations can be used.

Specific Autozyg and Lodscore programs have additional parameters and options that are
described in the relevant sections of the next three chapters of the tutorial.

In addition to the main program-specific outputs described in the following chapters, the
MCMC process accumulates diagnostic counts, scoring the configuration of meiosis indi-
cators at intervals determined by the same statement compute scores every I iterations as
is used for scoring for the primary output. (By default, scores and diagnostic output are
computed every iteration.)

There are three components to the MCMC diagnostic output:

1. Average total log-probability of segregations:

This is the average (over the scored iterations) of the total (over meioses) of the log-
probability of the meiosis indicators. For the first locus this is simply the marginal
probability log((1/2)^m) for m meioses, and for each successive locus is log P(S.j |

S.(j-1)) for locus j conditional on locus j-1.

2. Average total log-probability of penetrances, by locus

This is the average (over the scored iterations) of the combined (over observed individu-
als) log-probability of the observed data at the locus given the inheritance configuration
S.j.

3. Recombination counts for map intervals

This is the total count over (male and female) meioses and over MCMC iterations
of realizations of configurations of meiosis indicators that are recombinant and non-
recombinant in each interval of the map.

In these diagnostic scores, for the programs lm_pval and lm_linkage only marker loci and
marker map intervals are included in these diagnostic scores. For lm_auto, the trait locus
(designated ‘0’) is included in the correct position, if it is included in the MCMC, while

Chapter 8: Using MCMC to Estimate Parameters of Interest in Pedigree Data 61

the gl_auto program requires a null (no-data) unlinked trait locus. This null locus may or
may not be included in the MCMC sampling: see ‘set MCMC markers only’ in Section 9.8.8
[Autozyg MCMC parameters and options], page 79.

See [Concept Index], page 151, for: MCMC options, sequential imputation, locus-by-locus
setup, sample by step, sample by scan, burn-in, MC iterations, pseudo-prior iterations.

8.6 MCMC parameter statements

These statements which set the parameters for the MCMC algorithms, apply to both Au-
tozyg programs and to the Lodscore programs, unless otherwise noted.

use (locus-by-locus sampling | sequential imputation) for setup

There are two setup methods available to find a starting configuration for the
meiosis indicators prior to the MCMC: using sequential imputation (with the
trait treated as unlinked), or using locus-by-locus sampling (by assuming all
markers and trait are unlinked). Sequential imputation is the default method.

use I sequential imputation realizations for setup

When sequential imputation is selected above, this statement specifies the num-
ber of sequential imputation samples from which the starting configuration of
meiosis indicators is to be selected. The default is 20 iterations.

set MC iterations I

Required. It specifies the total number of main L- and M-sampling iterations.
There is no default number of MCMC iterations; the total number of ‘main’ L-
and M- sampling iterations must be specified for all Autozyg programs. The
total MCMC run length is the sum of the number of burn-in iterations specified
by the ‘set burn-in iterations’ statement and the number of main iterations
specified in ‘set MC iterations’.

set burn-in iterations I

Burn-in iterations are performed initially, with the trait locus (if any) unlinked
to the marker map. The default number of burn-in iterations is specific to each
program.

sample by (scan | step)

By default (sample by scan), all loci (L-sampler) or all meioses (M-sampler) are
updated successively in an order determined by random permutation. When
sampling by step, a single locus (L-sampler) or single meiosis (M-sampler) is
randomly selected for updating. lm_bayes presently samples by scan only.

set L-sampler probability X

The L-sampler probability, between 0.0 and 1.0, specifies the probability in each
MCMC iteration, of locus-sampling rather than meiosis-sampling. The default
is 0.0, that is, to use M-sampler only.

compute scores every I iterations

The default is to score recombinations, total log-probabilities or the
Rao-Blackwellized estimator every MCMC iteration. This statement specifies
the frequency with which to compute the contributions to the ibd scores or the
location lod scores.

Chapter 8: Using MCMC to Estimate Parameters of Interest in Pedigree Data 62

check progress I MC iterations

Use this statement to monitor the progress of the program as it is running. It
will print out the iteration number every Ith iteration.

set global MCMC

By default, MCMC is performed component-by-component, and exact com-
putation and/or iid sampling is used on small pedigree components. If this
statement is specified, MCMC will be done globally over the data set, and no
exact computation will be done. Note that the formerly used set peeling by

component is eliminated; only global lod scores or analysis will be performed if
the global option is chosen. The recommendation is not to use this option, but
it is retained for compatibility with older examples and data sets.

set limit for exact computation I1

This is the limit on the number of meioses in order for exact computation
and iid sampling to be used instead of MCMC. The default value is 8; while
exact computation for more than 8 meioses is certainly feasible it is often not
computationally efficient.

See [Concept Index], page 151, for: MCMC parameter statements, sequential imputation,
locus-by-locus sampling, meiosis indicators, MC iterations, burn-in, L-sampler, M-sampler,
sample by scan, sample by step.

63

9 Estimating Conditional ibd Probabilities by
MCMC

See [Concept Index], page 151, for: conditional ibd probabilities, identity by descent, ibd.

9.1 Introduction to lm_auto, gl_auto and lm_pval

See [References], page 149, for details of the cited papers.

The MORGAN programs lm_auto, gl_auto and lm_pval are referred to as “Autozyg” pro-
grams, as they estimate autozygosity, or identity by descent (ibd). The Autozyg programs
use MCMC to infer patterns of ibd among members of a pedigree conditional on marker
data, and possibly also on trait data. These inferred patterns may then be used in multi-
point linkage analyses on large pedigrees where many individuals may be unobserved and
exact computation is infeasible. The data are the genotypes at marker loci of observed
individuals in pedigrees. For lm_auto and lm_pval there may also be affectation status
(affected / unaffected / unknown) for the trait of interest.

lm_auto uses either the old (single-meiosis) or new (multiple meiosis) LM-sampler to realize
ibd configurations from their conditional distribution given the marker and/or trait data.
Given the data, it estimates conditional probabilities of genome sharing patterns (gene ibd)
among specified haplotypes, often chosen from affected individuals. The marker data are
used jointly in the sampling. The resulting ibd is either scored marginally at each marker
locus, or over windows of a small number of loci.

gl_auto also uses either the old or new LM-sampler to realize ibd configurations from their
conditional distribution given the marker data. By default, a null (no-data) unlinked ‘trait’
locus is also included: optionally this may be omitted Section 9.8.8 [Autozyg MCMC pa-
rameters and options], page 79. Rather than estimating ibd probabilities, gl_auto outputs
realizations of ibd configurations directly to an output file. The output may either be of
founder genome labels (FGL or ‘gl’) or of the meiosis indicators that determine the FGL,
or both. In either case, the output is in a compact format where only changes of FGL or
meiosis indicators are recorded, together with the positions of these changes. Positions are
in terms of marker indices in the original marker data file, even where markers are subse-
lected for MCMC. These output ibd graphs may be used for subsequent analyses of trait
data on the pedigrees, without further reference to the pedigree structure or marker data.
For further details see [Tho11].

lm_pval uses the LM-sampler to provide the conditional distribution of an ibd measure, T,
given marker data. In principle it can be used to provide Monte Carlo estimates of any
NPL (Non-Parametric Linkage) statistics for detecting linkage. Trait information provided
to the program consists of the list of affected members of the pedigree, provided as the
phenotypic status in the pedigree file.

The version of the program lm_pval in MORGAN 3.0 (originally released in MORGAN V.2.8)
uses the latent p-value distribution of [TG07]. In lm_pval, marker data are assumed avail-
able on some pedigree members, at some of the marker loci. At each test genome location,
the distribution of the ibd measure, T, conditional on marker data is compared to the un-
conditional distribution under the null a priori distribution uniform over all inheritance
vectors. Then quantiles of a latent (fuzzy) p-value distribution are produced. A latent
p-value distribution corrected for multiple testing over genome locations is also produced,
by scoring the maximum of the ibd measure, T, over test locations.

Chapter 9: Estimating Conditional ibd Probabilities by MCMC 64

Additional programs using latent p-values are under development, including programs for
the distribution of latent lod scores obtained in MCMC sampling (lm_fuzlod), p-values
and randomized tests based on latent lod score statistics (lm_fzplod), and randomized
confidence sets for the location of a trait locus (lm_fzconf). The methods are described by
Thompson in [Tho08a]. The program civil (see Section 10.1 [Introduction to lm ibdtests
and civil], page 80) also uses latent p-values [DT09].

See [Concept Index], page 151, for: Autozyg programs, lm_auto introduction, gl_auto
introduction, lm_pval introduction, Markov chain Monte Carlo, autozygosity, meiosis indi-
cators, identity by descent, descent graph and ibd graph, ibd, latent p-values, LM-sampler,
multiple meiosis sampler.

9.2 Sample lm_auto parameter file

lm_auto uses the parameter file jv_rep_auto.par in the IBD subdirectory:

input pedigree file ’jv_rep.ped’

input seed file ’../sampler.seed’

output overwrite seed file ’../sampler.seed’

set printlevel 5

select all markers

select trait 1

set trait 1 tloc 1

map gender F markers dist 25.5 25.5 25.5 25.5

map gender M markers dist 11.2 45.8 11.2 45.8

map gender F tloc 1 marker 2 dist 12.8

map gender M tloc 1 marker 2 dist 5.8

set markers 1 2 3 4 allele freqs .2 .2 .4 .1 .06 .04

set markers 5 allele freqs .3 .2 .3 .1

set tloc 1 allele freqs .95 .05

set marker data 5

333 1 3 1 3 1 3 1 3 1 3

331 3 4 3 4 3 4 3 4 3 4

334 2 3 2 3 2 3 2 3 2 3

431 3 4 3 4 3 4 3 4 3 4

531 3 3 3 3 3 3 3 3 3 3

343 1 3 1 3 1 3 1 3 1 3

341 3 5 3 5 3 5 0 0 3 3

344 4 6 4 6 4 6 2 4 2 4

441 3 4 3 4 0 0 3 4 3 4

541 3 3 3 3 3 3 3 3 3 3

set window patterns 0 4

Chapter 9: Estimating Conditional ibd Probabilities by MCMC 65

set locus window 3

set component 1 proband gametes 531 1 531 0 331 0 333 1

set component 2 proband gametes 541 1 541 0

set L-sampler probability 0.2

use multiple meiosis sampler

set MC iterations 2000

The ‘select’ statement is analogous to genedrop’s ‘simulate’ statement (see Section 5.4.1
[genedrop computing requests], page 33). The statements first specify that all markers will
be used. Then the trait (‘1’) for which data will be analyzed is identified and connected to
a tloc (‘1’).

The trait values are specified in the pedigree file: the specified pedigree file, jv_rep.ped, is
a 30-member, two-component pedigree. Since there is no ‘input pedigree record trait’
statement in the example parameter file, the default behavior is implemented and so the
trait value is listed after the three names and integer gender in the pedigree file. In this
example, this is the 5th and final column (2nd integer). Because the trait type is not
specified in the parameter file via a ‘set trait data’ statement, by default the trait data
are ‘genotypic’, so that they are are coded as ‘1’, ‘3’, ‘4’ or ‘0’, corresponding to trait locus
genotypes of ‘1 1’, ‘1 2’ (or ‘2 1’), ‘2 2’ or ‘missing’, respectively. In the example, the final
individuals of each pedigree component, named 531 and 541, have trait value ‘4’. All other
individuals in the file have trait value ‘0’.

The ‘map’ statements specify the marker map and trait position in terms of genetic distances
(centiMorgan). In this example there are five markers with gender-specific maps. The trait
locus position is measured from the marker to its left. In this example, the trait locus
for males is between markers 2 and 3 at a distance of 12.8 cM to the left of marker 2
(See See Section 5.4.2 [genedrop mapping model parameters], page 33. The ‘set markers’
statements specify the number and frequency of alleles for each marker. In the example,
the first four markers each have six alleles (labeled 1–6) with frequencies 0.2, 0.2, 0.4, 0.1,
0.06 and 0.04. The fifth marker has four alleles with frequencies 0.3, 0.2, 0.3 and 0.1. The
trait locus has two alleles; alleles ‘1’ and ‘2’ have frequencies 0.95 and 0.05, respectively.

The ‘set marker data’ statement specifies the number of markers to be five. Following
the ‘set marker data’ statement are genotype data for typed individuals. Alternatively,
lm_auto can read genotype data from a separate file specified with an ‘input marker data

file’ statement. Note that in the parameter file the marker-5 allele frequencies do not sum
to 1. By default, allele frequencies will not be normalized. The implication is that there
are other alleles not present in the marker data, whose frequencies therefore need not be
listed. If the program encounters in the marker data an allele at this locus other than ‘1’
to ‘4’, an error will be generated.

The ‘set window patterns’ and ‘set locus window’ statements instruct lm_auto to com-
pute the probabilities that the gametes named in the ‘set proband gametes’ statement
have a particular ibd pattern (also called state) jointly across several loci. The ‘set locus

window’ statement specifies the number of loci to be examined simultaneously, in this case
3. This statement was discussed briefly in the ibddrop example: See Section 7.3 [Running
ibddrop example and sample output], page 51. The probabilities in the ‘IBD’ column of the

Chapter 9: Estimating Conditional ibd Probabilities by MCMC 66

output specifies whether one of the specified set of patterns holds (‘1’) or not (‘0’) at each
of the three loci across the window.

Using the ‘set window patterns’ statement in lm_auto, the user can specify ibd patterns
of interest over two or more loci. Recall that in the ibddrop windows option, one can can
only estimate the probability of two gametes being ibd or not. The ‘set window patterns’
statement indicates that we are interested in patterns ‘0’ and/or ‘4’, which correspond to ibd
patterns ‘1 1 1 1’ and ‘1 1 2 2’, respectively. That is, in component 1, we are interested in
the probability that all four of the gametes named in the ‘set proband gametes’ statement
are ibd across 3-locus windows or that the first and second gametes (maternal and paternal
haplotypes of individual 531) are ibd and the third and fourth gametes (maternal haplotype
of individual 531 and paternal haplotype of individual 333) are ibd, but these two pairs are
not ibd with each other.

Recall the output of the ibddrop program generated when using the parameter file ibd.par.
In the section of the program output headed ‘Probabilities of IBD patterns’, each of the
ibd patterns listed in the leftmost column is associated with a label in the right-most column.

Probabilities of IBD patterns

Proband gamete set 1: 541 0 541 1 341 0 343 1

pattern marker-1 marker-2 trait-1 marker-3 marker-4 marker-5 label

1 1 1 1 .0287 .0298 .0310 .0273 .0287 .0298 0

1 1 1 2 .0290 .0275 .0292 .0282 .0302 .0305 1

1 1 2 1 .0132 .0135 .0138 .0140 .0139 .0132 3

The ‘set window patterns’ statement in the parameter file for lm_auto expects one or more
of these labels, which instruct it to calculate the probabilities of the associated pattern(s).
This means that you must determine the labels of the patterns of interest (for example, by
running ibddrop), before using lm_auto to estimate multi-locus probabilities.

The ‘set proband gametes’ statement is the key statement for lm_auto. It specifies which
haplotypes are to be scored with ibd probabilities. The syntax is as follows, where N1, N2,
... are individual ID’s and K1, K2, ... indicate the haplotype as paternal (1) or maternal
(0):

set [component M proband gametes N1 K1 N2 K2 ...

In the example, ‘531 1’ refers to the paternal (1) haplotype of individual ‘531’. The first
statement requests scoring both haplotypes of 531, the maternal (0) haplotype of 331, and
the paternal (1) haplotype of 333. Note that currently the number of proband gametes to
be scored jointly is limited to 10. See Section 7.4 [ibddrop statements], page 54, for more
discussion of the ‘set proband gametes’ statement.

As with all of MORGAN’s MCMC-based programs, the user can specify the desired number
of MC iterations using the ‘set MC iterations’ statement, the desired number of burn-in
iterations using ‘set burn-in iterations’, and the probability that the L-sampler is se-
lected instead of the M-sampler using ‘set L-sampler probability’. In this example, 2000
sampling iterations are to be performed, using the L-sampler 20 percent of the time. These
iterations are preceded by burn-in iterations. Because the number of burn-in iterations
is not specified, lm_auto will use the default value of 10 percent of the number of main

Chapter 9: Estimating Conditional ibd Probabilities by MCMC 67

iterations. In practice, one would run the MCMC sampler much longer than 2000 iterations
(on the order of 10^5). The ‘multiple meiosis’ sampler is requested and the ‘set global

MCMC’ statement is not used, so MCMC will be performed separately for each pedigree
component. For further details of these statements: See Section 8.6 [MCMC parameter
statements], page 61.

See [Concept Index], page 151, for: lm_auto sample parameter file, trait data, genotypic
trait, gender–specific maps, marker data file, window patterns, proband gametes, L-sampler,
M-sampler, burn-in.

9.3 Running lm_auto example and sample output

The syntax for running a MORGAN program is:

./<program> <parfile> [> <output file name>]

The lm_auto example can be run under the subdirectory IBD

./lm_auto jv_rep_auto.par > auto.out

Below are sections of the output file auto.out, generated by running lm_auto using the
parameter file jv_rep_auto.par. Note, as for the program ibddrop, the exact values of the
probability estimates will depend on the value of the random seed. The tables of estimated
ibd probabilities are given for each component, towards the end of the output. The estimated
probabilities of gene ibd patterns are given for each marker and for the trait locus (in the
map order). In the following extracted output, the MCMC diagnostic information has been
omitted.

====== IBD scores for component 1 are estimated using MCMC ======

Proband gamete set 1: 531 1 531 0 331 0 333 1

pattern marker-1 marker-2 trt-geno marker-3 marker-4 marker-5 label

1 1 1 1 .2345 .3375 .3655 .2945 .2450 .1870 0

1 1 1 2 .1165 .1815 .2250 .1785 .1425 .0940 1

1 1 2 1 .1540 .2025 .2595 .1605 .1300 .1070 3

1 1 2 2 .0135 .0215 .0270 .0195 .0095 .0080 4

1 1 2 3 .0260 .0270 .0435 .0250 .0210 .0195 5

1 2 1 1 .0190 .0110 .0010 .0115 .0200 .0275 6

1 2 1 2 .0715 .0430 .0130 .0600 .0665 .0720 7

1 2 1 3 .0560 .0250 .0090 .0275 .0420 .0520 8

1 2 2 1 .0345 .0205 .0030 .0265 .0380 .0310 9

1 2 2 2 .0925 .0435 .0120 .0685 .1060 .1410 10

1 2 2 3 .0425 .0285 .0105 .0325 .0410 .0515 11

1 2 3 1 .0245 .0125 .0040 .0115 .0210 .0275 12

1 2 3 2 .0620 .0300 .0130 .0515 .0670 .0885 13

1 2 3 3 .0115 .0020 .0040 .0125 .0125 .0185 14

1 2 3 4 .0415 .0140 .0100 .0200 .0380 .0750 15

Probabilities of IBD for pattern set for windows of 3 loci

Chapter 9: Estimating Conditional ibd Probabilities by MCMC 68

Proband gamete set 1

Pattern set: 0 4

IBD wndw 1 wndw 2 wndw 3 wndw 4

0 0 0 .4955 .4635 .4630 .5410

0 0 1 .0810 .0815 .0520 .0740

0 1 0 .0345 .0415 .0375 .0430

0 1 1 .1410 .0545 .0550 .0280

1 0 0 .0495 .0515 .1520 .1125

1 0 1 .0150 .0110 .0190 .0180

1 1 0 .0280 .1295 .0930 .1085

1 1 1 .1555 .1670 .1285 .0750

====== IBD scores for component 2 are estimated using MCMC ======

Probabilities of IBD patterns

Proband gamete set 1: 541 1 541 0

pattern marker-1 marker-2 trt-geno marker-3 marker-4 marker-5 label

1 1 .7000 .8760 .9580 .8165 .6570 .4670 0

1 2 .3000 .1240 .0420 .1835 .3430 .5330 1

Interpretation of these results is similar to that of ibddrop See Section 7.3 [Running ibddrop
example and sample output], page 51. Briefly, the probabilities are summarized by ibd
pattern. A pattern is a series of integers, one representing each gamete listed in the ‘set
proband gametes’ statement. The order of gametes in the output file patterns is the same
as the order in which the gametes were listed in ‘set proband gametes’. Numbers that are
the same indicate gametes that are ibd. For instance, in the first row of the table above,
the pattern is ‘1 1 1 1’, which means that the values in the first row represent probabilities
that all four gametes are ibd at each marker locus and at the trait locus. Likewise, ‘1 2 1

1’ means gametes 1, 3, and 4 are ibd while gamete 2 is not ibd with the others; ‘1 2 3 4’
means all four gametes are not ibd.

The second table in the above output is a result of the window size and ibd pattern state-
ments in the parameter file. Its interpretation is similar to the output of ibddrop when
statement ‘set locus window’ was used, See Section 7.3 [Running ibddrop example and
sample output], page 51. Recall that in ibddrop, the values in the ‘IBD’ column of the
output indicate whether the two gametes specified in the ‘set proband gametes’ statement
are ibd (indicated by a ‘1’) or not (indicated by a ‘0’). With lm_auto, the user can specify
additional ibd patterns of interest over two or more gametes. In this example, the parameter
file jv_rep_auto.par includes the statement ‘set window patterns 0 4’, which indicates
that we are interested in ibd patterns ‘0’ and ‘4’, corresponding to ‘1 1 1 1’ and ‘1 1 2 2’,

Chapter 9: Estimating Conditional ibd Probabilities by MCMC 69

respectively, as discussed in the previous section. That is, we would like to know the proba-
bility that either all four gametes are ibd or that the first two are ibd and the second two are
ibd, but the pairs are not ibd with one another for each window of three loci. Consequently,
interpretation of the ‘IBD’ column of the lm_auto output is as follows. The row headed by
‘0 0 0’ gives probabilities that the gametes do not follow either of the two ibd patterns of
interest at all three loci for each window. The row headed by ‘0 0 1’ gives probabilities that
the gametes do not follow either of the two ibd patterns of interest at the first two loci in
the window, but at the third loci either all four gametes are ibd or the first two are ibd and
the last two are ibd, but the pairs are not ibd with one another.

In this section of the lm_auto output, the order of the marker and trait loci is the same as
in the table of results for each locus; that is, the map order. In this example, the trait locus
was between markers 2 and 3. Therefore, the windows are as below:

window loci

wndw 1 marker 1, marker 2, trait

wndw 2 marker 2, trait, marker 3

wndw 3 trait, marker 3, marker 4

wndw 4 marker 3, marker 4, marker 5

For more information regarding the MCMC parameters and diagnostic output, See
Section 8.5 [MCMC computational options], page 59.

See [Concept Index], page 151, for: running lm_auto example, lm_auto sample output, ibd
pattern, proband gametes.

9.4 Sample gl_auto parameter file

The parameter file of the gl_auto example is in the ‘IBD’ subdirectory of MORGAN_Examples.
Like the earlier markerdrop example (see Section 6.2 [Sample markerdrop parameter file –
conditional on trait], page 37), the gl_auto uses the 3-component pedigree with a total of
73 individuals, ped73.ped, and the corresponding 10-marker data, ped73.marker.missing.
Both these files are in the main MORGAN_Examples directory; that is ‘..’ relative to the
parameter file.

The gl_auto parameter file is given here in full, as it contains several options not so far
encountered in this tutorial, as well as some statements specific to this program.

input pedigree file ’../ped73.ped’

input seed file ’../sampler.seed’

output overwrite seed file ’../sampler.seed’

input marker data file ’../ped73.marker.missing’

select all markers

set printlevel 5 # Include everything in the output file.

select trait 1

input pedigree record trait 1 integer 7 # dummy (0) trait values

set trait 1 tloc 11 # Connect trait and tloc

map tloc 11 unlinked # Trait locus is unlinked.

Chapter 9: Estimating Conditional ibd Probabilities by MCMC 70

set tloc 11 allele freqs 0.5 0.5

Monte Carlo setup and requests.

Use the default option of sampling by component.

Specify which meiosis sampler is to be used.

use multiple meiosis sampler

set limit for exact computation 12

set MCMC markers only # Do MCMC for markers only

use sequential imputation for setup

use 5 sequ impu realiz for setup

sample by scan # Default: for clarity only

set L-sampler probability 0.5

For real analyses, recommended number of iterations is of order 10^5

set MC iterations 2000 # For golds and checks only.

set burn-in iterations 15 # For golds and checks only.

Specify what type of output is desired (or both).

Specify the desired scoring interval.

output founder genome labels

output overwrite scores file ’./ped73_glauto.fgl‘

output meiosis indicators

output overwrite extra file ’./ped73_glauto.meio’

output scores every 30 scored MC iterations

The first block of statements specify data and seed files in a way that should by now be
familiar. Note all markers are selected; all will be used in the MCMC and output ibd
graphs. The second block defines a trait and tloc combination. However the trait expected
by gl_auto is a dummy trait consisting entirely of 0 values for ‘unobserved’.

The Monte Carlo requests are those used by most of the MCMC-based programs: See
Section 8.6 [MCMC parameter statements], page 61. Unlike earlier examples, the multiple
meiosis sampler is used, and sampling is (by default) by pedigree component as‘global
MCMC’ is not requests. A limit of 12 meioses is set for exact computation; in fact even the
smallest 11-member pedigree component has 14 meioses, so MCMC will be done on each
of the three components. Other MCMC requests are standard and similar to those used in
the lm_auto example. Note again than many more MCMC scans (and associated burn-in)
would be done in a real example.

The final five parameter statements are specific to the gl_auto program. This program
outputs ibd graphs or meiosis indicators (or both) to an output file. The ibd graph output
is sent to the output scores file, so if this output is requested the name must be given.
Meiosis indicators are sent to the output extra file, so if meiosis indicators are requested
this file name must be given. It is strongly recommended that the overwrite option be used
for both these outputs to avoid appending to previous runs of the program. Finally the the
output scoring frequency is given. Here every MCMC iteration is ‘scored’ (the default), but

Chapter 9: Estimating Conditional ibd Probabilities by MCMC 71

ibd graphs and meiosis indicators are computed and output only every 30 iterations. Note
that in pedigrees with multiple components, the same number of ibd graphs are generated
on each component. On small components where exact IID realizations are generated, every
realization is output; the number of such realizations is the same as the number output on
any component for which MCMC is used.

See [Concept Index], page 151, for: gl_auto sample parameter file, multiple meiosis sampler,
founder genome labels, exact computation, ibd graph.

9.5 Running gl_auto example and sample output

The syntax for running a MORGAN program is:

./<program> <parfile> [> <output file name>]

The gl_auto example can be run under the subdirectory IBD

./gl_auto ped73_glauto.par > ped73_glauto.out

The output file ped73_glauto.out, generated by running lm_auto using the parameter
file ped73_glauto.par is actually of little interest, but should be checked to see that the
program has interpreted the data as expected. The output consists of summaries of the
input pedigrees, and several MCMC diagnostics. As for the ibddrop lm_auto programs,
the exact values of the probability estimates will depend on the value of the random seed;
note that this parameter will output final seeds overwriting the previous input seed file.

The important output is contained in the ‘output scores file’, which the parameter file
specified to be ped73_glauto.fgl. Note that if you run the example with different seeds
your results will differ from the example output given below. Note also that the parameter
file specifies that any previous output scores file of the same name will be overwritten; if
you want to save an earlier one, rename it! The output scores file contains 9636 lines, which
are 66 (2000/30) realizations of ibd graphs. There are three components, with 47, 11 and
15 individuals, and each individual is output on two lines – a maternal chromosome and
a paternal chromosomes. The first 94 (47+47) lines is the first output realization on the
first component. The other 65 realizations follow for a total of 94 times 66 (6204) lines.
There are then 66 realizations of the second component ((11+11) times 66 = 1452 lines),
and finally the realizations on the third component ((15+15) times 66 = 1980 lines). The
total line-count of the file is 9636.

For the seeds on this run, the first few lines of the file are shown as

101 0 1 0

101 0 2 0

102 0 3 0

102 0 4 0

201 0 4 3 5 3 8 4 9 3

201 0 1 1 2 2

The first column is the name of the individual (2 lines for each individual). The zero second
column may be ignored. The third column is the initial (first marker) FGL, and for 101
and 102 there are no FGL-changes as they are founders. Individual 201 is the offspring of
101 and 102. His maternal chromosome consists of segments of FGL 3 and 4: it is initially
4 and there are 3 switches. At marker 5 the switch is to FGL 3, at marker 8 back to 4, and

Chapter 9: Estimating Conditional ibd Probabilities by MCMC 72

at 9 back to 3 again. Individual 201’s paternal chromosome has only 1 switch, switching
from 1 to 2 at marker 2.

Lower down the pedigree there may be more FGL and more switches. For example for the
maternal chromosome of 407 we have

407 0 4 4 5 3 8 4 9 3 10 6

The initial FGL is 4, and there are 4 switches: to 3, 4, 3, and 6 at markers 5, 8, 9, and 10.
respectively.

Next consider the meiosis output in the ‘output extra file’ which was specified to be
ped73_glauto.meio. This file contains a line for every meiosis sampled. Typically this
is 2 lines for every non-founder individual, but a single child of a founder provides only
one meiosis. In the three components of size 47, 11, and 15, there are 13, 4 and 5 founders
respectively, and hence 34, 7, and 10 non-founders, but only 65, 14, and 20 meioses sampled.
Hence the 66 output realizations give 4290, 924, 1320 lines for a total of 6534 lines.

The first few lines of the output file are

201 2 0 0 1 0

201 2 1 0 0 1 5

202 3 0 0 0 0

202 3 1 0 1 3 4 7 9

301 5 0 0 1 0

301 5 1 0 0 0

302 6 0 0 1 1 8

302 6 1 0 0 1 8

The first two columns are the name and the internal MORGAN 0-origin index of the individ-
ual, and the third column specifies whether this is the maternal (0) or paternal (1) meiosis
of the individual. The fourth column refers to the unlinked null locus, and is here null (0)
as this locus was not sampled by the MCMC. The fifth column gives the meiosis indicator
at the first marker, and the sixth the number of changes across the chromosome. The final
integers, in number corresponding to the number of switches, give the change points. Unlike
the ibd graph file, no additional details of the changes are needed. since changes are from
0 to 1, or 1 to 0,

Some important points are that, first, there are programs to process and use this ibd graph
and meiosis output; the user should not be concerned with the details. However, it is
important that the user knows how many graphs they have generated, and whether they are
done by component or globally. Until processing programs with multi-component capability
have been released, it is recommended to separate the graphs by component. In general.
if sampling is by component, then output is for each component, for each realization, for
each individual/meiosis. If sampling is global, then output is for each realization, for each
component, for each individual/meiosis. Sampling by component is normally recommended:
"global MCMC" is maintained mainly for backwards compatibility.

Finally, it should be seen that the output format is compact. Here we have only 10 markers,
so could have output by marker. However, the files would be no larger on the same pedigrees
if we have many thousands of markers. The number of switches depends on the length of
chromosome and pedigree depth, not on the marker count. (See [Tho11]).

See [Concept Index], page 151, for: running gl_auto example, gl_auto sample output.

Chapter 9: Estimating Conditional ibd Probabilities by MCMC 73

9.6 Sample lm_pval parameter file

Files for lm_pval may be found in the TraitTests subdirectory of MORGAN_Examples. The
parameter file, ped73_pval.par is similar to the parameter file used for lm_auto. An
abbreviated version of ped73_pval.par is given below:

input pedigree file ’../ped73.ped’

input pedigree record trait 1 integer 3

select trait 1

input seed file ’../sampler.seed’

input marker data file ’../ped73.marker.missing’

select all markers

set L-sampler probability 0.2

set MC iterations 2000

For lm_pval, markers are selected, but no trait locus is selected. Therefore, no ‘map tloc

marker’ statements are included, and no ‘set traits tlocs’ statement is included. The
file ped73.marker.missing contains the marker map and genotypes, and is accessed by the
statement ‘input marker data file’.

Pedigree members affected with the disease must be specified when using lm_pval. The set
of affected individuals is determined implicitly by using trait data. The statement ‘select
trait 1’ instructs the program to determine the affected individuals by using the trait data
for trait 1 in the pedigree file. The statement ‘input pedigree record traits’ is needed
to define the correspondence between trait numbers and integers in the pedigree record,
so that the program knows where to find the desired trait data. The trait data in this
example are (by default) genotypic: the lm_pvals program treats both homozygotes and
heterozygotes for the disease allele ‘2’ as affected.

See [Concept Index], page 151, for: lm_pval sample parameter file.

9.7 Running lm_pval example and sample output

Under the subdirectory TraitTests, run the lm_pval example by typing:

./lm_pval ped73_pval.par > pval.out

A portion of the output giving latent (fuzzy) p-values is below. See pval.out for the entire
output file.

Combined distribution of fuzzy p-values, by locus:

pval maxim marker-1 marker-2 marker-3 marker-4 marker-5 marker-6 marker-7

marker-8 marker-9 marker-10

0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000

0.01 0.002 0.015 0.008 0.000 0.001 0.002 0.000 0.002

0.000 0.000 0.000

0.02 0.006 0.025 0.019 0.000 0.002 0.002 0.000 0.007

0.000 0.000 0.000

Chapter 9: Estimating Conditional ibd Probabilities by MCMC 74

0.03 0.008 0.035 0.030 0.003 0.006 0.003 0.000 0.017

0.000 0.000 0.000

0.04 0.012 0.045 0.041 0.007 0.009 0.004 0.000 0.028

0.000 0.000 0.000

0.05 0.015 0.055 0.051 0.011 0.013 0.006 0.002 0.039

0.000 0.000 0.000

The output table shows the cumulative distribution of the latent (fuzzy) p-values generated
at each marker position, as well as the cumulative distribution of the maximum latent p-
value over the markers. These distributions are over the latent inheritance patterns sampled,
given the marker data. That is, for each value of ‘pval’ in the left column, the table gives
the proportion of sampled inheritance vectors at each marker that yield a p-value less than
‘pval’. In the last row of the example output, when pval = 0.05, 0.6% of the realizations
have a p-value less than 0.05 at marker-5; at marker-7 this value is 3.9%. Overall, 1.5%
of the realizations have a maximum p-value over the markers that is less than pval = 0.05
(shown in the second column labeled ’maxim’).

Recall again, that exact values in the output will depend on the random seed. In the case
of a relatively short run of lm_pval there may be substantial differences in the estimated
latent p-value distributions.

For more information regarding the MCMC parameters and diagnostic output: See
Section 8.5 [MCMC computational options], page 59.

See [Concept Index], page 151, for: running lm_pval example, lm_pval sample output,
fuzzy p-value.

9.8 Autozyg statements

Many of the lm_auto and other statements following are also used for the location lod scores
programs. See Section 11.9 [Location lod scores statements], page 111.

See [Concept Index], page 151, for: Autozyg statements, lm_auto statements, gl_auto
statements, lm_pval statements.

9.8.1 Autozyg computing requests

select [chromosome I] all markers

This statement selects all markers on the chromosome for the computation; if
not all markers are to be used, use the next statement.

select [chromosome I] markers J1 J2 ...

This alternate form of the ‘select markers’ statement specifies a subset of the
markers.

select [chromosome I] all markers except J1 J2 ...

This new form of statement allows the user to specify markers on the chromo-
some to be omitted in computation.

select trait K

This statement names the selected trait, and is used in both lm_auto and lm_

pval. For the former, this names the trait to be used in subsequent mappings
to trait loci. For the latter, it is used to determine disease affection status of
individuals.

Chapter 9: Estimating Conditional ibd Probabilities by MCMC 75

set traits K1 ... tlocs L1 ...

This statement establishes the correspondence between traits and trait loci in
lm_auto. Note that this statement is not applicable for lm_pval.

map tlocs L1 ... unlinked

Use this statement for lm_auto if the trait locus is unlinked. L1 is the trait
locus number.

check marker consistency [only]

Before running a MORGAN program which uses marker data, the setup rou-
tines check that the marker data for the selected markers are consistent with
Mendel’s first law and stated pedigree information. In the absence of this
parameter statement, the program will terminate with the first error found.
If this statement is included, the program continues checking the rest of the
markers for further inconsistencies and provides details regarding each incon-
sistency detected. The program terminates only after checking all the selected
markers. In the absence of this statement, if no marker data inconsistencies
are found, the program continues with any requested analyses. If the ‘check
marker consistency only’ statement is used, the program will terminate after
checking all the markers; this may be useful in any initial phase of checking the
data.

These alternative terminations for ‘check marker consistency’ are given in tabular form:

No error is present Some error(s) present
No statement No termination Terminates at first error
check markers consist No termination After checking all markers
check mark consist only After checking all markers After checking all markers

See [Concept Index], page 151, for: Autozyg computing requests consistency (Mendelian)
of marker data.

9.8.2 Autozyg file identification statements

All of the general MORGAN file identification statements can be used with the Autozyg

programs. For a list of these statements, see Section 2.3 [File identification statements],
page 11. Some additional file identification can be used by Autozyg programs:

output score file filename

This file can be used by lm_auto to save interim cumulative scores of ibd prob-
abilities. The gl_auto program expects expects an ‘output score file’ to be
specified, since it uses it for its primary output that is then input to other
programs.

input rescue file filename

A rescue file may be used to continue an lm_auto run instead of restarting at
the beginning. This file contains intermediate data, which is periodically saved
when an output rescue file has been specified in a preceding run. (Note this
option is not currently used/tested/)

output rescue file filename

This statement, which is optional for lm_auto, specifies the periodic dumping of
intermediate results to files that may be used to restart the program midstream.

Chapter 9: Estimating Conditional ibd Probabilities by MCMC 76

Data are written alternately to files with ‘1’ and ‘2’ appended to the file name.
(Note this option is not currently used/tested/)

See [Concept Index], page 151, for: Autozyg file identification statements, score file, rescue
file.

9.8.3 Autozyg pedigree file description

Both Autozyg programs use the general MORGAN pedigree file description statements; see
Section 2.9 [Pedigree file description statements], page 15.

See [Concept Index], page 151, for: Autozyg pedigree file description.

9.8.4 Autozyg output file description

Three output file description statements are expected by gl_auto and one additional one
is optional for lm_auto.

output (founder genome labels | meiosis indicators)

This statement is expected by ‘gl_auto’. It tells the program whether its output
is to be in the form of founder genome labels or meiosis indicators (or both).
The founder genome labels are output to the output scores file and the
meiosis indicators are output to the output extra file so these filenames
must be specified if the output is requested.

output rescue data I iterations

This statement can be used to specify the frequency of dumping program
data if an output rescue file is specified. (Note this option is not currently
used/tested/)

output scores every I scored MC iterations

Note that this output option is in terms of scored iterations; not every MCMC
iteration may be scored; see the compute scores statement. This statement is
expected by ‘gl_auto’, since this program uses the d output score file for its
primary output of founder genome labels or meiosis indicators (see the ‘output’
statement above. If an output score file is specified, but this statement is not
present, ‘lm_auto’ writes the score file at the conclusion of the last iteration
only (see ‘set MC iterations’ statement).

See [Concept Index], page 151, for: Autozyg output file description, founder genome labels.

9.8.5 Autozyg mapping model parameters

• For specifying the marker map, see Section 5.4.2 [genedrop mapping model parameters],
page 33.

• To specify a trait map for lm_auto, see Section 5.4.2 [genedrop mapping model param-
eters], page 33.

The trait number specifies its position in the pedigree record; you may need to use
the ‘input pedigree record traits’ statement (see Section 2.9 [Pedigree file descrip-
tion statements], page 15) to establish the correspondence between trait numbers and
integers in the pedigree record.

See [Concept Index], page 151, for: Autozyg mapping model parameters.

Chapter 9: Estimating Conditional ibd Probabilities by MCMC 77

9.8.6 Autozyg population model parameters

• See Section 5.4.3 [genedrop population model parameters], page 34, for statements
specifying the allele frequencies for the markers and traits.

set [chromosome I] marker names N1 N2...

This statement, which is optional for both lm_auto, gl_auto and lm_pval,
specifies the names of the markers in the order of their position in the marker
data file, for example, ‘set marker names D1S306 D1S249 D1S245’.

See [Concept Index], page 151, for: Autozyg population model parameters.

9.8.7 Autozyg computational parameters

• See Section 7.4 [ibddrop statements], page 54, for statements specifying the proband
gametes and locus window for lm_auto.

• See Section 7.4 [ibddrop statements], page 54, for the statement for setting the seeds
for the LM-sampler.

set [chromosome I] markers K data N1 M11 M12 ...[N2 M21 M22 ...] ...

Individuals with at least one observed marker are named, together with their
marker genotypes. The number of allele pairs for an individual is the same as
the number of markers mapped on the chromosome. Marker loci not observed
for an individual are given alleles ‘0 0’. (Those individuals with no observed
markers may but need not be included in this statement.)

In the example, there are 5 markers mapped for the chromosome:

set markers 5 data 343 1 3 1 3 1 3 1 3 1 3

331 3 4 3 4 3 4 3 4 3 4

334 2 3 2 3 2 3 2 3 2 3

431 3 4 3 4 3 4 3 4 3 4

531 3 4 3 3 0 0 3 3 3 3

In this example five individuals have some observed marker data, but individual
‘531’ is unobserved at marker 3.

set [component M] [scoreset N] proband gametes N1 K1 N2 K2 ...

This statement is required for lm_auto. One or more scoring sets may be
given for each pedigree component, where a scoring set consists of two or more
haplotypes. If there is more than one set for the component, each set is assigned
a number 1 or greater. The maximum number of haplotypes in each set is
limited to 10, due to computer memory considerations.

Pairs of names and meiosis indicators are given, with 0 indicating maternal
inheritance and 1 indicating paternal inheritance. In the example, there are
two sets for the component:

set component 1 scoreset 2 proband gametes 531 1 531 0 331 0 331 1

set component 1 scoreset 4 proband gametes 561 1 362 0 364 1

At least one proband gamete set must be specified when running lm_auto.

set [chromosome I] locus window K

This statement is optional for lm_auto and gives the window size (number of
loci) for which the multi-locus ibd probabilities are scored. If no size is given,
each locus is scored separately.

Chapter 9: Estimating Conditional ibd Probabilities by MCMC 78

set [component M] [scoreset N] window patterns L1...

This statement is a companion to ‘set locus window’ and is required for lm_
auto when the window option is chosen. It identifies the ibd patterns to be
jointly scored for the proband gamete set N assigned by the ‘set proband

gametes’ statement. A prior run, with the same proband gametes, but without
the window option is needed to select the ibd patterns. That is, the user is
required to list ibd patterns of interest by label; the labeling of the patterns is
not obvious without first running lm_auto. In the example, we were interested
in ibd patterns ‘1 1 1 1’ and ‘1 1 2 2’, which are assigned labels ‘0’ and ‘4’, re-
spectively, in the output table headed ‘Probabilities of IBD patterns’. One
needs to run lm_auto to obtain these labels.

set trait K data (genotypic | discrete | quantitative)

Trait data are specified as genotypic, discrete (phenotypic), or quantitative
(continuous). They may also be specified as ‘discrete with covariate’ and
as ‘discrete with liability’ With a genotypic trait, the trait locus genotype
can be inferred from the trait value. There are four possible trait values: ‘0’
= missing, ‘1’ = homozygous for allele 1, ‘3’ = heterozygous, and ‘4’ = ho-
mozygous for allele 2. There are three possible trait values with a discrete (or
phenotypic trait): ‘0’ = missing, ‘1’ = unaffected, and ‘2’ = affected. If a dis-
crete trait is chosen, the next statement, ‘set incomplete penetrances’, must
be included. With a quantitative trait, a missing value is denoted as a real
number with integer portion ‘999’. For example, ‘999’, ‘999.3’ and ‘999.543’
all mean ‘missing’. The default trait type is genotypic.

set traits K1 ... for tlocs L1 ... incomplete penetrances X1 X2 X3

This statement is required for discrete trait data. Penetrances (probability
of expressing the trait) are provided for the (1 1), the (1 2), and the (2 2)
genotypes, respectively.

input pedigree record trait K integer pairs J1 J2

For liability classes or age-or-onset the trait data consists of the qualitative
trait status (J1) and an additional covariate integer (J2) which may specify a
liability class or age of onset.

set trait data K discrete with liability

This statement allows trait data to be input as a pair of integers, the trait
status and the liability class.

set K liability classes with penetrances X11 X12 X13 ... XK1 XK2 XK3

This statement provides the penetrances for each of the three tloc penetrances
for each of the K liability classes. There is a hard maximum of 24 liability
classes.

set trait K1 data discrete with covariate

The statement allows a covariate such as age-of-onset to be input as a part of
the trait data. The program then expected that the input pedigree record

trait statement will specify integer pairs.

Chapter 9: Estimating Conditional ibd Probabilities by MCMC 79

set standard deviations for genotypes X1 X2 X3

This statement specifies the standard deviation of age-of-onset for each of the
three tloc genotypes. The mean age-of-onset is specified via the set traits

for tlocs genotype means parameter statement (see Section 5.4.3 [genedrop
population model parameters], page 34).

set width of ages of onset window X1

This number is used in the age-of-onset penetrance function, allowing actual
onset to be up to X1 units (usually years) earlier than the recorded age of onset.

select trait K

lm_pval needs to know which members of the pedigree are affected with the
disease. Discrete or genotypic data for the selected trait is used to determine
the disease affection status of the individuals. Here, lm_pval is to determine the
affected individuals from the trait data in the pedigree file. A trait genotypic
code of 3 (genotype (1 2) or (2 1)) or 4 (genotype (2 2)) indicates an affected
individual. The trait number, K, determines the position of this genotypic code
in the pedigree records (see Section 2.9 [Pedigree file description statements],
page 15).

See [Concept Index], page 151, for: Autozyg computational parameters, marker data, miss-
ing marker data, scoreset, proband gametes, locus window, scoreset, window patterns, trait
data, genotypic trait, discrete trait, quantitative trait, incomplete penetrance, affected in-
dividuals.

9.8.8 Autozyg MCMC parameters and options

• All the statements described in see Section 8.6 [MCMC parameter statements], page 61,
for specifying the MCMC parameters are used by the Autozyg programs.

Please see that section for details regarding:

use (locus-by-locus sampling | sequential imputation) for setup

use I sequential imputation realizations for setup

set MC iterations I

set burn-in iterations I

sample by (scan | step)

set L-sampler probability X

check progress I MC iterations

One additional statement is specific to the gl_auto program:

set MCMC markers only

This statement will cause the gl_auto program to do MCMC only for the
markers, and not for the assumed unlinked no-data ‘trait’ locus. This allows
for identical MCMC with the lm_linkage lod score program if the same MCMC
options are used, and hence for comparison of results among these programs.

See [Concept Index], page 151, for: Autozyg MCMC parameters and options.

80

10 Estimating ibd Based Test Statistics by
MCMC

See [Concept Index], page 151, for: ibd -based tests.

10.1 Introduction to lm_ibdtests and civil

See [References], page 149, for details of the cited papers.

The program lm_ibdtests uses identity-by-descent (ibd) based and likelihood-ratio based
statistics to construct linkage detection tests. The current version allows only discrete trait
data (affected or unaffected or unknown phenotypic status).

The ibd scoring approach involves construction of an ibd measure (T) that is a function
of the inheritance vectors and affectation status of the individuals in pedigrees. The pro-
gram uses realizations of the inheritance vectors conditional only on the marker data (Y) to
compute a Monte Carlo estimate of the test statistic E(T|Y). Four different ibd measures
are implemented in the program. Two of these measures, T=Slambda and T=Saffunaff
(developed by Saonli Basu), allow incorporation both of affected and of unaffected indi-
viduals in the analysis. The test statistic is used to test the null hypothesis of no linkage
between the trait and a set of markers. For this approach, two different testing options have
been implemented; one is a normality-based test and the other is a permutation test. The
permutation test keeps the observed marker data unchanged and permutes the affectation
status. In the normality-based test, test statistics (T=Spairs, for example) are computed
for each realization and averaged over realizations. The program then reports the p-values
from each test at the marker loci. For more details of these methods, see [Bas08].

A new (lambda,p) model has been implemented in lm_ibdtests. The (lambda,p) model
models the trait-dependent segregation of inheritance vectors at a locus given the trait data
on individuals and constructs a chi-square test for linkage detection. The (lambda,p) model
incorporates both affected and unaffected individuals in the analysis. The delta model is
also implemented in the program. The current version of lm_ibdtests only allows the
ibd measure T=Spairs in the delta model set-up. The program returns the p-values of the
likelihood-ratio statistics under each of these two models. For a detailed description of the
(lambda,p) and delta models, see [Bas10]. For a real data analysis using lm_ibdtests, see
[Sie05].

The program civil is due to Yanming Di, see [DT09]. It is still in beta-test version. The
program performs marginal and conditional inheritance vector tests for linkage detection
and localization. The name civil is an acronym for Conditional Inheritance Vector test In
Linkage analysis.

In an inheritance vector test, the test statistic is a score that measures the connection
between the observed trait values and the inheritance vector at the test position. Excess
such connection provides evidence for genetic linkage. civil implemented two such scores:
a variance component type score (the vc-score) and a score developed by Yanming Di (the
w-score).

civil computes marginal and conditional test p-values using Monte Carlo method: to
approximate the null test statistic distributions, the program will hold trait values fixed
and resample the inheritance vectors. The inheritance vectors along a chromosome should
follow a Markov Chain distribution in genomic regions absent of causal genetic variants.
In a marginal test, the null inheritance vectors are sampled from the marginal distribution

Chapter 10: Estimating ibd Based Test Statistics by MCMC 81

of the Markov Chain, which is uniform over the set of all possible inheritance vectors
(see Section 9.1 [Introduction to lm auto gl auto and lm pval], page 63). In a conditional
inheritance vector test, the inheritance vectors are sampled from the conditional distribution
the inheritance vector at the test position given the observed inheritance vectors at the two
conditioning positions, as determined by the Markov Chain distribution.

A significant conditional test result provides linkage localization information: it suggests
that linkage signal exists in the region bounded by the two conditioning positions, and the
conditional p-value gives the false positive probability. A significant marginal test result
does not allow such interpretation. For conditional tests, there is a trade-off between power
and precision. When the two conditioning positions are more far apart, the conditional
test will be more powerful, but a significant conditional test result will provide less precise
localization information.

See [Concept Index], page 151, for: lm_ibdtests introduction, civil introduction, vc-score
and w-score.

10.2 Sample lm_ibdtests parameter file

The example parameter file for lm_ibdtests, ped73_ibdt_IBD.par, may be found in the
TraitTests subdirectory of MORGAN_Examples. Several lines in the example parameter
file have been explained in previous sections of the tutorial, only the sections requiring
additional explanation are shown below.

sample by scan

set L-sampler probability 0.5

set burn-in iterations 1000

check progress MC iterations 1000

compute ibd statistics

set ibd measures Spairs Srobdom

set ibd tests norm permu

set ibd permutations 999

compute scores every 100 iterations

The statement ‘sample by scan’ indicates that all loci or all meioses are updated succes-
sively in an order determined by random permutation. The alternative ‘sample by step’
updates only one locus (L-sampler) or one meiosis (M-sampler) in each iteration. The ‘set
L-sampler probability’ statement specifies that an L-sampler step/scan will be used at
each MCMC iteration with probability 0.5: otherwise the single-meiosis M-sampler will be
used. The ‘set burn-in iterations’ statement specifies 1000 iterations to be performed
initially, with one trait locus (if any) unlinked to the marker map. The ‘check progress’
statement instructs the program to print the current iteration number to stdout every 1000
iterations.

The ‘compute ibd statistics’ statement must be included in the parameter file when
running lm_ibdtests. The next line instructs the program to use Spairs and Srobdom to
perform the ibd tests. The ‘set ibd tests’ command calls for both normal and permutation
tests to be run. The next line is needed since permutation test were requested in the previous
line; it specifies how many permutations are to be used in the calculations. In this case, the

Chapter 10: Estimating ibd Based Test Statistics by MCMC 82

default (999) is specified; it is recommended that at least 50 permutations are used. The
last line in the parameter file is used to specify when to compute scores, the default is every
MCMC iteration.

See [Concept Index], page 151, for: sample parameter file for lm_ibdtests.

10.3 Sample lm_ibdtests output

Under the subdirectory TraitTests, run the example with the following command

./lm_ibdtests ped73_ibdt_IBD.par

The part of the output that tabulates test statistics and p values is shown below. The
upper table provides the permutation-test p-values for each of the two test statistics Spairs
and Srobdom at each of the 10 marker-locus positions, these positions being given for both
the male and female genetic maps. It is apparent that there is no significant association of
the trait with any of these marker positions; the p-values at markers 5 and 6 are somewhat
smaller, but do not achieve (e.g.) a 0.05 significance level. The lower table gives the same
result, but this time using a Normal distribution approximation to obtain the p-value.
In this case the standardized (N(0,1)) value of the test statistic is given, as well as the
corresponding p-value. Again there are no significant results in this small example. There
is a broad qualitative correspondence between the p-values of the two tables, but the results
are not close. This may be due to the small number of permutations used, or, more likely,
due to the inadequacies of the Normal approximation.

p Value for Permutation Test for IBD

pos(Haldane cM) Spairs Srobdom

locus male female p-value p-value

marker-1 0.000 0.000 0.9020 0.9300

marker-2 10.000 10.000 0.8780 0.8450

marker-3 20.000 20.000 0.8130 0.7800

marker-4 30.000 30.000 0.5080 0.5190

marker-5 40.000 40.000 0.2550 0.2480

marker-6 50.000 50.000 0.2950 0.2510

marker-7 60.000 60.000 0.3850 0.5090

marker-8 70.000 70.000 0.5100 0.6660

marker-9 80.000 80.000 0.6610 0.7750

marker-10 90.000 90.000 0.5640 0.7470

p Value for Normal Test for IBD

pos(Haldane cM)

locus male female Spairs p-value Srobdom p-value

Chapter 10: Estimating ibd Based Test Statistics by MCMC 83

marker-1 0.000 0.000 -0.7843 0.7951 -0.2867 0.6167

marker-2 10.000 10.000 -0.9574 0.8166 -0.3841 0.6567

marker-3 20.000 20.000 -1.1825 0.8816 -0.2260 0.5692

marker-4 30.000 30.000 -0.6437 0.7381 -0.1272 0.5552

marker-5 40.000 40.000 0.2478 0.4103 0.0986 0.4743

marker-6 50.000 50.000 -0.2270 0.5752 -0.3275 0.6252

marker-7 60.000 60.000 -0.1503 0.5612 -0.3514 0.6437

marker-8 70.000 70.000 -0.3096 0.6372 -0.3587 0.6557

marker-9 80.000 80.000 -0.4877 0.6902 -0.2706 0.6037

marker-10 90.000 90.000 -0.2924 0.6222 -0.1136 0.5662

Your values may be different due to different random seeds in your seed file.

For more details about the lm_ibdtest methods, see [Bas08].

See [Concept Index], page 151, for: lm_ibdtests sample output.

10.4 Sample civil parameter file

civil bases its tests on the inheritance vectors at the test or conditioning positions. Since
these are not observable, a randomized-test strategy is used to deal with this issue. To
perform marginal and conditional tests using civil, the user must first run the MORGAN

program gl_auto to draw an MCMC sample of the inheritance vectors jointly at all involved
genomic positions: including all possible test positions and conditioning positions. For
either the marginal or the conditional test, at each test position, civil will compute N
test statistic values and N p-values, one for each MCMC realization of inheritance vectors,
where N is the size of the MCMC sample. The collection of the N p-values provides an
empirical distribution of a randomized (or latent) p-value.

Typically, 5 files are required for running civil, *.par *.xtra *.ped *.markers *.oscor

and an optional seed file can also be used.

The parameter file *.par for civil should be based on the one used by gl_auto to generate
the MCMC realizations of the segregation indicators. It should includeMORGAN statements
about pedigrees, quantitative traits, markers and sampler seeds. Additional informations
on the gl auto output file and marginal, conditional test setup are specified in an extra
parameter file *.xtra and provided to civil through the ‘input extra file’ statement.

For example, in the civil parameter file Autozyg/Gold/civil.vc.par, the pedigree and
marker informations are specified as

input pedigree file ’civil.ped’

input marker data file ’civil.markers’

select all markers

The pedigree and marker information should be the same as those in the gl auto par file,
except that civil requires a quantitative trait to be specified, so a column of quantitative
trait values need to be added to the input pedigree file if it is not already there.

In the same par file, a quantitative trait is specified as

select trait 2

set trait data quantitative

Chapter 10: Estimating ibd Based Test Statistics by MCMC 84

input pedigree record trait 2 real 3

set trait 2 tloc 12

set trait 2 for tloc 12 genotype means 0.2000000, 4.9000000, 9.6000000

set trait 2 additive variance 2.0

set trait 2 residual variance 15.0

set tloc 12 allele freqs 0.3 0.7

map test tloc 12 all interval proportions 0.3 0.7

map test tloc 12 external recomb fracts 0.1 0.3 0.45

The two ‘map test tloc’ statements are required by MORGAN, but the numbers in those
lines will not be used by civil. The values of ‘additive variance’ and ‘residual
variance’ specified here will be used by civil only when ‘use_sample_variance’ is set
to ‘no’ in the extra parameter file (see below). The ‘genotype means’ will be used only if
‘use_sample_mean’ is set to ‘no’ in the extra parameter file.

Additional informations about marginal and conditional test setup are provided to civil

through an ‘extra file’.

input extra file ’civil.vc.xtra’

The outline of the extra file is as follows (for an example, see ‘Autozyg/Gold/civil.vc.xtra’):

inheritance vector file name (.oscor file)

civil.oscor

output file directory

.

output file keyword

civil

info on the oscor file ...

n_mcmc 10

order 0

trait model parameters ...

pD 0.3

use_sample_mean yes

mu 0

use_sample_sd yes

marginal test parameters

test_statistic vc

n_mc 9999

n_pos 101

test_pos 0 4 8 12 ...

conditional test parameters

test_statistic vc

n_mc 999

n_pos 81

test_pos 40 44 48 ...

test_pos_l 0 4 8 ...

Chapter 10: Estimating ibd Based Test Statistics by MCMC 85

test_pos_r 80 84 88 ...

The first 6 lines provide the name of the gl_auto output file (line 2), the name of the output
directory (line 4), and a keyword for naming the output files (line 6). civil will create four
output files, suffixed by *.miv.p.out, *.miv.t.out, *.civ.p.out, and *.civ.t.out, in
the output directory. The four files store marginal and conditional test statistic values and
p-values.

The section following ‘## info on the oscor file ...’ specifies the number of MCMC
scans in the gl_auto output file and whether the output is arranged by component or
not, with 1 meaning yes and 0 no. If the lines in the sgl_auto output is arranged by com-
ponent, the lines will be rearranged so that they are ordered by MCMC scan and a new file
will be created to store the rearranged output file.

The section following ‘## trait model parameters ...’ specifies the rare allele frequency
of the putative causal variant and specifies how to estimate mean trait value and residual
standard error for the trait values: if ‘use_sample_mean yes’, then civil will use the raw
sample mean to estimate the mean trait value, otherwise the mean value specified in the next
line will be used. If ‘use_sample_sd yes’, then civil will use the sample sd to estimate
residual standard error, otherwise residual standard error will be estimated by sqrt(residual
variance + additive variance) using values provided in the main civil parameter file.

The section following ‘## marginal test parameters’ specifies the test statistic, the num-
ber of Monte Carlo runs for simulating the null distribution (not to be confused with the
count of MCMC realizations in the gl_auto output scores file), the number of tests re-
quested and the indices to the test positions for the marginal tests. Currently, two test
statistic options ‘vc’ and ‘w’ are available. In this example par file, we ask civil to perform
101 marginal tests at positions indexed by 0, 4, 8, ..., 404.

The section following ‘## conditional test parameters’ specifies the test statistic, the
number of Monte Carlo runs for simulating the null distribution, the number of tests re-
quested, indices to the test positions, indices to the left and right conditioning positions
(one line for each set of positions) for conditional tests. In this example par file, we ask
civil to perform 81 condition tests. The first conditional test will be at position indexed
by 40 and be conditioned on positions 0 and 80.

Note that the test positions have to be a subset of marker positions. The idea is to run
gl_auto using a set of dense markers that should include all potential test and conditioning
positions, although not necessarily all markers in the marker data file. When performing
marginal and conditional tests, less dense marker positions can be used.

Currently, this extra file has rigid format requirement. Comment lines (starting with ##)
can be modified, but no line should be deleted or added, nor should existing lines be broken
into multiple lines. The example xtra file Gold/civil.vc.xtra can be used as a template
for creating new xtra file.

See [Concept Index], page 151, for: sample parameter file for civil, latent p-values, ran-
domized p-values.

10.5 Sample civil output

Since civil is still a beta-test program, it does not have an example in the MORGAN_

Examples directory. Instead, reference is made to the gold standard examples in the main
MORGAN source directory, in the subdirectory Autozyg/Gold.

Chapter 10: Estimating ibd Based Test Statistics by MCMC 86

Before running the program civil, the user needs to run gl_auto to obtain an MCMC sam-
ple of whole chromosome realizations of meiosis indicators. See Section 9.5 [Running gl auto
example and sample output], page 71, for details. Under the directory Autozyg/Gold, the
output file civil.oscor from a previous gl_auto run is provided for demonstration and
testing purpose.

Before running civil, an output subdirectory must exist. If vc is specified as the test
statistic, create a subdirectory named vc for storing temporary files in the user specified
output file directory; if w is specified as the test statistic, create a subdirectory named w.

To run the example in Autozyg/Gold make sure the following files are present there:
civil.vc.par, civil.vc.xtra, civil.ped, civil.markers, civil.oscor.

In the Autozyg/Gold directory, run civil by typing

../civil civil.vc.par > civil.vc.out

Information on the progress of the program will be printed to stdout, together with sum-
mary information about the pedigrees, markers, trait values, and marginal and conditional
test setup. For a large number of pedigrees, civil can take several hours to finish. Once the
program is finished, four output files, *.miv.?.t.out, *.miv.?.p.out, *.civ.?.t.out,

.civ.?.p.out, will be written to the specified output file directory: ‘’ is the output file
keyword specified in the xtra file and ‘?’ is the name of the specified test statistic (‘w’ or
‘vc’). They store marginal test statistic values, marginal test p-values, conditional test
statistic values, conditional test p-values.

The upper left portion of a marginal test p-values file Autozyg/Gold/civil.miv.m.p.out

is shown below:

test_pos test_map pval0 pval1 pval2 ...

0 0.000000 0.214400 0.098700 0.357800 ...

4 1.000000 0.305700 0.108900 0.142800 ...

8 2.000000 0.327400 0.133200 0.132700 ...

...

In this output file, the first row is the header. Each of the remaining rows corresponds to
one marginal test. The first two columns are the index and the map position of the test
position. The columns 3 to N + 2 are the test p-values, one for each MCMC realization of
the meiosis indicators. The layout of the marginal test statistic file is similar.

The conditional test p-values file ‘Autozyg/Gold/civil.civ.m.p.out’ has more columns.
For each test, the first 6 columns now correspond to indices to conditional test position,
left conditioning position and right conditioning position; then map positions of the con-
ditional test position, left conditioning position and right conditioning position. Starting
from column 7 are the N p-values, one for each MCMC realization.

Many temporary files will also be created under the subdirectories ‘vc’ or ‘w’ of the output
directory. These files store intermediate results for computing the test scores. These results
will be reused to save time when more tests need to be performed: for example, the user
may want to perform more marginal and conditional tests at different test or conditioning
positions.

However, if pedigree structures or trait values in the pedigree file, or trait parameters in the
‘extra file’ file have changed since last run, these temporary files should not be reused
and should be deleted before running civil. If pedigree structures have changed, gl_auto

Chapter 10: Estimating ibd Based Test Statistics by MCMC 87

also need to be rerun. Use the overwrite option for the gl_auto output scores file, to
overwrite the previous file, and/or rename the previous file if you wish to retain it.

See [Concept Index], page 151, for: civil sample output.

10.6 lm_ibdtests and civil statements

The programs lm_ibdtests and civil use the pedigree, and genetic map and marker
statements of previous sections.

• For the MCMC statements used by lm_ibdtests see Section 8.6 [MCMC parameter
statements], page 61.

• For the gl_auto statements used by civil see Section 9.8 [Autozyg statements],
page 74.

The following statements are specific to lm_ibdtests:

compute (ibd | likelihood-ratio) statistics

Required: one of the two options must be specified.

output (sampler | permutation) seeds only

The program lm_ibdtests uses random seeds for its permutation testing in
addition to the usual MCMC sampler seeds. If an output seed file is named,
both ending permutation and sampler seeds will be saved unless only one or
the other is requested.

set ibd measures [Spairs] [Srobdom] [Saffect] [Slambda]

Optional. lm_ibdtests uses 1 to 4 measures to perform ibd tests for linage;
these are specified in the order [Spairs] [Srobdom] [Saffect] [Slambda]. Spairs,
Srobdom, and Slambda may be specified for both normal and permutation tests;
Saffect may not currently be specified with the normal tests option.

set ibd tests [normal] [permutation]

Optional. Normal and/or permutation tests may be specified.

set ibd permutations I

Optional. Need to be specified when the permutation test is requested through
‘set ibd tests’. The default is 999. It is recommended that at least 50 per-
mutations are used.

set likelihood-ratio lambda-p model gridpoints I1 I2

When the lambda p measure is used for the chi-square likelihood-ratio test),
the number of gridpoints may be specified. The number I1 is the number of
gridpoints in the interval for the lambda-parameters of the model, and I2 is the
number of gridpoints in the interval for p. The default is 6 and 9, respectively.

set likelihood-ratio measures [delta][lambda_p]

When computing the chi-square likelihood-ratio test, the choice of measures is
delta and/or lambda p, in the order [delta] [lambda p]. The default is ‘delta’.

set likelihood-ratio tests

When computing likelihood-ratio statistics, chi-squared tests are performed.
Thus, this statement is presently redundant, as there is no choice in tests.

Chapter 10: Estimating ibd Based Test Statistics by MCMC 88

set permutation seeds H1 H2

The program lm_ibdtests uses random seeds for its permutation testing in
addition to the usual MCMC sampler seeds. The seeds may be specified in the
input seed file or in the parameter file: otherwise default seeds will be used.

The program civil has no program-specific parameter statements. Instead information is
provided to civil using the input extra file statement:

input extra file filename

Required

For information about the contents of the extra file see Section 10.4 [Sample civil parameter
file], page 83.

See [Concept Index], page 151, for: lm_ibdtests statements, civil statements, ibd mea-
sures, likelihood-ratio measures.

89

11 Estimating Location lod Scores by MCMC

See [Concept Index], page 151, for: location lod scores estimates.

11.1 Introduction to lm_linkage, lm_bayes, lm_twoqtl, gl_lods
and base_trait_lods

The programs lm_linkage, lm_bayes, gl_lods and lm_twoqtl are referred to as Lodscore
programs. The program lm_linkage replaces the two programs lm_markers and lm_

multiple of pre-2011 versions of MORGAN. As of 2013, the program lm_twoqtl remains a
beta test version, but the new program gl_lods is now fully implemented and documented.

The Lodscore programs use MCMC to perform multipoint linkage analysis and trait map-
ping on large pedigrees where many individuals may be unobserved and exact computation
is infeasible. The data are the genotypes of observed individuals in the pedigree at marker
loci and discrete or continuous trait data. As with exact methods of computing lod scores,
the genetic model is assumed known. The only unknown parameter is the location of
the trait locus. Therefore, the user is required to specify the marker locations, trait and
marker allele frequencies and penetrance function. Presently, users are limited in their
choice of penetrance function, but this is under revision and will change in future releases
of MORGAN.

lm_linkage is an implementation of the Lange-Sobel estimator, using either the single- or
multiple-meiosis LM-sampler: See Section 8.4 [Single and multiple meiosis LM-samplers],
page 58. The Lange-Sobel estimate works reasonably well in reasonable time, provided
a good MCMC sampler is used, and provided the trait data do not have strong impact
on the conditional distribution of meiosis indicators. The lm_linkage program samples
only the meiosis indicators at marker loci, and only conditional on the marker data. Even
when the trait inheritance information is strong, the method can produce quite accurate
lod scores in the absence of linkage, but it can be inaccurate in estimating the strength of
linkage signals. As well as producing the lod score, our current implementation provides a
batch-means pointwise estimate of the Monte Carlo standard error of the lod-score estimate.
lm_linkage can work with genotypic, discrete or quantitative traits.

lm_linkage combines the earlier programs lm_markers and lm_multiple. The original lm_
multiple program and multiple-meiosis sampler are the work of Liping Tong [TT08]. As
well as allowing use of either the single- or multiple-meiosis LM-sampler, the lm_linkage

program optionally perform exact lodscore computations on small pedigree components,
and includes better exact computation and pedigree peeling options for use in the lod score
estimator (see Section 8.3 [Exact HMM computations], page 57).

lm_bayes is an alternative method implemented for genotypic or discrete traits. The MCMC
performance is better than for the old lm_markers program, but it has other computational
overheads. lm_bayes samples trait locations from a posterior distribution, and then divides
it by the prior to produce the likelihood and hence the lod score. Estimation is in two phases.
A preliminary run with discrete uniform prior gives order-of-magnitude relative likelihoods.
Then, using the inverse of these likelihoods as prior weights of a ‘pseudo-prior’ distribution.
Using this ‘pseudo-prior’ a second run is made to estimate the likelihood. The purpose of
the ‘pseudo-prior’ is to produce an approximately uniform posterior, so that likelihoods
will be well estimated at all test positions. It is important that the initial run is long

Chapter 11: Estimating Location lod Scores by MCMC 90

enough for all test positions to be sampled, and for the unlinked trait position to have a
reasonable number of realizations. For locations at which lod scores are very negative, or
for the unlinked position when there is some linked location with strong positive lod score,
this can be problematic.

Our current implementation of lm_bayes provides two lod score estimates. The first is a
crude estimate which counts realizations of locations sampled to estimate the posterior: as
can be seen from the output this can be quite erratic. The Rao-Blackwellized estimator is
much preferred, and produces good estimates in reasonable time. The lm_bayes program
is the work of Andrew George [GT03,GWT05].

The beta-test program lm_twoqtl does parametric linkage analysis for a quantitative trait
model having one or two linked QTL and a polygenic component. Each QTL has two al-
leles with three different genotypic means. The Normally distributed polygenic component
does not include dominance, and the environmental contribution is has a Normal distri-
bution with mean zero and uncorrelated among individuals. The program output consists
of MCMC-based lod score estimates of the joint locations of the one or two contributing
QTL. As of 2011, the program uses the same MCMC options as lm_linkage for sampling
descent at marker loci conditional on marker data. Conditionally on these realizations the
program then uses exact computation (on very small pedigrees) or an additional level of
Monte Carlo to estimate the relevant lod score contributions. The original versions of the
lm_twoqtl were the work on YunJu Sung [STW07,SW07].

The program gl_lods computes lod score contributions for a discrete or continuous trait
given a set of ibd graphs across the chromosome, produced by gl_auto: See Section 9.1
[Introduction to lm auto gl auto and lm pval], page 63. If the gl_auto run uses the ‘set
MCMC markers only’ option, then the overall lod score computed by gl_lods is identical to
that produces by lm_linkage when the same MCMC options are used in the in gl_auto

and in lm_linkage. gl_lods many of the same trait definition and mapping request param-
eter statements as lm_linkage (Section 11.9 [Location lod scores statements], page 111).
However its input consists of ibd graphs and an individuals file; there are no marker data
or pedigree data. For further information on the motivation for splitting of the lm_linkage
lod score computation into the generation of marker-based ibd graphs (using gl_auto) fol-
lowed by trait-likelihood computation on the ibd graphs: See Section 11.6 [Parameter files
for the gl lods program], page 101. See also [Tho11].

Because the gl_lods program computes log-likelihood contributions for given IBD, and
does not use a pedigree, there is no way to compute the usual normalizing factor of the
pedigree-based probability of observed trait data. This must be supplied to the program,
and may be computed via the base_trait_lods program, provided a pedigree and the same
trait model and data are used. An alternative approach using permutation of trait data
conditional on the locus-specific IBD was developed by Chris Glazner [GT15] and has been
implemented as an option in gl_lods. For quantitative data using variance component
models, we are investigating the used of the Kullback Leibler information (expected lod
score) conditional on the locus-specific IBD as a locus-specific normalizing factor.

See [References], page 149, for details of the cited papers.

See [Concept Index], page 151, for: Markov chain Monte Carlo, lm_linkage introduction,
lm_bayes introduction, lm_twoqtl introduction, meiosis indicators, multiple meiosis sam-
pler.

Chapter 11: Estimating Location lod Scores by MCMC 91

11.2 Sample parameter files for lm_linkage and lm_bayes

There are three example parameter files in the Lodscores subdirectory: ped73_ge.par,
ped73_ph.par and ped73_qu.par. These files are examples of how to analyze genotypic,
discrete (phenotypic), and quantitative (continuous) traits, respectively. Each of these files
is written for use with lm_linkage since this is our preferred program and can analyze
genotypic, discrete, and quantitative traits. The program lm_bayes will run with the same
parameter files ped73_ge.par and ped73_ph.par, but will adopt defaults for several state-
ments specific to this program and will generate warning for others not implemented for
lm_bayes. If lm_bayes is run using ped73_qu.par, all statements regarding quantitative
traits will be ignored, and the program will use default genotypic data.

The marker and MCMC information is very similar for all three parameter files. For ped73_
qu.par it is as follows:

set printlevel 5

input pedigree file ’../ped73.ped’

input marker data file ’../ped73.marker.missing’

input seed file ’../sampler.seed’

output overwrite seed file ’../sampler.seed’

set trait 1 data quantitative

input pedigree record trait 1 real 1

select all markers

select trait 1

set trait 1 tloc 1

map test tloc 1 all interval proportions 0.3 0.7

map test tloc 1 external recomb fracts 0.05 0.15 0.3 0.4 0.45

sample by scan

set L-sampler probability 0.2

set burn-in iterations 150

set MC iterations 3000

check progress MC iterations 1000

set global MCMC

use single meiosis sampler

The pedigree file specified by the ‘input pedigree file’ statement can contain multiple
traits. As discussed in previous sections, the marker map, allele frequencies and genotypes
can be contained in the parameter file or in a separate file specified by the ‘input marker

data file’ statement as in the example above.

As in other programs, the trait data are included in the pedigree file. The ‘select trait’
statement tells the program which trait in this file is to be analyzed, and the ‘input
pedigree record trait’ indicates where the data are to be found, while the ‘set trait

...tloc...’ statement connects the trait with a specific tloc for this analysis.

Chapter 11: Estimating Location lod Scores by MCMC 92

The two ‘map test tloc’ statements give trait locus test positions at which the lod scores
should be calculated. When the trait locus is located between two markers, the position is
specified in terms of the proportional genetic distance between the two markers (this option
makes handling gender-specific maps easy). In this example, the test trait positions are
specified to be at 30 and 70 percent of the interval. The second ‘map test tloc’ statement
allows test trait locus positions located before the first marker or after the last marker
to be specified; the positions are specified explicitly in terms of recombination fractions
(or genetic distances) with the nearest marker locus. Note that an external recombination
fraction of 0.5 is not necessary since the likelihood of an unlinked trait locus is always used
as a reference when computing the lod scores.

The final seven statements give MCMC specifications. The ‘sample by scan’ statement
instructs the program to update all the meiosis indicators, S, at each iteration, in an order
determined by random permutation. The alternative ‘sample by step’ updates only one
locus (L-sampler) or only one meiosis (M-sampler) in each iteration. The ‘sample by scan’
statement is the default and strongly recommended. The L-sampler probability is set at 20
percent, which is often a good choice. For a detailed discussion of effects of varying L- to
M-sampler ratio, see section 10.6 in [Tho00].

In the ‘set burn-in iterations’ statement, 150 burn-in iterations, are requested. The
next statement requests 3000 MCMC iterations; for each realized set of marker-location
inheritance vectors the trait-likelihood contribution will be computed at each test position
of the trait locus. This is for demonstration purposes only. For real data analyses, use
longer runs, on the order of 10^5 MCMC iterations. The last statement in this group tells
the program to report progress every 1000 iterations.

Although the lm_linkage program can use the multiple-meiosis sampler, and this is recom-
mended, the final two statements here specify ‘set global MCMC’ and ‘use single meiosis

sampler’. Thus, for this example, the single-meiosis sampler will be used (as in the old
lm_markers program) and MCMC will be performed globally over all pedigree components,
rather than component-by-component. This provides an example of how these options may
be used for compatibility with older examples.

As an example of MORGAN parameter statement flexibility we give also a part of a version
of the above parameter file in which lines are broken, words mis-spelled, and lower/upper
case used arbitrarily::

This version of ped73_qu.par is designed to show the flexibility

of MORGAN parameter statements

set prinlev 5

inPU Pedi file ’../ped73.ped’

input mark

data FILE ’../ped73.marker.missing’

input seed file ’../sampler.seed’

outp over

seed file ’../sampler.seed’

set trait data 1 quant

Input pedigree Recod trait 1 real 1

Chapter 11: Estimating Location lod Scores by MCMC 93

sele traix 1

set trait 1

tloc 1

map test tloc 1 all intevl props 0.3 0.7

map test tloc 1 exte reco frac 0.05 0.15

0.3 0.4 0.45

seLect

all markers

samp BY scan

set L-sam prob 0.2

set 3000 mc ITER

set burn-in iter 150

check progss 1000 MC iters

set glob mcmc

USE singe meio samp

Note that statements may be split over lines, that only the first four characters of each word
is required, that upper and lower case are not distinguished, and that in some statements
(for example, the ‘check progress’ and ‘set MC iterations’ statements) even the location
of the integer count within the statement is flexible.

For more details of the MCMC specifications see Section 8.6 [MCMC parameter statements],
page 61.

Specifying Trait Data Type

Trait data type is set by using the ‘set trait data’ statement. Recall that the ‘input
pedigree record trait’ statement must be used to specify which column in the file is to
be used as the trait value (see Section 2.9 [Pedigree file description statements], page 15).
The three trait data types discussed in this example are implemented by including the
following statements in the parameter file discussed above. Note the trait and numbers are
arbitrary, but the connection must be made consistently through the file.

ped73_ge.par specifies a genotypic trait with the following statements:

set trait 3 data genotypic

input pedigree record trait 3 integer 3

select trait 3

set trait 3 tloc 1

set tloc 1 allele freqs 0.4 0.6

ped73_ph.par specifies a phenotypic trait with the following statements:

set trait 2 data discrete

input pedigree record trait 2 integer 4

select trait 2

set traits 2 tlocs 1

Chapter 11: Estimating Location lod Scores by MCMC 94

set traits 2 for tlocs 1 incomplete penetrance 0.05 0.6 0.95

set tlocs 1 allele freqs 0.4 0.6

Recall that for discrete data, one must specify the penetrances (see Section 9.8.7 [Autozyg
computational parameters], page 77).

ped73_qu.par specifies a quantitative trait with the following statements:

set trait 1 data quantitative

input pedigree record trait 1 real 1

select trait 1

set trait 1 tloc 1

set trait 1 for tlocs 1 genotype mean 90.0 100.0 110.0

set trait 1 residual variance 25.0

set tloc 1 allele freqs 0.4 0.6

When using a quantitative trait, genotypic means and residual variance must be specified.
Additive variance can be specified with the statement ‘set trait ... additive variance’.
The default value is zero.

The ‘set tloc ... allele freqs’ statement specifies allele frequencies at the trait locus.
If the allele frequencies sum to less than 1, a warning message will be issued:

Sum of allele frequencies is not in range .9999, 1.0001 (W)

If the allele frequencies sum to above 1.0001, the program quits and generates an error
message.

Below is a summary of the trait data types accepted for each program:

Genotypic
ped73 ge.par

Phenotypic
ped73 ph.par

Quantitative
ped73 qu.par

lm linkage Yes Yes Yes
lm bayes Yes Yes No

Additional penetrance options are available for liability classes and age-of-onset data.

An example is given in the file xact_ph_liab.par in the Lodscore Gold standards. The
statement gives the liability class specific penetrance matrix. The penetrances are for the
11, 12, 22 genotypes. Morgan will set the penetrances for genotype 21 equal to that for 12.

set trait data 1 discrete with liability

input pedigree record trait 1 integer pairs 8 11

set 3 liability classes with penetrances

0.025 0.325 0.325

0.150 0.625 0.625

0.350 0.950 0.950

An example is given in the file xact_ph_age.par in the Lodscore Gold standards:

input pedigree record trait 1 integer pairs 8 10 # For using ages of onset.

set trait 1 data discrete with covariate

set trait 1 for tloc 1 genotypic means 90.0 70.0 45.5

set standard deviations for genotypes 11.0 15.5 20.5

Chapter 11: Estimating Location lod Scores by MCMC 95

set width of ages of onset window 2.0

See [Concept Index], page 151, for: sample parameter file for lm_linkage, sample parameter
file for lm_bayes, gender–specific maps, meiosis indicators, L-sampler, M-sampler, multiple
meiosis sampler, genotypic trait specification, phenotypic trait specification, discrete trait
specification, quantitative trait specification, continuous trait specification, liability class
penetrances, age-of-onset penetrances.

11.3 Running lm_linkage examples and sample output

lm_linkage can be run with all three parameter files in the Lodscores/ subdirectory. As
usual, the syntax for running the program is:

./lm_linkage <parameter file>

This section describes the output obtained by using the parameter file ped73_qu.par. To
run the example, type:

./lm_linkage ped73_qu.par

The interesting part of the output is the LodScore estimates. For each test position, we
have the estimated lod score and the estimated Monte Carlo standard error.

LodScore estimates by Rao-Blackwellized computation:

Trait pos # position (Haldane cM)

or marker male female LodScore StdErr

1 -115.129 -115.129 0.0303 0.0005

2 -80.472 -80.472 0.0558 0.0012

3 -45.815 -45.815 0.0779 0.0031

4 -17.834 -17.834 -0.0306 0.0080

5 -5.268 -5.268 -0.2811 0.0142

marker-1 0.000 0.000 -0.4986 0.0195

6 3.000 3.000 -0.4469 0.0141

7 7.000 7.000 -0.4342 0.0230

marker-2 10.000 10.000 -0.4605 0.0363

8 13.000 13.000 -0.4254 0.0247

9 17.000 17.000 -0.4454 0.0209

marker-3 20.000 20.000 -0.5301 0.0197

10 23.000 23.000 -0.3174 0.0211

11 27.000 27.000 -0.1176 0.0233

marker-4 30.000 30.000 -0.0052 0.0259

12 33.000 33.000 0.5058 0.0208

13 37.000 37.000 0.8794 0.0159

marker-5 40.000 40.000 1.0772 0.0138

14 43.000 43.000 0.9832 0.0156

15 47.000 47.000 0.8432 0.0213

marker-6 50.000 50.000 0.7210 0.0252

16 53.000 53.000 0.6558 0.0256

17 57.000 57.000 0.5140 0.0271

marker-7 60.000 60.000 0.3522 0.0288

Chapter 11: Estimating Location lod Scores by MCMC 96

18 63.000 63.000 0.0113 0.0225

19 67.000 67.000 -0.5473 0.0123

marker-8 70.000 70.000 -0.9543 0.0095

20 73.000 73.000 -0.4578 0.0212

21 77.000 77.000 -0.1866 0.0178

marker-9 80.000 80.000 -0.1135 0.0116

22 83.000 83.000 0.0888 0.0091

23 87.000 87.000 0.3132 0.0064

marker-10 90.000 90.000 0.4544 0.0071

24 95.268 95.268 0.6010 0.0046

25 107.834 107.834 0.6423 0.0028

26 135.815 135.815 0.4017 0.0011

27 170.472 170.472 0.1762 0.0003

28 205.129 205.129 0.0758 0.0001

For more information regarding the MCMC parameters and diagnostic output, See
Section 8.5 [MCMC computational options], page 59.

See [Concept Index], page 151, for: running lm_linkage examples, lm_linkage sample
output.

11.4 Running lm_bayes examples and sample output

Under the subdirectory Lodscores/, run the lm_bayes example on the discrete (phenotypic)
trait data by typing:

./lm_bayes ped73_ph.par

The results from lm_bayes are the lod scores toward the end of the output. Two estimates
of the lod scores are provided: (1) count realizations of locations sampled to estimate
the posterior probability (‘crude’) and (2) Rao-Blackwellized estimator (‘R-B’). Both are
provided for comparison, but the latter should be more accurate.

LodScore estimates:

Trait pos # position (Haldane cM) pseudo freq LodScore

or marker male female prior visited crude R-B

0 unlinked unlinked 0.025023 94 NA NA

1 -115.129 -115.129 0.025276 66 -0.1580 -0.0046

2 -80.472 -80.472 0.025727 77 -0.0987 -0.0125

3 -45.815 -45.815 0.027843 96 -0.0372 -0.0473

4 -17.834 -17.834 0.037973 71 -0.3030 -0.1825

5 -5.268 -5.268 0.057289 96 -0.3506 -0.3583

marker-1 0.000 0.000 NA NA NA NA

6 3.000 3.000 0.078826 89 -0.5221 -0.4919

7 7.000 7.000 0.086379 88 -0.5667 -0.5255

marker-2 10.000 10.000 NA NA NA NA

8 13.000 13.000 0.092502 87 -0.6014 -0.5456

9 17.000 17.000 0.090858 94 -0.5600 -0.5386

Chapter 11: Estimating Location lod Scores by MCMC 97

marker-3 20.000 20.000 NA NA NA NA

10 23.000 23.000 0.063483 109 -0.3400 -0.3738

11 27.000 27.000 0.044111 103 -0.2065 -0.2086

marker-4 30.000 30.000 NA NA NA NA

12 33.000 33.000 0.026053 114 0.0663 0.0203

13 37.000 37.000 0.018403 103 0.1731 0.1698

marker-5 40.000 40.000 NA NA NA NA

14 43.000 43.000 0.011818 100 0.3527 0.3585

15 47.000 47.000 0.009347 90 0.4088 0.4600

marker-6 50.000 50.000 NA NA NA NA

16 53.000 53.000 0.010351 121 0.4930 0.4236

17 57.000 57.000 0.014614 121 0.3432 0.2804

marker-7 60.000 60.000 NA NA NA NA

18 63.000 63.000 0.023348 96 0.0392 0.0769

19 67.000 67.000 0.030506 123 0.0307 -0.0412

marker-8 70.000 70.000 NA NA NA NA

20 73.000 73.000 0.033357 136 0.0356 -0.0903

21 77.000 77.000 0.030400 124 0.0358 -0.0514

marker-9 80.000 80.000 NA NA NA NA

22 83.000 83.000 0.024811 96 0.0128 0.0282

23 87.000 87.000 0.019535 144 0.2928 0.1160

marker-10 90.000 90.000 NA NA NA NA

24 95.268 95.268 0.013755 110 0.3281 0.2561

25 107.834 107.834 0.013714 125 0.3849 0.2600

26 135.815 135.815 0.018372 132 0.2816 0.1339

27 170.472 170.472 0.022361 108 0.1091 0.0489

28 205.129 205.129 0.023966 87 -0.0149 0.0188

Note that lm_bayes does not provide lod scores at the marker locations.

See [Concept Index], page 151, for: running lm_bayes examples, lm_bayes sample output,
Rao-Blackwellized estimates.

11.5 Running lm_twoqtl examples and sample output

The program lm_twoqtl remains beta test, so that instead of examples in MORGAN_Examples

we describe the gold standard example in the main MORGAN source directory in subdirec-
tory Lodscore/Gold. However, much work has been done on lm_twoqtl, so that its marker-
based MCMC is now as for lm_linkage. Four gold-standard examples of the lm_twoqtl

parameter files and output may be found in the ‘Lodscore/Gold’ directory of MORGAN.
Examples 1 and 3 are for a single trait locus, and 2 and 4 use two QTL. Examples 1 and
2 use exact computation for the trait lod score contributions on these very small examples.
Examples 3 and 4 use Monte Carlo. We will use example 4 in this tutorial description, since
this is the most general and novel. To create other examples, copy one of these files and
replace the parameters in the file with those that you want to specify.

The various trait-model options for lm_twoqtl are summarized in the following table:

Additive Genetic Variance: Zero Positive
Number of QTL: 1 one locus one locus plus polygene

Chapter 11: Estimating Location lod Scores by MCMC 98

2 two loci two loci plus polygene

Trait models can be any of the above four entries. However, for a one-locus trait model
with no polygenic component, the program lm_linkage will provide more accurate results
more quickly.

The lod score is estimated on a one-dimensional grid of points for one QTL, and a two-
dimensional grid of points for two QTL. In the future the new parameter statement

map [chromosome I] test tlocs L1 L2 jointly at markers J11 J12 ...

will allow two-locus lod score programs that provide lod scores at arbitrary pairs of marker
positions.

The content of file twoqtl4.par (reordered slightly for clarity) is:

use single meiosis sampler # Select the MCMC sampler to be used.

set printlevel 5 # Include everything in the output file.

set sampler seeds 0x53f78285 0xdfbca001

set trait seeds 0x53f78285 0xdfbca001

input marker data file ‘./twoqtl.markers’

input pedigree file ‘./twoqtl.ped’

output extra file ‘./twoqtl_batch4’

select all markers

select trait 1

set trait 1 multiple tlocs 1 2

set tloc 1 allele freqs 0.1 0.9

set tloc 2 allele freqs 0.3 0.7

requests for grid of tloc positions for lod scores

map test tloc 1 all interval proportions 0.5

map test tloc 1 external recomb fracts 0.3

map test tloc 2 all interval proportions 0.5

map test tloc 2 no default external positions

standard MCMC requests

use sequential imputation for setup

use 100 sequential imputation realizations for setup

sample by scan

set L-sampler probability 0.2

set burn-in iterations 10

set MC iterations 60

compute scores every 10 iterations

lodscore scoring requests

set 3 batches MC variance estimation

Chapter 11: Estimating Location lod Scores by MCMC 99

check progress 20 MC iterations

For clarity, the wording ‘MC’ has been removed from the following three parameter statements:

MC in parameter statements now refers only to MCMC.

use Monte Carlo summation for trait

simulate 5 IBD realizations for trait

use multiplier 1 realization for null

quantitative trait model specification

set trait 1 data quantitative

set trait 1 for tloc 1 genotype mean -2.0 0.0 2.0

set trait 1 for tloc 2 genotype mean -3.0 0.0 3.0

set trait 1 residual variance 1.0

set trait 1 additive variance 1.0

Note the number of MCMC scans (60) is very small, as also are the number of Monte Carlo
realizations to be used in evaluating the trait likelihood contributions (5). Additionally, only
every 10th MCMC scan is used for computing lod score contributions. This is reasonable, in
that for lm_twoqtl lod score computation is computationally intensive, so that the standard
procedure of scoring every scan is not efficient. However, with only 60 total scans, this means
lod scores are based on only 6 realizations of inheritance conditional on the marker data.
The example is for illustrative purposes only; in real examples much more Monte Carlo
would be required both in the marker-based MCMC and for estimating trait contributions
to each score.

Most statements are as for earlier lod-score programs and can be found in the [Statement
Index], page 155. The statements included in this example that require additional comment
are

use single meiosis sampler

The old single-meiosis sampler is specified for consistency with earlier results;
in practice the multiple meiosis sampler is preferred.

set trait 1 multiple tlocs 1 2

This statement specifies that trait 1 is contributed to by both tloc 1 and tloc
2.

set trait 1 for tloc 1 genotype mean -2.0 0.0 2.0

set trait 1 for tloc 2 genotype mean -3.0 0.0 3.0

The genotypic means for tlocs 1 and are set separately, which will imply their
additive contribution to trait 1. If the tlocs are not to contribute additively,
the user should instead use the statement

set trait 1 for tlocs 1 2 joint genotype means ... followed by 9 genotype
means for the two tloc genotype combinations.

output extra file ./twoqtl_batch4

If an ‘extra file’ is specified, it is used by lm_twoqtl for output of batched
means used in variance estimation. Most users will not require this file, although
it can be used in MCMC diagnostics.

Chapter 11: Estimating Location lod Scores by MCMC 100

set 3 batches MC variance estimation

In this minimal example, the 6 scored realizations are divided into 3 batches,
each of size 2. Again, real examples would use much larger number of realiza-
tions, and likely the default number of batches (20).

use Monte Carlo summation for trait

simulate 5 IBD realizations for trait

In this example, Monte Carlo summation is to be used for evaluating each
trait-locus likelihood contributions conditional on marker-based realizations of
inheritance, and for each such realizations there will be 5 realizations of trait
allele descent.

use multiplier 1 realization for null

In this example the same number of realizations will be used to evaluate the
marginal probability of trait data as are used for each lodscore grid point. In
real examples, it may be advisable to increase this ratio, to obtain an accurate
base level for the lodscore estimate.

The default procedure of estimation of lod scores on each of the two components separately
is used. These are then summed, giving the final concluding output for this example:

Lod score estimates and MC sd for entire pedigree:

Index TLoc1 TLoc2 LodScore StdErr

1 -45.815 -45.815 1.4058 0.7605

2 -45.815 0.000 0.3872 0.6212

3 -45.815 10.000 0.4379 0.6232

4 -45.815 20.000 0.6616 0.6856

5 -45.815 65.815 0.4661 0.5916

6 0.000 -45.815 0.3503 0.6529

7 0.000 0.000 0.1343 0.6034

8 0.000 10.000 -0.0129 0.5600

9 0.000 20.000 1.0364 0.5772

10 0.000 65.815 1.1077 0.7724

11 10.000 -45.815 0.0983 0.6902

12 10.000 0.000 0.0461 0.5605

13 10.000 10.000 0.8585 0.6088

14 10.000 20.000 1.2174 0.5866

15 10.000 65.815 0.3512 0.7539

16 20.000 -45.815 1.5180 0.6479

17 20.000 0.000 0.7387 0.6567

18 20.000 10.000 0.9330 0.7020

19 20.000 20.000 1.2473 0.6162

20 20.000 65.815 1.3465 0.7664

21 65.815 -45.815 -0.3066 0.7764

22 65.815 0.000 -0.1259 0.6895

23 65.815 10.000 0.5714 0.7124

24 65.815 20.000 1.3537 0.6550

Chapter 11: Estimating Location lod Scores by MCMC 101

25 65.815 65.815 0.5343 0.7140

These results consist of base-10 lodscore estimates with MCMC standard deviations, esti-
mated at the requested grid of test positions.

See [Concept Index], page 151, for: running lm_twoqtl examples, lm_twoqtl sample output,
map test tlocs jointly at markers.

11.6 Parameter files for the gl_lods program

See [References], page 149, for details of the cited papers.

The program gl_lods computes lod score contributions for a discrete or continuous trait
given a set of ibd graphs across the chromosome, produced by gl_auto: See Section 9.1
[Introduction to lm auto gl auto and lm pval], page 63. If the gl_auto run uses the ‘set
MCMC markers only’ option, then the overall lod score computed by gl_lods is identical to
that produced by lm_linkage when the same MCMC options are used in the in gl_auto

and in lm_linkage. gl_lods many of the same trait definition and mapping request param-
eter statements as lm_linkage (Section 11.9 [Location lod scores statements], page 111).
However its input consists of ibd graphs and an individuals file; there are no marker data
or pedigree data.

The goal of using gl_auto and gl_lods is to separate the lod score computation from the
marker-based MCMC that produces realizations of the inheritance vectors at loci across the
chromosome. The input to gl_lods consists of these realizations, in the format of gl_auto
output compressed ibd graphs, a specification of a trait model, and a list of individuals
with their trait data. gl_lods computes lod score contributions for a specified trait model
and data on specified individuals, directly using the ibd graphs on these individuals. See
also [Tho11]. From MORGAN 3.2. the gl_lods program is no longer beta-test; parameter
statements, capabilities, and examples have been significantly updated.

The separation of lod-score computation and marker-based MCMC has several advantages:

• Lod score contributions are computed for each ibd graph, providing a distribution
("fuzzy lod") over the ibd-graph realizations.

• Use of IBDgraph software to identify equivalent ibd graphs across realizations and
across markers, will enable lod score contributions to be computed once only for each
distinct ibd graph;

• Lod scores for many different genetic models and for different traits may be computed
on the same set of ibd graphs.

• The pedigree and marker information may be separated from the trait data. This
increases data confidentiality in multi-center genetic studies.

Examples for gl_lods are still under development, but we describe here two examples based
on the gl_lods gold standards in the Lodscore/Gold subdirectory of MORGAN. In the
case of the first ped47_... example the files are only in that directory and can be run
there as ‘make gold.6’. The other example simCmps_fgl_... is both included as a gold
standard, and has also been added to the MORGAN_Examples files.

• The ped47 example: The ped47 example is a single pedigree component. The following
shows the parameter file ped47_gl_lods.par. The trait model specifications for the

Chapter 11: Estimating Location lod Scores by MCMC 102

two cases of a discrete and a continuous trait are given in supplementary parameter
files below.

ped47 main parameter file for gl_lods program.

set printlevel 5 # Include everything in the output file.

input individuals file "./ped47.ind"

input extra file "./ped47_fgl.oscor"

output overwrite extra file "./ped47_fgl.reduce"

Use the overwrite option to avoid appending multiple outputs.

The number of ibdgraphs provides the number of replicates in gl_auto file.

set maximum 1000 ibdgraphs per component

This map test tloc statement indicates at which markers lodscores are to be

calculated.

map test tloc 11 at markers 2 4 5 8 10

select trait 1

set trait 1 tloc 11

set tloc 11 allele freqs 0.5 0.5

Note that the program uses an individuals file, not a pedigree file. The format is similar,
but mother and father identifiers are replaced by a component number (in this case ‘1’
for all individuals). See Section 3.4 [Creating an individuals file], page 20. Note that
the component number is referred to as a "name", so that the columns of integers and
reals in the file correspond to those in an analogous pedigree file. The individuals file
ped47.ind is as follows:

Lines or parts of lines preceded by a hash sign, such as this one,

are treated as comments by the software.

This individuals file contains a subset of the 47 individuals in the gl_auto

output file; the subset must include all those whose trait data are

to be analyzed -- it may include additional individuals.

input pedigree size 42

pedigree size must be the number of individuals in the fgl-graphs of the

gl_auto output file.

The number read here may be only a subset; if so make sure file ends

with the last individual.

input individuals record names 2 integers 7 reals 1

The first item is individual’s "name" which is a character string.

The second of these is individual’s component.

#

Chapter 11: Estimating Location lod Scores by MCMC 103

There follow 7 integers

The first of these (third item) is dummy gender (0)

The next is an "observed" indicator used only by genedrop.

The next is a trait genotype:

0 is unobserved. 1 is genotype (1,1); 3 is (1,2), 4 is (2,2)

The next is a trait phenotype:

0 is unobserved. 1 is unaffected, 2 is affected

The next 2 code trait-locus inheritance patterns, used by 1 version of

markerdrop.

The final is a dummy trait indicating data for reduced fgl file

(but it is not required/used by the gl_lods program)

#

Finally there is one real (read as double); this is a quantitative trait.

Numbers with integer part 999 code for unobserved.

#

In fact, many individuals with no data are dropped;

This individuals file has only 35 individuals.

Since 35<42 (the requested pedigree size), all will be read).

302 1 1 1 3 2 1 1 1 105.945

306 1 2 1 3 1 1 1 1 99.822

307 1 0 1 4 2 1 1 1 111.696

308 1 0 0 0 0 1 1 0 999.5

<lines omitted here>

5080 1 0 0 0 0 -1 -1 0 999.5

601 1 0 1 4 2 1 1 1 112.285

5160 1 0 1 3 1 -1 -1 0 97.043

5150 1 0 1 3 1 -1 -1 1 97.043

602 1 0 1 4 2 0 1 1 105.991

Note that the input/output extra file is used to process the file of IBD graphs that
were produced (normally by gl_auto) in the analysis of marker data. In this example
the file is a gl_auto output scores file, input here as an extra file: ped47_fgl.oscor.
This file contains 100 ibd graphs on 47 individuals:

101, 102, 201, 202, 2010, 301, 302, 304, 2020, 305, 306, 307, 308,

3010, 404, 3040, 405, 406, 407, 408, 3050, 410, 411, 412, 3080, 414,

415, 416, 4040, 505, 506, 507, 508, 4050, 509, 510, 511, 512, 4080,

513, 514, 515, 516, 5080, 601, 5150, 602.

One reason for including this example is to show how the program deals with discrep-
ancies between the list of individuals in the individuals file and those in ibd graphs file.
Comparing with the 35-member individuals file:

• 5160 is in the individuals file, not in the output scores file; will be dropped;

• about 11 individuals are in the above list, but not the individuals file; these will
be assumed unobserved, and dropped.

• another 7 individuals are in the individuals file and the above list, but the trait
data indicates them as unobserved; they will be dropped.

Chapter 11: Estimating Location lod Scores by MCMC 104

There will remain 27 individuals who will be in the reduced ibd graph file created by
gl_lods.

Finally we require a trait-model specification; lod scores are computed under this model.
Note that the input pedigree record statement is used for the individuals files just
as it would be for a pedigree file. The example file ped47_D.par provides a provides
the model for a discrete trait:

output overwrite scores file "./ped47_gl_D.scores"

set trait 1 data discrete

input pedigree record trait 1 integer 4

set trait 1 for tloc 11 incomplete penetrances 0.1 0.6 0.9

The file also specifies the output scores file ’./ped47_gl_D.scores’: the log-likelihood
contributions from each IBD graph will be saved to this file.

Alternatively, the example file ped46_Q.par provides the models for a quantitative
trait:

output overwrite scores file "./ped47_gl_Q.scores"

set trait 1 data quantitative

input pedigree record trait 1 real 1

set trait 1 for tloc 11 genotype means 90.0 100.0 110.0

set trait 1 residual variance 25.0

set number of permutations 5

This example differs from the previous one, in that a permutation-based scheme is
used to provide a locus-specific base lod score conditional on the IBD at that locus:
see [GT15].

• The simCmps example: The program gl_lods will also run on data sets containing
multiple components. Provided the collection of ibd graphs are generated by com-
ponent, the gl_lods program will compute a lod score for each component, as does
lm_linkage. This example is based on a pedigree file and data originally used as
an lm_linkage gold standard. It consists of three almost identical pedigree compo-
nents with very similar data. The date in SimCmps.ind used as a gold standard in
the MORGAN Lodscore/Gold directory differs slightly from that in the same filename
under MORGAN_Examples/Lodscores, and so also therefore do the output lod scores,
but functionally the two are identical. The parameter file for gl_lods is as follows:

set printlevel 5

input individuals file "./simCmps.ind"

files for processing IBD graphs

input extra file "./simCmps_fgl.oscor"

output overwrite extra file "./simCmps_fgl.reduce"

File for outputting the log-likelihood contributions

output overwrite scores file "./simCmps_gl.scores"

The number of ibdgraphs provides the number of replicates in the gl_auto

Chapter 11: Estimating Location lod Scores by MCMC 105

output scores file.

set maximum 100 ibdgraphs per component

This map test tloc statement indicates at which markers lodscores are to be

calculated.

map test tloc 11 at markers 1 3 5 6 9 10

select trait 1

set trait 1 data quantitative

input pedigree record trait 1 reals 1

set trait 1 tloc 11

set tloc 11 allele freqs 0.3 0.7

set trait 1 for tloc 11 genotype means 485.0 500.0 515.0

set trait 1 residual variance 10.0

set trait 1 additive variance 10.0

Provide externally computed base log likelihoods for each component.

set base log likelihoods -24.56078 -26.30071 -24.85028

The parameter statements are mostly standard specifications familiar from
lm_linkage. There are two main differences: (1) A file of ibd graphs and an
individuals file are specified rather than pedigree file and marker data, and (2) in
order for gl_lods to convert its log-likelihood contributions to an estimated lod score
a "base log likelihood" must be provided for each component. This should be the
probability of the trait data under the model; this probability forms the denominator
of the lod score. It may be computed using the base_trait_lods program: See
Section 11.8 [Running the base trait lods program], page 109.

Similarly to the previous example, the simCmps.ind file contains the (potential) trait
data on 156 individuals (3 sets of 52); in fact only a total of 55 are observed for
the quantitative trait. The file simCmp_fgl.oscor contains 100 ibd graphs on the
159 individuals of the original lm_linkage simCmps example; this includes the 156
individuals of the current example. Note that the ordering of the IBD graphs is by
component– first 100 graphs for the first component simL_.., then 100 for simJ_..,
and finally 100 for simK_...

See [Concept Index], page 151, for: ibd graph, base log likelihood, individuals file.

11.7 Running gl_lods examples and sample output

• ped47 example: We show first some features of the ped47 example, which exists only
in the gold standards files. The gl_lods gold standards may be run as make gold.6

in MORGAN/Lodscore/Gold or the output ped47_gl_lods_[D/Q].gold files may be
consulted. We describe here the output file ped47_gl_lods_D.gold.

The program first summarizes the input information in the usual way:

Chapter 11: Estimating Location lod Scores by MCMC 106

Trait data are discrete

Discrete data at trait locus are to be read from integer 4

in each individual’s record

Incomplete penetrances for the trait are:

genotype code penetrance

-------- ---- ----------

(1 1) 0 0.100

(1 2), (2 1) 1 0.600

(2 2) 2 0.900

Number of IBD graphs requested is 1000

Number of batches for MC variance estimation is 20

=== Checking of parameter statements completed ===

Note that the batches for MC variance is the default as no value was provided in the
parameter file: this statement is not used by gl_lods.

Next the information from the individuals file is checked, analogous to pedigree file
checking. Since there is no pedigree, only any input genders will be scored. Also note
that we specified (up to) 42 individuals, but there are only 35 in the file.

Opened input individuals file "./ped47.ind"

35 individuals read

42 individuals expected (W)

Component information:

size females males unsexed first

35 1 1 33 302

=== Checking of individuals file completed ===

Then follows the usual MORGAN summary of the phenotypes of individuals:

Opened input individuals file "./ped47.ind"

Pedigree records contain: names, 7 integers, 1 real number

Trait data:

Component 1:

phenotype 2:

Chapter 11: Estimating Location lod Scores by MCMC 107

302 307 406 407 408 411

414 416 505 507 508 511

512 513 514 516 601 602

phenotype 1:

306 404 410 412 415 506

509 510 5160 5150

Finally it reports on the processing of the ibd graphs, including the result of the IB-
Dgraph determination of equivalence classes. It also find the max number of FGL it
will need: 26 in this example. It also provides ‘NLoci’; one more than the number of
locations for which log-likelihoods will be computed.

Number of individuals in IBD graphs file is 47

1000 graphs were requested, but only 100 were given (W)

Observed individual 5160 is not in the input IBD graphs file:

The trait data on 5160 will be ignored (W)

Number of individuals in nghd structure is 35

Have alloced gen_pen nFGL=26, NLoci=6

Opened output scores file "./ped47_gl_D.scores"

====== Computing LodScore for component 1 ======

Number of observed individuals in each IBD graph for component 1 is 27

Grouped 1292 locations into 988 equivalence classes

Log likelihoods for 100 ibd graphs at markers

2 4 5 8 10

will be printed to the output scores file

Then the program produces the log-likelihood contributions at each of the 5 marker
locations for each of the 100 reduced ibd graphs. Note the final warning:

gl_lods is not able to provide lod scores unless the user provides a base log

likelihood using the "set base log likelihood X1 ..." parameter statement (W)

In order to produce lod scores, rather than only log-likelihoods a base value is needed
– corresponding to the marginal probability of trait data in the normal lod score com-
putation. Since gl_lods does not have pedigree information, it is unable to compute
this value, and it must be supplied via a parameter statement. It can be computed by
running base_trait_lods. Note also that the log-likelihood contributions are base-e.
The base log-likelihood to be input, and the final lod scores produced, are base-10.

For the quantitative trait data and model, the gold-standard output file is ped47_

gl_lods_Q.gold. The format of this file is identical to that for the discrete trait,
except that now the data and trait model are for a quantitative trait. Additionally this
example uses a permutation-based approach to produce the analogue of a lod score;

Chapter 11: Estimating Location lod Scores by MCMC 108

see [GT15]. The gold standard uses only 5 permutations; in practice many more would
be used.

Permutation lod scores will be computed

Version 1 of permutation lods

Component 1 lod scores found by gl_lods:

Marker number LodScore StdErr

marker-2 2.0274

marker-4 2.7382

marker-5 3.8031

marker-8 1.5405

marker-10 2.4196

Version 2 of permutation lods

Component 1 lod scores found by gl_lods:

Marker number LodScore StdErr

marker-2 1.3984

marker-4 1.9594

marker-5 3.3204

marker-8 1.2037

marker-10 2.0212

This permutation approach is still in process of testing: two alternative estimates are
presented. Note that although this approach produces a “LodScore” the interpretation
is not as for a classical lod score; see [GT15]

• simCmps example: This example is also a part of the gold.6 gold standard, but may
also be run in the Lodscore subdirectory of MORGAN_Examples using the command
(Note that the MORGAN_Examples version is from MORGAN version 3.3: it is slightly
modified in the gold standards for version 3.3.2)

./gl_lods simCmps_gl_lods.par > simCmps_gl.out

The results in the output file simCmps_gl.out are very similar to those for the previous
example. The section summarizing the ibd graphs is

Opened input extra file "./simCmps_fgl.oscor"

Number of individuals in IBD graphs file is 159

Number of individuals in nghd structure is 156

Have alloced gen_pen nFGL=96, NLoci=7

Chapter 11: Estimating Location lod Scores by MCMC 109

Opened output scores file "./simCmps_gl.scores"

Then for each component the log-likelihoods are computed, but this time base log-likelihoods
were provided in the parameter file. The log-likelihoods are therefore converted to estimated
lod scores at the 6 requested marker positions. For component 1:

====== Computing LodScore for component 1 ======

Number of observed individuals in each IBD graph for component 1 is 19

Grouped 1260 locations into 544 equivalence classes

Lod scores for 100 ibd graphs at markers:

.......

====== Computing LodScore for component 1 ======

Number of observed individuals in each IBD graph for component 1 is 18

Grouped 1260 locations into 536 equivalence classes

Log likelihoods for 100 ibd graphs at markers

1 3 5 6 9 10

will be printed to the output scores file

Component 1 lod scores found by gl_lods:

Marker number LodScore StdErr

marker-1 -6.9215

marker-3 -7.2357

marker-5 3.1253

marker-6 3.4153

marker-9 -4.8130

marker-10 -4.7849

This is then repeated for components 2 and 3. There is no Monte Carlo within this non-
permutation version of gl_lods. However, even if the three pedigree components were
identical, there is Monte Carlo variation in the generation of the ibd graphs by the gl_auto
program.

See [Concept Index], page 151, for: base log likelihood.

11.8 Running the base_trait_lods program

The base_trait_lods program provides the probability of trait data on a pedigree. (Previ-
ously, this information had to be extracted from a dummy run of the lm_linkage program.)
The output base log-likelihoods may be input to gl_lods, enabling it to compute a classical
normalized lod score; See Section 11.6 [Parameter files for the gl lods program], page 101.

Chapter 11: Estimating Location lod Scores by MCMC 110

Typically the computation will be an exact single-locus computation by pedigree peeling.
However, in the event the pedigree is too large or complex for exact computation a Monte
Carlo alternative is provided. An example of each is provided in the Lodscore/Gold direc-
tory, and they may be run as make gold.7.

• Exact computation

The input for exact computation required any a pedigree, trait data, and a specification
of the trait model

input pedigree file "./xact.ped"

output scores file "./bt_lods_pp.scores"

input pedigree record trait 1 integer 8

set trait 1 data discrete

select trait 1

set trait 1 tloc 15

set tloc 15 allele freqs 0.5 0.5

set trait 1 for tloc 15 incomplete penetrances 0.05 0.6 0.95

The output is self-explanatory: a base log likelihood is computed for each pedigree
component. In this example there are two components, and the base log-likelihoods
are also printed to the output scores file:

1 202 -3.326957

2 408 -1.563501

Note the name of an index individual is also given, so that components can be correctly
identified. The base log-likelihoods can now be read directly from this file into the
g lods program.

• Monte Carlo computation

Descent is simulated on the pedigree, and the realized IBD used to compute a Monte
Carlo estimate of the base log-likelihood using the gen_pen routine. To avoid problems
with underflow on large pedigrees, some preliminary “pseudo-prior” iterations are used
to provide a crude base estimate. This is then used in each term, and factored out
at the end of the computation. The only difference in the parameter file is that the
specified sampler seeds are used, and there are two Monte Carlo requests:

set sampler seeds 0x53f78285 0xdfbca001 # Replace by seed file for real runs.

input seed file "sampler.seed"

output overwrite seed file "sampler.seed"

Monte Carlo setup and requests

set MC realizations 3000

set pseudo_prior iterations 150

Chapter 11: Estimating Location lod Scores by MCMC 111

The output is again self-explanatory. Note that, in addition to a Monte Carlo standard
error, the 5th and 95th percentiles of the log-likelihood contributions are provided. once
the distribution of contributions is often highly skewed, the quantiles often provide a
better measure of precision than does the standard error.

====== Base trait LodScore for component 1 estimated using Monte Carlo ======

Now starting 150 preliminary realizations

Crude log-likelihood from preliminary realizations = -8.047451e+00

Beginning 3000 realizations of Monte Carlo

Monte Carlo realizations completed

Number of Monte Carlo Monte Carlo 5th % 95th %

realizations lod score StdErr quantile quantile

3000 -3.3298 0.0075 -4.0353 -2.8788

The estimated base log-likelihoods are printed to the output scores file as before. Note
that in this very small example, there is almost no difference between the exact base
log-likelihoods and the Monte Carlo estimates. However, in general this will not be so;
where exact computation is feasible it is to be preferred.

1 202 -3.329781

2 408 -1.565421

11.9 Location lod scores statements

New statements for these programs include maps for test positions, and parameters for
some additional MCMC algorithms.

See [Concept Index], page 151, for: location lod scores statements, gl_lods statements,
lm_linkage statements, lm_bayes statements.

11.9.1 Location lod scores computing requests

• For the ‘select’ statement for your MCMC simulation, See Section 9.8.1 [Autozyg
computing requests], page 74. Select all or some of the markers and ‘trait 1’, and map
this trait to a ‘tloc 1’ (this is the trait locus to be assigned varying test positions).

See [Concept Index], page 151, for: location lod scores computing requests.

11.9.2 Location lod scores file identification statements

All Lodscore programs use the general MORGAN file identification statements (see
Section 2.3 [File identification statements], page 11) and the Autozyg rescue file statements
(see Section 9.8.2 [Autozyg file identification statements], page 75).

One additional statement is optional for lm_bayes:

output Rao-Blackwellized estimates file

If this file is specified, the set of Rao-Blackwellized lod score estimates at each
trait position is written at the frequency specified in the ‘compute scores’
statement.

Chapter 11: Estimating Location lod Scores by MCMC 112

The same standard out file specifications are available for lm_twoqtl. In particular:

output extra file

This statement is used by lm_twoqtl to output batch mean estimates used in
computing the estimated Monte Carlo standard error.

See [Concept Index], page 151, for: location lod scores file identification statements, Rao-
Blackwellized estimates.

11.9.3 Location lod scores pedigree file description

Most Lodscore programs use the general MORGAN pedigree file description statements (see
Section 2.9 [Pedigree file description statements], page 15). However the gl_lods program
uses an individuals file rather than a pedigree file (see Section 2.8 [Individuals file], page 15).

The following statement used by gl_lods is the individuals-file analogue of the correspond-
ing pedigree file statement:

input individuals record names 2 [integers I] [reals J]

The two "names" consist of the name and component number of the individual.

In addition, there is a statement optional for lm_linkage and gl_lods:

input pedigree record traits K1 K2 ... reals X1 X2 ...

This statement is analogous to ‘input pedigree record traits K1 K2 ...

integers I1 I2 ...’ (see Section 2.9 [Pedigree file description statements],
page 15) when the trait is quantitative, rather than discrete. It allows the file
locations of multiple traits to be defined, although only one can be selected for
any analysis.

See [Concept Index], page 151, for: location lod scores pedigree file description, quantitative
trait.

11.9.4 Location lod scores output file description

All Lodscore programs use the Autozyg output file description statements; See Section 9.8.4
[Autozyg output file description], page 76.

See [Concept Index], page 151, for: location lod scores output file description.

11.9.5 Location lod scores mapping model parameters

• See Section 5.4.2 [genedrop mapping model parameters], page 33, for statements spec-
ifying the genetic map for the markers.

The following statements describe the hypothesized trait locus (tloc) positions which are to
be ‘tested’. That is, these are the positions at which lod scores will be computed.

map [chromosome I] [gender (M | F)] test tloc L1 all interval proportions X1 X2

...

Interval proportions specify the proportional genetic distance between markers
for the trial positions for the test trait locus. The same ratios are used between
each marker pair, regardless of the inter-genetic distance (in cM).

Chapter 11: Estimating Location lod Scores by MCMC 113

map [chromosome I] [gender (M | F)] test tloc L1 intervals J1 ... proportions X1

X2 ...

This statement specifies interval proportions, but between specific pairs of
markers. Interval 1 is between markers 1 and 2, interval 2 is between markers
2 and 3, etc.

map [chromosome I] [gender (M | F)] test tloc L1 (beginning | ending | external)

([Kosambi] distances | recombination fractions) X1 X2 ...

This statement specifies trial trait positions on the chromosome before the first
marker and/or after the last marker.

map test tlocs L1 ... no default [interval proportions| external positions]

This pair of statements is used to eliminate computation of lod scores at default
interval and/or external positions on the active chromosome.

map [chromosome I] test tloc L at markers J1 ...

This statement (new with MORGAN 3.0) is increasingly used with denser SNP
marker data. If used, lod scores will be computed only at the positions of the
specific markers. Note the marker indexing is by the count in the marker data
file, not by selected marker.

map [chromosome I] test tlocs L1 L2 jointly at markers J11 J12 ...

This statement (not yet implemented) will allow two-locus lod score programs
such as lm_twoqtl to compute lod scores only at any specified combination of
marker positions rather than, as currently, on a grid.

See [Concept Index], page 151, for: location lod scores mapping model parameters, trait
test positions, map function.

11.9.6 Location lod scores population model parameters

• See Section 5.4.3 [genedrop population model parameters], page 34, for statements
specifying the allele frequencies for the markers and trait loci, and See Section 9.8.6
[Autozyg population model parameters], page 77, for statements specifying marker
names.

See [Concept Index], page 151, for: location lod scores population model parameters.

11.9.7 Location lod scores computational parameters

• See Section 7.4 [ibddrop statements], page 54, for setting the sampler seeds.

• See Section 9.8.7 [Autozyg computational parameters], page 77, for specifying the
marker data.

• See Section 9.8.7 [Autozyg computational parameters], page 77, for specifying the trait
data as genotypic, quantitative or discrete and for specifying penetrances when trait
data are discrete.

• See Section 5.4.4 [genedrop computational parameters], page 35, for setting genotype
means for each tloc in the case of a quantitative trait.

The following additional statements are specific to lod score computations:

set maximum I ibdgraphs per component

This statement is used by gl_lods which needs to know the upper limit of the
number of ibd graphs per pedigree component provided as input.

Chapter 11: Estimating Location lod Scores by MCMC 114

set base log likelihood X1 X2 ...

This statement is used by the program gl_lods. The log of the marginal
probability of the traits data on each pedigree component must be given to
enable gl_lods to normalize its lod scores. These may be computed using
the base_trait_lods program: See Section 11.8 [Running the base trait lods
program], page 109.

set number of permutations N

This statement may be used by the program gl_lods. At each location at which
a log-likelihood is computed given the realized IBD, trait-data permutation
provides a normalizing null term conditional on that same IBD structure. This
permutation approach is still being studied; see [GT15].

simulate N ibd realizations

This statement may be used by the program base_trait_lods, which pro-
vides a probability of trait data on a defined pedigree, under a specified trait
model. If the pedigree is too complex for single-locus exact pedigree peeling, a
Monte Carlo estimate may be obtained by realizing IBD on the pedigree. This
statement provides the number of realizations to be used.

set pseudo-priors X1 X2 ...

This statement is optional for lm_bayes. The number of pseudo-priors is the
number of test trait locus positions plus one. The first pseudo-prior is for the
unlinked position; this should be assigned a positive value. All other pseudo-
priors must be positive or zero. The set of pseudo-priors need not be normalized.

This statement is also optional for base_trait_lods. If the base_trait_lods
base log-likelihood is to be estimated by Monte Carlo then this statement gives
the number of realizations on which a crude estimate is made. This is then
used in the main iterations to lessen the chance of over/under-flow

set I batches MC variance estimation

This statement is optional for lm_linkage, lm_twoqtl and gl_lods. These
programs batch scored realizations in order to provide a Monte Carlo estimate
of the standard deviation in estimating the lod score. This statement determines
the batch size, and hence the number of batches. By default it is determined
such that there are 20 batches.

The following additional statements are specific to tloc specification and likelihood compu-
tation for the program lm_twoqtl.

set traits K1 ... multiple tlocs L1 ...

This statement is used by the lm_twoqtl program to specify the tlocs L1... that
contribute to each trait K1... A statement may be provided for each separate
trait. However, the lm_twoqtl program expects selection of one trait with
either one or two contributing tlocs.

set trait K1 for tlocs L1 L2 joint genotype means X11 X12 X13 X21 X22 X23 X31 X32

X33

This statement specifies the 9 genotypic means (3x3 matrix) for tlocs L1 and
L2 in contributing to trait K1. The first index on X refers to the L1 genotype
and the second to L2.

Chapter 11: Estimating Location lod Scores by MCMC 115

use [exact|MC] summation for trait

This statement specifies whether exact or Monte Carlo (MC) will be used by
lm_twoqtl for computation of the trait contribution to the lod score. Exact
summation can be used only on pedigrees with six or fewer founders.

simulate I IBD realizations for trait

If Monte Carlo summation is to be used, this statement specifies the num-
ber of realizations of tloc inheritance realizations to be used. If Monte Carlo
summation is not to be used, this statement is ignored.

use multiplier I realizations for null

This statement specifies the number of time as many realizations are to be
used in estimating the base-line unlinked lod-score. To obtain accurate lod-
score estimates it is important this value is accurate, and it may therefore be
advisable to use more realizations.

See [Concept Index], page 151, for: location lod scores computational parameters, pseudo-
prior iterations.

11.9.8 Location lod scores MCMC parameters and options

• All the statements described in see Section 8.6 [MCMC parameter statements], page 61,
for specifying the MCMC parameters are used for the location lod scores programs.

Please see that section for details regarding:

use (locus-by-locus sampling | sequential imputation) for setup

use I sequential imputation realizations for setup

set MC iterations I

set burn-in iterations I

sample by (scan | step)

set L-sampler probability X

check progress I MC iterations

As with the Autozyg programs, the number of desired MC iterations must be specified, as
there is no default value.

set MC iterations I

This statement sets the total number of ‘main’ L- and M-sampler iterations. For
lm_linkage, the total MCMC run length is the sum of the number of burn-in
iterations and main iterations. For lm_bayes, the total MCMC run length is
the sum of the number of burn-in, pseudo-prior (see below) and main iterations.

Additional statements for lm_bayes include the following:

set pseudo-prior iterations I

Following burn-in, lm_bayes performs iterations to calculate the pseudo-priors.
These pseudo-priors are used to encourage the MCMC sampler to visit test
positions of low posterior probability. The default number of iterations to

Chapter 11: Estimating Location lod Scores by MCMC 116

compute pseudo-priors is 50% of the number of main iterations specified in
the ‘set MC iterations’ statement.

set sequential imputation proposals every I iterations

This option applies to lm_bayes’s pseudo-prior and main MCMC iterations. It
allows the MCMC chain to “restart” every Ith iteration. Sequential imputation
is used to propose potential restart configurations which are accepted/rejected
with Metropolis-Hastings probability.

set test position window I

This lm_bayes statement specifies the window size for the proposed tloc posi-
tion update in the Metropolis-Hastings algorithm. I is the number of hypoth-
esized trait positions on either side of the current position, with equal weight
given to the 2*I + 1 trait positions. The default is window size is 6.

See [Concept Index], page 151, for: location lod scores MCMC parameters and options, MC
iterations, burn-in, sequential imputation proposals.

117

12 Population-based inference of IBD

See [Concept Index], page 151, for: population-based IBD inference.

12.1 Introduction to ibd create and ibd haplo

See [References], page 149, for details of the cited papers.

The program ibd_create is a suite of seven subprograms that together provide a set of tools
for the creation of haplotypes and ibd specifications, including ibd graphs (See Section 4.6
[The ibd class utility], page 26). These programs produce realistic simulated data for use
in testing analysis programs such as ibd_haplo. Similarly to the ibd_class utility (See
Section 4.6 [The ibd class utility], page 26), ibd_create calls each of its seven subprograms
through a command line option. This option also determines which MORGAN parameter
statements will be recognized and how they will be interpreted.

All the examples for ibd_create and ibd_haplo are based on the current gold
standards. The marker data for these gold standards have been updated to the publicly
available European samples of the 1000 Genomes project. These provide 758 phased
and imputed haplotypes based on the GBR, FIN, IBS, CEU and TSI subpopulation
samples. The phased haplotypes were downloaded from the Browning website,
http://bochet.gcc.biostat.washington.edu/beagle/1000 Genomes.phase1 release v3/
while allele frequency and map position information were obtained from the original
1000 genomes vcf files: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/ (See
http://mathgen.stats.ox.ac.uk/impute/README 1000G phase1integrated v3.txt for
additional information.) A BEAGLE DAG model was constructed for these haplotypes
by running BEAGLE with a scale parameter 1.0. All files with the partial name
"eur recode s1" derive from this data set and DAG model.

For greater clarity we here divide the programs into three subgroups. The first two subpro-
grams are:

• beaglesim: A program written by Chris Glazner to simulate independent realizations
of haplotypes out of a BEAGLE DAG [Browning06]. The input to BEAGLE is a set
of real SNP haplotypes from a population sample. The goal of beaglesim is to realize
haplotypes on this set of real SNPs, at known real SNP locations, with the sample SNP
allele frequencies, and with the LD structure as fit by BEAGLE to the original sample.

• beaglesim also allows an “LD relaxation parameter” to allow haplotypes to be
generated from the same DAG but at varying LD levels.

• However, for purposes of realistic simulation studies, it is recommended that BEA-
GLE be run with the low scale parameter 1.0 (not the value 4.0 which is the default
for the BEAGLE 3.3.1 option that produces the DAG), and that beaglesim then
be run without additional LD tuning (i.e. the LD relaxation probability parameter
set equal to 0).

• beaglesim can take and produce data either as character (A,C,G,T) or numeric
(1=reference allele, 2=alternate allele). For downstream use in other MORGAN

programs, it will be found more convenient to have converted to numeric allele
labels.

Chapter 12: Population-based inference of IBD 118

• Raw data haplotypes are typically coded with a row for each SNP, and a column
for each haplotype. beaglesim generates realizations by haplotype, but can out-
put these haplotypes either as rows or as columns or in MORGAN marker data
genotypic format (See ‘marker data’ in [Concept Index], page 151). Care must
be taken in ensuring the correct row/column specification for downstream use in
other MORGAN programs, or other software.

For additional information about beaglesim see [BGZT12].

• beagledag: This is a prototype program to parse and compute local haplotype probabil-
ities given a BEAGLE DAG model. In its current form, it provides a list of haplotypes
and their DAG probabilities for all feasible local haplotypes between two specified
markers. Some of the routines of this program will be useful in developing fast meth-
ods to compute the DAG probabilities of specific local haplotypes. These probabilities
could be used to weight realized IBD segments inferred using gl_auto or ibd_haplo.
This would provide an adjustment for LD when this inferred ibd is used in gl_lods

to produce Monte Carlo lod score estimates (See Section 11.6 [Parameter files for the
gl lods program], page 101). (See Section 4.6 [The ibd class utility], page 26, for more
information on ibd graphs).

The next subprogram of ibd_create is:

• simpop fgl: This is a version of a program originally written by Chris Glazner, and
modified by Fiona Grimson. It simulates both a population pedigree, and the crossover
process on a chromosome. With MORGAN version 3.3.2 the program is further mod-
ified, so that the cross-over process is in terms of (micro)-centiMorgans rather than
base pairs. The program produces an ibd graph of current individuals in terms of a
compact specification of the FGL segments of their maternal and paternal gametes (See
Section 4.6 [The ibd class utility], page 26, for more information on ibd graphs).

• A population of diploid size N is simulated, with N/2 males and N/2 females in
each generation. For each of N times, a random male and random female is chosen,
and the couple produces a son and a daughter.

• A modification due to Fiona Grimson reduces the numbers of half-sibs and multiple
matings. A parameter m defines the remating probability. If a selected individual
has been selected k times previously as a parent, he/she is accepted again with
probability m to the power k. With m=0.3, this gives an effective population
size close to the census size – the greater variance of offspring number caused by
families of size 2, compensated by the less-than-Poisson variation in the number
of matings of a parent.

• In any meiosis, crossovers between the two parental gametes are generated at rate
1 per Morgan (100 million micro-centiMorgans) across the chromosome, and these
crossover events are used in generating the FGL segments of the offspring gamete.

• simped fgl: This subprogram is no longer in ibd_create It is replaced in MORGAN
V3.4 by a new version of ibddrop See Section 7.1 [Introduction to ibddrop], page 46.
The new ibddrop both simulates descent at a finite number of linked markers, but also
can now simulate the recombination breakpoints across the chromosome.

The final three subprograms of ibd_create are

Chapter 12: Population-based inference of IBD 119

• fgl2ibd: An initial version of this program for sets of four gametes was first written in
C by Fiona Grimson. This was later generalized focusing initially on sets of 6 gametes,
but later generalized to (in principle) any number. The program has three inputs:

1. The key input is an ibd graph for a set of gametes specified in compressed FGL
form; with MORGAN 3.3.2 the recombination breakpoints of the graph are in
micro-centiMorgans.

2. Also input is a specified set of SNP marker locations. These may be input either

• on the cM scale via standard MORGAN map statements, or

• on the base-pair (bp) scale.

In the latter case, a parameter statement is provided to covert from the bp scale
to the cM of other MORGAN programs.

3. The MORGAN program set proband gametes statements are used to define the
gametes among which ibd is scored.

The output is ibd states for the specified gametes, at the specified marker locations:
this output is in a variety of formats specified more fully below.

• fgl2haplo: This program assigns haplotypes to individuals on the basis of their location-
specific IBD as specified by the FGLs of the ibd graph. The haplotypes are given
at specified SNP markers. The data generated are typically used in testing analysis
methods. The program has been updated, so that repeated runs use different random
assignments of founder haplotypes to the FGL.

• The inputs to the program include an ibd graph in compact FGL form, a map of
locations of selected markers at which haplotypes are to be scored.

• Also input is a set of haplotypes to be assigned to these FGLs. The haplotypes
are typically either from a public data base or generated by beaglesim from a
BEAGLE DAG that was fit to such haplotypes. Each FGL is assigned a unique
haplotype. To permit multiple realizations on a single IBD structure, the set of
haplotypes is randomly permuted before the assignment is made.

• The output of the program is the haplotypes of the individuals of the ibd graph,
constructed by assigning segments of the input haplotypes to the individuals in
accordance with the defined FGL structure.

• The output haplotypes may be as rows or as columns, or in MORGAN marker data
genotypic format.

• fgl2dgl: This program takes as input the ibd graph in the compact FGL form with
distances in micro-centiMorgans, as produced by simpop_fgl. Its output is an ibd
graph in the format produced by the gl_auto program, which can therefore be input
into gl_lods; See Section 9.1 [Introduction to lm auto gl auto and lm pval], page 63.

The program ibd_haplo computes conditional probabilities of gene IBD (identity by de-
scent) states, given data for marker loci for specified sets of proband gametes (i.e. scoresets).
The proband gametes in each scoreset are specified gametes (maternal or paternal) of spec-
ified individuals. These are input as for the lm_auto program: See Section 9.2 [Sample
lm auto parameter file], page 64.

The program has been generalized to allow for sets of up to ten gametes, although compu-
tational limitations suggest that considering more than seven gametes jointly is impractical.

Chapter 12: Population-based inference of IBD 120

Internally, IBD states are the gametic states (that is, 15 states for 4 gametes), and states are
ordered lexicographically, although the “traditional” Jacquard ordering may be requested
for sets of four gametes.

The marker data are read in using a standard MORGAN marker data file; See Section 9.2
[Sample lm auto parameter file], page 64. Each individual named in the marker data must
have a unique name. There may be missing data, but each single-locus genotype of an
individual must be either present or absent(" 0 0"); presence of a single allele cannot be
specified. The marker data are read in as genotypes, but they may be analyzed as an
ordered pair of alleles (i.e. phased), and must be so if only a single gamete of any individual
is specified in the scoreset. (??)

The program uses a HMM model for the latent IBD states. There are two options for
the transition matrix of the HMM latent IBD state; the one applicable to any number of
gametes is the ‘2011’ matrix developed by Chaozhi Zheng [BGZT12]. Given the latent state,
the locus-specific genotype probabilities are based on the premise that IBD DNA should be
of the same allelic type, and that non-IBD DNA is of independent allelic types, although
allowance is made for typing error to eliminate zero emission probabilities. The transition
matrices are also modified to eliminate zero transition probabilities. A forward-backward
HMM computation provides the probabilities for each IBD state at each locus for each set
of proband gametes.

For the case when the scoreset consists of both maternal and paternal gametes of a set of
(normally two) individuals, additional options are available. For two individuals there are
15 IBD states, although only 9 are distinguishable from unphased genotypes. In this case
there are two transition matrices available; the earlier ‘2009’ matrix of [Tho08b] is also an
option. The input genotypes may be analyzed as an ordered or unordered pair of alleles
(i.e. phased or unphased). There is also an option for partial phasing, in which segments of
chromosome (sets of contiguous markers) are specified as phased. If the data are analyzed
as unphased or partially phased, the output state probabilities are of the genotypically
distinguishable state classes (i.e. 9 states instead of 15). Finally, although internally the
program still works with a lexicographic ordering of states, for four gametes output may be
in terms of the more conventional ordering of the Jaquard states.

The methods and study results of this approach are provided in [Tho08b] and [BGZT12].
Note that the data files and software released for [BGZT12] are for an earlier version of ibd_
haplo. The version described here includes improvements both in user interface, and also in
the way the IBD transitions are implemented. This version was first released for MORGAN

V3.1.1 with more minor improvements for MORGAN 3.2. Specifically, for MORGAN 3.2
there have been modifications in the computation of locus-to-locus transition probabili-
ties, providing for better approximation to the underlying continuous process modeled in
[BGZT12].

See [Concept Index], page 151, for: ibd_create introduction, ibd_haplo introduction,
marker data, proband gametes, ibd graph

12.2 Sample parameter files for ibd create; beaglesim and
beagledag

• Here is a parameter file for beaglesim:

Include everything in the output file.

Chapter 12: Population-based inference of IBD 121

set printlevel 5

Provide a file name for the beaglesim input DAG file.

input extra file "./eur_recode_s1.bgl.dag.gz"

Provide a file name for the beaglesim haplotypes file.

output overwrite scores file "./eur_recode_s1.haplotypes"

The sampler seeds are going to be 53 and 5353 (ie ’0x35’ ’0x14e9’).

set sampler seeds 53 5353 # Set the sampler seeds.

The following Morgan parameter statements are needed by beaglesim.

output 758 haplotypes as rows

set LD relaxation probability 0.05

These statements are mostly self-explanatory: See Section 12.10.1 [beaglesim and bea-
gledag parameter statements], page 130, for more details.

• Here is a parameter file for beagledag:

Include everything in the output file.

set printlevel 5

Provide a file name for the beagledag input DAG file.

input extra file "./eur_recode_s1.bgl.dag.gz"

Provide a file name for the beagledag reduced DAG file.

output overwrite scores file "./eur_recode_s1.reduced"

Note that beagledag is still a prototype program. This particular version is hard-wired
to compute local haplotype frequencies for a specific subset of consecutive markers from
this DAG. The subroutine structures are more general and a more flexible example of
the calling program will be released in the future.

See [Concept Index], page 151, for: sample parameter file for beaglesim and beagledag,
using the BEAGLE DAG.

12.3 Running ibd create examples and sample output;
beaglesim and beagledag

The ibd_create subprograms are called by invoking the program with a flag specific to the
subprogram. Examples files are included in the Haplo subdirectory of MORGAN_Examples.
Here are the relevant run commands

./ibd_create -s beaglesim.par

Running ibd_create with the -s options runs beaglesim. The example runs
on the BEAGLE DAG [Browning06] that was fit to 758 European haplotypes

Chapter 12: Population-based inference of IBD 122

of the 1000 Genomes Data. Haplotypes are generated from the DAG model. It
is recommended that both the output haplotypes and the unzipped version of
the DAG file are removed after the program is run: these are large files.

./ibd_create -d beagledag.par

Running ibd_create with the -d options runs beagledag. This program com-
putes local haplotype frequencies for a specific set of markers in the DAG file.
It is still very much a prototype program; it may be generalized in the future.
It is recommended that both the output reduced DAG file end the unzipped
version of the DAG file are removed after the program is run: these are large
files.

See [Concept Index], page 151, for; running beaglesim and beagledag.

12.4 Sample parameter files for ibd create; simpop fgl

The formats for simpop_fgl have been modified for MORGAN version 3.3.2 and subsequent.
This subprogram now works in centiMorgans rather than base pairs. The Gold standard
parameter file is identical to the the one in the MORGAN_Examples/Haplo subdirectory.

• Here is a parameter file for simpop_fgl:

set printlevel 3

Provide a file name for the simpop_fgl results file.

output overwrite scores file "./simpop_fgl.ibdgraphs"

set sampler seeds 11 7654 # Set the sampler seeds.

The following Morgan parameter statements are being used to pass the integers

and double precision reals needed as arguments for the simpop_fgl subprogram.

set 19 females per generation

set 30 offspring generations

output final 2 generations

set chromosome length 120.0 centiMorgans

set 0.9 remating probability weight

These statements are mostly self-explanatory: See Section 12.10.2 [simpop fgl parameter
statements], page 131, for more details, including the control of individuals as parents
through the remating probability.

See [Concept Index], page 151, for; sample parameter file for simpop_fgl, simulation of a
population, simulation of descent in a pedigree.

Chapter 12: Population-based inference of IBD 123

12.5 Running ibd create examples and sample output;
simpop fgl

The examples here are the ones in the IBD_Haplo/Gold directory. They may be run as the
gold standards simpop_fgl_gold which is a part of gold.4 in this directory. Alternatively
they may be run directly in the Gold directory as follows:

• ../ibd create -p simpop fgl.par

Running ibd_create with the -p options runs simpop_fgl.

In each case, a file containing the ibd graph of the requested individuals is produced. Note
that these ibd graphs have a slightly different format from those used in the gl_auto

and gl_lods programs. They are indexed in micro-centiMorgans, and contain additional
information about the simulated population pedigree.

The fgl2dgl subprogram provides a translation between these two forms of ibd graph.

See [Concept Index], page 151, for; running simpop_fgl, ibd graph.

12.6 Sample parameter files for ibd create; fgl2ibd and
fgl2haplo and fgl2dgl

See [References], page 149, for details of the cited papers.

There are two basic alternative requests for the fgl2ibd subprogram of ibd_create. One
requests scoring of ibd among all pairs of individuals; the other, used in this example,
requests ibd scoring for specified sets of proband gametes. This example requests sets size
2, 3, 4, 5, 6, 7 and 10; the scoreset names indicate this but the names are arbitrary.

In this example, the marker data file provides marker locations in centiMorgans: thus any
scaling factor to convert from base pairs to a genetic map is unnecessary and (if included)
has no effect, although the output will report the scaling factor..

Here is the fgl2ibd_varying.par parameter file for this example:

Provide the simulated fgl (simpop_fgl’s output) file name.

input gamete data file "./simpop_fgl.ibdgraphs"

Each FGL in the data set is assigned a unique haplotype.

The "sampler" seeds are used to randomly permute the haplotypes before

assignment, to permit multiple realizations on a single IBD data set.

set sampler seeds 0x00003039 0x00000431 # Replace by a seed file for real runs.

Provide a marker data file name of a file containing the marker map.

input marker data file "./eur_recode_s1_map.markers"

Provide a file name for the fgl2ibd results file.

output overwrite scores file "./fgl2ibd_varying.statelabels"

Provide a file name for the fgl2ibd score set identifiers file.

output overwrite extra file "./fgl2ibd_varying.ids"

Chapter 12: Population-based inference of IBD 124

The following Morgan parameter statements are being used to specify which

proband gametes to include in each analysis run by the fgl2ibd subprogram.

set scoreset 21 proband gametes 1148 0 1161 0

set scoreset 31 proband gametes 1148 0 1158 1 1162 0

set scoreset 41 proband gametes 1158 0 1158 1 1168 0 1168 1

set scoreset 51 proband gametes 1148 0 1151 0 1158 0 1161 0 1168 0

set scoreset 61 proband gametes

1158 0 1158 1 1161 0 1161 1 1168 0 1168 1

set scoreset 71 proband gametes

1148 1 1151 1 1158 1 1161 1 1168 1 1171 1 1178 1

set scoreset 101 proband gametes

1148 0 1148 1 1151 0 1151 1 1158 0 1158 1 1161 0 1161 1 1168 0 1168 1

The following Morgan parameter statement specifies the marker locations

at which ibd will be scored.

select markers 10 20 30 40 50 60 70 80 90 100

110 120 130 140 150 160 170 180 190 200

210 220 230 240 250 260 270 280 290 300

310 320 330 340 350 360 370 380 390 400

410 420 430 440 450 460 470 480 490 500

.........

4410 4420 4430 4440 4450 4460 4470 4480 4490 4500

4510 4520 4530 4540

For the fg12haplo program there are several options regarding the format of the input
haplotypes. Here we give one example where the input haplotypes are specified as columns.
The marker map is in centiMorgans so any scaling factor declared is irrelevant. However
tha input value will be reported in output (or 1.0 will be reported, if the statement is not
included)..

Provide the ibd graph input (simpop_fgl’s output) file name.

input gamete data file "./simpop_fgl.ibdgraphs"

Provide the output haplotype labels and output with spaces options.

output haplotype labels

output with spaces

The following Morgan parameter statement specified the markers

Chapter 12: Population-based inference of IBD 125

over which haplotypes will be generated. (Typically one will generate

complete haplotypes.)

select all markers

The following Morgan parameter statement is irrelevant unless the input

marker map is specified in base pairs. For a centiMorgan map there is

no scaling. However the output will report the input value, or

1.0 if the statement is not included.

set 1.2 million base pairs per centiMorgan

Provide a marker data file name of a file containing the marker map.

input marker data file "./eur_recode_s1_map.markers"

Provide the founder haplotypes file name.

input extra file "./eur_recode_s1_hapcols"

Tell fgl2haplo how to interpret the haplotype data read in from the founder

haplotypes file.

input 758 haplotypes as columns of 4547 snps

Provide a file name for the fgl2haplo results file.

output overwrite scores file "./fgl2haplo_haps_as_cols.results"

The fgl2dgl subprogram converts the ibdgraphs file from simpop to the form used gy the
gl_lods program; See Section 11.6 [Parameter files for the gl lods program], page 101. The
output file scores switchpoints at marker locations. In this example the marker locations
are specified in base pairs, and a non-standard scaling is used in the conversion to illustrate
the use of this statement. This is the fgl2dgl_bp_0.75.par file:

Provide the simulated fgls (simpop_fgl’s output) file name.

input gamete data file "./simpop_fgl.ibdgraphs"

Provide a marker data file name of a file containing the marker map.

input marker data file "./fgl2dgl_bp_map.markers"

Provide a file name for the fgl2dgl results file.

output overwrite scores file "./fgl2dgl_bp_0.75.ibdgraphs"

The following Morgan parameter statement is required in order to satisfy

the proc_auto subroutine.

select markers 120 130 290 450 525 770 979 980 1091 1290

1492 1597 1726 1900 2116 2400 2810 3055 3250 3400

Chapter 12: Population-based inference of IBD 126

The following Morgan parameter statement is now optional. If the user needs

to specify something other than 1.0 million base pairs per centiMorgan, it

can be used to pass a double precision real number as a scale factor to be

used by the fgl2dgl subprogram.

set 0.75 million base pairs per centiMorgan

See [Concept Index], page 151, for; sample parameter files for fgl2ibd, fgl2haplo and
fgl2dgl.

12.7 Running ibd create examples and sample output;
fgl2ibd and fgl2haplo and fgl2dgl

These two programs have a variety of input formats and output options. Here we include
only one example of each program. For additional information see the README userdoc
file in MORGAN/IBD_Haplo of Section 12.10.3 [fgl2ibd and fgl2haplo and fgl2dgl parameter
statements], page 132. All three programs use as input a file of ibd graphs in the format
produced by simpop_fgl.

./ibd_create -i fgl2ibd_varying.par

Running ibd_create with the -i flag runs fgl2ibd. The program fgl2ibd

simply scores the ibd in that file at specified markers for specified individuals.
Note that you should retain (or re-create) the simpop_fgl output file, simpop_
fgl.ibdgraphs which is used as an input in fgl2ibd. The program produces
two output files. The first specifies only the scored proband gametes, while the
second gives the state specification at each marker for each proband gamete
set. This separation simplifies downstream analysis, particularly if using R.
Although for this example the output files are not large, it is good practice to
remember to remove the output files after running the program.

./ibd_create -f fgl2haplo_hapcols.par

Running ibd_create with the -f flag runs fgl2ibd. The program fgl2haplo

uses the supplied ibd graphs (for example those produced by simpop_fgl and
supplied haplotypes to generate genetic marker data for specified individuals, in
accordance with their ibd across the chromosome. Note that the "haps as cols"
refers to the input format of haplotypes, not the output. Output is either as
haplotypes or genotypes in rows. Remember to remove any large output files
after running the program.

./ibd_create -g fgl2dgl_bp_0.75.par

Running ibd_create with the -g flag runs fgl2dgl. This program takes the
supplied ibd graphs in the format produced by simpop_fgl, and produces an ibd
graph (or dgl graph) in the format produced by gl_auto and used in programs
such as gl_lods. The input has switch-points in micro-centiMorgans. The out-
put form provides switch-points at selected markers, so that, if the marker map
is in base-pairs rather than centiMorgans, the program makes the appropriate
conversion.

Chapter 12: Population-based inference of IBD 127

See [Concept Index], page 151, for; running fgl2ibd, fgl2haplo and fgl2dgl, phased and
unphased genotypes.

12.8 Sample parameter files for ibd haplo

Three sample parameter files for ibd_haplo can be found in the directory MORGAN_

Examples/Haplo. All three examples are based on examples in the Gold standards for the
program. The examples are analogous to the three examples previously used, except that
the data have been changed to use (simulated) individuals and haplotypes from the 1000
Genomes data.

The first two examples (phased_2011.par and unphased_2011.par) use the same data,
and score the same sets of 4 gametes, consisting of the maternal and paternal gametes in
five pairs of individuals. The examples differ only in whether the data are treated as phased
haplotypes or unphased genotypes.

Here is the unphased_2011.par parameter file:

set printlevel 3 # See comment below

input marker data file "./sim76indivs.markers"

output overwrite scores file "./unphased_2011.qibd"

output overwrite extra file "./unphased_2011.ids"

The following five Morgan parameter statements specify the

computational set-up for the program

select 2011 state transition matrix

select unphased data

set population kinship 0.05

set kinship change rate 0.05

set transition matrix null fraction 0.05

set genotyping error rate 0.01

output four-gamete state order jacquard

The following Morgan parameter statements are being used to specify which

proband gametes to include in each analysis run by ibd_haplo.

set scoreset 1 proband gametes 1107 0 1107 1 1119 0 1119 1

set scoreset 2 proband gametes 1111 0 1111 1 1115 0 1115 1

set scoreset 3 proband gametes 1123 0 1123 1 1127 0 1127 1

set scoreset 4 proband gametes 1131 0 1131 1 1135 0 1135 1

set scoreset 5 proband gametes 1169 0 1169 1 1170 0 1170 1

The program computes ibd at, and uses only, a subset of the markers:

in fact every tenth marker in this example

Chapter 12: Population-based inference of IBD 128

select markers 10 20 30 40 50 60 70 80 90 100

110 120 130 140 150 160 170 180 190 200

210 220 230 240 250 260 270 280 290 300

.... lines omitted here

4310 4320 4330 4340 4350 4360 4370 4380 4390 4400

4410 4420 4430 4440 4450 4460 4470 4480 4490 4500

4510 4520 4530 4540

Since ibd_haplo typically runs with a very large number of markers is is advisable to
suppress printing of marker map and allele frequencies using the ‘printlevel’ setting. The
file specifications, and marker data, are as for previous programs such as lm_auto: See
Section 9.2 [Sample lm auto parameter file], page 64. Note that there are two output files.

The marker data file sim76indivs.markers contains the positions and allele frequencies
of 4547 markers and marker genotypes of 76 individuals. (These data were created using
simpop_fgl and fgl2haplo, starting from the BEAGLE DAG fit to the European chromo-
somes of the 1000 Genomes data. In this example a subset of the markers is selected– see
the end of the file.

The second group of statements relate to the ibd_haplo implementation. The ‘2011’ tran-
sition matrix is to be used; this is the one described in [BGZT12] and is recommended. The
earlier ‘2009’ option of [Tho08b] is retained for backwards compatibility. The data are to
be analyzed as unphased genotypes, and there are four numerical parameters of the HMM
model. Most importantly these include the ‘population kinship’, which is the mean a
priori level of pairwise IBD between any pair of gametes.

For compatibility with previous output formats, the parameter file requests ordering of the
states in all output information in the “genetic” (or Jacquard) order, rather than lexico-
graphic order. Note that this option is only available for sets of four gametes. Here the four
gametes are the two of each of two individuals, and data are analyzed as unphased, so there
will be nine states in the output IBD probabilities. (The ordering of the states is given at
the end of Section 12.9 [Running ibd haplo examples and sample output], page 129.)

The next set of statements specifies four sets of four gametes among which IBD is to
be scored. Since the data are to be analyzed as unphased it is required that each set
contains both the maternal and paternal gametes of individuals. In general, any gametes
of individuals in the marker data file may be specified.

The second example parameter file phased_2011.par differs only in the names of the output
file and in the statement ‘select phased data’, which specifies that the data should be
treated as phased haplotypes. In this case it is not necessary that a scoreset consists of
both gametes of individuals.

The third example ten_ss.par shows the flexibility of scoresets. This example differs in
that only a smaller subset of markers is used:

select markers 3010 3020 3030 3040 3050 3060 3070 3080 3090 3100

3110 3120 3130 3140 3150 3160 3170 3180 3190 3200

3210 3220 3230 3240 3250 3260 3270 3280 3290 3300

Additionally, the scoresets are quite varied:

set scoreset 61 proband gametes 1174 0 1174 1 1176 0 1176 1 1163 0 1163 1

set scoreset 41 proband gametes 1163 0 1163 1 1169 0 1169 1

Chapter 12: Population-based inference of IBD 129

set scoreset 43 proband gametes 1165 0 1165 1 1167 0 1167 1

set scoreset 51 proband gametes 1163 0 1163 1 1169 0 1169 1 1165 0

set scoreset 32 proband gametes 1163 0 1163 1 1169 0

set scoreset 21 proband gametes 1176 0 1176 1

set scoreset 42 proband gametes 1174 0 1174 1 1176 0 1176 1

set scoreset 52 proband gametes 1163 1 1165 1 1167 1 1169 1 1170 1

set scoreset 44 proband gametes 1170 1 1170 0 1172 0 1172 1

set scoreset 31 proband gametes 1167 0 1169 1 1169 0

The scoresets may have arbitrary numerical indicators, and range in size from 2 to 6 gametes.
The program will reorder them according to size.

Note that the Jacquard ordering is requested for the four-gamete scoresets. There are three
such scoresets; these will use Jaquard ordering, while for the remainder the ordering will
be lexicographic. This again shows the flexibility of the program, but mixing orderings is
likely to be confusing in real analyses.

12.9 Running ibd haplo examples and sample output

Run the examples in the Haplo subdirectory of the MORGAN-examples directory with the
following command

./ibd_haplo unphased_2011.par > unphased_2011.out

or

./ibd_haplo phased_2011.par > phased_2011.out

or

./ibd_haplo ten_ss.par > ten_ss.out

Each example produces two output files in addition to the standard output. The standard
output gives little information when ‘printlevel 3’ is used. The proband gamete sets are
specified, and the program reports as it analyzes each set. In between, the program does
give the prior probability of IBD states for each size of scoreset requested, and the transition
matrix at a distance of 1 centiMorgan – these are mainly for checking purposes.

The two main output files are the ‘qibd’ file and the ‘ids’ file. For the first example,
these have been named as unphased_2011.qibd and unphased_2011.ids with analogous
names for the other examples. (Of course, any names for these files can be specified in the
parameter file.) Each file contains only numeric data, so that it can be read easily into R
or other programs for further analysis. The ‘qibd’ file is the key output of probabilities
of IBD states in each scoreset at each marker, computed conditional on marker data. The
‘ids’ file gives the scoresets.

For this example the ‘ids’ output file is

1 4 9 1107 0 1107 1 1119 0 1119 1

2 4 9 1111 0 1111 1 1115 0 1115 1

3 4 9 1123 0 1123 1 1127 0 1127 1

4 4 9 1131 0 1131 1 1135 0 1135 1

5 4 9 1169 0 1169 1 1170 0 1170 1

That is, there are five scoresets numbered 1 to 5. Each consists of 4 gametes. These gametes
are specified in the usual format: ‘0’ for a maternal gamete and ‘1’ for a paternal, of the
individual whose name ID is given. Since the data are analyzed as unphased, there are only
9 IBD states for each scoreset.

Chapter 12: Population-based inference of IBD 130

The number of lines in the output ‘qibd’ file is the number of scoresets times the number
of markers used: 2270 for the first two examples here. For the ‘unphased’ case, each line
consists two integers, followed by 10 real numbers. The first line starts

1 10 0.618463 0.0000 0.0000 0.0028 0.0003 0.0028 0.0003 0.8416

while line 2037 starts

5 2210 58.999373 0.1462 0.0009 0.2902 0.0011 0.1479 0.0007 0.0095

The first item indicates the scoreset, the second the marker number, and the third the cen-
tiMorgan (or Mbp) position of the marker. The remaining 9 numbers are the probabilities
of the 9 IBD states. In the first line, most of the probability (0.8416) is in state-7, which is
the state ‘1212+1221’. That is the two individual’s are likely to share both gametes IBD at
this first locus, but in this state there is no IBD between the gametes within individuals. In
the second example, at marker 2210 in scoreset 5, these is probability 0.1462 that all four
gametes of the two individuals are IBD, and even higher probability (0.2902) that the two
gametes of the first individual are IBD, and shared IBD with one of the two gametes of the
second individual.

For sets of 4 gametes, we use the traditional ordering of the 15 IBD states or 9 reduced
genotypic states:

The order of the 15 states is 1111, 1122, 1112, 1121, 1123, 1211, 1222,

1233, 1212, 1221, 1213, 1231, 1223, 1232, 1234.

For the nine reduced states, the order is the same,

but genotypically equivalent ones are

combined: 1111, 1122, 1112+1121, 1123, 1211+1222,

1233, 1212+1221, 1213+1231+1223+1232, 1234.

For more general gamete sets, the ordering is lexicographic.

For more on the specification of IBD states see Section 9.2 [Sample lm auto parameter file],
page 64.

12.10 Population-based IBD inference parameter statements

See [Concept Index], page 151, for population-based IBD inference parameter statements

12.10.1 beaglesim and beagledag parameter statements

The following statements are specific to the beaglesim and beagledag subprograms of
ibd_create, or have a particular role in these subprograms.

set LD relaxation probability X

beaglesim can simulate haplotypes from the same base DAG but at varying
(lesser) levels of LD. At each DAG node, with a probability equal to the pa-
rameter, the program selects a random node at the next level, breaking LD in
the generation of this particular haplotype. The default value 0.0 is generally
recommended, except where these varying LD levels are the target of analysis.

output haplotypes as (rows | columns)

beaglesim takes the DAG model produced by the BEAGLE software, and
simulates haplotypes from the model. These haplotypes are generated one-by-

Chapter 12: Population-based inference of IBD 131

one as “rows”, but may be output either as rows or a columns for easier use in
downstream programs.

output I genotypes

This is an alternate output option for beaglesim. Note that either an output

haplotypes ,,, or output ... genotypes is required.

beaglesim can output its haplotypes in MORGAN marker data file format,
so that they can be more easily used in MORGAN downstream analyses. The
output produced by beaglesim in this case consists of a set markers ... data

... statement with the gametes ordered as defined for this parameter statement.

output with spaces

This statement can be used to insert spaces between the alleles in the output
file of haplotypes produced by beaglesim. The file is twice as large, but it may
be easier for input to downstream analysis programs. The default is absence of
spaces.

output haplotype labels

This statement implies the "output with spaces" option for haplotype output.
If haplotype labels are requested, and if haplotypes are to be output as rows,
then each row will include as the first item the ID number of the individual
to whom the haplotype belongs. If labels are requested, and if haplotypes are
output as columns, then the first line of the output will contain the ID numbers
of the individuals to whom the corresponding haplotype column belongs.

12.10.2 simpop fgl parameter statements

The following statements are specific to the simpop_fgl subprogram of ibd_create, or
have a particular role in these subprograms.

set chromosome length R centiMorgans

This statement is required by simpop_fgl.

It provides the total length of the chromosome in which these programs simulate
recombination breakpoints at each meiosis.

set I offspring generations

This statement is required by simpop_fgl.

This sets the number of additional generations after the founder generation that
simpop_fgl will generate.

set I females per generation

This statement is required by simpop_fgl.

simpop_fgl simulates generation of constant size, with equal numbers of males
and females in each generation. This parameter specifies the number of females
in each generation.

set X remating probability weight

This statement is optional for simpop_fgl.

simpop_fgl simulates each generation by successively selecting a random male
and a random female and generating a male and a female offspring. If a sam-
pled individual has been a member of m previous matings, then the selected

Chapter 12: Population-based inference of IBD 132

individual is accepted with probability X^m. The value X = 1/3 generates
reasonable human pedigrees, and gives an effective population size about equal
to the census size. (Random mating is achieved by the default parameter value
1.0, but is not recommended.)

output final I generation

This statement is required by simpop_fgl.

simpop_fgl outputs only the last generations that it simulates. This parameter
specifies the number of these final generations that will output.

12.10.3 fgl2ibd and fgl2haplo and fgl2dgl parameter statements

The following statements are specific to the fgl2ibd and fgl2haplo subprograms of ibd_
create, or have a particular role in these subprograms.

map [chromosome I] marker positions base pairs X1 X2...

Although genetic-map (centiMorgan) locations are to be preferred where avail-
able, the fgl2haplo, fgl2ibd, and fgl2ibd subprograms can alternatively be
provided with marker locations in base pairs.

set R million base pairs per centiMorgan

The fgl2haplo, fgl2ibd, and fgl2ibd subprograms can provide marker loca-
tions in base pairs. In this case, the scaling factor R provided by this statement
is used to convert these locations to the centiMorgan scale used by simpop_

fgl. If no scaling is provided, the program equates 1 million base pairs with 1
centiMorgan.

input gamete data file S

This statement is used by both fgl2ibd and fgl2haplo to specify the input file
from which the program should read the fgl-segment compact-format chromo-
somes that it uses. Currently it is assumed that the chromosomes are in the ibd
graph format generated by simpop_fgl. This is a slightly different format from
the ibd graphs produced from analysis of marker data on a defined pedigree
that are produced by the Autozyg program gl_auto. (See Section 4.6 [The
ibd class utility], page 26).

input I haplotypes as (columns | rows) of I2 SNPs

fgl2haplo requires a set of marker haplotypes which it will apply to the fgl-
based ibd graph. These may be input either as rows or as columns, but the
number of SNPs and haplotypes should be specified.

input genotypes as rows

Alternatively, the input haplotypes for fgl2haplo may be input in standard
MORGAN marker genotype format. In this case each row of marker genotypes
will be interpreted as pair of phased haplotypes. (See Section 8.4 [Single and
multiple meiosis LM-samplers], page 58, and ‘‘phased and unphased marker

haplotypes’’ in [Concept Index], page 151)

output all genotypes

This is an alternative output option for fgl2haplo

fgl2haplo can output its haplotypes in MORGAN marker data file format, so
that they can be more easily used in MORGAN downstream analyses. In this

Chapter 12: Population-based inference of IBD 133

case the individual names from the simpop_fgl file are output as the first item
in each line of genotypes.

output with spaces

This statement can be used to insert spaces between the alleles in the output
file of haplotypes produced by fgl2haplo. The file is twice as large, but it may
be easier for input to downstream analysis programs. The default is absence of
spaces.

output haplotype labels

This statement implies the "output with spaces" option for haplotype output.
If haplotype labels are requested, and if haplotypes are to be output as rows,
then each row will include as the first item the ID name of the individual to
whom the haplotype belongs. If labels are requested, and if haplotypes are
output as columns, then the first line of the output will contain the ID names
of the individual to whom the corresponding haplotype column belongs.

output four-gamete state order jacquard

In the case of four gametes, the user may select to output states in the tradi-
tional "Jacquard" order: 1111, 1122, 1112, 1121, 1123, 1211, 1222, 1233, 1212,
1221, 1213, 1231, 1223, 1232, 1234. If the gametes are of a pair of individuals,
and the data are analyzed as unphased, the output state-probabilities will be
reduced to nine, in the ordering: 1111, 1122, 1112+1121, 1123, 1211+1222, 1233,
1212+1221, 1213+1231+1223+1232, 1234.

See [Concept Index], page 151, for; state ordering: Jacquard state ordering: lexicographic

12.10.4 ibd haplo parameter statements

The following statements are specific to ibd_haplo, or have a particular role in this program.
Note that a number of the statements apply only when the proband gamete set consists of
the four gametes of a pair of individuals.

select ([partially] phased | unphased) data

The "select ... data" statement is used to inform "ibd haplo" whether to handle
the data as phased data, unphased data or partially phased data. If the data
are phased there is no restriction on whether proband gametes are related to
each other or not. If the data are unphased or partially phased it is necessary
that the proband gametes are pairs of haplotypes, each pair belonging to a
whole individual.

select [2009 | 2011] state transition matrix

There are two different state transition matrices implemented in the ibd_haplo
program. The user must specify which transition matrix to use for the analysis:
see Section 12.8 [Sample parameter files for ibd haplo], page 127. Note that
the 2009 matrix is applicable only to sets of four gametes.

set transition matrix null fraction X

This statement sets a parameter that modifies the transition matrix to allow
for transitions that can not occur under the base transition matrices. The
argument, X, is a real number greater than or equal to 0.0 and less than or
equal to 1.0.

134

set genotyping error rate E

This statement sets the genotyping error rate to be used by "ibd haplo". The
value of R is a real number greater than or equal to 0.0 and less than 1.0. The
value 0.01 would be a typical value for R.

set population kinship X

This statement sets the prior population kinship parameter to be used by
"ibd haplo" to X, where X is a real number greater than 0.0 and less than
1.0. Typically in small populations a value from 0.01 to 0.05 might be reason-
able.

set kinship change rate X

This statement sets the kinship change rate parameter for IBD. This is the
total change rate per centiMorgan. It should be a real number greater than
0.0. It is approximately the prior for the inverse of an IBD segment length in
centiMorgans between any pair of haplotypes. However, a smaller value than
the typical expected length generally works better.

set [scoreset N] proband gametes N1 K1 N2 K2 ...

One or more scoring sets may be given, where a scoring set consists of two or
more haplotypes. If there is more than one set, each set is assigned a number 1
or greater. The maximum number of haplotypes in each set is limited to 10, due
to computer memory considerations. Pairs of names and meiosis indicators are
given, with 0 indicating maternal inheritance, 1 indicating paternal inheritance.
At least one proband gametes score set must be specified when running ibd_

haplo.

This statement is also used by fgl2ibd

set proband gametes all individual pairs

If this statement is used, then the ibd_haplo program will set up scoresets
of 4 gametes for every pair of observed individuals. Typically the user will
have unphased genotypes for this purpose, although typically the data may be
specified an phased or as unphased.

This statement is also used by fgl2ibd

output four-gamete state order jacquard

In the case of four gametes, the user may select to output states in the tradi-
tional "Jacquard" order: 1111, 1122, 1112, 1121, 1123, 1211, 1222, 1233, 1212,
1221, 1213, 1231, 1223, 1232, 1234. If the gametes are of a pair of individuals,
and the data are analyzed as unphased, the output state-probabilities will be
reduced to nine, in the ordering: 1111, 1122, 1112+1121, 1123, 1211+1222, 1233,
1212+1221, 1213+1231+1223+1232, 1234.

output scores at markers I1 I2

The HMM algorithms of ibd_haplo require that all markers by used in the com-
putation of the marker-based conditional probabilities of ibd states. However,
subsequent analyses may not require computation at every marker location.
Thus, to limit output files, it is possible to request the state probabilities to be
output only at a subset of the markers.

135

13 Polygenic Modeling of Quantitative Traits by
EM Algorithm

See [Concept Index], page 151, for: polygenic model, PolyEM, EM algorithm, quantitative
trait.

13.1 Introduction to PolyEM programs

See [References], page 149, for details of the cited papers.

PolyEM is a set of programs to evaluate the likelihood and compute MLEs for polygenic
models of quantitative traits by EM algorithms. The original versions of these programs
were based on the work described in [TS90] and [TS92].

There are four main programs whose features are summarized below:

• univar: This program fits a univariate trait model. It is primarily for test purposes.
The likelihood is computed by three methods including classical pedigree polygenic
peeling [ES71], which does not extend to looped pedigrees, by direct inversion of the
covariance matrix, which does not extend to large pedigrees, and by a general matrix
elimination peeling method which is the method used by the other PolyEM programs.

• unibig: An extension of univar to big pedigrees that implements more efficient meth-
ods to compute the polygenic likelihood on large looped pedigrees.

• bivar: An extension of unibig for bivariate traits.

• multivar: An extension of bivar for multivariate traits.

All programs can work with looped pedigrees. The exception is that looped pedigrees
cannot be used for the polygenic peeling algorithm in univar. The other programs do not
use polygenic peeling to evaluate the likelihood.

Only examples and statement references for multivar are given since it has the most com-
plete features. The statements for other programs are similar with some exceptions. For
example, any statements with between-trait covariances do not apply to univar or unibig,
since these deal only with a single trait.

See [Concept Index], page 151, for: PolyEM introduction, univar, unibig, bivar,
multivar.

13.2 Sample multivar parameter file

The example pedigree file polyem.ped for the PolyEM programs is a 90-member pedigree
consisting of two 45-member components. The format is similar to ped73.ped, which was
used in most of the previous examples.

The first three entries in each line consist of the individual’s name, father’s name and
mother’s name. Integers starting with the fourth column (usually gender) can be fixed
effects (gender, age class, etc.) or discrete phenotypes.

For quantitative traits, real numbers follow the names and integers. These real numbers
represent trait measurements. Missing values are coded with integer part ‘999’, such as
999.5 in the following example.

Here is part of the pedigree file polyem.ped. This file can be found in the PolyEM subdi-
rectory of MORGAN_Examples.

input pedigree size 90

Chapter 13: Polygenic Modeling of Quantitative Traits by EM Algorithm 136

input pedigree record names 3 integers 3 reals 2

**

1 0 0 1 1 0 0.0246 -1.0125

2 0 0 2 1 0 -0.5978 1.5963

3 0 0 1 1 0 -0.8124 0.5662

4 0 0 2 1 0 0.4334 1.7721

5 1 2 1 1 0 0.1802 -1.4672

6 1 2 1 1 0 -1.7557 0.8091

7 3 4 2 1 0 999.5 999.5

8 3 4 2 1 0 1.9128 0.9780

9 0 0 2 1 0 0.9530 2.3473

...

Below is the example multivar parameter file, polyem.par.

input pedigree file polyem.ped

select traits 1 2

set trait 2 effects 1 2

start residual covariance -0.09

start additive covariance -0.0017

start residual variance 1.10 0.65

start additive variance 0.037 0.0288

fit residual covariance

1

fit additive covariance

1

fit environmental model

output spacing 20 EM iterations

limit EM iterations 200

multivar can fit a polygenic model with one to five traits, which can be modeled as depen-
dent and/or independent. One ‘select traits’ statement must be given. The number of
integer values entered as arguments to the statement must be the number of quantitative
traits expected by the program being run. For example, for programs univar and unibig,
the ‘select traits’ statement must have a single integer argument. When running bivar,
two integer arguments must be given. For multivar, one to five integer arguments must
be given in the ‘select traits’ statement, for the one to five quantitative traits selected.
Unlike other MORGAN programs, the trait numbers correspond to the column number of
the reals in the pedigree file. In the example, the statement ‘select traits 1 2’ indicates
that the first two column of real numbers contain the trait data to be analyzed.

The statement ‘set trait 2 effects 1 2’ indicates that the second column of real numbers
is to be modeled with two fixed effects (also called covariates). The integers give the location
of the fixed effects (covariates) starting with column 4 in the pedigree file. In this example,

Chapter 13: Polygenic Modeling of Quantitative Traits by EM Algorithm 137

the fixed effects are to be found in columns 4 and 5. Important: a fixed effect location of
‘1’ indicates that the effect value will be found in column 4 (after the 3 name columns).
The most commonly modeled fixed effect is gender, which, if present, resides in column 4
of a MORGAN pedigree file.

The statement ‘start trait mean’ allows the user to specify the starting trait mean for
a selected trait. Since no ‘start trait mean’ statement is included after either of the
‘select trait’ statements, both of the initial means are computed by the PolyEm program.
Similarly, one may specify the initial values for each effect with the statement ‘start trait

I effect M X1 X2 ...’, where ‘I’ is the trait number, ‘M’ is the effect number and ‘Xi’ is the
starting value of the ith level (i = 1, 2, 3, ...). These starting values represent deviations
from the global mean. The starting values are normalized so that their weighted sum is
zero (weighted by the number of individuals in that level). When using the ‘start trait I

effect M X1 X2 ...’ it is important to know that if more levels are present in the column of
numbers corresponding to the trait ‘I’ in the pedigree file than are specified in the ‘start
trait’ statement, PolyEm programs will compute the starting value(s) for these additional
levels. Since the program will not issue a warning or error message, it is important to always
check the output to confirm that the number of levels present in the file was as intended.
Since the ‘start trait I effect M X1 X2 ...’ statement is not included in this example,
the PolyEm program will compute the initial values of the effect.

Initial values for additive and residual variances and covariances are specified in the next
four statements. These statements are required. With the variance statements, the number
of arguments must be the same as the number of traits selected and must be in order of
increasing trait number. With the covariance statements, the number of arguments must be
the same as the number of pairs of traits selected. See Section 13.4.2 [multivar segregation
model parameters], page 139, for discussion of the ordering of these arguments.

multivar can also fit a purely environmental model with no genetic component. The
‘fit environmental model’ statement tells multivar to fit a purely environmental model,
with no genetic variance. This null hypothesis model is produced in addition to the ge-
netic/environmental model.

The final two statements specify the number of EM iterations and how often the EM
estimates are to be printed out.

Note that one has the opportunity to provide predetermined eigenvalues of the G-matrix of
observed individuals. The ‘set eigenvalues’ statement is used to specify the eigenvalues,
with the number of values equal to the number of observed individuals. If desired, the
eigenvalues can be provided through an input file accessed with a ‘input eigenvalue file’
statement in the parameter file, or through the command line (see Section 13.4.3 [multivar
computational parameters], page 140).

See [Concept Index], page 151, for: multivar sample parameter file, missing quantitative
trait data.

13.3 Running multivar example and sample output

The command to run multivar (unibig and bivar have the same set of options) is:

./multivar parfile [ped pedfile] [eigen eigenfile]

Chapter 13: Polygenic Modeling of Quantitative Traits by EM Algorithm 138

where parfile is the name of the parameter file and is required. pedfile overrides the ‘input
pedigree file’ statement, and eigenfile overrides the ‘input eigenvalue file’ statement
in the parameter file.

Under the subdirectory PolyEM/, run the example by typing:

./multivar polyem.par

Toward the end of the multivar output, are the parameter estimates and the log-likelihood
from the last iteration of the EM algorithm. If you chose to fit a null (purely environmental)
model, using the ‘fit environmental model’ statement, those parameter estimates and log-
likelihood are also given. A likelihood ratio test can then be performed, with test statistic
equal to the absolute value of 2 times the difference between the log-likelihoods of the two
models. A conservative test is provided by comparing the test statistic to a chi-squared
distribution, with the degrees of freedom being the difference in the numbers of estimated
parameters between these two models. Note that in these Polyem programs, model log-
likelihoods are in base e rather than the usual lod score base-10 convention.

iteration #201:

additive variance estimates (traits 1, 2)

0.816 0.037

covariances

0.138

residual variance estimates (traits 1, 2)

0.223 0.610

covariances

-0.239

trait 1

overall mean -0.063

trait 2

overall mean 1.780

fixed effect 1 -0.717 0.546

fixed effect 2 -1.008 -0.552 1.167

current log-likelihood = -183.098

estimates of environmental model

residual variance estimates (traits 1, 2)

1.136 0.642

covariances

-0.102

trait 1

overall mean 0.062

trait 2

overall mean 1.801

Chapter 13: Polygenic Modeling of Quantitative Traits by EM Algorithm 139

fixed effect 1 -0.773 0.589

fixed effect 2 -1.010 -0.553 1.170

environmental model log-likelihood = -197.799

In this example, we see that the fitted genetic model has a very significantly larger log-
likelihood: 2(-183.098 + 197.799) = 29.4, with 3 extra genetic variance parameters fitted.
The estimates of the fixed effects are little altered by fitting the genetic model but for trait
1 the additive genetic variance is large relative to the residual variance, indicating a strong
genetic component. Note that, for each trait, the sum of the additive and residual variances
from the genetic model is close to the residual variance in the environmental model.

See [Concept Index], page 151, for: running multivar example, multivar sample output.

13.4 multivar statements

See [Concept Index], page 151, for: PolyEM statements, multivar statements.

13.4.1 multivar computing requests

select traits I1...

One ‘select trait’ statement is required, and must list the traits to be mod-
eled. Up to five traits are allowed for multivar. The trait number, I, corre-
sponds to the column of real numbers in the pedigree file, with the first column
of real numbers being trait 1, the second column trait 2 and so on.

set trait I effects M1...

M1... are the fixed effects to be modeled for a specified trait I. They are the
integer columns in which they appear in the pedigree file. That is the columns
after the three names, so that fixed effect ‘1’ is in the 4th column (usually
gender), effect ‘2’ is in column 5, and so on.

See [Concept Index], page 151, for: multivar computing requests.

13.4.2 multivar segregation model parameters

start trait I mean X

There is one statement per trait, specifying the starting value for the mean trait
values. The PolyEM programs will compute the initial values if not given.

start trait I effect M X1 X2 ...

Starting values for the fixed effect levels for the traits are computed, unless
specified in this statement.

start additive variances X1 X2 ...

The starting values for the variances of the traits are required. The number
of values must be the same as the number of traits selected, in the order of
increasing trait number.

start residual variances X1 X2 ...

Starting values for residual variances are also required.

Chapter 13: Polygenic Modeling of Quantitative Traits by EM Algorithm 140

start additive (covariances | correlations) X12 ...

Starting values for the covariances (or correlations) between the traits are re-
quired. They are given the order: X12, X13, . . . , X1n, X23, . . . , X2n, . . . ,
where Xij is the covariance for the ith and j th selected traits from the pedigree
file.

start residual (covariances | correlations) X12 ...

See the ‘start additive...’ statements.

See [Concept Index], page 151, for: multivar segregation model parameters.

13.4.3 multivar computational parameters

fit additive (covariances | correlations) X12 ...

This statement specifies which covariances to be estimated and which to be fixed
at 0. The order of values is the same as the ‘start additive covariances’
statement with ’1’ indicating a covariance to be fit and ’0’ a covariance to be
fixed.

Note that if trait 1 is correlated with trait 3, and so is trait 2 with trait 3, the
correlation between 1 and 2 cannot be zero. So we have to be a bit careful in
specifying the correlation structure.

fit residual (covariances | correlations) X12 ...

Similar statement for residual covariances.

set eigenvalues X1 X2 ...

Optional. This statement is used to provide predetermined eigenvalues of the
G-matrix of observed individuals, with the number of values the same as the
number of observed individuals.

input eigenvalue file eigenfile

Optional. If present, it overrides the ‘set eigenvalues’ statements.

limit breeding iterations I

This statement specifies the maximum number of breeding–values iterations.
The default number currently is 20.

set breeding convergence X

This statement specifies the convergence criterion for breeding–values iterations.
The default number is currently is 1.0e-8.

limit EM iterations I

This statement specifies the number of EM iterations. The default number
presently is 200. There is no option to specify convergence criterion. If conver-
gence has not been achieved, the final estimates can be used as starting values
to rerun the program.

See [Concept Index], page 151, for: multivar computational parameters, observed individ-
uals.

Chapter 13: Polygenic Modeling of Quantitative Traits by EM Algorithm 141

13.4.4 multivar computational options

compute eigenvalues

If this statement is present, the values given in either the eigenfile or the state-
ment ‘set eigenvalues’ are ignored and the eigenvalues are computed by the
program. This is the default action if no eigenvalues are given.

use (full | partitioned) EM

Use this statement to choose between two iterative procedures in maximum
likelihood estimates. With the ‘full EM’ option, the fixed effects, additive and
residual variance and covariance are simultaneously updated. This is the default
action.

With the ‘partitioned EM’ option, the maximization step is partitioned into
two parts. The first part is to maximize the likelihood over additive and residual
variances/covariances; the second part over residual variances/covariances and
fixed effects. The expectation step is run after each part. Partitioned EM takes
more computer time.

fit environmental model

This statement asks a purely environmental model with no genetic variances to
be fit, in additional to the genetic/environmental model.

See [Concept Index], page 151, for: multivar computational options.

13.4.5 multivar output options

output statistics (covariances | correlations)

By default, covariances are printed out.

output final adjusted phenotypes

If this option is specified, trait values adjusted for all fixed effects are computed
and output.

output spacing I EM iterations

This statement requests a print out of the EM estimates every Ith iteration.
The default number is defined in the program header file.

check gmatrix

This statement requests a print out of the G matrix for observed individuals
and quit without doing the likelihood computation.

check ginverse

This statement requests a print out of the G inverse matrix and the program
quits unless ‘check eigenvalues’ has also been specified.

check eigenvalues

This statement requests the program to print out of the eigenvalues, whether
computed or input, and then to quit. These eigenvalues can then be used as
input in subsequent runs.

check eigenvalue computation

This statements causes some comments to be printed by the function that
computes the eigenvalues.

Chapter 13: Polygenic Modeling of Quantitative Traits by EM Algorithm 142

check trace

This statements requests the trace of the G–inverse matrix to be printed.

See [Concept Index], page 151, for: multivar output options.

143

14 Estimating Genetic Maps from Marker Data

See [Concept Index], page 151, for: genetic map estimation.

14.1 Introduction to lm_map

See [References], page 149, for details of the cited papers.

The program lm_map finds the maximum likelihood estimate (MLE) of the marker map,
estimates the (statistical not Monte Carlo) variance of the MLE, and tests hypotheses about
the true map. All inference is based on the analysis of multilocus marker data obtained
from some (possibly all) members of a set of independent families (pedigree components).

To find the MLE, lm map uses either Monte Carlo expectation-maximization (MCEM) or
a hybrid of MCEM and stochastic approximation (SA). In either case, the user must supply
an initial map estimate, and an initial Monte Carlo (MC) sample size for the MCEM
algorithm. The MCEM sample size is automatically increased with each successive step of
the algorithm, and only a small number of MCEM steps are needed to estimate the MLE.
If the hybrid option is chosen, lm_map uses the MCEM estimate to seed the SA algorithm.
Then, a relatively large number of SA steps are used to estimate the MLE with greater
precision.

Once the MLE is obtained, a long Markov chain is used to estimate the variance of the
MLE. Finally, a slight adaptation of the MC likelihood ratio formula is used to estimate the
likelihood ratio test (LRT) statistics for testing the simple and/or composite null hypotheses.
For more details, see [ST06].

See [Concept Index], page 151, for: lm_map introduction.

14.2 Sample lm_map parameter file

The two sample parameter files for lm_map can be found in the directory MORGAN_

Examples/Map. The two files are map_G.par and map_P.par, along with the corresponding
marker data files map_G.markers and map_P.markers. Thus there are two examples, one
for genotypic markers (G) and one for phenotypic markers (P). ‘G’ denotes that marker
genotypes are observed without error. ‘P’ denotes the possibility of error, so that the
observed marker phenotype is not the same as the underlying true marker genotype. This
example uses the pedigree file map.ped, but different marker data files depending on the
choice of ‘P’ or ‘G’.

map_G.par and map_P.par have the following statements in common:

input pedigree file ’./map.ped’

input marker data file ’./map_G.markers’ # or ’./map_P.markers’ for ’map_P.par’

select all markers

set marker 1 2 3 allele freqs .2 .2 .2 .2 .2

set marker names DS123 DS456 DS789

map gender F marker recomb fract .18 .18 # true F map (cM): 20 20

map gender M marker recomb fract .08 .08 # true M map (cM): 10 10

Chapter 14: Estimating Genetic Maps from Marker Data 144

limit recomb fracts .001

use sequential imputation for setup

use 100 sequential imputation realizations for setup

set burn-in iterations 100

sample by scan

set L-sampler probability .8

set MC iterations 50 # The initial number of MCMC scans per step

limit EM iterations 10 # The total number of MCEM steps

As seen in previous examples, the ‘select all markers’ statement instructs the program to
use all markers on the chromosome for computation. The alternative is to use only selected
markers for computation, which can be achieved by using the ‘select markers’ statement
(see Section 9.8.1 [Autozyg computing requests], page 74). The ‘set marker 1 2 3 allele

freqs .2 .2 .2 .2’ statement specifies the marker allele frequencies for markers 1, 2, and
3. This statement, as constructed, requires markers 1, 2, and 3 to each have five alleles with
frequencies of 0.2 for each allele. If the number of alleles per marker varies from marker
to marker, or if the allele frequencies vary from marker to marker, a separate ‘set marker

freqs’ statement is needed for each marker (see Section 6.5.3 [markerdrop population model
parameters], page 44). The ‘set marker names’ statement overrides the default behavior,
which labels markers consecutively: marker-1, marker-2, etc.

The two ‘map gender marker recomb fract’ statements specify the marker map in terms
of recombination fractions. This is the initial starting estimate of the map.

The ‘limit recomb fracts 0.001’ statement is optional and places lower and upper bounds
on the estimated recombination fractions of the map. For markers that are separated
by little or no recombination, the MCEM algorithm may yield estimated recombination
fractions of zero which could lead to a severe bias in the results. As a safeguard against
such events, this statement places a lower bound 0.001 and an upper bound 0.5 - 0.001 on
the estimated recombination fractions of the map.

The statement ‘use sequential imputation for setup’ instructs lm_map to initialize the
set of maternal and paternal meiosis indicators for all members of the pedigree who are
not founders; this is done prior to the Monte Carlo simulation. The default behavior is
specified in this statement, with the alternative being to ‘use locus-by-locus sampling

for setup’. The statement ‘use 100 sequential imputation realizations for setup’
is optional and modifies the default behavior for setup by sequential imputation (which is
10% of the MC iterations). The next three lines in the parameter files contain statements
introduced in the Autozyg examples of this tutorial. For explanation of ‘set burn-in

iterations’, ‘sample by scan’, and ‘set L-sampler probability’ see Section 9.8.8 [Au-
tozyg MCMC parameters and options], page 79. The statement ‘set MC iterations 50’
indicates how many MC iterations are to be performed at each EM iteration. The statement
‘limit EM iterations’ was introduced in the multivar example and puts an upper bound
on the number of MCEM iterations.

Now we’ll take a look at the remaining statements in map_G.par:

output maps gender averaged specific

set map estimation model with no mistyping

set EM convergence .01

Chapter 14: Estimating Genetic Maps from Marker Data 145

use MCEM and SA for maximization

set SA curvature iterations 10

set SA ascent iterations 10

set SA gradient iterations 10

set SA convergence .001

The ‘output maps gender averaged specific’ statement specifies the type of map to be
estimated by lm_map. In this example, the default behavior is specified, which instructs
lm_map to automatically compute the likelihood ratio test statistic for testing the null
hypothesis of a sex-averaged map. The statement ‘set map estimation model with no

mistyping’ instructs lm_map to assume that the genotypes are observed without error.
The ‘set EM convergence’ statement instructs lm_map to stop the MCEM algorithm if all
recombination fraction updates are within 0.01 of their previous values.

The statement ‘use MCEM and SA for maximization’ in map_G.par instructs lm_map to at-
tempt to refine its MCEM-based estimate of the MLE by performing additional SA steps.
The alternative is to ‘use MCEM only for maximization’, with no further refining. There
are several statements that allow additional control of the SA algorithm. First, an estimate
of the curvature of the likelihood is needed to initiate the SA algorithm. The statement
‘set SA curvature iterations 10’ instructs lm_map to use at least 10 MCMC realizations
to estimate the curvature of the likelihood. Also, lm_map will not initiate the SA algorithm
with a step that decreases likelihood. So, when the SA algorithm is used for refining the
likelihood estimate, the statement ‘set SA ascent iterations 10’ instructs lm_map to use
at least 10 MCMC realizations to determine whether a proposed first step increases the
likelihood. The SA algorithm also requires an estimate of the gradient of the likelihood at
each SA step. The statement ‘set SA gradient iterations 10’ instructs lm_map to use at
least 10 MCMC realizations to estimate the gradient of the likelihood. Finally, the map
estimate obtained from the final step of the MCEM algorithm is used to seed the SA algo-
rithm. The ‘set SA convergence 0.001’ statement instructs lm_map to terminate the SA
algorithm when the absolute change in successive map estimates is less than 0.001 for each
recombination fraction in the map.

The file map_P.par shows some different Monte Carlo and estimation options. Here are the
remaining statements in that file:

output maps gender averaged

set map estimation model with mistyping

set genotyping error rate .02

use MCEM only for maximization

In this parameter file, a gender averaged map is specified by using the ‘output maps gender

averaged’ statement. Unlike in the previous parameter file, map_P.par does not assume
the genotypes are recorded without error; this is indicated by the statement ‘set map

estimation model with mistyping’. When ‘with mistyping’ is chosen, one has the op-
tion of specifying an estimate of the error rate with the statement ‘set genotyping error

rate E’. In this example, the error rate is set at 0.02. Finally, the statement ‘use MCEM

only for maximization’ instructs lm_map not to use the SA algorithm to further refine the
MCEM-based estimate of the MLE. Since the SA algorithm will not be used, none of the
‘SA’ statements are used in map_P.par.

See [Concept Index], page 151, for: sample parameter file for lm_map.

Chapter 14: Estimating Genetic Maps from Marker Data 146

14.3 Running lm_map with genotypic data

Run the genotypic example in the Map subdirectory of the MORGAN-examples directory with
the following command

./lm_map map_G.par

The lm_map program is one of the more computationally intensive MORGAN programs.
Even running this small example takes about 30 seconds to run (depending on the computer
used, of course). Again, different random seeds will result in different outputs with each
run.

Here is the output from one of the runs: The maximum likelihood estimates (MLEs) of
marker map recombination frequencies are given for each marker interval and for male
and female meioses. Also given is the estimated variance-covariance matrix of the MLEs.
Of course, the MLE will not be identical to the true parameter value, but the variance-
covariance matrix gives an estimate of the precision. The ‘effective number of meioses’
is also a measure of this precision, giving the number of fully informative meioses required
for the same precision of the MLEs.

MAXIMUM LIKELIHOOD ESTIMATES

Interval Female (RF) Male (RF)

-------- ----------- ---------

1 0.2231 0.0264

2 0.2745 0.0801

ESTIMATED VARIANCE OF SEX-SPECIFIC MAP [F1,M1,F2,M2,... x F1,M1,F2,M2,...]

0.004402 -0.000034 -0.000422 -0.000040

-0.000034 0.000621 0.000075 -0.000025

-0.000422 0.000075 0.006546 -0.000136

-0.000040 -0.000025 -0.000136 0.001482

EFFECTIVE NUMBER OF MEIOSES

Interval Female Male

-------- -------- -------

1: 40 42

2: 31 50

See [Concept Index], page 151, for: running lm_map with genotypic data, lm_map sample
output for genotypic data.

14.4 Running lm_map with phenotypic data

./lm_map map_P.par

Running this example takes a noticeable amount of time. Given are the MLEs of the sex-
averaged recombination frequency in each of the two marker intervals and of the mistyping
(error) rate. Also given is the estimated variance-covariance matrix of these MLEs and the
effective number of meioses (see the previous section).

Chapter 14: Estimating Genetic Maps from Marker Data 147

MAXIMUM LIKELIHOOD ESTIMATES

Interval Sex-Averaged (RF)

-------- ----------------

1 0.1510

2 0.1787

MISTYPING RATE: 1.479401%

ESTIMATED VARIANCE OF (MAP,MISTYPING RATE) SEX-AVERAGED

--

0.001432 -0.000482 0.000007

-0.000482 0.001517 -0.000016

0.000007 -0.000016 0.000072

Following this section, there is a table of the estimated error probability for each individual
at each marker. From your output you should see that the program detects errors in
individual 32 and individual 49 for marker-3 and in individual 90 for marker-1. Some other
instances of data with low (non-error) probability also show non-zero estimated probability
of error. The exact values of these probabilities will depend on the random seeds used in
the run.

See [Concept Index], page 151, for: running lm_map with phenotypic data, lm_map sample
output for phenotypic data.

14.5 lm_map statements

limit recombination fractions L

This statement is optional and places lower and upper bounds on the estimated
recombination fractions of the map. For markers that are separated by little
or no recombination, the MCEM algorithm may yield estimated recombination
fractions of zero which could lead to a severe bias in the results. As a safeguard
against such events, this statement places a lower bound L and an upper bound
0.5 - L on the estimated recombination fractions of the map.

output maps gender [averaged] [specific]

This statement specifies the type of map to be estimated. The default behavior
is to select both options, which instructs lm map to automatically compute the
likelihood ratio test statistic for testing the null hypothesis of a sex-averaged
map.

use MCEM and SA for maximization

If the statement ‘use MCEM only for maximization’ is replaced by this state-
ment, lm_map will attempt to refine its MCEM based estimate of the MLE by
performing additional SA steps.

set EM convergence X

The MCEM algorithm is used to find a suitable starting value for the SA algo-
rithm. The MCEM algorithm terminates when the percent change in successive

Chapter 14: Estimating Genetic Maps from Marker Data 148

parameter estimates is less than X. The default value of X is 0.2: smaller values
may substantially increase the total CPU time.

set genotyping error rate E

When the statement ‘set map estimation with mistyping’ is used, the geno-
type observations are assumed to have an associated error rate. This statement
allows for the specification of the ‘mistyping’ rate.

set SA curvature iterations I

An estimate of the curvature of the likelihood is needed to initiate the SA
algorithm. This statement tells lm_map to use at least I MCMC realizations to
estimate the curvature of the likelihood. The curvature is only estimated once.

set SA ascent iterations I

lm_map will not initiate the SA algorithm with a step that decreases the like-
lihood. This statement tells lm_map to use at least I MCMC realizations to
determine whether a proposed first step increases the likelihood.

set SA gradient iterations I

If SA is initiated, this tells lm_map to use at least I MCMC realizations to
estimate the gradient of the likelihood. An estimate of the gradient is needed
for each SA step.

set SA convergence R

The SA algorithm is terminated, if all recombination fraction updates are within
R of their previous values. In addition, the maximum possible runtime for the
SA algorithm is proportional to the total runtime of the MCEM algorithm.

set map estimation (with | with no) mistyping

This statement can be used to specify whether or not errors were made during
the observation of genotype. If ‘with no’ is selected, the genotypes are assumed
to have been observed without error. If ‘with’ is selected, the genotype obser-
vations are assumed to have some error associated with them, which can be
specified using the ‘set genotyping error rate’ statement.

set LRT statistics iterations I

This statement tells lm_map to use at least I MCMC realizations to estimate the
LRT statistics. If only one option is used in ‘output maps gender ...’, then the
estimated LRT statistic compares the MLE to the initial map. Otherwise, two
LRT statistics are estimated. The first compares the MLE of the sex-averaged
map to the initial sex-averaged map, while the second compares the MLE of
the sex-specific map to the MLE of sex-averaged map.

compute estimates I times

This statement tells lm_map to conduct its entire analysis I times, and to report
the map with the highest likelihood. While this statement offers some protection
against convergence to local modes, the default value is 1.

See [Concept Index], page 151, for: lm_map statements.

149

References

− [Bas08] Basu, S., Di, Y., and Thompson, E. A. (2008), “Exact trait-model-free tests
for linkage detection in pedigrees,” Annals of Human Genetics 72, 672–682.

− [Bas10] Basu, S., Stephens, M., Pankow J. S., and Thompson, E. A. (2010), “A
likelihood-based trait-model-free approach for linkage detection of binary trait,” Bio-
metrics 66, 205–213.

− [Bau72] Baum, L E. (1972), “An inequality and associated maximization technique in
statistical estimation for probabilistic functions of Markov processes,” in O. Shisha,
ed., ’Inequalities-III; Proceedings of the Third Symposium on Inequalities. University
of California Los Angeles, 1969’, Academic Press, New York, pp. 1–8.

− [BGZT12] Brown, M. D., Glazner, C. G., Zheng, C., and Thompson, E. A. (2012),
“Inferring coancestry in population samples in the presence of linkage disequilibrium.”
Genetics, 190, 1447–1460.

− [Browning06] Browning, S. R. (2006) “Multilocus association mapping using variable-
length Markov chains” American Journal of Human Genetics, 78: 903–913.

− [Don83] Donnelly, K. P. (1983), “The probability that related individuals share some
section of genome identical by descent” Theoretical Population Biology, 23, 34–63.

− [DT09] Di, Y. and Thompson, E. A. (2009), “Conditional tests for localizing trait
genes,” Human Heredity 68, 139–150.

− [ES71] Elston, R. C. and Stewart, J. (1971), “A general model for the analysis of
pedigree data,” Human Heredity 21, 523–542.

− [GT03] George, A. W. and Thompson, E. A. (2003) “Discovering disease genes: Mul-
tipoint linkage analysis via a new Markov Chain Monte Carlo approach,” Statistical
Science 18, 515–531.

− [GT15] Glazner, C. G, and Thompson, E. A. [2015] “Pedigree-free descent-based gene
mapping from population samples.” Human Heredity 80, 21–35.

− [GWT05] George, A. W., Wijsman, E. M. and Thompson, E. A. (2005) MCMC Mul-
tilocus Lod Scores: Application of a New Approach. Human Heredity 59: 98–108.

− [GYO96] Goddard, K. A., Yu, C. E., Oshima, J., Miki, T., Nakura, J., Piussan, C.,
Martin G. M. et. al. (1996), “Toward localization of the Werner syndrome gene by
linkage disequilibrium and ancestral haplotyping: lessons learned from analysis of 35
chromosome 8p11.1-21.1 markers,” American Journal of Human Genetics, 58: 1286–
1302.

− [Hal19] Haldane, J. B. S. (1919), “The combination of linkage values and the calculation
of distances between the loci of linked factors” Journal of Genetics, 8: 229–309. ‘

− [He97] Heath, S.C. (1997). Markov chain Monte Carlo segregation and linkage analysis
for oligogenic models. American Journal of Human Genetics, 61: 748-760.

− [KT13] Koepke, H.A. and Thompson, E.A. (2013). Efficient identification of equiva-
lences in dynamic graphs and pedigree structures. Journal of Computational Biology,
20: 551-570.

− [LG87] Lander, E. S. and Green, P. (1987), “Construction of multilocus genetic linkage
maps in humans,” Proceedings of the National Academy of Sciences (USA) 84, 2363–
2367.

150

− [Sie05] Sieh, W., Basu, S., Fu, A. Q., Rothstein, J. H., Scheet, P. A., Stewart, W. C.
L., Sung, Y. J., Thompson, E. A., and Wijsman, E. M. (2005), “Comparison of marker
types and map assumptions using Markov chain Monte Carlo-based linkage analysis of
COGA data,” BMC Genetics 6 (Suppl 1), S11.

− [ST06] Stewart, W. C. L. and Thompson, E. A. (2006), “Improving estimates of genetic
maps: A maximum likelihood approach,” Biometrics 62, 728–734.

− [STW07] Sung, Y. J., Thompson E. A., and Wijsman E. M. (2007), “MCMC-based
linkage analysis for complex traits on general pedigrees: multipoint analysis with a
two-locus model and a polygenic component,” Genetic Epidemiology 31, 103–114.

− [SW07] Sung, Y. J. and Wijsman, E. M. (2007), “Accounting for epistasis in linkage
analysis of general pedigrees,” Human Heredity 63, 114–152.

− [TG07] Thompson, E. A., and Geyer, C. J. (2007), “Fuzzy p-values in latent variable
problems,” Biometrika 90, 49–60.

− [Tho76] Thompson, E. A. (1976), “Peeling programs for zero-loop pedigrees,” Technical
Report No. 5, Department of Medical Biophysics and Computing, University of Utah.

− [Tho77] Thompson, E. A. (1977), “Peeling programs for pedigrees of arbitrary com-
plexity,” Technical Report No. 6, Department of Medical Biophysics and Computing,
University of Utah.

− [Tho00] Thompson, E. A. (2000), “Statistical Inference from Genetic Data on Pedi-
grees,” in ‘NSF-CBMS Regional Conference Series in Probability and Statistics,’ Vol.
6, Institute of Mathematical Sciences, Beachwood, Ohio.

− [Tho08a] Thompson, E. A. (2008), “Uncertainty in inheritance: assessing linkage evi-
dence,” in ‘Joint Statistical Meetings Proceedings,’ Salt Lake City 2007, pp. 3751–3758.

− [Tho08b] Thompson, E. A. (2008), “The IBD process along four chromosomes.” The-
oretical Population Biology, 73: 369–373.

− [Tho11] Thompson, E. A. (2011), “The structure of genetic linkage data: from LIPED
to 1M SNPs,” Human Heredity, 71: 86–96.

− [TH99] Thompson, E. A. and Heath, S. C. (1999). Estimation of conditional multilocus
gene identity among relatives. Statistics in Molecular Biology and Genetics, Seillier-
Moseiwitch F., (ed). IMS Lecture Note - Monograph Series, 33: 95-113.

− [TS90] Thompson, E. A. and Shaw, R. G. (1990). Pedigree analysis for quantitative
traits: variance components without matrix inversion. Biometrics, 46: 399-413.

− [TS92] Thompson, E. A. and Shaw, R. G. (1992). Estimating polygenic models for
multivariate data on large pedigrees. Genetics, 131: 971-978.

− [TT08] Tong, L. and Thompson, E. A., “Multilocus lod scores in large pedigrees: Com-
bination of exact and approximate calculations,” Human Heredity 65, 142–153.

151

Concept Index

A
a priori ibd probabilities . 46
additive variance . 29, 31, 34
affected individuals . 79
age-of-onset penetrance specification 94
age-of-onset penetrances . 78
allele frequencies . 34
allow statements . 12
Autozyg computational parameters 77
Autozyg computing requests 74
Autozyg file identification statements 75
Autozyg mapping model parameters 76
Autozyg MCMC parameters and options 79
Autozyg output file description 76
Autozyg pedigree file description 76
Autozyg population model parameters 77
Autozyg programs . 63
Autozyg statements . 74
autozygosity . 63

B
base log likelihood . 101, 109
bivar . 135
block Gibbs sampler . 58
burn-in . 60, 61, 66

C
civil introduction . 80
civil sample output . 85
civil statements . 87
Cleopatra pedigree . 50
command line options . 9
command syntax . 9
component . 18, 19, 21, 24
conditional ibd probabilities . 63
consistency (Mendelian) of marker data 74
continuous trait specification 94

D
debug control . 13
dense markers . 37, 49
descent graph . 63
discrete trait . 45, 78
discrete trait specification . 93
display –GLUT runtime . 13
display options . 13
dummy statements . 13, 25
dummy variables . 13

E
EM algorithm . 135
exact computation . 70
exact computations . 57
examples using pedigree file ped73.ped 5
extra file . 11

F
file names . 11
filetype codes . 9
founder genome labels 29, 31, 35, 42, 56, 70, 76
founder genome labels (FGL) 37
fuzzy p-value . 73

G
gender–specific maps . 33, 65, 91
gender: see also individuals –gender 16
genedrop computational parameters 35
genedrop computing requests 33
genedrop introduction . 29
genedrop mapping model parameters 33
genedrop output pedigree options 35
genedrop output seed file . 36
genedrop population model parameters 34
genedrop sample output . 32
genedrop sample parameter file 30
genedrop statements . 33
genetic map estimation . 143
genetic model . 56
genotypic trait . 65, 78
genotypic trait specification . 93
gl_auto introduction . 63
gl_auto sample output . 71
gl_auto sample parameter file 69
gl_auto statements . 74
gl_lods statements . 111

H
Haldane map function –See also map function . . 33
HMM computations . 57
how to get the examples . 3
how to get the tutorial . 3

Concept Index 152

I
ibd . 22, 46, 56, 63
ibd graph 26, 63, 70, 101, 117, 123, 132
ibd measures . 87
ibd pattern . 46, 52, 68
ibd-based tests . 80
ibd_class utility . 26
ibd_create introduction . 117
ibd_haplo introduction . 117
ibddrop introduction . 46
ibddrop sample output . 51
ibddrop sample parameter file 47
ibddrop statements . 54
IBDgraph library . 26
identity by descent . 46, 63
inbreeding coefficient . 22, 25
incomplete penetrance . 45, 78
incomplete penetrances . 37
individuals –gender . 16, 21
individuals –names . 14
individuals file 11, 15, 19, 20, 101
inheritance indicators; See meiosis indicators. . . . 35
inheritance vector . 56

K
kin introduction . 22
kin sample output . 23
kin sample parameter file . 22
kin statements . 24
kinship coefficient . 22, 25

Kosambi map function –See also
map function . 33

L
L-sampler . 58, 61, 66, 92
L-sampler probability . 59
latent p-values . 63, 83
liability class specification . 94
liability classes . 78
likelihood-ratio measures . 87
limit overriding . 12
limit statements . 12
line length limit . 10
LINKAGE package format . 25
lm_auto introduction . 63
lm_auto sample output . 67
lm_auto sample parameter file 64
lm_auto statements . 74
lm_bayes introduction . 89
lm_bayes sample output . 96
lm_bayes statements . 111
lm_ibdtests introduction . 80
lm_ibdtests sample output . 82
lm_ibdtests statements . 87
lm_linkage introduction . 89
lm_linkage sample output . 95

lm_linkage statements . 111
lm_map introduction . 143
lm_map sample output for genotypic data 146
lm_map sample output for phenotypic data 146
lm_map statements . 147
lm_pval introduction . 63
lm_pval sample output . 73
lm_pval sample parameter file 73
lm_pval statements . 74
lm_twoqtl introduction . 89
lm_twoqtl sample output . 97
LM-sampler . 58, 63

location lod scores
computational parameters 113

location lod scores computing requests 111
location lod scores estimates 89

location lod scores file
identification statements . 111

location lod scores mapping
model parameters . 112

location lod scores MCMC
parameters and options . 115

location lod scores output file description 112
location lod scores pedigree file description 112

location lod scores population
model parameters . 113

location lod scores statements 111
locus window . 77
locus-by-locus sampling . 61
locus-by-locus setup . 59

M
M-sampler . 58, 61, 66, 92
major gene model . 29
map function . 33, 44, 48, 113
map test tlocs jointly at markers 98
marker allele frequencies . 44
marker data . 77, 119
marker data file . 11, 65
marker names . 44
marker seeds . 45
marker simulation . 43
marker simulation using meiosis indicators 43
marker simulation using trait 43
markerdrop computational parameters 45
markerdrop computing requests 43
markerdrop input file options 45
markerdrop introduction . 37
markerdrop mapping model parameters 44
markerdrop output . 41

markerdrop parameter file – conditional on
inheritance pattern . 40

markerdrop parameter file –
conditional on trait . 37

markerdrop population model parameters 44
markerdrop statements . 43
Markov chain Monte Carlo 56, 63, 89

Concept Index 153

MC iterations . 60, 61, 115
MCMC introduction . 56
MCMC options . 59
MCMC parameter statements 61
meiosis indicators . . 35, 37, 46, 54, 56, 61, 63, 89, 92
missing marker data . 77
missing quantitative trait data 135
mixed model . 29
MORGAN . 1
MORGAN files . 9
MORGAN Gold standards . 5
MORGAN package structure . 5
MORGAN program libraries . 5
MORGAN subroutine libraries 5
multiple meiosis sampler 58, 63, 70, 89, 92
multivar . 135
multivar computational options 141
multivar computational parameters 140
multivar computing requests 139
multivar output options . 141
multivar sample output . 137
multivar sample parameter file 135
multivar segregation model parameters 139
multivar statements . 139

N
names; See individuals –names 14
non-genetic model . 29

O
observed individuals . 14, 140
output –redirect . 13
output control . 13
output warnings (W) . 13
overview of MORGAN . 1
overwrite file options . 12, 19

P
parameter file . 10
parameter statement flexibility 10
parameter statements . 10
parameter statements in pedigree files 14
pedcheck examples . 19
pedcheck introduction . 18
pedcheck sample parameter file 18
pedcheck statements . 20
pedigree component –See component 18
pedigree file . 11, 14
pedigree file descriptions . 15
pedigree file separator . 14
pedigree options . 21
pedigree order . 21
pedigree peeling . 58
pedigree record format . 15, 45
pedigree size . 15

pedigree trait integer data order 16
pedigree trait real data order 16
pedigree validity . 18
penetrance . 45, 56
permutation based base-lod 114
phased and unphased genotypes 43, 58, 126
phased and unphased haplotypes 132
phenotypic trait specification 93
PolyEM . 135
PolyEM introduction . 135
PolyEM statements . 139
polygenic model . 29, 135
population kinship . 127, 134
population-based IBD inference 117

population-based IBD inference
parameter statements . 130

printlevel control . 13, 38
proband gametes 48, 54, 66, 68, 77, 119, 134
pseudo-prior iterations . 60, 114

Q
quantitative trait 29, 78, 112, 135
quantitative trait specification 94

R
randomized p-values . 83
Rao-Blackwellized estimates 96, 111
README documentation files 5
recombination . 25
recombination breakpoints 43, 54
rescue file . 75
residual variance . 31, 34
running beaglesim and beagledag 121
running fgl2ibd, fgl2haplo and fgl2dgl 126
running genedrop examples . 32
running gl_auto example . 71
running ibddrop example . 51
running kin example . 23
running lm_auto example . 67
running lm_bayes examples . 96
running lm_linkage examples 95
running lm_map with genotypic data 146
running lm_map with phenotypic data 146
running lm_pval example . 73
running lm_twoqtl examples 97
running markerdrop examples 41
running multivar example . 137
running simpop_fgl . 123

Concept Index 154

S
sample by scan . 59, 61
sample by step . 59, 61

sample parameter file for beaglesim
and beagledag . 120

sample parameter file for civil 83
sample parameter file for ibd_haplo 127
sample parameter file for lm_bayes 91
sample parameter file for lm_ibdtests 81
sample parameter file for lm_linkage 91
sample parameter file for lm_map 143
sample parameter file for simpop_fgl 122

sample parameter files for fgl2ibd,
fgl2haplo and fgl2dgl . 123

score file . 75
scoreset . 77, 134
seed file . 11, 30, 48
seeds for data simulation 29, 32, 35, 36
seeds for sampler . 48, 55
selection against autozygosity 50
selection against maternal identity 50
sequential imputation . 59, 61
sequential imputation proposals 116
simulating marker and trait data 29, 35
simulation of a population . 122
simulation of descent in a pedigree 46, 122
specifying inheritance . 56

state ordering: Jacquard 133, 134
state ordering: lexicographic 133

T
trait allele frequencies . 44
trait data . 45, 65, 78
trait model . 37
trait seeds . 45
trait test positions . 112
translink utility . 25

U
unibig . 135
univar . 135
unobserved individuals 14, 29, 35
using the BEAGLE DAG . 120

V
vc-score and w-score . 80

W
whitespace . 9, 14
window patterns . 65, 77

155

Statement Index

A
allow component size . 12
allow observed individuals 12
allow pedigree size . 12, 15
assign gender . 21
assume all observed . 36

C
check eigenvalue computation 141
check eigenvalues . 141
check ginverse . 141
check gmatrix . 141
check marker consistency [only] 75
check progress MC iterations 61
check trace . 142

compute [component]

inbreeding coefficient . 25
compute [component] kinship coefficient 25

compute [component] two-locus

inbreeding coefficient . 25
compute eigenvalues . 141
compute estimates I times 148
compute ibd statistics . 87
compute likelihood-ratio statistics 87
compute scores every iterations 61

F
fit additive correlations 140
fit additive covariances 140
fit environmental model . 141
fit residual correlations 140
fit residual covariances 140

I
ignore gender . 21
input eigenvalue file . 140
input extra file . 9, 11, 88
input gamete data file . 132
input genotypes as rows . 132
input haplotypes as columns of SNPs 132
input haplotypes as rows of SNPs 132
input individuals file . 11

input individuals record

names traits reals . 112
input marker data file . 9, 11
input pedigree file . 9, 11

input pedigree record (father mother

| father mother) . 16

input pedigree record gender

(present | absent) . 16

input pedigree record

inheritance integer pairs 45

input pedigree record names 3

[integers] [reals] . 15

input pedigree record observed

(absent | present) . 16, 36
input pedigree record trait integer pairs . . 78
input pedigree record traits integers . . . 16, 45
input pedigree record traits reals 16, 112
input pedigree size . 15
input rescue file . 75
input seed file . 9, 11

L
limit breeding iterations 140
limit EM iterations . 140
limit recombination fractions L 147

M
map [chromosome] marker

positions base pairs . 132
map [chromosome] test tloc at markers 113

map [chromosome] test tlocs

jointly at markers . 113

map [chromosome][gender] marker

[Kosambi] distances . 33

map [chromosome][gender] marker

[Kosambi] positions . 33

map [chromosome][gender] marker

recombination fractions 33

map [chromosome][gender] test tloc all

interval proportions . 112

map [chromosome][gender] test tloc

beginning [Kosambi] distance 113

map [chromosome][gender] test tloc

beginning recombination fractions 113

map [chromosome][gender] test tloc ending

[Kosambi] distance . 113

map [chromosome][gender] test tloc ending

recombination fractions 113

map [chromosome][gender] test tloc

external distance . 113

map [chromosome][gender] test tloc

external Kosambi distance 113

map [chromosome][gender] test tloc external

recombination fractions 113

map [chromosome][gender] test tloc

intervals proportions . 112

map [chromosome][gender] tlocs marker

[Kosambi] distances . 34

Statement Index 156

map [chromosome][gender] tlocs marker

[Kosambi] positions . 34

map [chromosome][gender] tlocs marker

recombination fractions 34
map [gender] marker [Kosambi] distance 44
map [gender] marker [Kosambi] position 44

map [gender] marker

recombination fraction . 44

map [gender] tlocs marker

[Kosambi] distance . 44

map [gender] tlocs marker

recombination fraction . 44

map test tlocs no default

external positions . 113

map test tlocs no default

interval proportions . 113
map tlocs unlinked . 33, 54, 75

O
output [overwrite] extra file 12
output [overwrite] individuals file 12, 21
output [overwrite] pedigree file 11
output [overwrite] score file 12, 75
output [overwrite] seed file 12
output all genotypes . 132
output final adjusted phenotypes 141
output final generation . 132
output founder genome labels 76

output four-gamete state

order jacquard . 133, 134
output genotypes . 131
output haplotype labels 131, 133
output haplotypes as columns 130
output haplotypes as rows 130
output maps gender [averaged] [specific] . . 147
output marker seeds only . 36
output meiosis indicators 76
output pedigree chronological 21
output pedigree file . 9
output pedigree record father mother 21

output pedigree record

founder gene labels . 35
output pedigree record mother father 21

output pedigree record trait

latent variables . 35

output pedigree record

unobserved variables . 35
output permutation seeds only 87
output Rao-Blackwellized estimates file . . . 111
output rescue data iterations 76
output rescue file . 75
output sampler seeds only . 87
output scores at markers . 134
output scores every scored MC iterations . . . 76
output seed file . 9
output spacing EM iterations 141

output statistics correlations 141
output statistics covariances 141
output trait seeds only . 36
output with spaces . 131, 133

S
sample by scan . 61
sample by step . 61
select [chromosome] all markers 74
select [chromosome] all markers except 74
select [chromosome] markers 74
select inheritance . 43
select partially phased data 133
select phased data . 133
select state transition matrix 133
select trait . 43, 74, 79, 139
select unphased data . 133
set [chromosome] locus window 55, 77

set [chromosome] marker

allele frequencies . 34, 44
set [chromosome] marker names 44, 77

set [component] [scoreset]

proband gametes . 77

set [component] [scoreset]

window patterns . 77
set [component] proband gametes 54, 77
set [scoreset] proband gametes 134
set base log likelihood . 113
set batches MC variance estimation 114
set breeding convergence 140
set burn-in iterations . 61
set chromosome length centiMorgans 131
set debug level . 14
set debug libname . 14
set debug main . 14
set dummy integers . 13
set dummy reals . 13
set eigenvalues . 140
set EM convergence . 147
set females per generation 131
set genotyping error rate 133, 148
set global MCMC . 62
set ibd measures . 87
set ibd permutations . 87
set ibd tests . 87
set inheritance tlocs . 44
set kinship change rate . 134
set L-sampler probability 61
set LD relaxation probability 130
set liability classes with penetrances 78

set likelihood-ratio lambda-p

model gridpoints . 87
set likelihood-ratio measures 87
set likelihood-ratio tests 87
set limit for exact computation 62
set LRT statistics iterations 148
set map estimation with [no] mistyping 148

Statement Index 157

set marker data . 77
set marker seeds . 35
set maximum ibdgraphs per component 113
set MC iterations . 61, 115
set MCMC markers only . 79
set million base pairs per centiMorgan 132
set normalized allele frequencies 34
set number of permutations 114
set offspring generations 131
set permutation seeds . 87
set population kinship . 134
set printlevel . 13
set proband gametes all individual pairs . . 134
set pseudo-prior iterations 115
set pseudo-priors . 114
set recombination frequencies 25
set remating probability weight 131
set SA ascent iterations . 148
set SA convergence . 148
set SA curvature iterations 148
set SA gradient iterations 148
set sampler seeds . 55

set sequential imputation proposals

every iterations . 116
set standard deviations for genotypes 78
set test position window . 116
set tlocs allele frequencies 34, 44
set trait data . 78
set trait data discrete . 45
set trait data discrete with covariate 78
set trait data discrete with liability 78
set trait effects . 139
set trait for tlocs joint genotype means . . . 114
set trait seeds . 35
set traits additive variance 34
set traits for tlocs genotype means 34

set traits for tlocs

incomplete penetrances 45, 78
set traits multiple tlocs 114
set traits residual variance 34
set traits tlocs . 33, 43, 74
set transition matrix null fraction 133
set width of ages of onset window 79
simulate [chromosome] [dense] markers . . 43, 54
simulate [chromosome] markers 33
simulate ibd realizations 55, 114
simulate IBD realizations for trait 115
simulate tloc . 54
simulate traits . 33
start additive correlations 140
start additive covariances 140
start additive variances 139
start residual correlations 140
start residual covariances 140
start residual variances 139
start trait effect . 139
start trait mean . 139

U
use exact summation for trait 114
use full EM . 141
use locus-by-locus sampling for setup 61
use MCEM and SA for maximization 147
use Monte Carlo summation for trait 114
use multiplier realizations for null 115
use partitioned EM . 141
use sequential imputation for setup 61

use sequential imputation

realizations for setup . 61

	Get Started
	Overview of MORGAN
	Get the Tutorial
	Get and set up the examples
	Overview of the pedigrees used in the examples
	Structure of the MORGAN package

	Common Features and File Formats
	Command syntax
	Parameter file
	File identification statements
	Limit overriding
	Input extra variables
	Output control
	Pedigree file
	Individuals file
	Pedigree file description statements

	Checking Pedigree Validity
	Introduction to pedcheck
	Sample pedcheck parameter file
	Running pedcheck examples
	Creating an individuals file
	pedcheck statements

	Computing Kinship and Other Pedigree Computations
	Introduction to kin
	Sample kin parameter file
	Running kin example and sample output
	kin statements
	The translink utility
	The ibd_class utility

	Simulating Marker and Trait Data in Pedigrees
	Introduction to genedrop.
	Sample genedrop parameter file
	Running genedrop examples and sample output
	genedrop statements
	genedrop computing requests
	genedrop mapping model parameters
	genedrop population model parameters
	genedrop computational parameters
	genedrop output pedigree options
	genedrop output seed file options

	Simulating Marker Data Conditional on Trait Data in Pedigrees
	Introduction to markerdrop
	Sample markerdrop parameter file -- conditional on trait
	Sample markerdrop parameter file -- conditional on inheritance pattern
	Running markerdrop examples and sample output
	markerdrop statements
	markerdrop computing requests
	markerdrop mapping model parameters
	markerdrop population model parameters
	markerdrop computational parameters
	markerdrop input file options

	Estimating a priori ibd Probabilities by Monte Carlo
	Introduction to ibddrop
	Sample ibddrop parameter file
	Classic ibddrop parameter file
	Using dense marker simulation
	Selection against autozygosity

	Running ibddrop example and sample output
	ibddrop statements

	Using MCMC to Estimate Parameters of Interest in Pedigree Data
	Specifying inheritance
	Genetic model
	Exact HMM computations
	Single and multiple meiosis LM-samplers
	MCMC computational options
	MCMC parameter statements

	Estimating Conditional ibd Probabilities by MCMC
	Introduction to lm_auto, gl_auto and lm_pval
	Sample lm_auto parameter file
	Running lm_auto example and sample output
	Sample gl_auto parameter file
	Running gl_auto example and sample output
	Sample lm_pval parameter file
	Running lm_pval example and sample output
	Autozyg statements
	Autozyg computing requests
	Autozyg file identification statements
	Autozyg pedigree file description
	Autozyg output file description
	Autozyg mapping model parameters
	Autozyg population model parameters
	Autozyg computational parameters
	Autozyg MCMC parameters and options

	Estimating ibd Based Test Statistics by MCMC
	Introduction to lm_ibdtests and civil
	Sample lm_ibdtests parameter file
	Sample lm_ibdtests output
	Sample civil parameter file
	Sample civil output
	lm_ibdtests and civil statements

	Estimating Location lod Scores by MCMC
	Introduction to lm_linkage, lm_bayes, lm_twoqtl, gl_lods and base_trait_lods
	Sample parameter files for lm_linkage and lm_bayes
	Running lm_linkage examples and sample output
	Running lm_bayes examples and sample output
	Running lm_twoqtl examples and sample output
	Parameter files for the gl_lods program
	Running gl_lods examples and sample output
	Running the base_trait_lods program
	Location lod scores statements
	Location lod scores computing requests
	Location lod scores file identification statements
	Location lod scores pedigree file description
	Location lod scores output file description
	Location lod scores mapping model parameters
	Location lod scores population model parameters
	Location lod scores computational parameters
	Location lod scores MCMC parameters and options

	Population-based inference of IBD
	Introduction to ibd_create and ibd_haplo
	Sample parameter files for ibd_create; beaglesim and beagledag
	Running ibd_create examples and sample output; beaglesim and beagledag
	Sample parameter files for ibd_create; simpop_fgl
	Running ibd_create examples and sample output; simpop_fgl
	Sample parameter files for ibd_create; fgl2ibd and fgl2haplo and fgl2dgl
	Running ibd_create examples and sample output; fgl2ibd and fgl2haplo and fgl2dgl
	Sample parameter files for ibd_haplo
	Running ibd_haplo examples and sample output
	Population-based IBD inference parameter statements
	beaglesim and beagledag parameter statements
	simpop_fgl parameter statements
	fgl2ibd and fgl2haplo and fgl2dgl parameter statements
	ibd_haplo parameter statements

	Polygenic Modeling of Quantitative Traits by EM Algorithm
	Introduction to PolyEM programs
	Sample multivar parameter file
	Running multivar example and sample output
	multivar statements
	multivar computing requests
	multivar segregation model parameters
	multivar computational parameters
	multivar computational options
	multivar output options

	Estimating Genetic Maps from Marker Data
	Introduction to lm_map
	Sample lm_map parameter file
	Running lm_map with genotypic data
	Running lm_map with phenotypic data
	lm_map statements

	References
	Concept Index
	Statement Index

