IBD_Haplo R Tools

Marshall Brown
May 19, 2011

1 Introduction

IBDhaploRtools consists of several functions to store, analyze, and plot
the output of the IBD_Haplo software package. More information regarding
IBD_Haplo can be found at www.stat.washington.edu/thompson/Genepi/pangaea.shtml.

2 Tutorial

This tutorial provides a description of the main functions in this package,
and demonstrates how to implement these functions on the IBD_Haplo gold
standards. The gold standards used by this tutorial were created by run-
ning IBD_Haplo on four sets of four simulated haplotypes/two individuals.
Specifically, the IBD_Haplo output files were created by running,

./ibd_haplo ibd_haplo.par > ibd_haplo.out

as described in README_ibdhap, which can be found in the “Gold” directory of

ibd_haplo. Running the above command in a linux terminal creates the file

“gqibd_h.out.” This file, along with “compu_4hap.dat” and “trueibd_h_Gold.txt”
are the only files needed to follow along in this tutorial. To begin, we can

install the package into R by downloading “IBDhaploRtools_1.0.tar.gz,”

opening an R session, and running:

> install.packages("IBDhaploRtools_1.1.tar.gz", repos = NULL)
> library("IBDhaploRtools")

Now that we have installed the package, we can use the help pages by
typing 7 [function name] (for example ?ibdhap.make.states.) Please see
these for more information on function arguments. It is important to note
that all the functions listed below besides ibdhap.makes.states take the
output of ibdhap.make.states as input. Thus, it is imperative to run this
ibdhap.make.states first.

ibdhap.make.states: stores and simplifies the main output files (called
“gibd_h.out” in the Gold examples) created by IBD Haplo. This is
acheived by “calling” a marker to be in an ibd state if the probability
of the state for the marker (conditional on the data and the model)
meets the “cutoff” value. If the cuttoff is met, the value of the marker
is set to the ibd state (integer value from 1-15 or 1-9), otherwise value
of the marker is set to 0 (which means this marker is a “no call”.)
ibdhap.make.states outputs a R data.frame where each row is a
marker, and each column is a set of four haplotypes. The value at a
marker for a set of haplotypes is as described above. The R data.frame
that this function creates is expected by other functions in this package.

To run this function on the gold standards, run:

> qibd.gold<- ibdhap.make.states(qibd.filename = "qibd_h_gold.out",
+ dat.filename="compu_4hap.dat" ,
+ cutoff = 0.9)

[1] "Data read in successfully"
[1] "pair 1 of 4 complete..."
[1] "pair 2 of 4 complete..."
[1] "pair 3 of 4 complete..."
[1] "pair 4 of 4 complete..."

This data frame has four columns and 2,000 rows (one for each marker).
The first 20 markers for each haplotype are:

> qibd.gold[1:20,]

Vi V2 V3 V4
1 0 015 O
2 0 015 O

15
15
15
15
15
15 15
15 15
15 15 15
15 15 15
15 15 15
15 15 15
15 15 15
15 15 15
15 15 15
15 15 15
15 15 15
15 15 15
15 15 15

O O O O O
O O O O O O O

S OO0 o101 OO O O O O

O e e
O ©O© 00 N O O
i e e i i
g o oo oot

For marker eight, we see that IBD_Haplo inferred with greater than 0.9
probability that the first set of haplotypes were in IBD state 5 while the
other three sets of haplotypes were in IBD state 15 (no IBD shared).

ibdhap.summary : summarizes the data created by ibdhap.make.states
by calculating mean lengths of ibd segments, mean proportions of ibd
shared, and counts on ibd segments. Averages are taken over all mark-
ers and all sets of haplotypes.

> summary.gold <- ibdhap.summary(qibd.gold, data.type="h")
> summary.gold$mean.prop

mean.any.ibd mean.not.ibd mean.no.call
0.207375 0.632625 0.160000

> summary.gold$mean.length

mean.len.ibd mean.len.not.ibd mean.len.nocall
39.50000 76.63636 12.29808

> summary.gold$seg.counts

states.ibd states.not.ibd states.no.call
42 66 104

This shows, for example, that on average 67.0875 % of the chromosome
is in IBD state 15 (no ibd shared among the four haplotypes), and that
the mean length (number of markers) of a continuous segment of the
chromosome with no ibd shared is 103.15 markers.

ibdhap.seg.lengths : given the ibd states from a set of haplotypes/pair of
genotypes (taken from a column of the output of ibdhap.make.states),
this function creates a data. frame consisting of all segments of differing
ibd state, paired with their respective length. This function is called
by many of the other functions, and provides equivalent information
held in a column of “qibd.gold” but just in a different form.

> seg.lengths.gold<-ibdhap.seg.lengths(qibd.gold[,4])
> seg.lengths.gold

ibd.state seg.lengths

1 0 9
2 15 25
3 0 4
4 14 17
5 0 6
6 15 9
7 0 18
8 15 34
9 0 5
10 15 236
11 0 17
12 15 194
13 0 14
14 15 67
15 0 25
16 15 110
17 0 3
18 12 466

19 0 15

20 12 21
21 0 15
22 4 15
23 10 6
24 12 171
25 0 48
26 15 113
27 0 9
28 13 5
29 0 13
30 15 15
31 0 19
32 12 70
33 0 6
34 12 110
35 0 5
36 15 84

For the fourth set of haplotypes, this shows that there are 30 segments
of differing ibd state as inferred by IBD_Haplo. The sixth segment is in
ibd state 15 and consists of 488 markers, while the eighteenth segment
is in ibd state 12 and consists of 174 markers. If a vector of positions
is given, segment lengths will be given in its respective units. Notice
how this portrays the same information as qibd[,4], but in a more
compact form.

ibdhap.transitions: creates a matrix of transition counts from when ibd
state switches along the chromosome.

> options(width=100) #set the display so the matrix displays nicely
> transitions.gold<-ibdhap.transitions(qibd.gold, data.type="h")

> #split the transitions matrix into two parts so it fits on the

> #document

> transitions.gold[,1:8]

(,11 [,21 (,3] [,4] (,5] [,6] [,7] [,8]
[1,] 0 0 0 0 0 0 0 0

[2,]
[3,]
(4,]
[5,]
(6,1
(7,1
[8,]
[9,]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]

O O O OO O OO O OO o oo
O O O OO O OO O OO o oo
H O O Ok, OO OO0 O0OOoOOoOOo
O OO, OO OO O OO oo Oo
WO O OO O OO OO OO o oo
O O O O O O O OO OO o oo
O O O O O O OO O OO o o o
O O O O O O O O OO o o o

> transitions.gold[,9:15]

(,11 [,2] [,3] [,4] [,8] [,6] [,7]

[1,] 0 0 0 0 0 0 0
[2,] 0 0 0 0 0 0 0
[3,] 0 1 0 0 0 0 1
(4,] 0 1 0 0 0 0 0
[5,] 0 0 0 0 0 0 4
[6,] 0 0 0 0 0 0 0
(7,1 0 0 0 0 0 0 0
[8,] 0 0 0 1 1 0 4
[9,] 0 0 0 0 0 0 0
[10,] 0 0 0 1 1 0 0
[11,] 0 0 0 0 0 0 8
[12,] 0 0 0 0 0 0 5
[13,] 0 0 1 0 0 0 4
[14,] 0 0 1 0 0 0 3
[15,] 0 0 7 5 3 4 0

Hence, across all sets of haplotypes, there where four instances when
ibd state 12 transitioned to ibd state 15.

ibdhap.barplot : Graphically displays regions of any ibd sharing, no ibd
sharing and no calls along a chromosome for a set of haplotypes / pair

6

LS! | 00 1000 . 1500 lzolo%
L(,) E . i E 11 i,ooé %J
Fé 1 W 1 E% %E—l

Figure 1: Barplots for four sets of four haplotypes using IBD_Haplo output.
Red means some ibd shared, white is no ibd shared and grey means “no call.”

of genotypes. The default colors are red, white, and grey for any state
with ibd sharing, no ibd sharing and no calls, respectively.

> par (mfrow=c(4,1))

> ibdhap.barplot(qibd.gold[,1], data.type="h", xlab="", ylab="")

> ibdhap.barplot(qibd.gold[,2], data.type="h", xlab="", ylab="")
> ibdhap.barplot(qibd.gold[,3], data.type="h", xlab="", ylab="")
> ibdhap.barplot(qibd.gold[,4], data.type="h", xlab="", ylab="")

We can see that the first set of haplotypes does not have much (inferred)
ibd shared among the four haplotypes, while the fourth set has a large

portion of the chromosome in an ibd state where ibd is shared among
the four haplotypes. Since we simulated these haplotypes, and therefore
know the true ibd states for these four sets of haplotypes, it is interest-
ing to compare the previous barplots to similar barplots created from
using the known ibd states. The true ibd patterns shared among the
four sets of haplotypes are contained in the file “trueibd_h_Gold.txt”.

trueibd.gold<-read.table("trueibd_h_Gold.txt")
trueibd.gold<-t (trueibd.gold) #transpose the data
#get rid of extra "names'" rows
trueibd.gold<-trueibd.gold[-(1:2),]

vV VvV Vv Vv

par (mfrow=c(4,1))

ibdhap.barplot (trueibd.gold[,1], data.type="h", xlab="",

y13.b=" n)
ylab:" n)

ibdhap.barplot (trueibd.gold[,3], data.type="h", xlab="", ylab="")
ibdhap.barplot (trueibd.gold[,4], data.type="h", xlab="", ylab="")

>
>
> ibdhap.barplot (trueibd.gold[,2], data.type="h", xlab="",
>
>

Upon inspection, we see that IBD_Haplo does well in inferring ibd in
this example.

ibdhap.compare : This function compares the inferred ibd states found in

gibd.gold to true (simulated) state data. It calculates and returns as
a list the proportion of markers called in the exactly right state, false
positives (inferred to be ibd shared, when there is none), false negatives
(inferred to be no ibd shared, when there is ibd shared), and no calls.

> compare.gold<- ibdhap.compare(states.dat= qibd.gold,
+ simu.dat= trueibd.gold,

+ data.type="h")

> compare.gold

$prop.correct
[1] 0.805375

$false.positives
[1] 0.030375

$false.negatives

T
0 500 1000 1500 2000

[Il EEEL |

0 500 1000 1500 2000

LI EI T B Bl

0 500 1000 1500 2000

1 e

0 500 1000 1500 2000

Figure 2: Barplots for four sets of four haplotypes using simulated data. Red
means some ibd shared, and white is no ibd shared

[1] 0.000125

$no.calls
[1] 0.16

For this example, we see that about 84.6 % of the markers where in-
ferred to be in the exactly right state.

ibdhap.infer.vs.simu.plot : if simulated data (true ibd state) is available,
this function creates a plot of how well IBD_haplo infers segments based
on segment length. Each point in the plot represents a segment of true
(simulated) ibd (shared or not shared). The x axis is the length of the
segment, and the y axis is proportion snps called correctly within the
true segment.

>
+
+
+
+

ibdhap. infer.vs.simu.plot(qibd.gold,

(1] ©

trueibd.gold,
data.type="h",
xlab="seg length",
ylab="prop correct")

We can see in figure 3 that IBD\ _Haplo does very well with ibd segments
that are above 25 to 50 snps in length. In these data, this corresponds
with ibd segments that are roughly a half centimorgan in length.

This completes our quick run through of the main functions of IBDHaploRtools.
Note that all functions that we ran above for haplotypic data can also be run
on genotypic data by setting data.type=""g'". Please see the man pages for
more information regarding function arguments, descriptions, and examples.

10

(1] ©

1.0

0.8

0.6

prop correct

0.2

I I I I
0 200 400 600

seg length

Figure 3: Each point in the plot is a segment of true (simulated) ibd (shared
or not shared).The x axis is the length of the segment, and the y axis is
proportion snps called correctly within the true segment

11

