
Chapter 8Ordinary di�erential equationsConsider �rst a scalar, �rst-order ordinary di�erential equation (ODE) of the formdydt = f(y; t) with y(t0) = y0: (8.1)The problem we address now is the advancement of such a system in time by integration of thisdi�erential equation. As the quantity being integrated, f , is itself a function of the result of theintegration, y, the problem of integration of an ODE is fundamentally di�erent than the problem ofnumerical quadrature discussed in x7, in which the function being integrated was given. Note thatODEs with higher-order derivatives and systems of ODEs present a straightforward generalizationof the present discussion, as will be shown in due course. Note also that we refer to the independentvariable in this chapter as time, t, but this is done without loss of generality and other interpretationsof the independent variable are also possible.The ODE given above may be \solved" numerically by marching it forward in time, step by step.In other words, we seek to approximate the solution y to (8.1) at timestep tn+1 = tn + hn giventhe solution at the initial time t0 and the solution at the previously-computed timesteps t1 to tn.For simplicity of notation, we will focus our discussion initially on the case with constant stepsizeh; generalization to the case with nonconstant hn is straightforward.8.1 Taylor-series methodsOne of the simplest approaches to march the ODE (8.1) forward in time is to appeal to a Taylorseries expansion in time, such asy(tn+1) = y(tn) + hy0(tn) + h22 y00(tn) + h36 y000(tn) + : : : : (8.2)From our ODE, we have:y0 = dydt = fy00 = dy0dt = dfdt = @f@t + @f@y dydt = ft + ffyy000 = dy00dt = ddt (ft + ffy) = @@t(ft + ffy) + @@y (ft + ffy)dydt = ftt + ftfy + 2ffyt + f2yf + f2fyy;79



80 CHAPTER 8. ORDINARY DIFFERENTIAL EQUATIONSetc. Denoting the numerical approximation of y(tn) as yn, the time integration method based onthe �rst two terms of (8.2) is given byyn+1 = yn + hf(yn; tn): (8.3)This is referred to as the explicit Euler method, and is the simplest of all time integration schemes.Note that this method neglects terms which are proportional to h2, and thus is \second-order"accurate over a single time step. As with the problem of numerical quadrature, however, a morerelevant measure is the accuracy achieved when marching the ODE over a given time interval (t0; t0+T ) as the timesteps h are made smaller. In such a setting, we lose one in the order of accuracy (as inthe quadrature problem discussed in x7) and thus, over a speci�ed time interval (t0; t0+T ), explicitEuler is �rst-order accurate.We can also base a time integration scheme on the �rst three terms of (8.2):yn+1 = yn + hf(yn; tn) + h22 [ft(yn; tn) + f(yn; tn)fy(yn; tn)]:Even higher-order Taylor series methods are also possible. We do not pursue such high-order Taylorseries approaches in the present text, however, as their computational expense is relatively high (dueto all of the cross derivatives required) and their stability and accuracy is not as good as some ofthe other methods which we will develop.Note that a Taylor series expansion in time may also be written around tn+1:y(tn) = y(tn+1)� hy0(tn+1) + h22 y00(tn+1)� h36 y000(tn+1) + : : :The time integration method based on the �rst two terms of this Taylor series is given byyn+1 = yn + hf(yn+1; tn+1): (8.4)This is referred to as the implicit Euler method. It also neglects terms which are proportionalto h2, and thus is \second-order" accurate over a single time step. As with explicit Euler, over aspeci�ed time interval (t0; t0 + T ), implicit Euler is �rst-order accurate.If f is nonlinear in y, implicit methods such as the implicit Euler method given above aredi�cult to use, because knowledge of yn+1 is needed (before it is computed!) to compute f in orderto advance from yn to yn+1. Typically, such problems are approximated by some type of linearizationor iteration, as will be discussed further in class. On the other hand, if f is linear in y, implicitstrategies such as (8.4) are easily solved for yn+1.8.2 The trapezoidal methodThe formal solution of the ODE (8.1) over the interval [tn; tn+1] is given byyn+1 = yn + Z tn+1tn f(y; t)dt:Approximating this integral with the trapezoidal rule from x7.1.1 givesyn+1 = yn + h2 [f(yn; tn) + f(yn+1; tn+1)]: (8.5)This is referred to as the trapezoidal or Crank-Nicholson method. We defer discussion of theaccuracy of this method to x8.4, after we discuss �rst an illustrative model problem.



8.3. A MODEL PROBLEM 818.3 A model problemA scalar model problem which is very useful for characterizing various time integration strategies isy0 = �y with y(t0) = y0; (8.6)where � is, in general, allowed to be complex. The exact solution of this problem is y = y0e�(t�t0).The utility of this model problem is that the exact solution is available, so we can compare thenumerical approximation using a particular numerical method to the exact solution in order toquantify the pros and cons of the numerical method. The insight we gain by studying the applicationof the numerical method we choose to this simple model problem allows us to predict how this methodwill work on more di�cult problems for which the exact solution is not available.Note that, for <(�) > 0, the magnitude of the exact solution grows without bound. We thusrefer to the exact solution as being unstable if <(�) > 0 and stable if <(�) � 0. Graphically,we denote the region of stability of the exact solution in the complex plane � by the shaded regionshown in Figure 8.1.
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Figure 8.1: Stability of the exact solution to the model problem y0 = �y in the complex plane �.8.3.1 Simulation of an exponentially-decaying systemConsider now the model problem (8.6) with � = �1. The exact solution of this system is simplya decaying exponential. In Figure 8.2, we show the application of the explicit Euler method, theimplicit Euler method, and the trapezoidal method to this problem. Note that the explicit Eulermethod appear to be unstable for the large values of h. Note also that all three methods are moreaccurate as h is re�ned, with the trapezoidal method appearing to be the most accurate.8.3.2 Simulation of an undamped oscillating systemConsider now the second-order ODE for a simple mass/spring system given byy00 = �!2y with y(t0) = y0; y0(t0) = 0; (8.7)where ! = 1. The exact solution is y = y0 cos[!(t� t0)] = (y0=2)[ei!(t�t0) + e�i!(t�t0)].
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Figure 8.2: Simulation of the model problem y0 = �y with � = �1 using the explicit Euler method(top), the implicit Euler method (middle), and the trapezoidal method (bottom). Symbols denote:�, h = 2:1; �, h = 0:6; , exact solution.We may easily write this second-order ODE as a �rst-order system of ODEs by de�ning y1 = yand y2 = y0 and writing: �y1y2�0| {z }y0 = � 0 1�!2 0�| {z }A �y1y2�| {z }y : (8.8)The eigenvalues of A are �i!. Note that the eigenvalues are imaginary; if we has started with theequation for a damped oscillator, the eigenvalues would have a negative real part as well. Note alsothat A may be diagonalized by its matrix of eigenvectors:A = S�S�1 where � = �i! 00 �i!� :Thus, we have y0 = S�S�1y ) S�1y0 = �S�1y ) z0 = �z;
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Figure 8.3: Simulation of the oscillatory system y00 = �!2y with ! = 1 using the explicit Eulermethod (top), the implicit Euler method (middle), and the trapezoidal method (bottom). Symbolsdenote: �, h = 0:6; �, h = 0:1; , exact solution.where we have de�ned z = S�1y. In terms of the components of z, we have decoupled the dynamicsof the system: z01 = i!z1z02 = �i!z2:Each of these systems is exactly the same form as our scalar model problem (8.6) with complex (inthis case, pure imaginary) values for �. Thus, eigenmode decompositions of physical systems (likemass/spring systems) motivate us to look at the scalar model problem (8.6) over the complex plane�. In fact, our original second-order system (8.7), as re-expressed in (8.8), will be stable i� there areno eigenvalues of A with <(�) > 0.In Figure 8.3, we show the application of the explicit Euler method, the implicit Euler method,and the trapezoidal method to the �rst-order system of equations (8.8). Note that the explicit Eulermethod appears to be unstable for both large and small values of h. Note also that all three methodsare more accurate as h is re�ned, with the trapezoidal method appearing to be the most accurate.We see that some numerical methods for time integration of ODEs are more accurate than others,and some numerical techniques are sometimes unstable, even for ODEs with stable exact solutions.



84 CHAPTER 8. ORDINARY DIFFERENTIAL EQUATIONSIn the next two sections, we develop techniques to quantify both the stability and the accuracy ofnumerical methods for time integration of ODEs by application of these numerical methods to themodel problem (8.6).8.4 StabilityFor stability of a numerical method for time integration of an ODE, we want to insure that, if theexact solution is bounded, the numerical solution is also bounded. We often need to restrict thetimestep h in order to insure this. To make this discussion concrete, consider a system whose exactsolution is bounded and de�ne:1) a stable numerical scheme: one which does not blow up for any h,2) an unstable numerical scheme: one which blows up for any h, and3) a conditionally stable numerical scheme: one which blows up for some h.8.4.1 Stability of the explicit Euler methodApplying the explicit Euler method (8.3) to the model problem (8.6), we see thatyn+1 = yn + �hyn = (1 + �h)yn:Thus, assuming constant h, the solution at time step n is:yn = (1 + �h)ny0 , �ny0 ) � = 1 + �h:For large n, the numerical solution remains stable i�j�j � 1 ) (1 + �Rh)2 + (�Ih)2 � 1:The region of the complex plane which satis�es this stability constraint is shown in Figure 8.4. Notethat this region of stability in the complex plane �h is consistent with the numerical simulationsshown in Figure 8.2a and 8.3a: for real, negative �, this numerical method is conditionally stable(i.e., it is stable for su�ciently small h), whereas for pure imaginary �, this numerical method isunstable for any h, though the instability is mild for small h.
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Figure 8.4: Stability of the numerical solution to y0 = �y in the complex plane �h using the explictEuler method.



8.4. STABILITY 858.4.2 Stability of the implicit Euler methodApplying the implicit Euler method (8.4) to the model problem (8.6), we see thatyn+1 = yn + �hyn+1 ) yn+1 = (1� �h)�1yn:Thus, assuming constant h, the solution at time step n is:yn = � 11� �h�n y0 , �ny0 ) � = 11� �h:For large n, the numerical solution remains stable i�j�j � 1 ) (1� �Rh)2 + (�Ih)2 � 1:The region of the complex plane which satis�es this stability constraint is shown in Figure 8.5. Notethat this region of stability in the complex plane �h is consistent with the numerical simulationsshown in Figure 8.2b and 8.3b: this method is stable for any stable ODE for any h, and is evenstable for some cases in which the ODE itself is unstable.
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Figure 8.5: Stability of the numerical solution to y0 = �y in the complex plane �h using the implicitEuler method.8.4.3 Stability of the trapezoidal methodApplying the trapezoidal method (8.5) to the model problem (8.6), we see thatyn+1 = yn + �h2 (yn + yn+1) ) yn+1 =  1 + �h21� �h2 ! yn:Thus, assuming constant h, the solution at time step n is:yn =  1 + �h21� �h2 !n y0 , �ny0 ) � = 1 + �h21� �h2 :For large n, the numerical solution remains stable i�j�j � 1 ) : : : ) <(�h) � 0:



86 CHAPTER 8. ORDINARY DIFFERENTIAL EQUATIONSThe region of the complex plane which satis�es this stability constraint coincides exactly with theregion of stability of the exact solution, as shown in Figure 8.6. Note that this region of stability inthe complex plane �h is consistent with the numerical simulations shown in Figure 8.2c and 8.3c,which are stable for systems with <(�) < 0 and marginally stable for systems with <(�) = 0.
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Figure 8.6: Stability of the numerical solution to y0 = �y in the complex plane �h using thetrapezoidal method.8.5 AccuracyRevisiting the model problem y0 = �y, the exact solution (assuming t0 = 0 and h = constant) isy(tn) = e�tny0 = (e�h)ny0 = �1 + �h+ �2h22 + �3h36 + : : :�n y0:On the other hand, solving the model problem with explicit Euler led toyn = (1 + �h)ny0 , �ny0;solving the model problem with implicit Euler led toyn = � 11� �h�n y0 = �1 + �h+ �2h2 + �3h3 + : : : �n y0 , �ny0;and solving the model problem with trapezoidal led toyn =  1 + �h21� �h2 !n y0 = �1 + �h+ �2h22 + �3h34 + : : :�n y0 , �ny0:To quantify the accuracy of these three methods, we can compare the ampli�cation factor � in eachof the numerical approximations to the exact value e�h. The leading order error of the explicit Eulerand implicit Euler methods are seen to be proportional to h2, as noted in x8.1, and the leadingorder error of the trapezoidal method is proportional to h3. Thus, over a speci�ed time interval(t0; t0 + T ), explicit Euler and implicit Euler are �rst-order accurate and trapezoidalis second-order accurate. The higher order of accuracy of the trapezoidal method implies animproved rate of convergence of this scheme to the exact solution as the timestep h is re�ned, asobserved in Figures 8.2 and 8.3.



8.6. RUNGE-KUTTA METHODS 878.6 Runge-Kutta methodsAn important class of explicit methods, called Runge-Kutta methods, is given by the general form:k1 = f�yn; tn�k2 = f�yn + �1 h k1; tn + �1 h�k3 = f�yn + �2 h k1 + �3 h k2; tn + �2 h�...yn+1 = yn + 1 h k1 + 2 h k2 + 3 h k3 + : : : ; (8.9)
where the constants �i, �i, and i are selected to match as many terms as possible of the exactsolution: y(tn+1) = y(tn) + hy0(tn) + h22 y00(tn) + h36 y000(tn) + : : :where y0 = fy00 = ft + ffyy000 = ftt + ftfy + 2ffyt + f2yf + f2fyy;etc. Runge-Kutta methods are explicit and \self starting", as they don't require any informationabout the numerical approximation of the solution before time tn; this typically makes them quiteeasy to use. As the number of intermediate steps ki in the Runge-Kutta method is increased, theorder of accuracy of the method can also be increased. The stability properties of higher-orderRunge-Kutta methods are also generally quite favorable, as will be shown.8.6.1 The class of second-order Runge-Kutta methods (RK2)Consider �rst the family of two-step schemes of the form (8.9):k1 = f(yn; tn);k2 = f(yn + �1 h k1; tn + �1 h)� f(yn; tn) + fy(yn; tn)��1 h f(yn; tn)�+ ft(yn; tn)��1 h�;yn+1 = yn + 1 h k1 + 2 h k2� yn + 1 h f(yn; tn) + 2 h�f(yn; tn) + �1 h fy(yn; tn) f(yn; tn) + �1 h ft(yn; tn)�� yn + (1 + 2)h f(yn; tn) + 2 h2 �1 fy(yn; tn) f(yn; tn) + 2 h2 �1 ft(yn; tn):Note that the approximations given above are exact if f is linear in y and t, as it is in our modelproblem. The exact solution we seek to match with this scheme is given byy(tn+1) = y(tn) + hf(yn; tn) + h22 �ft(yn; tn) + f(yn; tn)fy(yn; tn)�+ : : :



88 CHAPTER 8. ORDINARY DIFFERENTIAL EQUATIONSMatching coe�cients to as high an order as possible, we require that1 + 2 = 12 h2 �1 = h222 h2 �1 = h22
9>>>>=>>>>; ) �1 = �1; 2 = 12�1 ; 1 = 1� 12�1 :Thus, the general form of the two-step second-order Runge-Kutta method (RK2) isk1 = f�yn; tn�k2 = f�yn + �hk1; tn + �h�yn+1 = yn + �1� 12��h k1 + � 12��h k2; (8.10)where � is a free parameter. A popular choice is � = 1=2, which is known as the midpoint method andhas a clear geometric interpretation of approximating a central di�erence formula in the integrationof the ODE from tn to tn+1. Another popular choice is � = 1, which is equivalent to perhaps themost common so-called \predictor-corrector" scheme, and may be computed in the following order:predictor : y�n+1 = yn + hf(yn; tn)corrector : yn+1 = yn + h2 hf(yn; tn) + f(y�n+1; tn+1)i:The \predictor" (which is simply an explicit Euler estimate of yn+1) is only \stepwise 2nd-orderaccurate". However, as we shown below, calculation of the \corrector" (which looks roughly like arecalculation of yn+1 with a trapezoidal rule) results in a value for yn+1 which is \stepwise 3rd-orderaccurate" (and thus the scheme is globally 2nd-order accurate).Applying an RK2 method (for some value of the free parameter �) to the model problem y0 = �yyields yn+1 = yn + �1� 12��h�yn + � 12��h�(1 + �h�)yn= �1 + �h+ �2 h22 �yn , �yn ) � = 1 + �h+ �2 h22 :The ampli�cation factor � is seen to be a truncation of the Taylor series of the exact value e�h =1 + �h + �2h22 + �3h36 + : : : We thus see that the leading order error of this method (for any valueof �) is proportional to h3 and, over a speci�ed time interval (t0; t0 + T ), an RK2 method issecond-order accurate. Over a large number of timesteps, the method is stable i� j�j � 1; thedomain of stability of this method is illustrated in Figure 8.7.
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Figure 8.7: Stability of the numerical solution to y0 = �y in the complex plane �h using RK2.8.6.2 A popular fourth-order Runge-Kutta method (RK4)The most popular fourth-order Runge-Kutta method isk1 = f�yn; tn�k2 = f�yn + h2 k1; tn+1=2�k3 = f�yn + h2 k2; tn+1=2�k4 = f�yn + h k3; tn+1�yn+1 = yn + h6k1 + h3�k2 + k3�+ h6 k4 (8.11)
This scheme usually performs very well, and is the workhorse of many ODE solvers. This particularRK4 scheme also has a reasonably-clear geometric interpretation, as discussed further in class.A derivation similar to that in the previous section con�rms that the constants chosen in (8.11)indeed provide fourth-order accuracy, with the ��� relationship again given by a truncated Taylorseries of the exact value: � = 1 + �h+ �2 h22 + �3 h36 + �4 h424 :Over a large number of timesteps, the method is stable i� j�j � 1; the domain of stability of thismethod is illustrated in Figure 8.8.
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Figure 8.8: Stability of the numerical solution to y0 = �y in the complex plane �h using RK4.8.6.3 An adaptive Runge-Kutta method (RKM4)Another popular fourth-order scheme, known as the Runge-Kutta-Merson method, isk1 = f�yn; tn�k2 = f�yn + h3 k1; tn+1=3�k3 = f�yn + h6 (k1 + k2); tn+1=3�k4 = f�yn + h8 (k1 + 3k3); tn+1=2�y�n+1 = yn + h2 k1 � 3h2 k3 + 2hk4k5 = f�y�n+1; tn+1�yn+1 = yn + h6 k1 + 2h3 k4 + h6k5:
(8.12)

Note that one extra computation of f is required in this method as compared with the method givenin (8.11). With the same sort of analysis as we did for RK2, it may be shown that both y�n+1 andyn+1 are \stepwise 5th-order accurate", meaning that using either to advance in time over a giveninterval gives global 4th-order accuracy. In fact, if ~y(t) is the exact solution to an ODE and yn takesthis exact value of ~y(tn) at t = tn, then it follows after a bit of analysis that the errors in y�n+1 andyn+1 are y�n+1 � ~y(tn+1) = � h5120 ~y(v) +O(h6) (8.13)yn+1 � ~y(tn+1) = � h5720 ~y(v) +O(h6): (8.14)Subtracting (8.13) from (8.14) givesyn+1 � y�n+1 = h5144 ~y(v) +O(h6);



8.6. RUNGE-KUTTA METHODS 91which may be substituted on the RHS of (8.14) to giveyn+1 � ~y(tn+1) = �15(yn+1 � y�n+1) +O(h6): (8.15)The quantity on the LHS of (8.15) is the error of our current \best guess" for yn+1. The �rst termon the RHS is something we can compute, even if we don't know the exact solution ~y(t). Thus, evenif the exact solution ~y(t) is unknown, we can still estimate the error of our best guess of yn+1 withquantities which we have computed. We may use this estimate to decide whether or not to re�neor coarsen the stepsize h to attain a desired degree of accuracy on the entire interval. As with theprocedure of adaptive quadrature, it is straightforward to determine whether or not the error onany particular step is small enough such that, when the entire (global) error is added up, it will bewithin a prede�ned acceptable level of tolerance.8.6.4 A low-storage Runge-Kutta method (RKW3)Amongst people doing very large simulations with specialized solvers, a third-order scheme which israpidly gaining popularity, known as the Runge-Kutta-Wray method, isk1 = f�yn; tn�k2 = f�yn + �1 h k1; tn + �1 h�k3 = f�yn + �2 h k1 + �3 h k2; tn + �2 h�yn+1 = yn + 1 h k1 + 2 h k2 + 3 h k3; (8.16)where �1 = 8=15; �2 = 1=4; �3 = 5=12;�1 = 8=15; �2 = 2=3;1 = 1=4; 2 = 0; 3 = 3=4:
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Figure 8.9: Stability of the numerical solution to y0 = �y in the complex plane �h using third-orderRunge-Kutta.


