RESEARCH ARTICLE

Paternal and grandpaternal ages at conception and descendant telomere lengths in chimpanzees and humans

Dan T. A. Eisenberg1,2 | Justin Tackney3 | Richard M. Cawthon4 | Christina Theresa Cloutier3 | Kristen Hawkes3

1Department of Anthropology, University of Washington, Seattle, Washington
2Center for Studies in Demography and Ecology, University of Washington, Seattle, Washington
3Department of Anthropology, University of Utah, Salt Lake City, Utah
4Department of Human Genetics, University of Utah, Salt Lake City, Utah

Correspondence
Dan Eisenberg, Campus Box 353100, Seattle, WA 98195.
Email: dtae@dtae.net

Abstract

Telomeres are repeating DNA at chromosome ends. Telomere length (TL) declines with age in most human tissues, and shorter TL is thought to accelerate senescence. In contrast, older men have sperm with longer TL; correspondingly, older paternal age at conception (PAC) predicts longer TL in offspring. This PAC-effect could be a unique form of transgenerational genetic plasticity that modifies somatic maintenance in response to cues of recent ancestral experience. The PAC-effect has not been examined in any non-human mammals.

Objectives: Here, we examine the PAC-effect in chimpanzees (Pan troglodytes). The PAC-effect on TL is thought to be driven by continual production of sperm—the same process that drives increased de novo mutations with PAC. As chimpanzees have both greater sperm production and greater sperm mutation rates with PAC than humans, we predict that the PAC-effect on TL will be more pronounced in chimpanzees. Additionally, we examine whether PAC predicts TL of grandchildren.

Materials and methods: TL were measured using qPCR from DNA from blood samples from 40 captive chimpanzees and 144 humans.

Results: Analyses showed increasing TL with PAC in chimpanzees (p = .009) with a slope six times that in humans (p = .026). No associations between TL and grandpaternal ages were found in humans or chimpanzees—although statistical power was low.

Discussion: These results suggest that sperm production rates across species may be a determinant of the PAC-effect on offspring TL. This raises the possibility that sperm production rates within species may influence the TL passed on to offspring.

Keywords
adaptive intergenerational plasticity, aging, epigenetics, evolution, life history

1 | INTRODUCTION

Telomeres are repeating DNA sequences at the ends of chromosomes that protect and buffer genes from nucleotide loss as cells divide (Blackburn & Gall, 1978). In many human tissues, telomere lengths (TL) are shortened by cellular proliferation and as a result TL declines with age (Ishii et al., 2006; Kimura et al., 2008a; Olovnikov, 1971; Watson, 1972). As cell replication generally requires a minimal TL, shortened TL is thought to contribute to senescence (Harley, 1991). Consistent with this, people with shorter telomeres have reduced survival (Bakaysa et al., 2007; Cawthon, Smith, O'Brien, Sivatchenko, & Kerber, 2003; Ehlenbach et al., 2009; Fitzpatrick et al., 2011; Honig, Schupf, Lee, Tang, & Mayeux, 2006; Kimura et al., 2008b; Martin-Ruiz, Dickinson, Keys, Rowan, Kenny, & von Zglinicki, 2006).

While it is well established that TL shortens with age in most proliferating tissues in humans (e.g. Ishii et al., 2006; Kimura et al., 2008a), sperm TL is an exception—older men have sperm with longer telomeres (Allsopp et al., 1992; Baird et al., 2006; Kimura et al., 2008a). This may be explained by the fact that telomerase (an enzyme that extends TL) activity is high in the testes (Wright, Piatyszek, Rainey, Byrd, & Shay,
The mechanistic biology of the PAC-effect leads to the prediction that chimpanzees should show a greater PAC-effect than humans, while the adaptive intergenerational inertia hypothesis leads to less clear predictions. Like humans, chimpanzees show an increase in genome-wide de novo mutation rate with PAC, but the rate in chimpanzees is estimated to be 50% greater than humans for each increased year of paternal age (Venn et al., 2014). This is thought to be driven by a more promiscuous mating system that has selected for increased sperm competition and a 3.4× more massive testis (body weight adjusted) in chimpanzees than humans to enable greater sperm production (Venn et al., 2014; Wong, 2014). As the PAC-effects on TL and on mutation rates are thought to be similarly driven by the proliferative process of sperm production, we predict that the PAC-effect on TL will also be greater in chimpanzees than humans.

Alternatively, it has been suggested that the PAC-effect on TL is an adaptive intergenerational signaling mechanism that depends on intergenerational stability in experienced environments between male ancestors and direct descendants (Eisenberg, 2011). Humans have elaborate culture and accumulation of social and material resources which are transmitted to offspring (e.g., Smith et al., 2010). This could create greater intergenerational stability in experienced human environments than chimpanzees. On this basis, we would expect the PAC-effect on TL to be more strongly selected for in humans, and for humans thus to have a greater PAC-effect on TL than chimpanzees. However, humans also show dramatic behavioral diversity over time and space which might equate to less intergenerational stability and the PAC-effect being less strongly selected for in humans than chimpanzees.

Here, we use previously reported TL data from chimpanzees and humans (Cawthon et al., 2003; Tackney, Cawthon, Coxworth, & Hawkes, 2014) to compare the PAC-effect in 40 female chimpanzees with 144 humans. As a secondary aim, we attempt to replicate the previously observed transmission of the PAC-effect across multiple generations—particularly whether grandfather age at conception of parents predicts grandchildren’s TL (Eisenberg et al., 2012) in a subset of these chimpanzees and humans with known or estimated dates of birth of grandparents.

2 | MATERIALS AND METHODS

2.1 | Samples

The samples and laboratory analysis have been described in detail previously (Cawthon et al., 2003; Tackney et al., 2014). Briefly, blood was drawn from female chimpanzees during routine health checks of captive populations at the Southwest National Primate Research Center hosted by the Texas Biomedical Research Institute (formerly Southwest Foundation for Biomedical Research) in San Antonio, Texas and at the Yerkes National Primate Research Center at Emory University in Atlanta, Georgia. Samples were chosen for the purposes of a previous study to maximize the age range of the chimpanzee population (6.2–56.7 years). For the human samples, TL measured from blood samples from the Utah CEPH collection (northern and western European descent). The human data analyzed here consisted of unrelated females picked to match the age range of the chimpanzee samples (Tackney et al., 2014), and unrelated males and females over the age of 60-year old previously reported in a survival analysis (Cawthon et al., 2003). If first degree relatives were found between these two combined humans datasets at least one of the relatives were excluded so that no known first degree relatives remained.

Dates of birth were retrieved from ancestors to calculate PAC. Dates of birth were only available or estimable for a subset of individuals (indicated by in Table 1). Eighteen chimpanzee fathers, four mothers, seven paternal grandfathers, and four maternal grandfathers did not have known birth dates, but had their dates of birth estimated using standard age estimation procedures (Goodall, 1968, 1983, 1986) and were retained in the analyses here. The additional error introduced by estimated birth dates should act to bias against our primary
hypothesis by attenuating any associations between PAC and TL in chimpanzees.

We note that the term PAC is used to refer to the PAC-effect on TL and for analyses here. In fact, in the analyses paternal ages at birth are actually utilized, but as gestation duration contributes very little to the variation in PAC and the biologically important effect is thought to occur at conception, we use the term PAC here.

2.2 | Statistical methods

Hypotheses were tested with multivariate linear regressions with robust standard errors run in Stata 11.2. Power analyses were conducted with the "powerreg" command in Stata. Significance was defined as \(p < .05 \).

2.3 | Laboratory analysis

Human DNA was phenol–chloroform or GentraSystems PureGene extracted from whole blood while chimpanzee samples were extracted using Qiagen QIAamp DNA Blood Mini Kits. PCR reactions were set up as described previously (Cawthon et al., 2003; Tackney et al., 2014). As the coefficient of variation has recently been recognized to be an invalid statistic to assess TL measurement reliability, we instead use the intraclass correlation coefficient (ICC) (Eisenberg, in press; Verhulst et al., 2015) which estimates the percent of variation attributable to individuals versus to measurement error. Individual and average ICCs were calculated using a one-way random effects model to calculate absolute agreement between the averages of the same samples run in triplicate on different runs with the ICC command in Stata 14.1. Individual and average ICC values correspond to ICC(1) and ICC(k) in McGraw and Wong (1996). Individual ICC gives an estimate of the reliability of measures of samples analyzed on one run (in triplicate), while average ICC gives an estimate of the reliability of the average TL estimate of a sample measured across multiple runs. Forty two of the human samples were run separately in triplicate on two separate runs and had an individual ICC of 0.93 (95% CI: 0.87–0.96) and average ICC of 0.96 (95% CI: 0.93–0.98). Thirty five of the chimpanzee samples were run separately in triplicate on four separate runs and had an individual ICC of 0.84 (95% CI: 0.75–0.91) and average ICC of 0.95 (95% CI: 0.92–0.97). The overlapping confidence intervals of ICC measures between humans and chimpanzees and near identical average ICC estimates suggests that the TL measurement error is similar in both species. While conventional rules of thumb suggest that these ICC values are excellent (Cicchetti, 1994), we are not aware of any other reports of ICC values in the telomere biology literature to compare these to.

3 | RESULTS

Averages ages, PAC, paternal grandfather ages at father’s conception (pGPAC), and maternal grandfathers age at mothers’ conception (mGPAC) for the human and chimpanzee samples are show in Table 1. Paternal age did not significantly differ between chimpanzees from the two different colonies (\(t = -0.38, p = .703 \)). We note that the average chimpanzee PACs in our captive sample (mean = 17.7, 95% CI: 15.6–19.7) is lower than has been found in a wild population (mean = 24.08, 95% CI: 23.83–24.34; Langergraber et al., 2012). The chimpanzee sample is all female while the human sample contains 92 females and 52 males (63.9% female).

TABLE 1 Description statistics

<table>
<thead>
<tr>
<th></th>
<th>Human</th>
<th></th>
<th>Chimp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Mean (sd)</td>
<td>Range (diff)</td>
</tr>
<tr>
<td>Age</td>
<td>144</td>
<td>61.3 (22.0)</td>
<td>7.4–97.3 (89.9)</td>
</tr>
<tr>
<td>PAC(a)</td>
<td>144</td>
<td>32.4 (8.2)</td>
<td>19.7–62.9 (43.2)</td>
</tr>
<tr>
<td>pGPAC(b)</td>
<td>120</td>
<td>34.1 (9.7)</td>
<td>21.1–65.6 (44.5)</td>
</tr>
<tr>
<td>mGPAC(c)</td>
<td>89</td>
<td>36.2 (11.5)</td>
<td>17.9–69.5 (51.6)</td>
</tr>
</tbody>
</table>

\(a\)Paternal age at conception.
\(b\)Paternal grandfather age at conception.
\(c\)Maternal grandfather age at conception.
Limited to individuals for which paternal age at conception is available.

TABLE 2 Linear regression to evaluate paternal age at conception effects on telomere lengths in chimps and humans

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chimpanzee</td>
<td>1.47***</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Age</td>
<td>−0.0063***</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Chimpanzee X age</td>
<td>−0.013*</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Male</td>
<td>0.0099</td>
<td>(0.764)</td>
</tr>
<tr>
<td>PAC</td>
<td>0.0049*</td>
<td>(0.016)</td>
</tr>
<tr>
<td>Chimpanzee X PAC</td>
<td>0.023*</td>
<td>(0.026)</td>
</tr>
<tr>
<td>Y-intercept</td>
<td>1.34***</td>
<td>(0.000)</td>
</tr>
<tr>
<td>N</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>Adj. (R^2)</td>
<td>0.867</td>
<td></td>
</tr>
</tbody>
</table>

* \(p < .05 \), *** \(p < .001 \).
A multivariate regression model including both chimpanzees and humans together in the same analysis and controlling for age and sex shows a significant PAC-effect (Table 2; \(p < .016 \)). Furthermore, the PAC-effect is significantly greater in chimpanzees than humans (\(p < .026 \)). The differences in PAC-effects in chimpanzees and humans are illustrated in Figure 1. The estimates from Figure 1 suggest a six fold greater PAC-effect in chimpanzees than humans. The PAC-effects on TL did not show a curvilinear relationship in humans or in chimpanzees (quadratic term \(p > .891 \)). Unlike previous work with partially overlapping data (Tackney et al., 2014), our results show a significantly greater age decline in TL in chimpanzees than humans (\(p = .011 \)). However, when the analysis is restricted to only include humans that match the age range of chimpanzees (<57), no significant difference in age related decline were observed between humans and chimpanzees (\(p = .432 \)).

Associations of pGPAC and mGPAC with TL in humans and chimpanzees are reported in Table 3. There were no significant effects of pGPAC or mGPAC in either humans or chimpanzees. However, all beta coefficients were in the expected positive direction. There was a near significant effect of mGPAC in humans. While also not significant, chimpanzee betas are larger than in humans. Assuming the previous effect sizes observed for pGPAC in Eisenberg et al. (2012), with the sample sizes available here we had 5.4% power to detect this effect as different from zero in chimpanzees and 34.5% power in humans. Assuming the pGPAC-effect is six times larger in chimpanzees than previously observed in humans (as observed for the PAC-effect above), this would increase our power to 7.3%.

4 | DISCUSSION

These results are the first examination of the PAC-effect on TL in a non-human mammal and the second study to look for the PAC-effect across more than one generation. Consistent with predictions that a greater sperm production rate should lead to a more rapid increase in sperm TL with age, we find that chimpanzees have a significant, six fold greater PAC-effect on TL than humans. We were unable to replicate with significance a GPAC-effect reported previously (Eisenberg et al., 2012), but this is not surprising given the low statistical power we had to detect these effects. Still, it is noteworthy that all GPAC-effects were in the expected direction and that chimpanzee GPAC associations showed considerably (but non-significantly) greater slopes than humans.

A previous study using an overlapping dataset to the one utilized here showed no difference in the age related decline in TL between humans and chimpanzees (Tackney et al., 2014), while the current analysis shows a greater age related decline in chimpanzees. This is likely
due to the expanded human sample which is not closely age matched with the chimpanzees as in the previous analysis (Tackney et al., 2014). Accordingly, matching the age ranges between chimpanzee and humans eliminated the association. Inclusion of more elderly humans causing a lower estimated age related decline in TL is consistent with past studies which have suggested that the rate of decline in TL decreases with age in humans (possibly due to survival bias effects, reviewed in Eisenberg, 2011; Lapham et al., 2015). Nonetheless, it is possible the greater PAC-effect in chimpanzees is reflective of some underlying factor which causes faster changes in TL in chimpanzees than humans. However, in chimpanzees the PAC-effect is 150% of the magnitude of the age related decline while in humans the PAC-effect is only 79% of the magnitude of the age decline in TL (based on estimates from Table 2). This suggests that even accounting for possible “faster” changes in TL in chimpanzees, the PAC-effect is still relatively greater in chimpanzees than humans.

One factor which might help explain the findings here stems from the fact that chimpanzees have approximately half the body mass of humans (Smith & Jungers, 1997). Somatic telomerase activity has been found to decrease with body mass across mammalian species (Gomes et al., 2011; Gorbunova & Seluanov, 2009). However, in almost all mammalian species larger than 10 kg, somatic telomerase activity is undetectable, and thus shows no relationship with body mass across these larger species (Gomes et al., 2011). Furthermore, no examined primate species showed detectable somatic telomerase activity in the Gomes et al. (2011) analysis (although the cellular replicative capacity of the prosimian Lemur catta has been shown to be qualitatively greater than anthropoid primates (Steinert, White, Zou, Shay, & Wright, 2002)). For telomerase activity to explain the findings of this article, telomerase activity would need to affect sperm TL with age. Little is known about how testicular telomerase activity varies across species. There is limited evidence that Macaca fascicularis (crab-eating monkey) show less testicular telomerase activity than either M. fuscata (Japanese Monkey) or M. mulatta (rhesus) (Kakuo, Asaoka, & Ide, 1999). However, M. fascicularis is about half as massive as M. fuscata or M. mulatta—the opposite of expected if larger bodied primates had lower testicular telomerase activity.

This article, and most other TL PAC-effect work, have interpreted associations as reflecting longitudinal shortening of TL in sperm as males age. However, it is possible that these associations reflect selection effects—such as healthier males with longer constitutive TL being more likely to father offspring at later ages and/or birth order effects. These sorts of selection effects are unlikely for several reasons. First, telomerase activity (which extends TL) is high in the testes (Achi, Ravindranath, & Dym, 2000; Bekar et al., 2004; Fradiani, Ascenzi, Lavitrano, & Donini, 2004; Gardner et al., 2007). Second, the PAC-effect is linear and consistent, whether looking at the TL of offspring of various aged fathers, or sperm TL of various aged men (Eisenberg et al., 2012; Kimura et al., 2008a). Third, the PAC-effect is not attenuated by adjustment for socioeconomic status, birth order and other likely confounders (Eisenberg et al., 2012; Prescott, Du, Wong, Han, & De Vivo, 2012). Fourth, selection effects would likely vary across cultures and species, yet the PAC effect has been demonstrated from cohorts of people from the United States, Canada, United Kingdom, Denmark, and the Philippines (Eisenberg et al., 2012; Kimura et al., 2008a; Unryn et al., 2005; Wojcicki et al., 2016) and in this article in chimpanzees. As chimpanzees do not mate monogamously nor do chimpanzee males exhibit parental care, birth-order effects are unlikely to manifest similarly in chimpanzees as in humans.

Finally, within the same men sperm TL shows a cross-sectional increase with age while blood shows a cross-sectional decrease (Aston et al., 2012)—inconsistent with constitutively longer telomeres predicting increased probability of donating sperm with age. While more definitive illumination of this issue would require repeat longitudinal collection of sperm samples in men as they age or sibling-based analyses, these convergent evidence strongly suggest that sperm TL does in fact increase with age within males and that they do so to a much greater degree in chimpanzees than in humans.

The adaptive significance, if any, of the greater PAC-effect on TL in chimpanzees than in humans is not entirely clear. Sperm production rate and testis size are thought to be influenced largely by the degree of selection for sperm competition based on different mating systems (Short, 2001). It may be that the PAC-effect on TL is best viewed as an evolutionary spandrel, changing across species primarily due to selection for different sperm production rates. Alternatively, it is possible that the PAC-effect on TL is selectively modulated based on the degree to which it effectively acts as an intergenerational predictive adaptive response. That is, if paternal age is more strongly correlated with offspring’s likelihood of living to a late age in a species than we would expect that the PAC-effect would be more strongly selective for. For example, it might be that in chimpanzees, maintaining social ranks and concomitant likelihood of successful siring of offspring at late ages (Newton-Fisher, Thompson, Reynolds, Boesch, & Vigilant, 2010; Wroblewski et al., 2009) is more dependent on later life physiological status and health than in humans. To the extent that TL influences physiological status, than their might be stronger selection on PAC in chimpanzees as a modulator of investments into maintaining a durable soma versus other energetic allocations.

The results in this article suggest that greater sperm production rates, as indexed by larger testis sizes may predict greater increases in sperm TL with age. However, this study only compared two species, and it is possible that these differences are driven by many other factors which distinguish these species. To more rigorously test this hypothesis, we suggest careful targeted sampling of species for variation in testis size and for phylogenetic relationships to maximize statistical power (Arnold, Nunn, & Xia, 2010). Finally, as testis size varies within species (Simmons, Firman, Rhodes, & Peters, 2004) and testis size can be influenced even in adulthood by sex hormones (Hembree et al., 2009), it is possible that environmental influences and physiological status may modify testis size and sperm production rates and thereby modulate the TL that men pass on to their descendents.
ACKNOWLEDGMENTS

Thanks to Hilary Bethancourt for help with merging data and feedback on study design; Amy Klegarth and two anonymous reviewers for feedback on the manuscript; Cori Mar for statistical advice; Dr. Silvia Smith for assistance with logistics early in this project and the keepers, veterinarians, and biological material procurement staff at both Yerkes and Southwest National Primate Research Centers. Access to the Utah CEPH DNA samples was provided by Dr. Mark Leppert. Finally, the authors are in debt to the laboratory of Dr. Vicente Planelles, and in particular Dr. Alberto Bosque, who generously provided time and space in their BSL-2 research facilities for the chimpanzee DNA extractions and the storage of primate blood samples. Partial support for this research came from an Eunice Kennedy Shriver National Institute of Child Health and Human Development research infrastructure grant, R24 HD042828, to the Center for Studies in Demography & Ecology at the University of Washington; National Science Foundation (grant number BCS 0717886 to Hawkes); Contract grant sponsor: National Institutes of Health (grant number P51 RR00165 to Yerkes National Primate Research Center; grant numbers P5 1RR013986 and OD P51 OD011133 to Southwest National Primate Research Center). DTAE conceived of this study, conducted all statistical analyses and wrote the manuscript. JT conducted most telomere length measurements. RMC supervised all telomere length measurements. CTC led sample and data acquisition from the primate centers. KH ran the original study script. JT conducted most telomere length measurements. RMC provided time and space in their BSL-2 research facilities for the chimpanzee DNA extractions and the storage of primate blood samples. Partial support for this research came from a Eunice Kennedy Shriver National Institute of Child Health and Human Development research infrastructure grant, R24 HD042828, to the Center for Studies in Demography & Ecology at the University of Washington; National Science Foundation (grant number BCS 0717886 to Hawkes); Contract grant sponsor: National Institutes of Health (grant number P51 RR00165 to Yerkes National Primate Research Center; grant numbers P5 1RR013986 and OD P51 OD011133 to Southwest National Primate Research Center). DTAE conceived of this study, conducted all statistical analyses and wrote the manuscript. JT conducted most telomere length measurements. RMC supervised all telomere length measurements. CTC led sample and data acquisition from the primate centers. KH ran the original study which generated the chimpanzee telomere length measurements.

REFERENCES

Eisenberg, D. T. A. (2016). Telomere length measurement validity: the coefficient of variation is invalid and cannot be used to compare quantitative polymerase chain reaction and Southern blot telomere length measurement techniques. Int J Epidemiol [Epub ahead of print].

