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RNA-binding proteins control multiple steps of nuclear and cyto-
plasmicRNAprocessing including alternative splicing, stabilization,
transport and translational repression of RNAs. Here we present
existing evidence showing that RNA-binding proteins expressed in
the nervous system are required in many steps of its development
and play multiple roles during the life of a neuron. We describe

emerging views based on recent studies strongly suggesting that
RNA-binding proteins cooperate actively within neurons in large
multifunctional complexes to regulate the £ow of information en-
coded in ribonomes in a coordinated fashion. NeuroReport
15:2567^2570�c 2004 Lippincott Williams &Wilkins.

INTRODUCTION
During development of the nervous system, cells constantly
have to make decisions. Gene expression must be therefore
tightly regulated for a progenitor to adopt a particular fate
or a neuron to acquire its complex and dynamic architec-
ture. Spatial and temporal control of gene expression within
neural cells is achieved at the transcriptional and post-
transcriptional levels. While transcription sets the transcrip-
tome of a given cell at a given time, post-transcription tunes
gene expression within differentiating cells by modulating
the diversity, the level and the localization of mRNAs. 2–8%
of the total number of genes in animal genomes encode
RNA-binding proteins [1]. Among them, sequence-specific
RNA-binding proteins can be distinguished from other
RNA-binding proteins controlling the general splicing,
export and translation machinery of RNAs, because they
bind specific RNA targets. For convenience, we will refer to
sequence-specific RNA-binding proteins as RBPs. RBPs
control multiple steps of nuclear and cytoplasmic RNA
processing including alternative splicing, stabilization,
transport and translational repression of RNAs. RBPs
expressed in the developing nervous system include for
instance ELAV/Hu, FMRP, Nova, ZBP, CPEB, Musashi,
Staufen and QKI. The molecular function of these
RBPs is mediated through their ability to bind, via their
RNA-binding domains (RRM, KH domain, RGG box,
DRBD), specific sequences (Zipcode, ARE, CPE, U-rich), or
structural motifs (G quartet, A-form double helix RNA)
located in target pre-messenger or messenger RNAs
(reviewed in [2–4]).
In this review, we first present evidence showing that

RBPs are required in many steps of neural development and
that a given RBP plays multiple roles during neuronal
differentiation. Second, we describe the emerging view that
ribonomes, representing subsets of RNAs, are post-tran-
scriptionally regulated by RBPs and discuss target sequence
specificity. Third, several recent studies will be presented,

supporting a model where RBPs cooperate actively within
neurons in large multifunctional complexes to regulate in a
coordinate fashion the flux of information from the nucleus
to distal parts of the cell.

RNA-BINDING PROTEINS CONTROL MULTIPLE
ASPECTSOFNERVOUS SYSTEMDEVELOPMENT
The developing nervous system produces an extraordinarily
high number of diverse neurons and glia from a limited
number of precursors. Neural cell diversity is generated via
asymmetric division of neuroblasts occurring in a stem cell
fashion. Mutant analyses have shown that several RBPs are
involved in cell fate decisions during this step of neural
development. In Drosophila, Staufen and Musashi are
required during asymmetric division of neural precursors
[5,6]. In mice, Musashi proteins seem to be involved in self-
renewal and maintenance of CNS stem cell populations [7].
Recently, a Xenopus RNA-binding protein, Xseb4R, has been
involved in neural cell fate decisions since altering its level
in retinoblasts affects retinal cell type distribution [8].
Together, these data suggest that post-transcriptional gene
regulation in early phases of neural development may be
crucial for generating cell diversity.
Among eukaryotic cells, neurons acquire by far the most

complex and dynamic architectures. These hyperpolarized
cells extend axons and many dendrites that navigate over
long distances and establish numerous and plastic synapses
with their targets. The ELAV/Hu proteins and the fragile X
protein, FMRP, are involved in neurite growth and guidance
in the embryonic and adult developing nervous system.
While over-expression of Hu induces neurite outgrowth [9],
treatment of neuronal cells with antisense oligodeoxynu-
cleotides directed against HuD blocks their induction [10].
In Drosophila embryos, commissural neurons lacking ELAV
do grow but their axons fail to cross the midline (F.A.,
unpublished data). The Drosophila FMRP is also required for
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normal neurite extension, guidance, and branching as well
as axonal development in the mushroom bodies [11,12].
Dendrite morphogenesis requires the function of some RBPs
as well, as shown by Drosophila nanos, pumilio and FMRP
mutants displaying high-order dendritic branching defects
[13,14]. Few RBPs acting in differentiating glia have been
described. QKI for example has been shown to be important
in oligodendrocytes for their myelinization [15].
Interestingly, RBPs involved in neural development are

also involved in adult behavior. For example, ELAV/Hu
proteins are involved in spatial learning and memory in
rodents [16,17]. Staufen together with Pumilio is important
for long-term memory in Drosophila [18]. The learning and
cognitive impairments in Fragile X FMRP are thought to be
due to the key role of FMRP in synaptic growth, structure,
and long-term plasticity elucidated with knockout mice and
mutant flies (reviewed in [19]). FMRP has also been shown
to be involved in courtship and circadian rhythm in
Drosophila [20,21].
Neuronal viability requires RBPs as evidenced by Nova-1

mutant mice, which die postnatally from a motor deficit
associated with apoptotic neuronal death [22]. Together,
these data show that RBPs are virtually involved in all steps
of neural development, but also that a number of RBPs are
involved in multiple aspects of a neuron’s life, acting during
its differentiation and contributing to its physiological
function. Because the absence of FMRP is responsible for
the Fragile X syndrome and because Hu and Nova auto-
antibodies induced in cancers cause neurological paraneo-
plastic syndromes in man (reviewed in [23]), understanding
the role of these RBPs during normal neural development is
of great interest in designing therapeutic strategies for
patients suffering from these neuropathologies.

NEURAL RNA-BINDING PROTEINS AND THEIR
TARGETS:THERIBONOMICERA
For a decade, many efforts have been made to identify
neuronal RPB targets. It has become clear that RBPs bind to
many RNA targets in vitro, suggesting that they are involved
in many aspects of neuron differentiation. For instance, Gao
et al. demonstrated that the HuB RNA targets encode cell-
cycle regulators, transcription factors and other early-
response gene products in agreement with the involvement
of ELAV/Hu proteins in various functions of neural
development [24]. In Drosophila, functional in vivo binding
sites for ELAV have been defined in neuroglian and erect-
wing pre-mRNAs [25,26]. The past few years have seen a
rapid expansion in the identification of the in vivo RBP
targets based on novel protocols combining immuno-
precipitation of ribonucleoprotein (RNP) complexes
coupled with genomic technologies [27–30]. Consistent with
the abnormal neuron phenotypes found in both fragile X
patients and the Fmr1-knockout mouse, several FMRP
mRNA targets encoding proteins involved in axon guidance
or synaptic functions have been identified using micro-
arrays [29] (reviewed in [31]). The work of the Keene and
Darnell laboratories has led to the concept that multiple
nuclear and cytoplasmic subsets of pre-mRNAs and
mRNAs (ribonomes) encoding products involved in the
same regulatory pathways are being coordinately regulated
by RBPs during neuron differentiation (reviewed in [32]).
For example, Nova protein binds to a subset of pre-mRNAs
that encode components of inhibitory synapses [30]. There-

fore, as proposed by Keene, there might be, in the
developing neuron, ribonucleoprotein infrastructures regu-
lating the flow of genetic information between the genome
and the proteome, representing posttranscriptional operons,
in which RBPs would play pivotal roles [1,33].

RBPs bind RNA through one or more specific RNA-
binding domains (RRM, KH, RGG box). For example,
ELAV/Hu proteins bind ARE-containing RNA sequences
and FMRP bind G-quartet-containing RNA sequences
[31,34] but also interacts with U-rich RNAs in a yeast-three
hybrid system [35]. While numerous in vivo mRNA targets
have been identified for Hu and FMRP proteins, none has
yet been shown to be a common target of these distinct
RBPs. In a general manner, RBPs recognize and bind in vivo
specific mRNA targets and non-overlapping ribonomes
(references therein), reinforcing the idea that RBPs regulate
specific mRNA subsets. However, the zipcode of the chicken
b-actin mRNA, which is a target of ZBP-1, binds in vitro at
least six other RBPs, including HuC [36], suggesting that a
single mRNA may be post-transcriptionally regulated by
multiple RBPs. Moreover, a single RBP may be involved in
multiple steps of RNA processing as revealed by the
discovery that Hrp48, which regulates alternative splicing
[37], is also involved in the transport as well as the
translational repression of oskarmRNA in Drosophila oocytes
[38,39]. In neurons, SMN (survival of motor neuron),
another RBP which functions as part of a multiprotein
complex playing an essential role in the assembly of snRNPs
in the nucleus (reviewed in [40]), has been shown to
modulate axon growth and localization of b-actin mRNA in
growth cones of motor neurons [41]. These data raise the
possibility that SMN, beside its role in the nucleus, regulates
specific mRNAs or ribonomes in the cytoplasm, reinforcing
the idea that RNA processing in the nucleus and cytoplasm
are intimately coupled. In support of this, Hachet and
Ephrussi have demonstrated that splicing of oskar RNA in
the nucleus is a prerequisite for its proper cytoplasmic
localization in Drosophila oocytes [42]. Altogether, these data
suggest that in differentiating neurons, ribonomes may be
coordinately regulated by multiple RBPs in macromolecular
RNP complexes at all steps of RNA processing.

NEURONALRNA-BINDINGPROTEINS CO-
OPERATEWITHINLARGEMOTILE
MULTIFUNCTIONALRNPCOMPLEXES
In growth cones and synapses, the most distal tips of
neurons, signals are translated into local responses. How are
functions sent to appropriate sub-cellular locations? Recent
studies have demonstrated that axons and growth cones,
like dendrites and synaptic spines, contain all the machinery
for protein translation and that local protein synthesis plays
a functional role (reviews in [43–47]). Therefore, the ability
of these distal structures to translate mRNAs may provide
their rapid and adjustable responsiveness to external cues.
Local expression of proteins in growth cones and synaptic
boutons imposes a controlled translocation of mRNAs
within axons and dendrites. How are mRNAs transported
in these neurites and how are their repression, stability and
translation controlled?

mRNAs are found in RNP granules that can translocate
along microtubules (reviewed in [48]). Although the
granules have been directly visualized in neurons, relatively
little is known about their components. Recent studies show
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that RBPs are found in these moving granules, where they
may play distinct roles. Some granules are highly enriched
in Staufen [49], which is required for dendritic RNA
targeting [50] and may represent the core component of
these granules [51]. HuD has been identified as a compo-
nent of tau RNA-containing RNP granules [52], possibly
acting as an mRNA-stabilizing protein. FMRP, which has
also been found in motile RNA-containing granules within
neurites of PC12 cells [53], may repress the translation of its
RNA targets during their transport. Moving RNP granules
contain densely packed clusters of translationally dormant
ribosomes and may represent reservoirs of silent mRNA
maintained in a repressed state until reaching appropriate
subcellular destinations [49]. Recent work, aiming at
characterizing the FMRP complex, led to unexpected
results. The Drosophila FMRP (FMR1) forms a complex that
includes Argonaute2 (AGO2) and Dicer, two proteins that
mediate RNA interference (RNAi) [54,55]. Mammalian
FMRP interacts with microRNAs [55,56], which are small
non-coding RNAs involved in translation repression [57].
Together, these findings suggest that FMRP may regulate
translational repression of its targets via microRNAs and an
RNAi-related apparatus.
Other biochemical studies, aiming at identifying compo-

nents of neuronal granules, have shown that distinct RBPs
are part of the same RNP granules. For instance, Staufen
and FMRP, or HuD and ZBP1 can be isolated together in the
same RNP complexes [58,59]. Moreover, these RBP-contain-
ing RNP complexes also contain motor proteins such as
dynein and kinesin and components of the cytoskeleton
such as myosin [58–60]. These data indicate that RBP-
containing granules are transported within neurons in a
microtubule-dependent manner. Novel, live cell-imaging
techniques have indeed allowed visualization of such
cytoskeletal-based active transport of FMRP and SMN in
neuronal processes [53,61].
Together, these data support a model where RBPs are

part of large multifunctional motile RNP complexes
coordinately regulating the stability, transport and repres-
sion of mRNAs until they reach their appropriate location
within neurons. Because, the decision for a neural precursor
to generate a certain cell type or a growth cone to change
its trajectory depends on the correct localization of
mRNAs, it will be interesting to determine if the concept
of organized post-transcriptional regulation of ribonomes
represents a general mode of gene regulation in neural cells,
in which RBPs would process RNAs in a coordinated
fashion.
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