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One-step meta-analysis using individual
parficipant data (IPD)

» We walk through a one-step IPD meta-analysis using data from
Project INTEGRATE!, where observation-level data from multiple
studies is combined and analyzed in a single statistical model.

» The approach?3 we detail accommodates common features of
prevention trial dataq, including:

» Skewed outcomes with many zeroes
» Varying numbers of intervention conditions (two-arm and multi-arm studies)

» Differing number and timing of follow-up assessments

'"Mun et al. (2014); 2Huh et al (2014); 3Huh, Mun, Walters, Zhou, & Atkins (in press)
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One-step meta-analysis using IPD (cont.)

=» More analyfic flexibility with one-step IPD meta-analysis versus metao-
analysis using aggregate data

» Able to control for participant-level factors as covariates
» Model can be extended to evaluate moderators of freatment effects

» Distribution-appropriate analysis
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Outline

» The illustrative data from Project INTEGRATE
» Modeling zero-altered count outcomes from intervention trials
» Combining data from two-arm and multi-arm trials

» Conducting a one-step IPD meta-analysis with a Bayesian hurdle
model

» Conclusions




5/25

llustrative data from Project INTEGRATE 1.0

» A meta-analysis project of 24 studies evaluating brief
motivational interventions (BMIs) for college drinking.!

» The example IPD3 includes a total of 13,534 assessments from
5,952 individuals across 15 studies.

» |12 two-arm trials, 2 three-arm ftrials, 1 four-arm frial

» We focus on 15 randomized conftrol frials that evaluated one
of three BMIs:

» |ndividual Motivational Interview with Personalized Feedback
(MI+PF)

» Standalone Personalized Feedback (PF)
» Group Motivational Interview (GMI)

'"Mun et al. (2014); 3Huh et al. (in press)
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llustrative data from Project INTEGRATE 1.0
(cont.)

» Qutcome: Average number of drinks on a typical drinking day
» Assessed using the Daily Drinking Questionnaire (DDQ)*

» Fqach participant had a baseline assessment and 1 to 3 follow-up
assessments, up to 12 months post-baseline.

4Collins, Parks, & Marlatt, 1985
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Important to attend to excess zeroes...

®» Behavioral outcomes in prevention research frequently
contain many zeroes. Examples include...

» Alcohol and other drug use (AOD)
» Sexual risk behaviors

» Suicide-related behaviors

2500

2000

» Zeroes may be a key feature of o

the outcome and not just a
nuisance in the data...
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Important fo attend to excess zeroes...
(cont.)

®» An infervention may have an effect on either:
» The decision to drink vs. not to drink (O vs. 1 or more)

» The number of drinks when drinking is non-zero (1, 2, 3, ...)
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Accounting for zero-altered outcomes using

a hurdle model...

2500

» Hurdle models, a type of two-part model, are > 2000
appropriate for zero-inflated count data, such § 1500
as number of drinks.>¢ g 1000
L 500
0
A threshold must be crossed from zero into
positive counts.
250
. . . . > 200
®» The outcome is effectively divided into two parts § 150
= No drinking vs. any drinking Z‘g‘ 100
= | ogistic regression 0
0

» Amount of drinking when drinking:

» /ero-fruncated count regression (Poisson or negative
binomial)

Zero 1+
Drinks Drinks
Any Drinking
T
1 5 10 15

Number of Drinks
when Drinking

SAtkins, Baldwin, Zheng, Gallop, & Neighbors (2013); éHuh, Kaysen, & Atkins (2014)
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Combining studies with differing numbers of
tfreatment conditions.

» The majority of randomized ftrials (>78%) are two-arm studies,”
however, multiple-arm trials are not uncommon.

= |n Project INTEGRATE 1.0, one in five studies evaluated multiple
treatments.

» A common challenge is how to combine studies with varying
numbers of arms.8

’"Hopewell, Dutton, Yu, Chan & Altman (2010); 8Gleser & Olkin (2009)
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Is a multilevel model (MLM) with study at the
highest level the logical choice?

®» The motivating example data from Project INTEGRATE 1.0 could be
modeled in a 3-level model...

» Assessments (Level 1) nested within
» Participants (Level 2), which are nested within

» Studies (Level 3)

» Average treatment effects can be included as predictors (fixed
effects), with unique treatment effects for each study.

® e, a“random slope” for treatment
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A one-step IPD meta-analysis using
a 3-level MLM

Outcome at baseline

P Hurdle(OUTCOME;+ ;5) = / y

by + b;OUTCOME,_, ;s + b,COVARIATE, +
values of the bSMI—PFiS + b4PFis + bSGMIis T €
Ugs T

/ulSMI_PFS + u, PF;¢ + u3 ,GMI;5 + L

Participant-specific intercept for
variability across individuals

Additional covariate(s)
Average intervention

effect sizes of MI+PF,
PF, and GMI

The deviations of each study
from the average intervention
effect (study-specific slopes for
each treatment type vs. control)

t = fime point of assessment
i = individual
s = study
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The previous model is rank deficient as not all
treatment types were evaluated in all studies...

Studies (15)

S

(32)

N’

o 14

l2~ MI+PF X X X X X X v v X v v X v v v
——

S PF v X X v v v v X v X v v X v X
S GMI X v v X X X v X X X X X X X X
(0]

S

o

» 45 possible study by treatment combinations
But 26 combinations (58%) don't exist.

Not possible to calculate a treatment effect in studies that did not
evaluate a particular tfreatment, without a methodological intervention.
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What are our optionse

» Pool active intervention conditions within a study or keep only 1
active tfreatmente

» Reduces each study to a 2-arm RCT design.
» | oss of information = not ideal

» Apply parameter constraints to the model?
= May not be ideal either...

» Exclude the non-existent study by treatment combinations that are
making the model rank deficient.
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Defining “randomized group” at the highest
level of an MLM

Study: Study 2 Study 7.1 Study 7.2 | ... | Study 21 Study 22
Randomized group: |PF||CTRL | [ GMI || CTRL | | GMI || CTRL | | MI+PF || PF || CTRL || MI+PF | [ CTRL

» The highest level of the model is the unique randomized group rather
than study.

» This is analogous to converting a two-way ANOVA to an equivalent one-
way ANOVA, where each study by treatment combination is defined as a
separate group

» Missing study by treatment combinations are excluded.

» There is no fixed effect for tfreatment.

®» |nfervention effect sizes are calculated from the random effect
coefficients.
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A multilevel hurdle model with randomized group
at the highest level: logistic portion

The probability of participantiin Unique
randomized group g drinking at randomized group
assessment t effect
Pr[DRINKS;50,i5>0]\
log (Pr[DRINKsDO,ig:o]) a ‘l’
bO(B) + b10UTCOMEt=0,ig(B) + bZCOVARIATEig(B) + UogB) T Toig(B)

I = repeated measure
i = participant
g = unigue randomization group
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A multilevel hurdle model with randomized group
at the highest level: negative binomial porfion

The expected number of drinks when drinking
was non-zero for participant i in randomized
group g drinking at assessment t

v

log(E[DRINKS;>0,ig|[DRINKS;5,;4 > 0) =
bo(c) + bloUTCOMEt=O,ig + bz(C)COVARIATElg + uOg(C) + TOig(C)

The negative binomial portion is essentially the same,
except that it focuses on drinking quantity when non-
zero.

I = repeated measure
i = participant
g = unigue randomization group
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Using a Bayesian approach to estimate
the meta-analysis model...

» To calculate a freatment effect using the model described, a full
statistical distribution for each unique randomized group is needed.

» MLMs are commonly estimated using restricted maximum likelihood (REML), but
this does not provide the necessary information.

» A Bayesian approach to MLM using Markov Chain Monte Carlo
(MCMC) estimation can simulate the distribution for all parameters
in the model, including the random effects.

» A key feature of Bayesian estimation is specifying a prior distribution.

» We used minimally informative priors which yield results comparable to those
obtained from REML.

’"Hopewell, Dutton, Yu, Chan & Altman (2010); 8Gleser & Olkin (2009)
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The model produces a distribution for each
randomized group...
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Example intervention effect calculation for
Study 2

» Three steps to calculating the effect size for a freatment group

1. ldentify the posterior draws from the random effect for an intervention
group and its’ corresponding control group.

2. Take the difference (Uiievention = Ycontrol) -
3. Calculate the mean and 95% confidence interval of that difference.

» Repeat for all other intervention groups.

ST s

PF Control Effect Size

(Sample) U, Uy U, - U
1 -0.036 -0.037 0.010
2 -0.167 -0.191 0.240

3 -0.001 0.100 -0.999

2000 -0.145 -0.023 -0.122



One-Step IPD Meta-Analysis Results

Study

Intervention

Any drinking
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Conclusions

» The approach detailed is a feasible method for combining data
from heterogeneous studies while accounting for other important
characteristics of addictions data, such as nested data and zero-
altered outcomes.

®» A minor drawback: Bayesian estimation is more computationally
intensive than models estimated via REML

» ~? hours in our example analysis
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Future directions for IPD meta-analysis...

» Additional outcome distributions

» Extending one-step IPD meta-analysis models to accommodate
both IPD and AD simultaneously.

= One of the aims of Project INTEGRATE 2.0




Tutorial walkthrough, R code, and example
data available online...

» Tutorial walkthrough of this approach:

Huh, D., Mun, E.-Y., Walters, S. T., Zhou, Z., & Atkins, D. C. (2019). A tutorial
on individual participant data meta-analysis using Bayesian multilevel
modeling to estimate alcohol intervention effects across heterogeneous
studies. Addictive Behaviors, 94, 162-170.
https://doi.org/10.1016/].addbeh.2019.01.032

= R code and example data available through Mendeley Data:.
» hitps://doi.org/10.17632/4dw4kn?7z.2
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Assumptions of the approach...

» Study by treatment combinations that were not observed are
missing by design and missing at random, and do not bias the
findings.

» Using randomized groups as the highest data level assumes that the
groups are independent within study due to randomization.

» Qutcomes, interventions, and comparison groups are equivalent
across studies.

» |n INTEGRATE 1.0, measures were similar across studies and intervention groups
were carefully selected for equivalency.



