How do we combine two treatment arm trials with multiple arms trials in IPD meta-analysis?

An Illustration with College Drinking Interventions

David Huh, PhD¹, Eun-Young Mun, PhD², & David C. Atkins, PhD¹

Department of Psychiatry & Behavioral Sciences, University of Washington
Center for Alcohol Studies, Rutgers, The State University of New Jersey

Modern Modeling Methods Conference May 20, 2014

IPD opens the door to new possibilities...

- Meta-analysis of individual participant-level data (IPD) opens the door to a greater variety of research hypotheses that can be tested, yet it's rarely done in the social sciences.
- Provides a means of combining information across studies more accurately.
 - Compared with traditional methods based on summary statistics, IPD-based meta-analysis can be more flexibility tailored to the characteristics of the data and study designs.
- A challenge in meta-analysis[†], including with IPD: How to combine studies with varying numbers of treatments.
 - Most randomized trials (> 78%) are two arm studies[‡], however, multiple arm trials are not uncommon.
 - Little discussion in the IPD meta-analysis literature about how to combine studies with varying numbers of arms.
- ▶ †Gleser & Olkin, 2009; ‡ Hopewell, Dutton, Yu, Chan & Altman, 2010

IPD meta-analysis can accommodate varying arms and other data characteristics

- The appropriate combination of studies with varying numbers of arms was a key consideration in an IPD meta-analysis that our research group (Project INTEGRATE)† undertook of college drinking interventions.
- Other important analytic issues:
 - Differing number of assessments
 - Confounders and moderators of intervention outcome
 - Normally-distributed and zero-inflated count outcomes
- Ultimately settled a novel formulation of a Bayesian multilevel model that retained all the available data and accommodated differing numbers of treatment groups.

A real-world application with drinking interventions

- For over two decades, brief motivational interventions (BMIs) have been implemented on college campuses to reduce heavy drinking and related negative consequences.
 - Recommended as a prevention strategy by the National Institute on Alcohol Abuse and Alcoholism (NIAAA).[†]
- Such interventions include:
 - In-person motivational interviews with personalized feedback (MI+PF)
 - Group motivational interviews (GMI)
 - > Stand-alone PF interventions delivered via mail, computer, or the Web.
- Meta-analytic reviews using aggregate data from published studies suggest their short-term efficacy, but the effects vary.
 - Carey and colleagues[‡] found that across 62 studies, 50% of tests of intervention outcomes were statistically significant.
 - Significant findings were associated with small effect sizes.

Building on previous systematic reviews with IPD meta-analysis

- Systematic reviews to-date have limitations
 - Effects at different time-points evaluated with different subsets of studies.
 - Moderators evaluated at the study-level (e.g., % female vs. male).
 - Alcohol outcomes are often highly skewed with many zeroes.
 - Both Gaussian and traditional count models under-represent the actual frequency of zeroes.[†]
- More analytic options with IPD compared with classical metaanalysis using aggregate data.
 - Ability to control for participant-level covariates.
 - Model can be easily extended to evaluate individual-level moderators.
 - Distribution-appropriate analysis
- † Atkins, Baldwin, Zheng, Gallop, & Neighbors, 2013

Important to attend to excess zeroes...

- Distribution of the data is another important consideration.
 - Behavioral outcomes assessing short intervals will often contain a lot of zeroes.
 - Substance use
 - Sexual behavior
- Zeroes may be a key feature of the outcome and not just a nuisance of the data.

- An intervention may have an effect on either:
 - The decision to drink (zero drinks vs. I or more drinks)
 - \rightarrow The number of drinks once started (1, 2, 3, ...)

What IPD meta-analysis options are available?

Two-stage IPD meta-analysis

- ▶ The most common[†]
- Raw data are converted into standardized effect sizes.
 - For continuous data (d and g)
 - For dichotomous and count data (OR, RR)
- Standardized effect sizes are pooled.

Single-stage IPD meta-analysis

- We have the raw data, why not use it?
 - Less variation in IPD-generated estimates, thus greater power.
 - ▶ Participant-level covariates can be incorporated.
- Greater variety of statistical models at our disposal.

Accounting for zero-inflated outcomes using 8/29 a hurdle model

- Hurdle models, a type of twopart model are appropriate for zero-inflated count data, such as drinking.[†]
- A threshold must be crossed from zero into positive counts.
- The outcome is effectively divided into two parts.
 - No drinking vs. any drinking:
 - Logistic regression
 - Amount of drinking when drinking:
 - Zero-truncated Poisson or Negative binomial regression

† Huh, Kaysen, & Atkins, 2014

An example with longitudinal IPD

Project INTEGRATE

- One of the largest IPD meta-analysis projects to-date evaluating brief motivational interventions for college drinking. †,‡
- Focused on randomized controlled studies evaluating one or more BMIs:
 - Individual Motivational Interview with Personalized Feedback
 - Standalone Personalized Feedback
 - Group Motivational Interview
- ▶ IPD sample included 17 studies of 8,275 individuals
 - ▶ 14 two-arm studies
 - ▶ 2 three-arm studies
 - ► I four-arm study
- ▶ 2 5 repeated measures up to 12 months post-baseline
- 🕨 † Mun et al., 2014; ‡ Huh et al., 2014

The longitudinal drinking outcomes

▶ Total drinks in a typical week

- Daily Drinking Questionnaire (DDQ)†
- Zero-inflated count variable.

Alcohol Problems

- Six questionnaires used to derive latent trait scores.
 - ► E.g., Rutgers Alcohol Problem Index (RAPI), Alcohol Use Disorders Identification Test (AUDIT)
- Relatively normally-distributed outcome

Frequencies of Drinks per Week by Study

Number of typical weekly drinks

The Analytic Approach Used...

- Bayesian Multilevel Modeling (MLM)[†]
 - Markov-chain Monte Carlo estimation
 - ▶ MCMCglmm package in R^{‡,*}
 - Permitted distribution-appropriate analysis
 - Hurdle Poisson model for zero-inflated drinking outcome
 - ☐ Logistic regression
 - □ No drinking vs. any drinking
 - □ Truncated Poisson regression
 - □ Number of drinks when drinking
 - Gaussian Model for alcohol problems outcome
 - □ Relatively normally-distributed

Why Bayesian and not maximum likelihood estimation?

- MCMC sampling yields a complete distribution of the regression coefficients and random effects, rather than a single point estimate for each parameter in an ML (frequentist) model.
 - Why this is important:

Random effects for each treatment group can be estimated with uncertainty (i.e., confidence intervals).

The first model attempted: A 3-level model (3: Study → 2: Participant → 1: Observation)

$\begin{aligned} \text{OUTCOME}_{t>0,ig} &= \\ b_0 + b_1 \text{OUTCOME}_{t=0,ig} + b_2 \text{COVARIATE}_{ig} + b_3 \text{MI_PFP}_g \\ &+ b_4 \text{PFP}_g + b_5 \text{GMI}_g + u_{0g} + u_{1g} \text{MI_PFP}_g + u_{2g} \text{PFP}_a \end{aligned}$

- $+ u_{3g}GMI_g + r_{0ig} + e_{tig}$
- Study is the highest level of the model.
- Study-specific treatment effects (random slopes) are included for each distinct intervention type.
- ▶ This model has intuitive appeal.

Illustrating with Project INTEGRATE

Studies (17)

	2	7.1	7.2	8a	8b	8c	9	10	Ш	12	13/ 14	15	16	18	20	21	22
MI+PF	×	×	×	×	×	×	✓	✓	×	✓	✓	×	×	×	✓	✓	✓
PF	✓	×	×	✓	✓	✓	✓	×	✓	×	✓	×	×	✓	×	✓	×
GMI	×	✓	✓	×	×	×	✓	×	×	×	×	✓	✓	×	×	×	×

- Problem: Not all treatments evaluated in each study, so the resulting model is rank deficient.
 - > 51 possible treatment by study combinations
 - → 30 combinations (59%) don't exist.
- Model does not converge using diffuse default priors.

The model with study at the highest level doesn't work, what are our options?

- Keep the model as-is, but use a more informative prior for the random effects.
 - Is it worth that much effort to get the model to work?
 - Informative priors have their critiques and drawbacks.
- Pool active intervention conditions within a study or remove one or more conditions.
 - ▶ Reduces each study to a 2-arm RCT design.
 - Potential loss of information
- Exclude the non-existent study by treatment combinations that are making the model rank deficient.

Defining study × randomized group at the highest level

- The highest level of the model is study by randomized group rather than study.
 - Preserves the randomization within studies in the model.
- There is no fixed effect for treatment.
 - Intervention effect sizes are calculated from the posterior distribution of the randomization group random effects.

The Basic Model: Similar to an ANCOVA

t = repeated measurei = individual

g = unique randomization group

Unique randomization group random effects ^{19/29} includes intervention and control groups

Calculating the intervention effect

- The key estimates of interest are the samples from the posterior distributions of the random effects for randomization group.
 - Each random effect has its' own distribution of samples.

	Fixed	effects	Randomization group effects								
			Study 2		• • •	Study 21					
(Sample)	b_0	b _I	u_1	u ₂	•••	u ₃₄	u ₃₅	u ₃₆			
I	-0.037	0.670	-0.036	-0.037		-0.070	-0.137	-0.088			
2	-0.008	0.675	-0.167	-0.191		-0.009	-0.047	-0.055			
3	-0.072	0.680	-0.001	0.100		-0.050	-0.020	0.012			
•	•	•	:	:		÷	:	:			
2000	-0.039	0.660	-0.145	-0.023		-0.019	-0.032	0.062			
			1	↑		1	1	↑			
Intervention (PF)			Contro	וכ י	vention MI+PF)	Intervention (PF)	on Conti				

Calculating the intervention effect (cont.)

- **Example:** The intervention effect in Study 2.
- Three steps to calculating the effect size for a treatment group
 - I. Identify the posterior draws from the random effect for an intervention group and its' corresponding control group.
 - 2. Take the difference $(u_{\text{intervention}} u_{\text{control}})$.
 - 3. Calculate the mean and 95% confidence interval of that difference.
- Repeat for all other intervention groups.

	Study 2								
	Intervention	Control	Effect Size						
(Sample)	u _l	u ₂	u ₁ - u ₂						
1	-0.036	-0.037	0.010						
2	-0.167	-0.191	0.240						
3	-0.001	0.100	-0.999						
÷	÷	•	:						
2000	-0.145	-0.023	-0.122						

Forest Plot for Drinks per Week (Hurdle)

MI = Individual Motivational Interview, PF = Standalone Personalized Feedback, MI + PF = MI with Personalized Feedback, GMI = Group Motivational Interview

Forest Plot for Alcohol Problems (Gaussian)

MI = Individual Motivational Interview, PF = Standalone Personalized Feedback,
MI + PF = MI with Personalized Feedback, GMI = Group Motivational Interview

Discussion

- Wide variation of intervention effects on alcohol outcomes is generally consistent with results from meta-analyses based on summary statistics.
 - When alcohol outcomes are modeled in a distribution-appropriate analysis, intervention effects in most studies are non-significant.
 - Across studies, there are small, statistically non-significant reductions in alcohol consumption and negative consequences.
- Bayesian MLM using study by randomization group as the highest level of the model was a practical approach to combining studies with varying numbers of treatment arms.
 - Avoids the need to collapse intervention conditions or discard data.

Discussion (cont.)

- Allowed the calculation of effect sizes for:
 - Individual intervention groups
 - Across all interventions
 - For specific intervention types (not shown)
- Weighting of the intervention estimates was handled within the multilevel model.
 - The IPD is weighted within the likelihood distribution.
 - The precision of the estimates is proportional to the amount of contributing data.
- The detailed approach is generalizable to outcomes beyond alcohol use.

Analysis of non-normal outcomes not trivial...

- Bayesian MCMC estimation required a good deal of computing time, especially for the non-Gaussian model.
 - ▶ Gaussian model of alcohol problems: < I hour</p>
 - Hurdle model of drinks per week: 36 hours

Next steps...

- Conduct a simulation study comparing results of the Bayesian MLM approach used in the present study with summary-statistic based meta-analysis.
 - How biased are estimates using summary statistic based methods that assume normal distribution?

Questions?

- ▶ For post-conference questions, contact:
 - David Huh (dhuh@uw.edu).

References

- Atkins, D. C., Baldwin, S. A., Zheng, C., Gallop, R. J., & Neighbors, C. (2013). A tutorial on count regression and zero-altered count models for longitudinal substance use data. *Psychology of Addictive Behaviors*, 27, 166–177. doi:10.1037/a0029508
- Carey, K. B., Scott-Sheldon, L. A. J., Carey, M. P., & DeMartini, K. S. (2007). Individual-level interventions to reduce college student drinking: A meta-analytic review. *Addictive Behaviors*, 32, 2469–2494. doi:10.1016/j.addbeh.2007.05.004
- Collins, R. L., Parks, G. A., & Marlatt, G. A. (1985). Social determinants of alcohol consumption: the effects of social interaction and model status on the self-administration of alcohol. *Journal of Consulting and Clinical Psychology*, 53, 189–200.
- Cooper, H., & Patall, E. A. (2009). The relative benefits of meta-analysis conducted with individual participant data versus aggregated data. *Psychological Methods*, *14*, 165–176. doi:10.1037/a0015565
- Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. New York: Cambridge University.
- Gleser, L. J., & Olkin, I. (2009). Stochastically dependent effect sizes. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 357–376). New York: Russell Sage Foundation.
- ▶ Hadfield, J. D. (2010). MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. *Journal of Statistical Software*, 33, 1–22.
- Hopewell, S., Dutton, S., Yu, L.-M., Chan, A.-W., & Altman, D. G. (2010). The quality of reports of randomised trials in 2000 and 2006: comparative study of articles indexed in PubMed. *BMJ* (Clinical Research Ed.), 340, c723.
- Huh, D., Kaysen, D., & Atkins, D. C. (2014). Modeling cyclical patterns in daily college drinking data with many zeroes. Manuscript submitted for publication.
- Huh, D., Mun, E.-Y., Larimer, M. E., White, H. R., Ray, A. E., Rhew, I. C., . . . Atkins, D. C. (2014). Brief motivational interventions for college student drinking may not be as powerful as we think: An individual participant-level data meta-analysis. Manuscript submitted for publication.
- Mun, E.-Y., de la Torre, J., Atkins, D. C., White, H. R., Ray, A. E., Kim, S.-Y., ... the Project INTEGRATE Team. (2014). Project INTEGRATE: An integrative study of brief alcohol intervention trials for college students. Manuscript under review.
- National Institute on Alcohol Abuse and Alcoholism (2002) A call to action: Changing the culture of drinking at U.S. colleges (No. 02-5010). Department of Health and Human Services, National Institutes of Health, Rockville, MD: USA.
- R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.