CHEM 550/475 2009

Homework 2. Page 1/2
Due Tuesday Oct 13 by noon in Ginger’s mailbox

CIRCLE YOUR ANSWERS AND KEY RESULTS

STAPLE YOUR PAPERS TOGETHER

Levine 6" Ed

2.15 — crude free electron model of butadiene

2.18 — time dependent wave function for a free particle

2.30 — probability concept review

3.8 — basic operator practice

3.13 — commutator identity

3.50 — operator concept review — you should provide counter-examples for false cases!

Additional Problems:

1) Why is simple harmonic motion so common in classical mechanics?

a) Since F =—-VV for any conservative force, what kind of potential function leads to a
Hooke’s law like restoring force and resulting simple harmonic motion?

b) Take any arbitrary potential that we will call V(x). Write out the Taylor expansion for
V(x) about a local minimum x.

¢) Thus, from b) what kind of motion can be expected for sufficiently small
displacements from the local potential minimum? What do we mean by “sufficiently
small displacements”?

d) We solved the ODE for the simple harmonic oscillator (mass on a spring) in class last
week, we will solve the quantum version next week. In the meantime, explain why
you think so many classical and quantum exhibit simple harmonic motion. In other
words, why are harmonic potentials encountered so often? (Hint: look at a-c above!)

2) Nonstationary states for a particle in a box

Consider a particle in an infinite square well of width L. Initially, (at r=0) the
system is described by a wavefunction that is equal parts a superposition of the ground
and first excited states. In other words, the time zero wavefunction is:

¥(x,0) = Cly, (x) + ¥, (x)]
a) Find C so that the wavefunction is normalized.

b) Write down the time-dependent wave function W(x,¢) for any later time ¢

¢) Show analytically that this superposition is not a stationary state (i.e. show that I\|II2 isa
function of time). Then use Maple to animate a plot of Ilpl2 as a function of ¢

d) If many systems are prepared in this state and their energies are measured, what will
the result be? Give both the average of these measurements, and the statistics of the

specific results of a series of individual measurements that lead to this average.

e) Find <x> and <p> as a function of ¢ for this superposition state



4) Particle in the FINITE box: (read Levine and the Maple worksheet first—see the
attached handout for an additional approach)

The conceptual approach is almost identical to the infinite box case, but the algebra is a
bit more tedious so use a computer if you can. Consider a box of width a. Instead of
rising to infinity outside the box, the potential of the “walls” is now V.

a) Given the width of the box a=1.0 nm, and the height of the box V0=l.2x10'18 J
Determine the lowest 5 energy levels for an electron placed into this box. What is the
wavelength of the electron in each of these 5 states? Compare this electron wavelength
with the wavelengths of an electron placed in the lowest 5 energy levels of an infinite box
of the same width. (is it longer or shorter?) (circle your answers!)

b) If instead the box width was 0.9 nm and depth of the well was 5x101%7 , answer
(qualitatively only, no calculation needed): will there be fewer or more bound states than
for those in part a?



This material is taken from the CHEM 455 (undergraduate quantum) lecture
notes on “Quantum Chemistry and Spectroscopy” by Tom Engel

Here we apply
the condition
that 1) the
wavefunction
must be
normalizable
2) the wave
function must
be continuous,
and 3) the
wavefunction
must have a
continuous first
derivative

We describe the potential by
V(x)=V, x s'-'g-

V(x)
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V(x}=V, Region Il
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The eigenfunctions must have the following forim in these three regions

|2m(V.~,.—E\ Zm{Vo-E] .. . _
(x) Be P B'e ¥ RegionT
2mE L
w(x)= C sin, x+Dcos x—Csmk x+Dcoskx ‘Region I
Zm[Vo—-E) Zm(‘f’o——E]
(x) Ae “AeV =Ae " A ™ Region 11

‘In order that thc wave functions remain finite at large positive and negat:lve values of x,

A’= B’=0. There is an additional condition that must be satisfied. To have physmally
meaningful solutions for the clgenfunctlons the wave functions in the separate regions
must have the same amplitude and derivatives at the values of x = a/2 and x = -a/2
bounding the regions. This restricts the possible values for the coefficients A, B, C, and
D. Show that applying these condltlons gives the equations

..x_

Be ® =-Csmk; +Dcosk5 Bx‘e_}rE = Ckcosk%+Dksink.%l

A = Csink%+Dcosk—;— Axe ? =Ckcosk%—Dksink%- -

These two pairs of equations differ on ‘the right side only by the sign of one term. We can-
obtain a set of equatlons that contam fewer coefficients by adding and subtracting each
pair of equatwns to glVf: _

(A+B)e_ 2= ZDCOS[}'C%) - (A"B)e_ :

2 mZCsin(k_%) o
(A;i-B) Ke 2 =2Dksin_(k%]_ —~(A-B)ke T =2Ck cos(k%} |

At this point we notice that by dwldmg the equations in each pair, we can ehmmate the

coefficients to give =
’Zm(V —E) szE [ sz gJ and

k=k tan(k



) continued

Notice that we
don’t get E as a

nice function of -

anything. If
fact, this is a
transcendental
equation — one
that does not
have an
analytical
solution for E.
In general you
will find that
most ‘real’
potentials don’t

have analytical

solutions.

- h W s M m -~ o

—rékcomﬂ(ki) or  — iZm(VGmEjz 2m'l';:c:ot 2mk a
2 Vw2 V # \'}:2 2

Multiplying these equations on both sides by a/2 gives us dimensionless parameters and
our final equations are :

m(VnhE]a?' - mEa* Jﬂmﬁ'«:!‘1

Vo T T
_ [mlv,-E)® \/m&:* ot ’lrmEaz
\( 28 2n* Y 2n?

The allowed energy values E must satisfy these equations. They can be obtained by
graphing the two sides of each equation against E. The intersections of the two curves are
the allowed energy eigenvalues. For the parameters in the caption of figure 5.1,
Vo=120x 10" J and a = 1.00 x 10° m, we obtain the two graphs shown below,
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There ase five allowed éncrl%y levels at 4.61 x 102° 1, 409 x 107° 1, and 1.07 x 1078 J
(left figure), and 1.84 x 107 J and 7.13 x 10" J (right figure).

a) Given these values, calculate X for each energy level. Is the relation A = 2a (for n an
’ b

integer) that arose from the calculations on the infinitely deep box still valid? Compare
the A values with the corresponding energy level in the infinitely deep box. Explain why
the differences arise. -

b) Repeat this calculation for V= 5.00 x 10"® J and @ = 0.900 x 10° m. Do you think
that there will be fewer or more bound states than for the problem we just worked out?
How many allowed energy levels are there for this well depth and what is the encrgy
corresponding to each level? ;



