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CIRCLE YOUR ANSWERS AND KEY INTERMEDIATE RESULTS 

USE MAPLE WHENEVER POSSIBLE 

STAPLE YOUR PAPERS TOGETHER  

INCLUDE ALL COMPUTER PRINTOUTS (with commentary) 
 

Levine Problems (5
th

 Ed in parenthesis) 6
th

 Ed 

(3.31) 3.36 – Probabilities for particles in a 3D box 

(3.36) 3.42 – Degeneracy and 3D box levels 

 

Additional Problems  

 

1) Consider a particle in an infinitely deep two-dimensional square well with sides of 

length L.   

a) What are the five lowest allowed energy levels for this system. 

b) Use the computer to make 3D plots that display the probability of finding the particle 

as a function of position within the box. 

c) Compare the wave functions associated with any one pair of degenerate states. 

 

2) Tunneling is important to many chemical processes, for instance, electrons tunnel 

during many redox reactions and protons can tunnel during acid/base reactions.  On a 

relative scale (e.g. compared to electron tunneling and proton tunneling), how important 

do you think carbon atom tunneling is to organic reactions, on the whole?  Give a 

qualitative justification of your answer in writing.  Next, justify your answer 

quantitatively by comparing the relative tunneling rates for an electron, proton, and 

carbon atom across a rectangular potential barrier 1 Angstrom wide, with height of 1 
eV. Assume that the kinetic energy of each particle is 0.5 eV.  Ultimately the relative 

importance of different processes depends on the rate of competing processes and it is 

true that for some reactions (the automerization of 1,3-cyclobutadiene, the ring expansion 

of 1-methylcyclobutylefluorcarbene) carbon tunneling plays a central role. 

 

3) The amount of current flowing in an electrochemical cell between a gold electrode that 

has been modified with a straight-chain alkanethiol self-assembled monolayer (e.g. HS-

(CH2)n-CH3) and a redox-active species in solution is measured as function of the length 

of the aliphatic chain.  It is found empirically that the current as a function of carbon 

chain length, L, can be given by the equation: I=I0exp(-B*L) where B is a constant equal 

to approx = 1/Angstrom.  Explain. Assuming the electrons have the same effective mass 

as the free electron, calculate the barrier height.  

 

4) Consider the particle in a 1D box of length L with ends at x=0 and x=L.  The state 

function at one point in time is: )(
30

)(
5

xLx
L

x −=ψ .    

a) If the energy of this particle is measured, what is the probability that the measurement 

will return the value E=h
2
/(8mL

2
)?  



 

b) If the energy of this particle is measured, what is the probability that the measurement 

will return the value E=49h
2
/(8mL

2
)? 

 

c) If the energy is measured to be E=49h
2
/(8mL

2
) and then the energy of the same 

particle is quickly measured a second time, what energy will the second measurement 

return?  

 

 

5) Free-particle wave packets: 
The wave-functions for the free particle with well-defined momentum 

(momentum operator eigenfunctions) tell us nothing about the position of the particle.  

We would like to construct wave-functions for a free particle which also contain some 

position information.  We know we can create new wavefunctions from a linear 

superposition of any set eigenfunctions. We use momentum eigenfunctions as our basis 

below.  We consider a “free” electron that has kinetic energy of roughly ~ 100 eV 

traveling in towards the right. 

 

a) Write down the wave function, and Plot Re(ψ) and |ψ|
2
 over the range x=-5 to +5 

Angstroms for an electron with KE=100 eV traveling to the right. 

 

b) Plot Re(ψ) and |ψ|
2
 over the range x=-5 to +5 Angstroms for the linear superposition 

of 3 free-particle momentum eigenfunctions with different discrete values of p, p=.95*p0, 

p=p0, and p=1.05*p0.  You should choose the values of the coefficients so that <p> is 

still p0 (i.e. for a 100 eV electron).  

 

c) Expand the graph axis from 5b to cover –10 to 10 Angstroms.  Comment. 

 

You may have noticed that this approach will only get us so far, even if you take an 

infinite sum.  You see the free particle wavefunctions do not have discrete eigenvalues—

any value of k is allowed.  Our Fourier series expansions dealt with sums of discrete 

eigenvalues (say finite multiples of sin(n*Pi*x/L) for the classical wave on a string).  

However, we can still use a version of a Fourier series when dealing with a continuous 

spectrum of eigenvalues.  As you may have guessed, the Fourier series sum then has to go 

over to an integral as the sum becomes one over an infinite number of eigenfunctions 

with infinitesimal differences between each. 

 

We DEFINE G(k) as the complex Fourier transform of the function f(x) as (note the 

“normalization” constant for the FT and its inverse are different in many textbooks, but 

the product is always 1/2Pi): 
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We can then represent the function f(x) as an integral over possible e
ikx

 functions, with 

the G(k) carrying the “weights” just as the An and Bn coefficients carried the weights in 

the Fourier sine and cosine series.  
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(Another way to think about a Fourier transform is as an operation that converts a 

function from one basis (domain) to another conjugate domain.  Position and 

wavenumber (x,k) form one conjugate pair, time and frequency form another conjugate 

pair).  Fourier transform methods are ubiquitous in the sciences.  A Fourier transform is 

exactly what your FTIR spectrometer performs when it converts its interferometer data 

(intensity versus interferometer path length [position]) to wavenumber to display your IR 

spectrum). FT-NMR is also a routine technique. 

 

d)  Assume the wavefunction for our particle is given by a Gaussian wavepacket of the 

form 
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= with a width σ=1 Angstrom.  Plot this wave function for x=-

10 to x=+10 Angstroms.  (from this point on, we will let the particle have <p>=0 and 

<x>=0 for simplicity). 

  

e) Use the Fourier Transform relationships given in part c to compute the distribution of 

wavevectors k  needed to create this wavefunction.  Plot G(k) for k=-10E10 to 10E10 

reciprocal meters (1/10 angstroms to 1/10 Angstroms).  

 

f) Repeat d and e for a width sigma of 0.25 Angstroms.   Compare the result with that in d 

and e.  Interpret this result in the context of your understanding of the postulates and of 

Heisenberg’s uncertainty principle. 

 

g) We haven’t yet introduced a position eigenfunction.  What properties would a 

“position eigenfunction” have?  Do you know of any functions with such properties? 

 


