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Homework 2. Due Tues Oct 10 at 5pm in Prof. Ginger’s mailbox. Page 1/3 

CIRCLE YOUR ANSWERS AND KEY RESULTS 

STAPLE YOUR PAPERS TOGETHER 
 

Levine 

2.17 – time dependent wave function for a free particle 

2.29 – probability concept review 

3.5 – basic operator practice 

3.15 – commutator identity 

3.42 – operator concept review – provide counter-examples for false cases! 

 

Additional Problems: 

1) Why is simple harmonic motion so common in classical mechanics? 

We solved the ODE for the simple harmonic oscillator (mass on a spring) in class last 

week, we will solve the quantum version next week.  In the meantime, why do you 

think so many classical systems exhibit simple harmonic motion?  We derived the 

equation of motion based on a Hooke’s law restoring force (i.e. F=-k*x), however, we 

can also see this results from any harmonic potential.   

 

a) Since VF ⋅−∇= for any conservative force, what kind of potential function leads to a 

Hooke’s law like restoring force and resulting simple harmonic motion? 

b) Take any arbitrary potential that we will call U(x).  Write out the Taylor expansion for 

U(x) about a local minimum x0. 

c) Thus, from b) what kind of motion can be expected for sufficiently small 

displacements from the local potential minimum?  What do we mean by “sufficiently 

small displacements”? 

 

2) Do Levine problem 2.15 for a longer molecule and compare with the butadiene result 

from Levine 2.15 (you don’t need to work the butadiene problem if you are familiar 

with it): 

 

a) γ-Carotene, one of the precursors of vitamin A, is a conjugated system containing 11-

double bonds (you will need to calculate the total bond length).  Calculate the 

wavelength of light needed to excite the HOMO-LUMO transition of the pi electrons 

for carotene using the simple free electron model.  Compare the calculated value with 

the observed transition at 460 nm.   

 

b) Explain why the ‘free electron model’ gives an error for butadiene?  

     Hint: do electrons attract or repel one another?   



3) Nonstationary states for a particle in a box 
Consider a particle in an infinite square well of width L.  Initially, (at t=0) the 

system is described by a wavefunction that is equal parts a superposition of the ground 

and first excited states.  In other words, the time zero wavefunction is: 

)]()([)0,( 21 xxCx ψψ +=Ψ  

 

a) Find C so that the wavefunction is normalized. 

 

b) Write the time-dependent wave function ),( txΨ for any later time t 

 

c) Show that this superposition is not a stationary state (i.e. show that |ψ|
2
 evolves in 

time). Then use Maple to animate a plot of |ψ|
2
 as a function of t 

 

d) If many systems are prepared in this state and their energies are measured, what will 

the result be?  Discuss both the average of these measurements, and discuss the 

statistics of the specific results of a series of individual measurements.  
 

e) Find <x> and <p> as a function of t for this superposition state 

 

4) Particle in the FINITE box: (read the handout first) 

As promised, move from the idealized INFINITE walled box, to the FINITE walled box.  

Consider a box of width a, centered at the origin.  Instead of rising to infinity outside the 

box, the potential is now V0. 

 

a) Given a=1.0 nm, and V0=1.2x10
-18

 J Determine the lowest 5 energy levels for an 

electron placed into this box.  What is the wavelength of the electron in each of these 5 

states.  Compare this electron wavelength with the wavelengths of an electron placed in 

the lowest 5 energy levels of an infinite box of the same width. 

 

b) Repeat the calculation for a box of width 0.9 nm and depth 5x10
-19 

J.  For these 

parameters will there be fewer or more bound states than for those in part a? How many 

allowed energy levels are there and what are their energies? 

 

5) Free-particle wave packets: 
The wave-functions for the free particle with well-defined momentum 

(momentum operator eigenfunctions) tell us nothing about the position of the particle.  

We would like to construct wave-functions for a free particle which also contain some 

position information.  We know we can create new wavefunctions from a linear 

superposition of any set eigenfunctions, we use momentum eigenfunctions as our basis 

below.  We consider a “free” electron that has kinetic energy of roughly ~ 100 eV 

traveling in towards the right. 

 

a) Write down the wave function, and Plot Re(ψ) and |ψ|
2
 over the range x=-5 to +5 

Angstroms for an electron with KE=100 eV traveling to the right. 

 



b) Plot Re(ψ) and |ψ|
2
 over the range x=-5 to +5 Angstroms for the linear superposition 

of 3 free-particle momentum eigenfunctions with different discrete values of p, p=.95*p0, 

p=p0, and p=1.05*p0.  You should choose the values of the coefficients so that <p> is 

still p0 (i.e. for a 100 eV electron).  

 

c) Expand the graph axis from 5b to cover –10 to 10 Angstroms.  Comment. 

 

You may have noticed that this approach will only get us so far, even if you take an 

infinite sum.  You see the free particle wavefunctions do not have discrete eigenvalues—

any value of k is allowed.  Our Fourier series expansions dealt with sums of discrete 

eigenvalues (say finite multiples of sin(n*Pi*x/L) for the classical wave on a string).  

However, we can still use a version of a Fourier series when dealing with a continuous 

spectrum of eigenvalues.  As you may have guessed, the Fourier series sum then has to go 

over to an integral as the sum becomes one over an infinite number of eigenfunctions 

with infinitesimal differences between each. 

 

We DEFINE G(k) as the complex Fourier transform of the function f(x) as (note the 

“normalization” constant for the FT and its inverse are different in many textbooks, but 

the product is always 1/2Pi): 
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We can then represent the function f(x) as an integral over possible e
ikx

 functions, with 

the G(k) carrying the “weights” just as the An and Bn coefficients carried the weights in 

the Fourier sine and cosine series.  
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(Another way to think about a Fourier transform is as an operation that converts a 

function from one basis (domain) to another conjugate domain.  Position and 

wavenumber (x,k) form one conjugate pair, time and frequency form another conjugate 

pair).  Fourier transform methods are ubiquitous in the sciences.  A Fourier transform is 

exactly what your FTIR spectrometer performs when it converts its interferometer data 

(intensity versus interferometer path length [position]) to wavenumber to display your IR 

spectrum). FT-NMR is also a routine technique. 

 

d)  Assume the wavefunction for our particle is given by a Gaussian wavepacket the form 

22 2/
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πσ
ψ xex −= with a width σ=1 Angstrom.  Plot this wave function for x=-10 to 

x=+10 Angstroms.  (from this point on, we will let the particle have <p>=0 and <x>=0 

for simplicity). 

  



e) Use the Fourier Transform relationships given in part c to compute the distribution of 

wavevectors k  needed to create this wavefunction.  Plot G(k) for k=-10E10 to 10E10 

reciprocal meters (1/10 angstroms to 1/10 Angstroms).  

 

f) Repeat d and e for a width sigma of 0.25 Angstroms.   Compare the result with that in d 

and e.  Interpret this result in the context of your understanding of the postulates and of 

Heisenberg’s uncertainty principle. 

 

g) Though they exist, we haven’t yet introduced a position eigenfunction.  What 

properties would a  “position eigenfunction” have?  Do you know of any functions with 

such properties? 

 

 

 



Here we apply 

the condition 

that 1) the 

wavefunction 

must be 

normalizable 

2) the wave 

function must 

be continuous, 

and 3) the 

wavefunction 

must have a 

continuous first 

derivative 

This material is taken from the lecture notes on “Quantum Chemistry and 

Spectroscopy” by Tom Engel 



) continued 

 

 

 

Notice that we 

don’t get E as a 

nice function of 

anything.  If 

fact, this is a 

transcendental 

equation – one 

that does not 

have an 

analytical 

solution for E.  

In general you 

will find that  

most ‘real’ 

potentials don’t 

have analytical 

solutions. 


