Circle your answers. Submit your problems in order. Staple your work together.

Note: Parts I and II TOGETHER will count as a single homework grade (and both parts must be turned in for credit)

Part I. Due Thursday April 14 at 4pm
The Part 1 Key will be posted online after 4pm so you can study for the Midterm

Textbook
P6.17 Commutator for x and p, (and vice versa)
P7.23 Zero point energy and IR absorptions of HF
P7.5 HI vibration and rotational transitions

Additional

1) Review your spherical polar coordinates and 3D integrals by finding the volume of a sphere of radius \(a\) by integrating the spherical volume element \(dV = r^2 \sin(\theta) dr d\theta d\phi\) in spherical polar coordinates from \(r=0\) to \(r=a\) (Pay attention, some texts switch theta and phi. In our book [and class] theta is the angle the radius vector makes with the z-axis, and the limits on theta run from 0 to Pi).

Part II. Due MONDAY April 25 at 4pm

Textbook
P7.6 Linear combinations of spherical harmonics
P7.12 Orthogonality of energy eigenfunctions of harmonic oscillator
P7.13 Comparing mean square displacement with bond length.

2) Before you worked problem 7.12 you should have known that the H.O. wavefunctions would be orthonormal. In 1-2 sentences explain how and why you know this (and not just because the textbook said so).

3) The infrared spectrum of \(H^{79}Br\) shows an intense line at 2600 cm\(^{-1}\). Calculate the force constant of \(H^{79}Br\) and the period of vibration of \(H^{79}Br\).

4) A function that looks like a realistic molecular potential is the Morse Potential. (see eqn 8.4 in the text):
\[
V(x) = D_e(1-e^{-\beta x})^2
\]
Expand \(V(x)\) in a Taylor series about \(x=0\) to obtain
\[
U(x) = D_e \beta^2 x^2 - D_e \beta^3 x^3 + \cdots
\]
Given that, for HCl, \(D_e\)=7.31x10\(^{-19}\) J/molecule, and \(\beta=1.82x10^{10}\) m\(^{-1}\), calculate the force constant for HCl. Use Excel or another computer package to plot the Morse potential and the corresponding H.O. potential on the same graph. (in other words, make your own Fig. 7.1).

5) In 2-3 sentences, explain why we encounter the harmonic oscillator potential so frequently in chemistry and physics problems? Comment on the suitability of the harmonic oscillator potential to the HCl molecule using your calculations of 7.13 as a reference, in particular comment on what situations you think the H.O. would be a bad approximation?