C455A –Quantum Chemistry and Spectroscopy Final Exam June 7, 2005 8:30-10:20 am BAG 154

A SINGLE ONE SIDED 8.5x11" page of notes is allowed -YOU MUST SIT IN YOUR ASSIGNED SEAT TO RECEIVE CREDIT FOR THE EXAM -ALL ANSWERS MUST BE IN THE ANSWER BOX WHEN PROVIDED -CROSSED OUT/PARTIALLY ERASED WORK WILL BE IGNORED -NO PARTIAL CREDIT ON NUMERICAL PROBLEMS WITHOUT A FORMULA -NO PARTIAL CREDIT ON "PHYSICALLY IMPLAUSIBLE" ANSWERS UNLESS THE ERROR IS RECOGNIZED

Your name:

Student ID#:_____

I have neither received nor provided external assistance of any kind on this exam. I understand that doing so is serious academic misconduct.

Signature:_____

In the following, u and v are functions of x, and a and n and m are real numbers

 $\int u \, dv = uv - \int v \, du$ $\int x^n dx = \frac{x^{n+1}}{n+1} \text{ except } n = -1$ $\int \frac{dx}{x} = \ln x$ $\int e^{ax} dx = \frac{1}{a} e^{ax}$ $\int (\sin ax) dx = -\frac{1}{a} \cos ax$ $\int (\cos ax) \, dx = \frac{1}{a} \sin ax$ $\int (\sin^2 ax) dx = \frac{1}{2}x - \frac{1}{4a} \sin 2ax$ $\int (x \sin^2 ax) dx = \frac{x^2}{4} - \frac{\cos 2ax}{8a^2} - \frac{x \sin 2ax}{4a}$ $\int (\cos^2 ax) dx = \frac{1}{2}x + \frac{1}{4a} \sin 2ax$ $\int (x^2 \sin^2 ax) dx = \frac{1}{6} x^3 - \left(\frac{1}{4a} x^2 - \frac{1}{8a^3}\right) \sin 2 ax - \frac{1}{4a^2} x \cos 2ax$ $\int (x^2 \cos^2 ax) dx = \frac{1}{6}x^3 + \left(\frac{1}{4a}x^2 - \frac{1}{8a^3}\right) \sin 2 ax + \frac{1}{4a^2}x \cos 2ax$ $\int x^{m} e^{ax} dx = \frac{x^{m} e^{ax}}{a} - \frac{m}{a} \int x^{m-1} e^{ax} dx$ $\int \frac{e^{at}}{x^{a}} dx = -\frac{1}{m-1} \frac{e^{at}}{x^{m-1}} + \frac{a}{m-1} \int \frac{e^{at}}{x^{m+1}} dx$ $\int_{0}^{t} \sin\left(\frac{n\pi x}{a}\right) \cdot \sin\left(\frac{m\pi x}{a}\right) dx = \int_{0}^{t} \cos\left(\frac{n\pi x}{a}\right) \cdot \cos\left(\frac{m\pi x}{a}\right) dx = \frac{a}{2} \delta_{mn}$ $\int_{a}^{b} \left[\sin\left(\frac{n\pi x}{a}\right) \right] \cdot \left[\cos\left(\frac{n\pi x}{a}\right) \right] dx = 0$ $\int_{0}^{\pi} \sin^{2}mx \, dx = \int_{0}^{\pi} \cos^{2}mx \, dx = \frac{\pi}{2}$ $\int_{0}^{\infty} \frac{\sin x}{\sqrt{x}} dx = \int_{0}^{\infty} \frac{\cos x}{\sqrt{x}} dx = \sqrt{\frac{\pi}{2}}$ $\int_{0}^{\infty} x^{n} e^{-ax} dx = \frac{n!}{a^{n+1}}$ (a > 0, n positive integer) $\int_{0}^{\infty} x^{2n} e^{-ax^{2}} dx = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^{n+1}a^{n}} \sqrt{\frac{\pi}{a}} \ (a > 0, n \text{ positive integer})$ $\int_{0}^{\infty} x^{2n+1} e^{-ax^{2}} dx = \frac{n!}{2 a^{n+1}} (a > 0, n \text{ positive integer})$ $\int_{0}^{\infty} e^{-ax^{2}} dx = \left(\frac{\pi}{4a}\right)^{\frac{1}{2}}$

 $\begin{aligned} \frac{d}{dx}(uv) &= u \frac{dv}{dx} + v \frac{du}{dx} \\ \frac{d}{dx} \frac{u}{v} &= \frac{1}{v} \frac{du}{dx} - \frac{u}{v^2} \frac{dv}{dx} \\ \frac{d}{dx}(u^n) &= nu^{n-1} \frac{du}{dx} \\ \frac{d}{dx}(u^n) &= nu^{n-1} \frac{du}{dx} \\ \frac{d}{dx}\left[f(u)\right] &= \frac{d}{du}\left[f(u)\right] \cdot \frac{du}{dx} \\ \frac{d}{dx}\left[x^nv^m\right] &= u^{n-1}v^{n-1}\left(nv \frac{du}{dx} + mu \frac{dv}{dx}\right) \\ \frac{d}{dx}(e^u) &= e^u \frac{du}{dx} \\ \frac{d}{dx}(e^u) &= e^u \frac{du}{dx} \\ \frac{d}{dx} = \cos x \\ \frac{d}{dx} = -\sin x \\ \frac{d}{dx} = -\sin x \\ \frac{d}{dx} = -\frac{du}{dx} \\ \frac{d}{dx} = -\frac{du}{dx} \\ \sin u \\ \sin \alpha \sin \beta &= \frac{1}{2}\cos(\alpha - \beta) - \frac{1}{2}\cos(\alpha + \beta) \\ \sin(\alpha \pm \beta) &= \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \end{aligned}$

 $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$

Some H-Atom wave functions:

$$\psi_{100}(r,\theta,\phi) = \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0}$$

$$\psi_{200}(r,\theta,\phi) = \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_0}\right)^{3/2} \left(2 - \frac{r}{a_0}\right)^{3/2} e^{-r/2a_0}$$

$$\psi_{310}(r,\theta,\phi) = \frac{1}{81} \sqrt{\frac{2}{\pi}} \left(\frac{1}{a_0}\right)^{3/2} \left(6\frac{r}{a_0} - \frac{r^2}{a_0^2}\right)^{3/2} e^{-r/3a_0} \cos(\theta)$$
Some H-Atom radial wave functions:

$$R_{10}(r) = 2 \left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0}$$

$$R_{20}(r) = \frac{1}{\sqrt{8}} \left(2 - \frac{r}{a_0}\right)^{3/2} e^{-r/2a_0}$$

Total Points: 200

Question 1:	_/20
Question 2:	_/20
Question 3:	_/35
Question 4:	_/30
Question 5:	_/20
Question 6:	_/30
Question 7:	_/30
Question 8:	_/35

Total:	/200

Potentially Useful Information:

Workfunctions of Metals:

Li	2.3 eV
Ca	2.87 eV
Al	4.28 eV
Au	5.1 eV

$Y_{0}^{0} = \frac{1}{(4\pi)^{1/2}}$ $Y_{1}^{0} = \left(\frac{3}{(4\pi)}\right)^{1/2} \cos \theta$ $Y_{1}^{1} = \left(\frac{3}{(8\pi)}\right)^{1/2} \sin \theta e^{i\phi}$ $Y_{1}^{-1} = \left(\frac{3}{(8\pi)}\right)^{1/2} \sin \theta e^{-i\phi}$ $Y_{2}^{0} = \left(\frac{5}{(16\pi)}\right)^{1/2} (3\cos^{2}\theta - 1)$ $Y_{2}^{1} = \left(\frac{15}{(8\pi)}\right)^{1/2} \sin \theta \cos \theta e^{i\phi}$ $Y_{2}^{-1} = \left(\frac{15}{(8\pi)}\right)^{1/2} \sin \theta \cos \theta e^{-i\phi}$ $Y_{2}^{-1} = \left(\frac{15}{(8\pi)}\right)^{1/2} \sin^{2} \theta e^{2i\phi}$ $Y_{2}^{-2} = \left(\frac{15}{(32\pi)}\right)^{1/2} \sin^{2} \theta e^{-2i\phi}$

Values of Some Physical Constants

Constant	Symbol	Value
Atomic mass constant	amu	1.660 5402 x 10 ⁻²⁷ kg
Avogadro constant	N _A	6.022 1367 x 10 ²³ mol ⁻¹
Bohr magneton	$\mu B = eh/2m_e$	9.274 0154 x 10 ⁻²⁴ J · T ⁻¹
Bohr radius	$a_0 = 4\pi\varepsilon_0^2/r_e e^2$	5.291 772 49 x 10 ⁻¹¹ m
Boltzmann constant	k _B	1.380 658 x 10 ⁻²³ J · K ⁻¹
		0.695 038 cm ⁻¹
Electron rest mass	me	9.109 3897 x 10 ⁻³¹ kg
Gravitational constant	G	6.672 59 x 10 ⁻¹¹ · m ³ · kg ⁻¹ · s ⁻²
Molar gas constant	R	8.3145101 J · K ⁻¹ · mol ⁻¹
		0.083 1451 dm ³ · bar K ⁻¹ · mol ⁻¹
		0.082 0578 dm ³ · atm K ⁻¹ · mol ⁻¹
Molar volume, ideal gas		
(one bar, 0°C)		22.711 08L · mol ⁻¹
(one atm, 0°C)		22.414 09 L · mol ⁻¹
Nuclear magneton	$\mu_N = e\hbar/2m_p$	5.050 7866 x 10 ⁻²⁷ J · T ⁻¹
Permittivity of vacuum	\mathcal{E}_0	8.854 187 816 x 10 ⁻¹² C ² · J ⁻¹ · m ⁻¹
	$4\pi\epsilon_0$	1.112 650 056 x 10 ⁻¹⁰ C ² · J ⁻¹ · m ⁻¹
Planck constant	h	6.626 0755 x 10 ⁻³⁴ J · s
	ħ	1.054 572 66 x 10 ⁻³⁴ J ⋅ s
Proton charge	е	1.602 177 33 x 10 ⁻¹⁹ C
Proton magnetogyric ratio	γ _p	2.675 221 28 x 10 ⁸ s ⁻¹ · T ⁻¹
Proton rest mass	mp	1.672 6231 x 10 ⁻²⁷ kg
Rydberg constant (Bohr)	$\mathbf{R}_{\infty} = m_e e^4 / 8\varepsilon_0^2 h^2$	2.179 8736 x 10 ⁻²³ J
		109 737.31534 cm ⁻¹
Rydberg constant for H	$R_{\rm H}$	109677.581 cm ⁻¹
Speed of light in vacuum	c	299 792 458 m · s ⁻¹ (defined)
Stefan-Boltzmann constant	$\sigma = 2\pi^5 k_B^4 / 15h^3 c^2$	5.670 51 x 10 ⁻⁸ J \cdot m ⁻² \cdot K ⁻⁴ \cdot s ⁻¹