Modeling and Control of Biomimetic Cilia

NSF Grant CMII 0624597 Control Systems Program

Graduate Students in Project

- Kieseok Oh, Microfabricated Bio-mimetic Cilia for Resonance-Enhanced Mixing and Reaction of Biomolecules, PhD Thesis (December 2009)
- **2. Dhanakorn Iamratanakul**, Pre-Actuation and Post-Actuation in Control Applications, PhD Thesis (July 2007)
- **3. Brandon Smith**, An Experimental Examination of Improved Micromixing Using Bio-Mimetic Synthetic Cilia, Master's Thesis (December 2009)
- **4. Beren McKay**, Masters (Non-thesis) Degree, developed initial experiments for the cilia models (2006)
- Jiradech Kongthon, Modeling and Control of Biomimetic Cilia-based Devices for Micro-fluidic Applications, PhD Thesis (December 2012)

Outline of the talk at ACC*

1) Motivation and context

- 2) Large Cilia motions with Fluid Damping
- 3) Can Cilia improve mixing?
 - 3.1 Will choice of trajectory affect mixing?
 - 3.2 Precision control of excitation trajectory

3.3 Experimental Results

4) Conclusions

* Following Slides are based on Jiradech Kongthon's PhD Thesis

1) Motivation and Context

Fluid Manipulation at nano and micro-scale is important in a variety of problems

Example 1:

Mixing and Reaction in large-arrays of wells (Micro-plates)

Example 2:

Movement and/or Pumping of fluid in micro-channels

www.labmate-online.com/

What is the challenge?

In general, mixing is not difficult in macroscale.

Turbulent Flow

What is the challenge?

In general, mixing is not difficult in macroscale.

Turbulent Flow

Mixing can be very difficult in microscale due to laminar flows (low Reynolds number)

- In laminar flows, mixing is possible by diffusion only.
- But!!!, diffusion can be too slow for larger molecules ...

Variety of approaches are available

mixing area: there are two broad classes

Variety of approaches are available

mixing area: there are two broad classes

 Mixing of Flows: Example: Herringbone when two flows are to be mixed (Whitesides and co-workers)

Variety of approaches are available

mixing area: there are two broad classes

- 1) <u>Mixing of Flows:</u> Example: Herringbone when two flows are to be mixed (Whitesides and coworkers)
- 2) <u>Mixing in a micro-wells.</u> No flow (sample size) Examples: Shakers, magnetic elements, ultrasound

Chamber = 3mm (diameter) Fluid Height = 1.66mm

Variety of approaches are available

Broadly two classes in the mixing area:

- 1) Mixing of Flows: Example: Herringbone when two flows are to be mixed (Whitesides and co-workers)
- 2) <u>Mixing in a micro-wells.</u> No flow. Examples: Shakers, magnetic elements, ultrasound

Typical Research Issues:

1) Increase rate of mixing (increase throughput)

2) Avoid damage to biosamples due to large electrical, magnetic, mechanical forces.

Proposed Approach

Cilia-based approach to fluid Manipulation

Why?

Biomimetic --- similar to biological systems and therefore, hopefully, less damage to samples

What are Cilia?

Cilia are Fine, hair like

(micron scale)
structures that beat in
a Rythmic manner
(10-100 Hz)

What are Cilia?

Cilia are Fine, hair like (micron scale) structures
Rythmic beating (10-100 Hz) is used
1) To generate motion, e.g, paramecium swimming

Paramecium --- thousands of cilia **Photo by** Anne Fleury, Michael Laurent and Andre Adoutte, Universite Paris-Sud, France http://www.zeiss.de/

What are Cilia?

Photo From http://www.mdconsult.com

Santosh Devasia, Mechanical Engineering, UW

Cilia are Fine, hair like (micron scale) structures Rythmic beating (10-100 Hz) is used to 1) Generate motion, e.g,

paramecium swimming

2) To move fluid and

Approaches to Artificial Cilia

Several Approaches to Artificial Cilia

Each with its advantages and challenges

Approaches to Artificial Cilia

1)Self-oscillating Polymer Gel:

Advantage --- soft material

Challenge --- Low frequency (0.0055Hz)

2) **PDMS** (polydimethylsiloxane) **Pillars actuated by cardio-myocytes:**

Advantage --- soft cilia

Challenges --- control of the actuation, cell attachment

3) Ferrofluid-PDMS Composite Nanorod arrays:

Advantage --- easy to control

Challenges --- fabrication

4) Elecro-static actuation of artificial cilia:

Advantage --- easy to control

Challenges --- minimize damage due to high fields

Proposed Approach

Mechanical Resonance

Proposed Approach

Mechanical Resonance

Base motion (with piezo) generates motion of the cilia

Length = 400-700 μ ; Width = 10 μ ; Height = 45-75 μ B (Motion) about 20 μ

Similarities and Differences

Similarities with Bio-Cilia (1) soft material, (2) similar beat frequency (10-100Hz) as bio-samples --- less damage to soft samples
Differences from Bio-Cilia : Not self actuated

Outline of the talk

- 1) Motivation and context
- 2) Large Cilia motions with Fluid Damping
- 3) Can Cilia improve mixing?
 - 3.1 Will choice of trajectory affect mixing?
 - 3.2 Precision control of excitation trajectory

3.3 Experimental Results

4) Conclusions

Are Large Cilia Oscillations Possible?

Main Concern

- 1) Typically, damping ratio can be large in liquids
- 2) This can prevent large oscillations in fluid
- 3) Especially since our cilia are not self actuated

Model: Standard Beam Eqs

Brief History: Added Mass

• Dubuat oscillation

of pendulums in water in 1786

• History written by Stokes in 1850

Sir George Gabriel Stokes (1819–1903) Photo from http://en.wikipedia.org/wiki/George_Gabriel_Stokes

• The added-mass effect arises because of the need to accelerate the fluid around an object when it is accelerated through a fluid – increase in inertia!

Added Mass

Additional Details in Paper

Main Effects --resonance freq reduces by third

Added Mass Effect Reduces Natural Frequency, and therefore reduces resonance frequency

$$\frac{\partial^2 \hat{w}(x,t)}{\partial t^2} + \frac{(B_f + B_i)}{\rho_b A_b \left(1 + C_m\right)} \frac{\partial \hat{w}(x,t)}{\partial t} - \frac{EI}{\rho_b A_b \left(1 + C_m\right)} \frac{\partial^4 \hat{w}(x,t)}{\partial x^4} = r^*(t)$$

Also reduces damping by a third!

Added Mass effect reduces the damping ratio (overdamped \rightarrow underdamped)

$$\frac{\partial^2 \hat{w}(x,t)}{\partial t^2} + \frac{(B_f + B_i)}{\rho_b A_b \left(1 + C_m\right)} \frac{\partial \hat{w}(x,t)}{\partial t} + \frac{EI}{\rho_b A_b \left(1 + C_m\right)} \frac{\partial^4 \hat{w}(x,t)}{\partial x^4} = r^*(t)$$

Outline of the talk

- 1) Motivation and context
- 2) Large Cilia motions with Fluid Damping

3) Can Cilia improve mixing?

- 3.1 Will choice of trajectory affect mixing?
- 3.2 Precision control of excitation trajectory

3.3 Experimental Results

4) Conclusions

Piezo Positioner for exciting motion

Positioning System Model

Question: What is a good input trajectory Uc for the cilia chamber for mixing?

Issue: Choice of Cilia Chamber Trajectories

resonance of cilia in chamber (about 96 Hz) What is a good chamber positioning trajectory?

Issue: Choice of Cilia Chamber Trajectories

E.g., sinusoidal? With main frequency = resonance of cilia in chamber Other chamber positioning trajectories?

Example study: Symmetric vs Asymmetric

Will Asymmetry improve mixing speed? Such studies require good positioning control !

Challenge in such studies ---Positioning (hysteresis)

Amplitude dependent dynamics in closed-loop system due to hysteresis effects (more damped)

Challenge

Positioning error makes it difficult to evaluate different mixing strategies. We need to correct such dynamics effects to evaluate different vibration schemes

Approaches to correct hysteresis

Our approach --- iterative correction

 $V_{opt,k}(\omega) = V_{opt,k-1}(\omega)$ $+ \rho(\omega)G_{cl,opt}^{-1}(\omega) \left[u_{c,p}(\omega) - u_{c,k-1}(\omega)\right]$

Our approach --- iterative correction

We can usually track within 2*(noise level) with such an iterative approach

$$V_{opt,k}(\omega) = V_{opt,k-1}(\omega) + \rho(\omega)G_{cl,opt}^{-1}(\omega) \left[u_{c,p}(\omega) - u_{c,k-1}(\omega)\right]$$

Need to worry about convergence

 $V_{ff,k+1}(j\omega) = V_{ff,k}(j\omega) + \rho(j\omega) \left[G^{-1}(j\omega) \right] \left[E_k(j\omega) \right].$

the magnitude of phase variation is less than π/2 |Δ_θ(ω)| < π/2, at frequency ω; and
 the iteration coefficient ρ(ω) in (9) is chosen as

$$0 < \rho(\omega) < \frac{2\cos\left(\Delta_{\theta}(\omega)\right)}{\Delta_{r}(\omega)}$$

Santosh Devasia, U. of Washington

Tracking Results

Quantify: Reduction in tracking error

Iteration Step	$E_{k,max}$	$E_{k,rms}$
k	μm	μm
1	2.71	82.82
2	2.17	47.98
3	0.90	21.01
4	0.81	14.27
5	0.66	11.45
6	0.37	8.51

Outline of the talk

- 1) Motivation and context
- 2) Large Cilia motions with Fluid Damping
- 3) Can Cilia improve mixing?
 - 3.1 Will choice of trajectory affect mixing?
 - 3.2 Precision control of excitation trajectory

3.3 Experimental Results

4) Conclusions

Videos – Example results

Sinusoidal case -- with/without cilia

Mixing (90%) without cilia completed in about 241 seconds Mixing (90%) with cilia completed in about 12.4 seconds

Asymmetric case -- with/without cilia

Mixing (90%) without cilia completed in about 39 seconds Mixing (90%) with cilia completed in about 5.9 seconds

Quantifying the mixing

Note: final image at 72 seconds is dark when compared to initial image before ink drop --- addition of ink

Spots can appear due to reflections of lights when surface is sloshing

Need to look for image to reach steady state (even with the spots)

Quantifying the mixing

• Approach: use a "mixing index" that can describe the amount of mixing that has occurred at a given time.

Implies that if the last image is fully mixed and the first is unmixed, the mixing index will go from 0 to 1 as the fluids become fully mixed.

90% mixing --- Typical results (average of 7 runs)

Sinusoidal & Asymmetric cases							
	Sinusoidal			Asymmetric			
	No	Yes		No	Yes		
Run Number	Mixing Time without Cilia (s)	Mixing Time with Cilia (s)	Run Number	Mixing Time without Cilia (s)	Mixing Time with Cilia (s)		
1	241.0	12.4	1	39.5	5.9		
2	182.5	12.2	2	69.0	5.0		
3	122.0	13.0	3	48.0	5.4		
4	155.5	14.8	4	41.0	5.2		
5	230.0	17.3	5	71.0	4.4		
6	157.0	13.5	6	52.5	4.3		
7	137.0	11.7	7	79.0	6.0		
Mean	175.0	13.56	Mean	57.14	5.17		
σ	45.45	1.94	σ	15.74	0.67		

Comparison of results

Mixing Time in Second (mean value from 7 runs)Excitation Wave FormWith CiliaWithout CiliaSymmetric13.56175Asymmetric5.1757.14

- Mixing time can be reduced using cilia
- Further reduced using asymmetry
- Net reduction --- 175 seconds to 5.17 seconds !

Conclusions

Mixing Time in Second (mean value from 7 runs)						
Excitation Wave Form	With Cilia	Without Cilia				
Symmetric	13.56	175				
Asymmetric	5.17	57.14				

- Mixing time can be reduced using cilia
- Further reduced using asymmetry
- Net reduction --- 175 seconds to 5.17 seconds !
- Thus, trajectory optimization can be important
- The study was facilitated by iterative control

Overall Accomplishments

- 1. Design and fabrication of soft Silicone cilia with substantial resonance excitation in an oscillating fluid-chamber
- 2. Used added mass effect to explain the substantial reduction in the resonance frequency of the cilia
- 3. Characterized the mixing of fluids with the cilia
- 4. Developed fluid-structure interaction models to explain the large-amplitude cilia vibrations and mixing improvements
- 5. Used control techniques to track waveforms for evaluating the effect of different excitation waveforms for mixing
- 6. Demonstrated more than an order-of-magnitude reduction in the mixing time with the use of cilia when compared to the case without cilia