What is Inversion-Based Control?

Consider a System --- My Nephew Let the **desired output be, say, eat dinner!**

What is Inversion-Based Control?

Let the desired output be, say, eat dinner! Question: What input should you apply? (negotiate, encourage, ???)

What is Inversion-Based Control?

Let the desired output be, say, eat dinner! Question: What input should you apply? (negotiate, encourage, bribe <u>always works for me</u>!)

The Inversion-Problem

Prior Knowledge

Invert the known system model (G_0) to find input. Input = G_0^{-1} [Desired Output]

The Inversion-Problem

Prior Knowledge

Invert the known system model (G_0) to find input. Input = G_0^{-1} [Desired Output]

(His Mom know's how --- she has a reasonable model)

The Control method using Inversion

Use Inverse input as the feedforward input to system

Nonminimum Phase System Inverse: S. Devasia, D. Chen and B. Paden "Nonlinear Inversion-Based Output Tracking," IEEE Transactions on Automatic Control, Vol. 41 (7), pp. 930-942, July 1996

Feedforward is Common in Human Systems

Prior Knowledge

Actual System

Examples: Walking, Playing Baseball, Driving a Car

Problem --- model uncertainty

Prior Knowledge

Actual System

Is Desired output = Output?

Yes if we know the model perfectly! But, we rarely know a system perfectly $(G_0 \neq G, G_0^{-1} \neq G^{-1})$

Resolution: Addition of Feedback

Exploit knowledge of the system through feedforward input Account for errors (uncertainties, perturbations) using feedback

Feedforward under Uncertainty?

As the kid grows up the model gets lousy! $\Delta(\omega) = G_0(\omega) - G(\omega)$ Maybe it is better to use pure feedback without feedforward?

Let the Error in model be $\Delta(\omega) = G_0(\omega) - G(\omega)$ For SISO Case, Feedforward always improves output tracking for any feedback if $|\Delta(\omega)| < |G_0(\omega)|$

Ref: S. Devasia, "Should Model-based Inverse Inputs be used as Feedforward under Plant Uncertainty?" IEEE Trans. on Automatic Control, Vol. 47(11), Nov 2002.

Re-Cap

• Key Idea: Feedforward Input is found using System Inversion

- (1) Feedforward input uses system knowledge to control the output
- (2) Feedforward should be integrated with feedback
- (3) Performance better than the use of feedback alone if uncertainty is not too large $|\Delta(\omega)| < |G_0(\omega)|$