Settling Control with Dual Stage Systems

Santosh Devasia
Mechanical Engineering Department
U. Of Washington, Seattle
Overview of our work

We investigated the benefits of using dual-stage systems

Clearly the second actuator should improve the servo performance.

The second actuator has
higher bandwidth and also higher resolution
both help to improve servo performance with increased data density.

Our research focused on two aspects
(a) Optimizing Seek
(b) Optimizing Settle
Our Research: Feedforward Design

For both Seek (completing the articles in this area) and Settle (more recently)

Augments any existing feedback controller
Start with Seek control

Main Issue: Trade-offs between VCM vs PZT vs Seek time?

\[J = \gamma T + \int \left\{ \rho_{vcm} u_{vcm}(t)^2 + \rho_{pzt} u_{pzt}(t)^2 \right\} dt \]

- Cost of seek time
- Cost of VCM input
- Cost of PZT input

Weighting factors

Our contribution: Use pre/post actuation (input applied before and after seek time interval) to improve seek performance
How does pre/post-actuation help with dual-stage actuator?

Let’s start with a single-stage VCM input.

We’d like to design a fast seek trajectory (blue line).
How does pre/post-actuation help with dual-stage actuator?

Let’s start with a single-stage VCM input

We’d like to design a fast seek trajectory (blue line)

But the input is constrained by the saturation limit
Use second actuator (PZT) to cancel the movement from VCM

Design PZT trajectory (green line) to cancel the VCM motion outside the seek time

Effective time to change the output (seek time) is reduced

More time to apply the input without scarifying the seek time
PZT can help achieve faster seek with use of pre/post-actuation

Design PZT trajectory (green line) to cancel the VCM motion outside the seek time

Effective time to change the output (seek time) is reduced

Thus, for a fixed VCM input, the dual-stage can reduce the seek time.
Two main issues in pre/post-actuation:

1. Find pre- and post-actuation inputs to maintain constant output

Publications:

Two main issues in pre/post-actuation:

1. Find pre- and post-actuation inputs to maintain constant output

2. What is a good seek trajectory? → Design trade off

Publications:

Trade-off between VCM and PZT

\[
\min_u J = \int \left\{ u_{vcm}(t)^2 + \rho u_{pzt}(t)^2 \right\} dt
\]
Trade-off between VCM and PZT

\[\min_u J = \int \left\{ u_{vcm}(t)^2 + \rho u_{pzt}(t)^2 \right\} dt \]

Design Flexibility: Choose large \(\rho \) \(\rightarrow \) single stage case with VCM input

Seek length = 2.5 micron, Seek time = 4ms
Trade-off between VCM and PZT

\[\min_u J = \int \left\{ u_{vcm}(t)^2 + \rho u_{pzt}(t)^2 \right\} dt \]

Design Flexibility: Choose large \(\rho \) → single stage case with VCM input

Choose small \(\rho \) → use PZT to augment the VCM input
Trade-off between VCM and PZT

\[\min_u J = \int \left\{ u_{vcm}(t)^2 + \rho u_{pzt}(t)^2 \right\} dt \]

What if PZT input is too high?
Then increase the weight on PZT

Choose small \(\rho \rightarrow \) use PZT to help reduce VCM input

\(\rho = 1e-7 \)
Trade-off between VCM and PZT

PZT is now smaller -- How much improvement we can get → limit on PZT

Choose small ρ → use PZT to help reduce VCM input
Want faster seek \rightarrow use larger weight on seek time

$$\min \ J = (\gamma T) + \int \left\{ u_{vcm}(t)^2 + \rho u_{pzt}(t)^2 \right\} dt$$

Faster seek comes at price of larger input

Dhankorn completed this work --- got his PhD recently

Journal article with details is close to completion

Seek length = 2.5 micron, ρ is fixed
Summary so far

\[
\min \ J = \gamma T + \int \left\{ u_{vcm}(t)^2 + \rho u_{pzt}(t)^2 \right\} dt
\]

We can vary the weighting factor to find optimal seek trajectory for a given limit on input
Summary so far

\[\min J = \gamma T + \int \left\{ u_{\text{vcm}}(t)^2 + \rho u_{\text{pzt}}(t)^2 \right\} dt \]

Decreasing seek time of course increases the input
Main Results: trade-off design with VCM vs PZT vs Seek time

\[J = \gamma T + \int \left\{ \rho_{vcm} u_{vcm}(t)^2 + \rho_{pzt} u_{pzt}(t)^2 \right\} dt \]

Cost of seek time
Cost of VCM input
Cost of PZT input

Implementation issues:

1. How much pre/post-actuation time do we need?

 What if we don’t have time for pre-actuation?

2. Will post-actuation cause trouble after seek time?

 How do we use post-actuation for sequential seek?
How much pre/post-actuation time do we need?

Theoretically, pre- and post-actuation inputs require an infinite amount of time.
How much pre/post-actuation time do we need?

Theoretically, pre- and post-actuation inputs require an infinite amount of time. In practice, the pre- and post-actuation time is finite because the pre- and post-actuation inputs decay over time and can be truncated when the input signal becomes small.
Implementation issues:

1. How much pre/post-actuation time do we need?

 What if we don’t have time for pre-actuation?

Solutions

• Pose a problem that only use post-actuation

• Add weighting factor to the pre/post-actuation cost

Weighted pre- and post-actuation

\[J = \int_{-\infty}^{\infty} \beta(t) \{ u_{vcm}(t)^2 + \rho u_{pzt}(t)^2 \} dt = \beta_{\text{pre}} J_{\text{pre}} + J_{\text{tran}} + \beta_{\text{post}} J_{\text{post}} \]

Weighting factor for the cost of pre/post-actuation
\[\rightarrow \text{ adjust the amount of pre/post-actuation inputs} \]
Example: Effect of weighting pre-actuation

\[
J = \int_{-\infty}^{\infty} \beta(t) \left\{ u_{vcm}(t)^2 + \rho u_{pzt}(t)^2 \right\} dt = \beta_{pre} J_{pre} + J_{tran} + \beta_{post} J_{post}
\]

- The pre-actuation time can be adjusted by choosing an appropriate choice of the weighting factor \(\beta_{pre}\)

- Even without pre-actuation, post-actuation still helps improve the seek performance

<table>
<thead>
<tr>
<th>(\beta_{pre})</th>
<th>Pre-actuation time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>61.78</td>
</tr>
<tr>
<td>0.01</td>
<td>16.95</td>
</tr>
<tr>
<td>0.1</td>
<td>5.92</td>
</tr>
<tr>
<td>1</td>
<td>5.76</td>
</tr>
<tr>
<td>10</td>
<td>5.10</td>
</tr>
<tr>
<td>100</td>
<td>2.82</td>
</tr>
<tr>
<td>1000</td>
<td>0.30</td>
</tr>
</tbody>
</table>
Implementation issues:

1. How much pre/post-actuation time do we need? What if we don’t have time for pre-actuation?

2. Will post-actuation cause trouble after seek time? How do we use post-actuation for sequential seek?
Sequential seek

Output $y_1 \rightarrow y_2$

Input

Pre actuation

Post actuation
Sequential seek

Output \[y_1 \rightarrow y_2 \rightarrow y_3 \]

Input from new seek
Will the overlapped input cause problems?

Output: $y_1 \rightarrow y_2 \rightarrow y_3$

Input: [Diagram showing time intervals for pre-actuation, post-actuation, and new seek]
Will the overlapped input cause trouble?

Answer: NO. Because the pre/post-actuation inputs do not affect the output, i.e. $y = \bar{y}$, $\ddot{y} = 0$
Will the overlapped input cause trouble?

Answer: NO. Because the pre/post-actuation inputs do not affect the output, i.e. $y = \ddot{y}, \dot{y} = 0$

Assuming that the system is linear \rightarrow superposition holds
Will the overlapped input cause trouble?

Answer: **NO**. Because the pre/post-actuation inputs do not affect the output, i.e. \(y = \bar{y}, \ddot{y} = 0 \)

Assuming that the system is linear \(\rightarrow \) superposition holds

\[
y_3 = y_1 + y_2 \rightarrow \text{maintained constant at the desired position since both } y_1 \text{ and } y_2 \text{ are maintained constant}
\]
Sequential seek

Output $y_1 \to y_2 \to y_3$

Output still tracks desired trajectory

Input

Inputs can overlap

Pre actuation

Post actuation

Input from new seek

Post actuation
Sinusoidal/polynomial input profile with dual-stage actuator

Motivation: Trade-off between optimality and ease in implementation of the control algorithm

\[u_{v}(t) = \text{sinusoidal} \]

\[u_{p}(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + \ldots \]

Key issues in polynomial input

• Can we optimize the polynomial profile?

If we use higher-order polynomial (higher than the minimum degree requirement), we can optimally choose the coefficient to minimize a cost function

\[u_p(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + \ldots \]
Key issues in polynomial input

• Can we optimize the polynomial profile?

• Can we obtain a smooth or continuous input trajectory?

Extra constraints can be imposed at the cost of higher-order polynomial profile
Summary of Part 1: Seek control

Main Issue: Trade-offs between VCM vs PZT vs Seek time?

\[J = \gamma T + \int \left\{ \rho_{vcm} u_{vcm}(t)^2 + \rho_{pzt} u_{pzt}(t)^2 \right\} dt \]

Cost of seek time
Cost of VCM input
Cost of PZT input

Our contribution: Use pre/post actuation (input applied before and after seek time interval) to improve seek performance

Studied Both: Computational (Design Tradeoffs) and Implementation Issues
Part 2: Settling Control

• Second actuator cannot directly help during large seek (tends to be saturated).

• Settling for large seek with dual-stage system
 • Can second actuator help in settling?
 • Challenge: handle different initial conditions such as second actuator being saturated

• Our Approach
 • Yes. Second actuator can improve settling
 • Developed an optimal inverse feedforward approach
 • Proposed method avoids online computation
Background: Settling Control for Dual-Stage

• **Intuitive:** Second stage should improve performance

• **Previous works**
 • Design of dual-stage feedback (as opposed to single stage)
 • Changing Initial Conditions of feedback controller for better settling
 • Adding feedforward to improve settling

• **Our Approach**
 • We used pre- and post-actuation to improve seek
 • Can such an approach improve settling?
 • Will it be prohibitively computationally intensive?
Main Idea? State vs. Output Settling

Use of Post-actuation (i.e., after bringing the output to zero and maintaining it zero)

Allows a smaller VCM Input when compared to State-settling

But output settling occurs in same amount of time

Note: PZT is saturated at the beginning (It is still useful)
Advantage? Faster Settle

In this simulation both input magnitudes are similar

Faster settle for same input magnitudes

Note: PZT is saturated at the beginning (It is still useful)

Dotted line --- state settling without post-actuation
Green line --- output settling with post-actuation
Theory/Analysis

S Devasia. "Optimal Output Transition for Settling Control in Hard-Disk Drives with Dual-Stage Actuators."
To be presented at the IEEE Multi-Conference on Systems and Control, October, 2007.
Simulation Results
Simulation Results

- **VCM Response**
- **PZT Response**

Diagram showing:
- U_p → Flexible dynamics
- U_v → Rigid-body dynamics
- Output: y
Simplified Model

First Actuator, VCM

\[G_v(s) = \frac{y(s)}{u_v(s)} = \frac{b_1}{s^2} + \frac{b_2}{s^2 + a_1 s + a_0} \] \hfill (1)

Second Actuator

\[G_p(s) = \frac{y(s)}{u_p(s)} = \frac{b_3}{s^2 + a_1 s + a_0}. \]
Main Idea! State vs. Output Settling

Use of Post-actuation (i.e., after bringing the output to zero and maintaining it zero)

Allows a smaller VCM Input when compared to State-settling

But output settling occurs in same amount of time

Note: PZT is saturated at the beginning (It is still useful)

Dotted line --- state settling without post-actuation
Green line --- output settling with post-actuation
Advantage? Faster Settle

Faster settle for same input magnitudes

Note: PZT is saturated at the beginning (It is still useful)

Dotted line --- state settling without post-actuation
Green line --- output settling with post-actuation
Computational Issues
Computational Issues

Inputs can be found explicitly.

However, it still takes time to compute

\[\hat{u}^* (t) = R^{-1} \hat{B}^T e^{\hat{A}^T (t_f - t)} \hat{G}^{-1} \begin{bmatrix} U_\eta \eta^* - e^{\hat{A} (t_f)} \hat{x}(0) \end{bmatrix} \]

\[
\begin{align*}
\hat{u}_p^* (t) &= -N^{-1} (B_\eta^T W + S) \left[e^{A_{CL} (t-t_f)} \eta^* \right] \\
\hat{u}_v^* (t) &= C_\eta \left[e^{A_{CL} (t-t_f)} \eta^* \right] + D_\eta \hat{u}_p^* (t) \\
A_{CL} &= A_\eta - B_\eta N^{-1} (B_\eta^T W + S)
\end{align*}
\]
Worse: Dependence on ICs

Inputs can be found explicitly. However, it still takes time

Choice of weights depends on initial conditions

\[
\hat{u}^*(t) = R^{-1} \hat{B}^T e^{\hat{A}^T(t_f-t)} \hat{G}^{-1} \left[U_\eta \eta^* - e^{\hat{A}(t_f)} \hat{x}(0) \right]
\]

\[
\hat{u}_p^*(t) = -N^{-1} \left(B_\eta^T W + S \right) \left[e^{A_{CL}(t-t_f)} \eta^* \right] \\
\hat{u}_v^*(t) = C_\eta \left[e^{A_{CL}(t-t_f)} \eta^* \right] + D_\eta \hat{u}_p^*(t) \\
A_{CL} = A_\eta - B_\eta N^{-1} \left(B_\eta^T W + S \right)
\]
Approach: Exploit Linearity

If initial condition at start of seek settle is linear combination of states then

\[X_3 = \gamma_1 X_1 + \gamma_2 X_2 \]

Choose the input as the same linear combination of previous inputs

\[\hat{u}_3 = \gamma_1 \hat{u}_1 + \gamma_2 \hat{u}_2 \]
Does it work?

If initial condition at start of seek settle is linear combination of states then

\[X_3 = \gamma_1 X_1 + \gamma_2 X_2 \]

Choose the input as the same linear combination of previous inputs

\[\hat{u}_3 = \gamma_1 \hat{u}_1 + \gamma_2 \hat{u}_2 \]

Guarantees settling time is not longer than previous ones!

Convexity can be used to ensure input is bounded

Prefilter allows inputs to be saturated at the start
Example

VCM

PZT

Output

Red is linear combination of first two states
Example

Guarantees settling time is not longer than previous ones!
Convexity can be used to ensure input is bounded
Prefilter allows inputs (PZT) to be saturated at the start
Effect of higher-order pre-filters

Second order pre-filter allows smoother inputs
(when compared to first-order pre-filter)
(Settling takes more time with Smoother inputs 0.2
Was 0.18 before)
Conclusion for Part 2: Settling Control for Large-Seek

- **Settling for large seek with dual-stage system**
 - Can second actuator help in settling?
 - Challenge: Second actuator saturated at start

- **Our Approach**
 - Yes. Second actuator can improve settling
 - Developed an optimal inverse feedforward approach which uses post-actuation idea!
 - Proposed method avoids online computation for different initial conditions