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What is Seattle is famous for?

 Rain and Coffee!



What is Seattle is famous for?
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Rain and Coffee!
« Makes Seattle a
romantic City




Rain makes Seattle Scenic
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Other famous things in Seattle ?
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Example: Boeing Advanced Research Center

Founded in 2014 (fall)
Co-location space on campus

Big Data/Machine Learning

« Reducing number of sensing points

(sparse sensing)

« Standardization of multiple parts

Robotics / Ergonomics and Safety
« Human-Robot collaboration, e.g., sanding

« Shoulder fatigue modeling

* Riveting and impact on humans

Composites

 Advanced Fiber Placement
 Thermoplastics

L - kg ~
li

BARC Ribbon Cutting, January 2015
UW President Michael Young, BCA CEO Ray
Conner, Gov. Jay Inslee, Dean Michael Bragg

S

Students work with Boeing
Mechanics to make riveting safer



Why links to industry?

1. Education: Application-based learning;
(students at all levels, BS, MS, PhD)

2. Students: Learn by doing. Highly
motivated to work on these applied
problems

3. Research: Leads to high-impact
collaborative research
+ a source for set of rich problems with
potential for strong impact



U. of Washington at a Glance

-y

-

Founded in 1861 WiF L '*"‘”a
Students: 48,000 | |
. L v, N
#1 in federal funds for & = S
research among
US public universities

Ranked #10 by
U.S. News & World

Spring-time in Seattle

Beautiful time to visit!

Top 4 most Innovative
Universities in the world,
Reuters



Welcome to visit Seattle/UW

 General Chair for

» Advanced intelligent
Mechatronics (AlM)
2023 in Seattle

 You are most welcome
to attend and come visit
Seattle and UW
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Motivation

* So why another look at swarms... ?
* There is a lot of work in this already

Pond5.com, Shutterstock.com 14



Observations do not match models

Video from Information transfer and behavioural inertia in
starling flocks, Attanasi et. al., Nature Physics , 2014




Observations do not match models

This study raised questions
about validity of existing
models (diffusion based)

Speed of orientation
propagation proportional to
time as in waves (not as in

diffusion)

Video from Information transfer and behavioural inertia in
starling flocks, Attanasi et. al., Nature Physics , 2014




Motivation for renewed effort in swarming

1. Understand: why models do not match
observations?
2. Improve: What model changes are needed to

capture how swarms work in nature
(esp. to match recent observations)

3. Apply: Could help to improve the
design of similar engineered systems
1. Platoons of self-driving cars

2. UAVs (air, sea, land)
3. Synchronized robots
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The research problem

» Essentially,
 How fast can response propagate
through the network?
* Can it be increased from current
models?

 Can we better match observations
from nature?

« Will clarify this in the next few slides



Standard swarming

model

Position of an agent is (x; y;)
Speed v is constant
Orientation /;

Classical models by

« Huth and Wissel, 1992.
J. of Theoretical Biology,

 Vicsek, et. al., 1995.
Phys. Rev. Lett.

Agents update at time steps, f, = ko;
(o; for sensing, computing, actuation)

xi(k+1) = x;(k) + vd; cos 1,
yi(k+1) = yi(k) + vO; sinl;,

Change orientation /; for maneuvers y [g

Orientation information needs to be
propagated through network




Loss of synchronization is a problem

Loss of orientation
synchronization
leads to loss of
formation

xi(k+1) = x;j(k) + v, cos 1,
yi(k+1) = y;i(k) + v, sinl;,




What are limits to synchronization?



Position changes (from before)

) = xi(k) + v, cos1;,
(k+1) = y;j(k) 4+ v sinl;,




How does the orientation change?

« Position changes specified earlier

xi(k+1) = x;(k) + v, cos 1,
yitk+1) = yi(k) + v sinl;,

 How does the orientation /; change?

Ui(k+1) —Ii(k)] = —YAi(k)d;
Ai(k) = WIHZJ'EN; Li(k) —1;(k)]
Ii(k+1) = Ii(k) — YA (k)

where 4; is the average deviation from

neighbor j orientations,

IN|| is the number of neighbors, X
v is the alignment gain,




From last page

 How does the orientation /; change?
Ii(k+1) = ILi(k) —YyAi(k)O;
Ai(k) — |;\11i| ZjeN; [[i(k) _Ij(k)]

where 4; is the average of neighbor

orientations, |N|| is the number of
neighbors, v is the alignment gain,




Bottom line: Essentially a diffusion equation

 How does the orientation /; change?
li(k+1)=1Ii(k)—vAi(k)d,
Ai(k) = Zjen; [li(k) —1;(k)]

where 4; is the average of neighbor

orientations, |N|| is the number of
neighbors, v is the alignment gain,

 ais average distance between agents X
D is the number of dimensions (e.g., 2)



Diffusion: 1 Information spread rate

Diffusion equation results in
d: Information travels distance

y

Ref:
« Attanasi et. al., 2014
Nature Physics




Diffusion: 2 Information decay

Ref:
« Cavagna et. al., 2015
J. Stat Phys
A A /
Response decays with [N
distance from leader !

. - start
Acceleration of turn decays e
with distance

Vicsek model

Leads to loss of formation in
traditional models!



Compare with recent observations

126

10

15 -

« Data from real flocks
« Deviations found from traditional models

By
« Attanasi et. al., 2014
Nature Physics




Recent observations & problem

By

~__ start ~_ Start
of turn of turn

l « Attanasi et. al., 2014
' Nature Physics
: « Cavagna et. al., 2015
5 J. Stat Phys

real flock Vicsek model

Three key differences/observations

1. No decay: Turn information (max radial acceleration) does not
decay with distance (as opposed to diffusion-type models)

2. Wavelike: Turn information spreads proportionally with time,
wave-like (not square root of time predicted by diffusion models)

3. Re-orientation travels faster than neighbor realignment
Research problem: explain these differences



eo =B B s Y N =

Outline of talk

Brief Intro to UW and BARC
Motivation

Problem formulation (math)
Limits of current approaches
Proposed DSR approach
Results & Discussion

Ongoing efforts / Extensions
Conclusions



Other approaches to maintain formation




1. Distance dependent orientation

Il(k_l_ 1) — Il(k) o YAl(k)Sf Example model by
« Couzin, et. al., 2002.
Ai(k) - lei ZjEN,- [Ii(k) _ [j(k)] J. of Theoretical Biology

Change policy depending on distance
Repulsion: align orientation /; to move
away from individuals in zone of repulsion
(inner most zone)

Attraction: align orientation /; to move
towards individuals in zone of attraction
(outer most zone)

Orientation: align orientation /; with
individuals in zone of orientation

Different weights to each action
Action/neighbor could be randomized...




1. Distance dependent orientation

It(k + 1) — Il(k) — 'YA,(k)S; Example model by
* Couzin, et. al., 2002.
Ai(k) = |[\1&' Y ien; [li(k) —1; (k)] J. of Theoretical Biology
y

 However, recent findings in Attanasi et. al., 2014 Nature Physics

indicate that
Alignment information travels faster than neighbor realignment!

 Moreover, this also requires additional sensing

« So there might be other approaches to
« improve information transfer rate and
* help maintain formation
« that are not dependent on such distance-based policies



Approach 2: increase the alignment gain



Current swarm-type network models

* |n a swarm, each agent’s update is given by

« v is the alignment strength
* g Is positive only if agent j is a neighbor of agent |
« The zerot" agent is a virtual source Zg



When connectivity is a given graph
zilk + 1] = z; k] 4+ ;K]
= zilk] +7 ) aij (2 — 2)
j=0

* Rewrite in terms of the pinned Graph Laplacian K

Zk+1] =Zlk| —~vKZ[k| + vBZ[k]
= (I—9K) Z[k] + vBZ(k)
= PZ[k] + yBZ,(k).

» Convergence depends on Perron matrix P




Standard convergence theory

» If gain v is sufficiently small and every agent is
connected to the source agent through a path

Zk+1l =Zk|—~yKZ|k|+ vBZ|k]

. Contraction PZk| +~yBZs(k).

Z[k+1]— Z[k]] = P*¥[Z[1]-Z[0]] =0

» Leads to consensus Zlk] - K~'BZ,

-1 _
Zk] —1,Zg as k—oo. BB =l



Research issue: fast convergence

Zkl —=1,Z3 as k — oo.

» Rate of convergence depends on
alignment gain y and
graph connectivity K

Zlk+1] = Z[k] — vKZ[k] + vBZsk]
— PZ[k] +~vBZ,(k).

» Large alignment gain y can result in fast response



However there are limits on alignment gain

* Formally, let eigenvalues of pinned Laplacian K be

AK,’m — MK m 62¢5K,m

* Then, the range of acceptable alignment gain is
bounded

s S (K ,i)

0 < Y < minlgign m——

=77 < OQ.

 Detalls: Devasia, Indian Control Conference, 2019



Other limits: bandwidth and input magnitude

* Increasing alignment gain y for fast response

* |ssue 1: requires larger inputs

* |ssue 2: makes the system is stiffer,
the information update rate needs to be increased for

stability.
 However, update rate is limited by
sensing/communication bandwidth.
« Max update rate (input bandwidth) as well as input
size restrictions also limit the maximum
convergence rate
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. The approach
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. Why it works? (why is it non diffusive?)
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. Stability condition for graph networks



Proposed DSR approach

* From Devasia, ASME J. of Dynamic Systems
Measurement and Control, March 2019



Proposed DSR approach

« Change from

Li(k+1) = Li(k)] = —yAi(k)o,
Ai(k) = 7 Ljen; [Li(k) = 1;(k)]



e tO

Proposed DSR approach

« Change from

[lf(k+ 1) —]j(k)] = —’YA;(’()S;
Ai(k) = iy Ljen; i (k) = 1;(k)]

Li(k+1) = Li(k)] =

—YAi(k)o;

+ B li(k) —Li(k—1)]




Proposed DSR approach

Change from
Li(k+1) —1i(k)] = —YAi(k)d,
Ai(k) = 7 Zjen; [li(k) —1;(k)]

Li(k+1) = Li(k)| = —YAi(k)o; + P [Li(k) — Li(k—1)]

where S is the update gain on the delayed-self-
reinforcement (DSR) using older update

to



Proposed DSR approach

« Change from

e tO

[1;(k+ 1) —1,'(/()] = —’YA,'(k)Br
Ai(k) = 7 Zjen; [li(k) —1;(k)]

1i(k+1) = Ii(k)] = —yAi (k)& + B [li(k) —1i(k—1)]

* where fis the update gain on the delayed-self-

o O"

reinforcement (DSR) using older update

Li(k+ 1) = Li(k) — YA (K)S, + B [L:(k) — Li(k—1)]




Proposed DSR approach
Change from
Ii(k+1) = Ii(k) — YA (k)
Ai(k) = 7 Ejen, (k) — 1 (k)]

t
’ Ii(k+ 1) = Ii(k) — YAi (k)& + B [li (k) — Ii(k — 1)]

where S is the update gain on the delayed-self-
reinforcement (DSR) term in brackets

delayed reinforcement term is referred to as the
momentum term in gradient-based search
algOrIth mS * Rumelhart, et. al., 1986, Parallel Distributed Processing,

Vol. 1 . MIT Press, Cambridge, MA.
* Qian, 1999. “On the momentum term in gradient
descent learning algorithms”. Neural Networks,
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Proposed DSR approach

. The approach
. Does it require additional information

from the network? (e.g., direct connection
to source?)

. Why it works? (why is it non diffusive?)

How to select the DSR parameters? (p)

. Stability condition for graph networks



Implementation for each agent

li(k+ 1) =ILi(k) —yAi(k)d; + B[Li(k) — I;(k—1)]

YA I;(k
A 4 iRl
T-I—

Without DSR YA; (k)& +

T-|—

>

Ii (k)
>

_|_
With DSR /

B

% i (k-1)

« Update for each agent /i(k+1)

« Uses a delayed version of previous input /;(k-1)
 No additional info from network. Just self

reinforcement with prior info. Also, same update rate
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Proposed DSR approach

. The approach

Does it require additional information from
the network? (e.g., direct connection to
source?)

. Why it works? (why is it non diffusive?)

How to select the DSR parameters? (p)

. Stability condition for graph networks



Why it works (Analysis)

Ii(k+ 1) =ILi(k) —YAi(k)o + B L; (k) — Li(k—1)]
li(k+1) = Li(k)] = —yAi(k)o, + B [Li(k) — Ii(k—1)]



Rewrite the eqs.

Ii(k+1) = Li(k) — YAi (k)6 + B [li(k) — li(k—1)]
fi(k+1) = Li(k)] = —YAi(k) 6 + B [1i(k) — Li(k—1)]




Take limit: small sampling time

Ii(k+1) = Li(k) — YAi (k)6 + B [li(k) — li(k—1)]
fi(k+1) = Li(k)] = —YAi(k) 6 + B [1i(k) — Li(k—1)]

* Telegraphic transmission equations



Can capture wavelike & diffusion

BS azl(tX)—|—(1 B)aItX = “2V21 X
132\ — a_t(: )—Y—D (#,X)

 Forp->1
(wavelike)

 For -0
(diffusion)

» Performance depends on DSR gain
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Proposed DSR approach

. The approach

Does it require additional information from
the network? (e.g., direct connection to
source?)

Why it works? (why is it non diffusive?)
How to select the DSR parameters? (p)

. Stability condition for graph networks



Selection of DSR gain

BS az1(:r)f()+(1 B)aux = azvzl(rx
fa_tz ’ o a_t ( ) )_FYE g )
Assuming a local graph (local in time since

neighbors do not change very fast)

d’ 1-B)d, . ¥ Y
EI(I)_I_ B, dtl(t)__@A[(t)_l_@BIS(I)
In Jordan form Ay = TA_IATA

In modal form

2 -

35 ()= g Al + GBI




Second-order system
* |n modal form

2 =
%n(r) - (IBES;B) jtlf(f) = —%AJIJ(’) + %Bﬂs(m
» , (1—P)

5

Aa
S+7A,1

T T

* Yields a second order equation

[ can be chosen, e.g., to achieve critical damping
of the main mode



Optimal selection of DSR gain

 DSR gain selected for critical damping to avoid
overshoot

B* = (14 218Aa1) — 3/ (14218, ha,:)2 — 1

B 85, 85, )~
—(”ﬁ)‘\/(”a) -




Settling with and without DSR

 DSR gain selected for critical damping to avoid
overshoot

B* = (14218 ha0) — /(1 + 2980 )2 1

B 85, 88\
—(”m)‘\/(”ﬁ) o

« Settling time with DSR can be related to settling
time without DSR — note: square root term

Tsi = = 2t —=5.8 P*o
| Ci; 0; YM,:‘

=29, /B8 75,
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Proposed DSR approach

. The approach

Does it require additional information from
the network? (e.g., direct connection to
source?)

. Why it works”? (why is it non diffusive?)

How to select the DSR parameters? (p)

. Stability condition for graph networks



Given a specific graph-based network

 How does the orientation /; change?

li(k+1) = IL;i(k) —yAi(k)O;
Ai(k) = Wldz‘.jeN; 1i(k) —1;(k)]

7 <
B o
O .7

I(k +1) = I(k)—yKI(k)+

= PI(k)++yBlIl:(k

« Update K, B depends on the network graph



Notion of DSR is similar

I(k+1) =I(k) —vKI(k)+yBI(k)
— PI(k) +vBI(k)

I(k+1)—I(k)] = —yKI(k)+~BI(k)
+ B[I(k) —I(k—1)],




Stability conditions based on graph

[I(k+1)—I(k)] =—yKI(k)+~BI(k)
+BI(k)—I(k—1)].

* Main result: (can quantify stability explicitly)
If the original network is stable, then,
the network is also stable if the DSR gain satisfies the

above condition
 Devasia, IEEE Indian Control Conference, 2019
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Results (simulations)

1. Two cases: grid-like initial spacing and randomized initial spacing
2. Comparisons: with and without DSR
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14

Without DSR

Fix: Update time = 0.01s

Increasing alignment gain speeds response _

Max alignment gain is about 100
With v =100, 2% settling time is 69s
(without DSR)

Note that v =101 is unstable

time
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Faster response with DSR

Optimal § = 0.96 (numerical)

o koD~

Close to numerical search of 0.96

40

® ;3-0.96
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e

With same y =100, and update time = 0.01s

Settling time reduces from 69s to 1.71s
Prediction from optimal B expression is 0.967
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Other methods (no DSR)

10 |

Left: increased alignment strength,

(o)e)
000000000000
000000000000

v =4034, but update time needs to be °| 558558558550

00
00
00
00
00
(oJe)
(oJe)
(o¢}
(oJe)
(oJe)
(oJe)
(oJe)

O =2.48 X 10+ s for 1.71s settling time > 0 333335388333333
Right: 2nd order superfluid model with I
update time 6, =1.24 X 10* s .

-10 -5 0

DSR only needs update time of 5; = 0.01s x

Bandwidth needs to be 100 time more for other methods
1.4 - - , 1.4

(&)}

10

1.2] 1.2

I

0.8 -
0.6 |
0.4
0.2

0
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Captures non-diffusive superfluid-like behavior

10 ‘ ‘ ‘
1. Left: without DSR info spread d is proportional 0990000000000
to square root of elapsed time *| 93895895895095
2. Right: with DSR info spread d is proportional > ° coccccceissises
to elapsed time (as in superfluid model) 5| 883883885885558
3. Spread rate (40m/s) matches theoretical value
-10 -5 0 5 10
20 - - 20 :
© without DSR 8 o with DSR 8
—d=354""7 & o superfluid 2SR
151 > 15 |—d=404, 235>
© 10 B o) 10 L
5t 51
0 - - - ' 0¢ - ' -
0 002 004 006 008 0.1 0 0.1 0.2 0.3 0.4
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Simulations with and without DSR
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Simulations with and without DSR

Without DSR With DSR
DSR substantially improves performance
Tighter radius, faster turn maneuvers



DSR leads to parallel turns as in nature
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Similar results for random ICs
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Turn information decays across network
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Comparison:
DSR reduces decay of turn information
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Ongoing efforts / Extensions

1. Experimental efforts
2. General accelerated networks
3. Continuous-time domain



Experimental efforts: platoons

Ref: Tiwari, Devasia, Submitted to ASME DSCC 2019



Experimental efforts: platoons
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Platoons (without DSR): damped

30
..
25 + il
(3.924 s, 20.44 cm/s]
20 - l——————.“".*.. 7]
| * I\
| | %
I L
= 15 ot |
Py l SR
g | L 8.253 s, 10.46 cm/s]
— | | "? 3 —
- 10 B i | .'o f% t?: * e 7]
ﬁ | Lo s ’.3 o7 “-.‘- "oen, . .', L o
8 ! l' e * .,m: Ay ¢ o
S 5 | ; A
> | : Yoo “hyng e ds Tate :"‘. g
! L
I L
5 |
.10 | '
0 5] 10 15

Time (s)

Max velocity decays with distance from source



Velocity (em/s)

w
o

]
o

b
[=]

Pl
(<)}

[
(=]

(3)]

5

-10

[3.924 s, 20.44 cm/s]

v
| X
'_"ﬁv«u
P R |
I
e [8.253 s, 10.46 cm/s]
j o A
| “ ',#g:on" - W e ,
L Ll s :
. | ‘G T, "..-‘- . . "
| Gt T '
- -._ ;“.—,‘:": :"- “-‘..'..‘, il
I '. . .
| .

Time (s)

Without DSR

Velocity (cm/s)

30

25

20

Velocity dispersion reduced with DSR

[3.82 s, 22.75 cm/s]

ok
| - A - [7.075 s, 16.72 cm/s]
! U S s
i 1 T A .
b Wl e
i P
I o
| s | . -
I =8 | A
[ | b
| lr® - -~
I s = % -
I : e
| . " A WAL 7
L gt S BN o S L
. e o T A
1 1
5 10 1
Time (s)

With DSR

DSR improves cohesion of response



Ongoing efforts / Extensions

1. Experimental efforts
2. General accelerated networks
3. Continuous-time domain



Generalized DSR

* Update law can be considered as the
gradient of a potential function, e.g.,
Richard Murray and R. Olfati-Saber

. 1 A
U(Z) = _EV(I)Q(Z)*

0(2) =3 Y ay(2-2)
i j=1

A 1 3 "
w(Z) = —5Veg(Z) =-LZ.

Zlk+1) = Z[k] — f;,%vq»g(Z)
= Z[k] — yLZ[K|

85



Accelerated Gradient Approach

* Modify the update  u(z) - vae(z) =Lz

e tO u(Z[k]) = _%vq»g {Z[k] 4+ (Z[k:] — Lk — 1])}
+B (Z[k] _Z[k— 1])
— {Z[k] + (Z[k] _Z[k— 1]) }
+B (Z[k] _Z[k— 1]) |

* Term outside is the momentum term
(discussed earlier) and term inside is the
addition by Nesterov 86



Results in generalized update

u(Z[k]) = —%v@g {Z[k] +8 (Z[k] _Zk— 1])}
+B (Z[k] _Z[k— 1])
sl {Z[k] + (Z[k] _Z[k - 1])}

+B (Z[k] _Z[k - 1]) .

Zlk+1] = Z|k] —vKZ|k| + vBZk]

Zk+1] = Z[k| — 1K (Z[k] + B (Z[k] — Z[k —1]))
+B8(Z[k] — Z[k — 1]) + yBZ,[k]-

Ref: Devasia, IEEE ICPS, May 2019 87



Implementation: still no network modification

e Old YBiZs[k] X
U pd ate -YKi Z[k] = -vi[K] + o Zilk]
+
¥YBiZs[k]

+

“YKiZ[k] = -vj[k] té) 1 Zi[k]

. — - i »
 Revised g

update

DSR




Ongoing efforts / Extensions

1. Experimental efforts
2. General accelerated networks
3. Continuous-time domain



For the continuous case

Z(t) = —aBKZ(t)+ oS Bzs(t)

 Continuous-time networks

+ K, B specify the network and access to source
information

* Alpha is the alignment gain (as in the discrete
version)



Ideal Update

Z(t) = —aBKZ(t)+ oS Bzs(t)
Z(t) = —aBKZ(t) + aBBz(t) + [ — BK] Z(1)

 Effectively cancels the derivative on the left
and leads to perfect tracking (ideally!)

Z(t) = —aZ(t) + al,z(t)



Settling time tuning

Z(t) = —aBKZ(t)+ oS Bzs(t)
Z(t) = —aBKZ(t) + aBBz(t) + [ — BK] Z(t)

 Effectively cancels the derivative on the left
and leads to perfect tracking (ideally!)

« Settling time tuned by update gain alpha

Z(t) = —aZ(t) + ol,zs(¢)



Delayed Self Reinforcement

Z(t) = —aBKZ(t)+ oS Bzs(t)
Z(t) = —aBKZ(t) + aBBz(t) + [ — BK]| Z(t)

Derivative information couples to the entire network
Hence not available

Use DSR, which approximates the derivative

Only uses given information from network




Result: A delay differential equation

Z(t) = —aBKZ(t)+ oS Bzs(t)
Z(t) = —aBKZ(t) + aBBz(t) + [ — BK]| Z(t)

Z(t)=U=AZ(t)+A4Z(t — T) + Byzs(t)

A:—aﬁK+%]—ﬁK]

1 :
Adz—gu—ﬁK
B; = apB.
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Conclusions

« Current swarm models
« Diffusion-like information spread:
« 1) proportional to square root of time
« 2)dampens out over space

e Use of DSR

« wave-like information spread
« Information spread proportional to time, with smaller decay
* Increases synchronization (information transfer rate)

 Bandwidth/Sensing/performance:
« DSR does not require additional sensing
 DSR does not require increased bandwidth
« DSR improve information transfer rate though the swarm
 DSR Improves settling time to new orientation from 69 s to 1.7 s

* So worth a try in your implementations!



Thank you

Swarm-like
simulation
with

DSR




