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Technical Notes and Correspondence

Should Model-Based Inverse Inputs Be Used as raises the question of when to use inversion-based, feedforward

Feedforward Under Plant Uncertainty? controllers (referred to as inverse feedforward) in the presence of plant
uncertainties. This note develops bounds on gtz of acceptable

Santosh Devasia uncertainties for guaranteed performance improvements when using

the inverse feedforward for linear, time-invariant systems. Such uncer-
tainty-acceptability bounds are often violated in typical systems; most

; : A . plants tend to have some frequency regions where plant uncertainty is
that the use of the inversion-based feedforward input improves the output- . .
tracking performance when compared to the use of feedback alone (i.e., Unacceptably large, usually at high frequencies and near system zeros.
without the feedforward). The output-tracking error is normalized by the ~ To account for such large plant uncertainties in certain frequency
size of the desired output and used as a measure of the output tracking regions, the article develops a modified inverse feedforward that only

performance. The worst-case performance is compared for two cases: 1) jyverts the model in frequency regions where the plant uncertainty is
with the use of feedback alone and 2) with the addition of the feedfor- sufficiently small q yreg P y

ward input. It is shown that inversion-based feedforward controllers can . .
lead to performance improvements at frequencies> where the uncertainty Output tracking has a long history marked by the development of
A(jw) in the nominal plant is smaller than the size of the nominal plant  regulator theory for linear systems by Francis and Wonham [12] and
Go(jw) divided by its condition number kg, (jw), i.e., [|A(jw)|l2 < generalized to the nonlinear case by Byrnes and Isidori [13]. These ap-

|Go(dw)|l2/ ke, (Fw). A modified feedforward input is proposed that .
only uses the moc?el information in frequency regions where plant uncer- proaches asymptotically track an output from a class of exosystem-gen-

tainty is sufficiently small The use of this modified inverse with (any) feed- €rated outputs. Although the nonlinear regulator design is computa-
back results in improvement of the output tracking performance, when tionally difficult, the linear regulator is easily designed by solving a

Abstract—Bounds on thesizeof the plant uncertainties are found such

compared to the use of the feedback alone. manageable set of linear equations. However, a problem with the reg-
Index Terms—Feedforward, nonminimum phase, output-tracking, ulator approach is that the exosystem states are often switched to de-
robust, system-inverse. scribe the desired output; this leads to transient tracking-errors after

the switching instants. Such switching-caused transient errors can be
avoided by using inversion-based approaches to output tracking [4],
[14]. Thus, it is advantageous to use inversion-based output tracking
Given a vector-valued functiof(jw) € C” for all w € R, when precision tracking of a particular output trajectory is required. In-

. INTRODUCTION

VG2 == /Y*(jw)Y (jw), where the superscrigt indicates version was restricted to causal inverses of minimum phase systems in
the complex conjugate transpose. ;Qe function-norm is defined &8 early works by Silverman and Hirschorn (e.g., [1] and [2]) because
V()2 = szo Y*(jw)Y (jw)dw andY (-) belongs tol, if  the standard inversion approach leads to unbounded inputs in the non-

minimum-phase case. Di Benedetto and Lucibello [15] considered the
inversion of time-varying, nonminimum-phase systems with a choice
of the system’s initial conditions. Instead of choosing initial conditions,
preactuation was used in [3]-[5], which extend the inversion technique
to nonminimum-phase systems.

Inversion-based feedforward controllers (which are model based)
where the7 [G(jw)] represents the maximum singular valugifjw).  cannot correct for tracking errors caused by plant uncertainties [16].
Furthermore||G(-)||le 1= esssup,eq & [G(jw)]. However, uncertainty-caused errors in the inverse-input can be cor-

Inversion-based feedforward controllers (e.g., [1]-[5]) have be¢acted through feedback. For example, feedback can be used to a) first
used for output tracking in a variety of applications, for exampldgarn the model to reduce plant uncertainty, and then second invert the
in aircraft and aerospace systems [6], [7], and flexible structur@#sproved model to reduce errors in the inverse input (i.e., adaptive in-
[3], [8], [9]- Recent successes in using noncausal inverses [3]-j&rsion of the system model; see, e.g., [17]), or b) directly learn the
for systems with nonminimum-phase dynamics has further reneweatrectinverse input that yields perfect output-tracking (i.e., iterative
the interest in inversion-based feedforward controllers. For exampileversion of the system model, see, e.g., [18]). Alternatively, plant un-
experimental results have shown that such inverses can be usedeitainty can be reduced by optimally designing the feedback [16], and
achieve high-precision output tracking (e.g., [9]). Previous work&en applying the model-based inversion to the resulting closed-loop
[10], [11] have also shown that the inverse varies continuously wilystem. However, errors in computing the inverse of the closed-loop
plant parameters, which implies that the inverseoisustto small system can still be large if large uncertainties are present, which in turn,
plant variations. However, anecdotal evidence has also shown th&dult in substantial tracking errors. It might be better to only use the
inversion-based feedforward inputs can adversely affect the outptéedback controller without the use of the inverse-feedforward input.
tracking performance in the presencelaige modeling errors. This This issue of when to use the inverse feedforward motivates the ques-

tion: should inversion-based feedforward (which is a model-based ap-
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Fig. 1. Block diagram of the system without and with feedforward input)(

controllers seeks to achieve the best possible performance over thi practice, the plan&s may not be known exactly due to modeling

set of possible uncertainties; in the absence of modeling-error swahors. Therefore, in the following, the feedforward controller will be

controllers do not yield (and do not seek to yield) perfect tracking. ichosen as the inverse of the nominal plant magie[3]

contrast, inversion-based approaches seek to achieve perfect tracking

in the absence of modeling error; the performance degrades with Ga =Gy (5)

increase in modeling errors [10], [11]. Another difference is that robust

synthesis of feedforward controllers are limited to causal controllef§lich assumes that the nominal plant is invertible; this will be assumed

that do not include noncausal inverse-feedforward controllers ftsr the rest of this article.

nonminimum-phase systems. In contrast, this article also includedAssumption 1:The nominal planti, with Go(jw) € C"*" has

noncausal feedforward inputs that are computed offline (onlirfdll-normal rankn [22].

implementation is possible if preview information of the desired Remark 1: If the nominal plantz, is nonminimum phase, then the

output is available [20], [21]). inverseG5 ' can be accomplished using offline noncausal approaches
The article is organized as follows. Tracking errors with and withodl: [4]. Online implementation of the inverse is possible if preview

inverse feedforward are compared in Section I1. This section shows tH§prmation of the desired output is available [20].

the use of inversion-based feedforward controllers can lead to perforRemark 2: The design of the feedback controller such that the

mance improvements if the uncertainty in the nominal plant is sm&josed-loop system remains stable is not the focus of the current

compared to the size of the nominal plant model. A general result fftdy. Therefore, in the following, it is assumed that the plant and

the multiple-input—multiple-output (MIMO) case is presented. The déncertainties are such that the closed-loop system is stable — then, we

velopment of a modified-inversion approach to account for large pla@idress the question whether adding the model-based inverse input

uncertainties is presented in Section I1l. Conclusions are in Section [JiProves the output-tracking performance. _
Assumption 2: The nominal system, the uncertainty, and the con-

troller are such that the nominal and perturbed closed-loop system are
stable.

Consider a linear, time-invariant, finite-dimensional system with the
same number of inputs as outputs (square system) and representedl.byleasure to Evaluate the Tracking Performance
areal rational transfer matri¥. Let the control scheme be as shown in
Fig. 1 without a feedforward controller (plot on the left). If the refer
ence input is chosen as a desired output trajegtprthen the achieved

Il. TRACKING ERRORSWITH AND WITHOUT INVERSE FEEDFORWARD

With the inverse feedforward found using the nominal plant, the
tracking error can be found from (3) as

outputy = yys iS given by Ey,a) = [(I_|_ Go)! (I GGO—I)] Y,
o= [T+ Goy! GC) Y, 1) =[IT+GC)™" (Go— ()G '] Yu
= [T+ GC)™H (A)Gy '] Yy (6)

where the capitalizatioli represents the Fourier transformycdnd the

dependence oji is not written explicitly for ease in notation. With Where the subscriph in the tracking erroE . v,, a) indicates the
the addition of a feedforward controll&fi; as shown in Fig. 1 (ploton dependence on the particular plant uncertaifity= Go — G. Simi-

the right), the achieved outplit = Yi; with the reference input; is larly, the tracking error without inverse feedforwa@g( = 0) can be
given by obtained as

Yi = [(I +GC) ™ G(Ga + O)] Ya. ) Ego, vy, 8) 7= Ya = Yo = [[ + GO ' Yo (7)
These tracking errors depend on the particular desired output trajec-
tory Y. This dependence can be removed by normalizing the tracking
error by the size of the desired output. The worst-case normalized error
is found over all possible desired outplifs(jw), and then compared
for two cases: 1) with the inverse feedforward and 2) without the inverse
Seedforward. Formally, the measures used to evaluate the worst-case
tracking error with inverse-feedforwarﬁ?(ﬂy ay(jw)) and without in-
verse-feedforwardE( b, A)(Jw)) are defined as

The corresponding tracking erréig, v,) := Yy — Yx is given by
Ew, vy = [(I+GO)™ (I - GGy)] Ya. ®)

If the plant& is invertible, then the feedforward controller can b
chosen as the inverse of the transfer function

Gg =G 1. (4)
| B, v, a)(jw)llz

With this inverse feedforward, we obtain exact-output tracking, i.e., by ~ Eur, a)(jw) = 1Y aCeS a0 1Ya(jw)ll2

substituting this feedforward control law into (2), we obt&in= Y. _ ; VC’_ SN LA H.,‘ G-
It is noted that the inversion-based feedforward input achieves exact- =T+ GGw)C(w)) s (',“) o Gl
output tracking of the desired output in the absence of initial condition E(fb, A (w) = I E 0, va, a) (Gw)ll2

max ——
errors and external perturbations. However, feedback must still be used IYa(5e)ll2#0 IYa(iw)ll2
(in conjunction with the inverse input) to correct for tracking errors. = (I + GG)CGN ™" 2. (8)
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B. Comparison of Tracking Performance Lemma 2: Let the nominal plant satisfy Condition 1@t Then, for
any feedback controllef'(jw) and for any scalar > 0 there exists an

In the following Lemma, the tracking performand ;, A)(jw) intyA isfyi
& 1p, 2 ncertaintyA (jw) satisfying

without the inversion-based feedforwax@{(jw) = 0) is compared Y
with the tracking performancEA(ﬂ, ay(jw) with the addition of the
inversion-based feedforward controllefd (jw) = G, (jw)). We ; N
begin with the following condition that requires the invertibility of the IGo(Gw)llz < [[AGw)[l2 < (14 )[|Ga(jw)ll2 (11)
nominal plant at a given frequency.
Condition 1: The nominal plant;(jw) is full ranked atv, i.e., it
does not have poles or transmission-zeras.at 0 such that the tracking performance with the inverse feedforward is
Along with Assumption 1, this condition implies that the rank of thavorse than the tracking performance without the inverse feedforward,
plant matrixGo (jw) is equal to the full normal rank of the nom- i.€.,
inal systemGy, and that the terms in the matri¥ (jw) are finite at R R
the frequency.. The next condition specifies a bound on acceptable B x)(w) > By x,(Jw) 12)
uncertainties which is used in following Lemmas when comparing the
tracking performance with and without the inverse feedforward. whereE(& A) (Jw) andE(fb, A)(jw) are defined in (8).
Condition 2: Uncertainty Acceptability: The plant uncertainty sat- Proof: Consider the uncertaim&(jw) = (14&)Gy(jw) which
isfies the acceptability condition for inversioncatif the possible un- satisfies the constraint in (11). Then, from (8)
certainty is bounded b§(jw) such that

< IGo (i)l © B, ) (j2) =T+ G(e)CGw)] ™ AGw)G ()l
= e (jw) =(1+ BT+ G[Gw)C )] |2
=(1+&E; x,(jw) from Eq (8)

IAGw)2 < 6(jw)

wherer, (jw) is the condition number [23] of the matri%o(jw) . :
based on the induced 2-norm >E(fb’ AJw).

O
Ko (jw) = |Go(j)ll21Ga " (Gw)]2. For MIMO systems, a sufficient condition for improvement in
[0 output-tracking (worst-case) performance with the use of the inverse
The following lemma states that the worst-case tracking perfdieedforward is that the perturbation be smaller than the size of the
mance with inverse feedforward is better than (or equal to) the trackingminal plant divided by its condition number, i.e., satisfy (9) in
performance without inverse feedforward if the uncertainty satisfi€ondition 2. If this acceptance bound is violated, then for some feed-
the acceptability Condition 2. back controllerC, the use of feedforward may make the performance
Lemma 1: At a given frequency, let the nominal plan, satisfy worse; the necessity of Condition 2 is shown in the next Lemma.
the invertibility Condition 1 and the uncertainty acceptability Condi- |Lemma 3: Let the nominal plan€, satisfy the invertibility Condi-
tion 2. Then, for any feedback controlléf(;jw), the output-tracking tion 1 atw, and have a condition numbet;, (j.) greater than one.
performance with the inverse feedforward is better than or equal to thgen, given an arbitrarily small scalar> 0 there exists a controller

performance without the inverse feedforward, i.e., C(jw) and an uncertaint} (jw) satisfying
Ew. ay(jw) < Bipy, ay(jw) (10) 1 ) l4e
————|Go(jw)|lz € JAGw)|lz € ———|Go(jw)|l= (13
ro oGl S NAGL < s lGoGll: - (13)

whereEr, a)(jw) andE( sy, a)(jw) are defined in (8).
Proof:
such that the tracking performance with the inverse feedforward is

||E(H sy G2 =l 1T+ )G AGGT Gw)ls worse than the tracking performance without the inverse feedforward,

i.e.,
from (8)
<+ GGw)C )™ I B ay(§w) > By ay(i)
X [AG@) G )2 ) , o o
<N+ GGG |- whereE g 4, (jw) andE.(fb? Ay(jw) are defined in (8). o
K (o) Proof: Let the nominal plant model have the following singular
x A(jw')Hzm from Condition2 value decomposition:
o\J«@W)||2
<[+ G(jw)C )] |2 from (9)
<E(sp, ay(jw) from (8). cr 0 - 0
0 0 o2 -+ 0
. o : Go(jw)=U1| . . . SV (14)
If the size of the plant-uncertainty is allowed to exceed the size : : o
of nominal plant, then there are uncertainties for which the output- 0 0 - on

tracking performance with the inverse feedforward is worse than the

tracking performance without the inverse feedforward (irrespective of

the choice of the feedback controll€d). This is stated formally in the whereU andV are unitary matrices angy > o2 > --- > ¢,,. Note
following Lemma. thates,, > 0 from the invertibility of the nominal plant model at fre-
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TABLE |
COMPARISON OF TRACKING PERFORMANCEWITH INVERSE FEEDFORWARD E(¢¢, A)(jw) AND WITHOUT INVERSE FEEDFORWARD E( 55, a)(jw) FOR
DIFFERENT UNCERTAINTY SIZE A(jw)

Size of Uncertainty Comparison of Tracking Performance

For all controllers and any uncertainty A(jw),

1AGw)lle < 1elelle Brs, a)(iw) < B, a)(jw).

There exists a controller and an uncertainty A(jw) such that

LGl < | A(jw)ll2

KGg (Jw)

E(ff, &(w) > E(fb, &) (w).

For any controller, there exists an uncertainty A( jw) such that

IGo(iw)llz < IAGW)l2 By a)iw) > B 5)().

guencyw (Condition 1 and Assumption 1). Furthermore, the nomina@imilarly, the output-tracking performance with inverse feedforward

plant’s condition number is Eg. A)(jw) can be found from (8) as

a1 -

(15) E(ff, A)(J”J)

Kao (Jw) = o
k3

- H [1 + G(jwv)é(jw)] o AGw)Go M (jw)

and its norm i§|Go(jw)||2 = 1. Consider the following uncertainty 2

Alw) 1+ det(Glje)) ()]
x |A(jw)Gy ' (jw)l|2 from Eg (18)
R S |1+ det(Gliw) ()]~ ———
Ajwy= =2 p| T v e . R (j)
‘ Ko (Jw) : oo 00
0 0 - o 0 = - 0

|0 T
which satisfies the uncertainty bound in (13) 0 0 . R
using Eq (14) and Eq (16) '

2

(146 (148

AG)||s = : = || Go(jw)]|2 , oy 14eé
IAGwW)||2 ﬁ(¥0(.7w)gl Hco(‘iw)” o(jw)l| 1 4 det(G () v ()] 1;f<071)
Ko (jw) \on
_ NV = .
and consider the controll&¥(jw) =[1+ dﬂf(G(.w))W(Jw)l_l(l +AF) from Eq (15)
>|1 4 det(Gjw)v([iw)|™ = Egpy, a)(w)-
C(jw) = adj[Gly(jw) 17

, N ) Remark 3: When the uncertainty lies in the range
where adj[G(jw)] stands for the adjoint of the matri&(jw) and

7v(jw) is a scalar. This controlleﬂ?‘(jw) input—output decouples the 1
plant@; the controller is not restrictive because substantial freedom is K (jw)
still available in the choice of (jw); however, we do place a constraint

on its magnitude. In particular, the controller componetifw) is the feedback-controller may be optimally designed to reduce the
chosen such thatlet(G(jw))~v(jw)| < 1 and the closed-loop systemtracking error caused by modeling uncertainty in the feedforward (see
is stable. With this choice of controller, we have [16]).

Remark 4: The inverse feedforward is not robust at frequencies
close to an imaginary-axis transmission zero of the nominal plant.
Near imaginary-axis transmission zeros, the size of the nominal plant

=[1 + det(G(jw))v(w)II #0  (18) s small and, hence, the amount of acceptable uncertainty is small. In
this sense, hyperbolicity of the nominal plant’s zero-dynamics [24] is
and the output-tracking performan@ 16, &) (Jw) without feedfor- ~ critical to the robustness of the exact inverse. o
ward input is given by The results of the previous three lemmas are summarized in Table I.

1Go(iw)ll2 < NNAGW)l2 < [[Go(jw)l2

T+ G(jw)C(jw) =T + G(jw)adi[Gly(jw)

C. Use of Inverse Feedforward for Single-Input-Single-Ouput (SISO)

Epy, 5)l0w) Systems
= H [[ + G(jw)é(jw)] - The condition number of the nominal plant’s transfer function is al-
2 ways one for SISO systems. Therefore, a necessary and a sufficient con-
=[1 + det(G(Gw))y(Gw)| ™" (19) dition for improvement in output-tracking performance with the use of
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the inverse feedforward is that the uncertainty boéimtust be smaller ~ We begin with a description of the standard inverse feedforward con-

than the size of the nominal plajhtso (jw)||2. This is stated as follows. troller, and then extend it to develop a modified inverse feedforward
Theorem 1: Let a SISO system with a nominal plant mod&} controller. Issues in the design of the modified inverse are also studied.

satisfy the invertibility Condition 1 atv. Then, the tracking error  Definition 1: The exact inverse .xact can be described as [1]

E, v,, ay(jw) with inverse feedforward is less than or equal to the

. 1y A X
tracking errorE s, v,, a)(jw) without inverse feedforward [defined Ut exact = Go Ya := Ginv Yo (22)
in (8)] whereYy is the Fourier transform af; (which is a linear combination
of the desired output and its time derivatives, [1]) &#d, is the re-
Eg v, ay(Gw) < Ege, vy, a)(Jw) (20) duced-order inverse of the nominal plant model.

Lemma 4: If the nominal systemG, has hyperbolic internal dy-
for all uncertainties satisfyingA(jw)| < §(jw) if and only if the namics,i.e., ithas no zeros on the imaginary axis, then the exact inverse
uncertainty bound satisfies Condition 2 (acceptability condition)  input Uss ...t (22) belongs taC. if Y, belongs tals.

Proof: The poles of the reduced-order inverse are the zeros
[AGw)| € 8(jw) < |Go(jw)l. (21) of the systemGo [1]. If the nominal systemGo has hyperbolic
internal dynamics, i.e., it has no zeros on the imaginary axis, then
Proof: The condition number of the SISO plant moda is al- the reduced-order inversg:.. is hyperbolic, and it belongs to the
ways one and, therefore, the necessity and sufficiency of Conditiors@t of functionsR L. that are essentially bounded on the imag-
for worst-case performance improvement [(20)] follows from Lemmadsary axis, i.e.,||Ginv(-)[lcc < oco. The lemma follows because
1 and 2. Furthermore, for any desired outpijw), the improvement a bound on the exact-inverse inpli,cxact Can be obtained as
in output-tracking performance follows by comparing the tracking el exact ()l < [|Giav (Hlleo [ Ya () |2 O

rors with and without inverse feedforward. Using (6) and (7)
A. Modified Inverse

Bt v, a)(jw)] = A(jw)Gy ' (jw) Ya(je) The exact-inverse feedforward controlléty = GJ', is used to
VT B 14+ Gw)C(jw) ™ define the modified inverse feedforward controliés A (jw).
| AGw)Gy ! (jw) Definition 2: The modified inverse-feedforward controller,
= m Gia(jw), is defined as shown in the equation at the bottom of the
p . page. O
% (1, + GG Ep v, A)(M)’ For nonminimum-phase systems, the inverse input is noncausal [3],
:Mww v, a)(jw)] [4]. We note that the modified feedforward-inverse also tends to be
|GQ (’JW” e noncausal — even for minimum phase systems — when unacceptably-
< ||Cf;(‘éw);| Eipo. vy a)(jw)] large plant uncertainty is present over a frequency range. Such large
olJw Y

plant uncertainty is common at high frequencies for most models. The
<|Esp, vy, a)(Gw)l. noncausality of the modified inverse is shown in the next lemma.
Lemma 5:Let the reduced-order inversé&;,, be bounded
O (|Giav(*)]l= < oc as in Lemma 4), and let the plant uncertainty be
Remark 5: If the size of the uncertainty is sufficiently smalllarge in the sefS
(JA(jw)| < |Go(jw)]), then the inverse feedforward improves the
S:= {w |

output-tracking performance for each desired output in the SISO case
(as opposed to worst-case performance improvement as in the MIMO
case). This performance improvement with the use of the inverse inpuirthermore, let the output and its time derivatives (Definitioﬁ;ﬂﬂ(})
is independent of the particular choice of the feedback controller. belong to£:. Then
1) the modified inverse-feedforward inplif a (+) := GuaYu(:)

IIl. M ODIFIED INVERSEFEEDFORWARD belongs tols;
e2) the inverse input, which is the inverse Fourier transform of
Ug A, IS noncausal in the time domain if the sehas a nonzero
Lebesgue measure, and the desired output trajedtofy is

AGjw)|z > ron o) } (23)

Results of the previous section show that it is better to use the invers
input with the feedback than not to use it (i.e., only use the feedback)
whenever the plant uncertainty is relatively small. However, most ex-

- . . X nonzero.
perimental systems tend to have relatively large modeling uncertain- )
ties in some frequency regions, e.g., at high frequencies. This does not. F_’r_oof: The first part of the Lemma follows from Lemma 4 and
imply that the inverse should not be used at all. Rather, the inverrs)gf'mt'on 2
should be only used in the frequency region where the modeling un- ||t 5 (-)||2 =||Gira () Ya () |l2 < |G () Yu ()2
certainty issmall This motivates the development of a modified in- A o 2 .
verse that inverts the system dynamics in frequency regions where the =i O¥aOllz < N1Gia Olloo[Va(llz < oo
modeling uncertainty is sufficientlgmall The use of this modified in- By definition, the modified invers@&s A () is zero on the sef. If
verse with (any) feedback results in improvement of the output trackitigs set has nonzero Lebesgue measure, then the Paley—Wiener Con-
performance (pointwise in frequency as discussed in Section 1), wheition implies that the modified inverse-feedforward input cannot be
compared to the use of the feedback alone. the Fourier transform of a causal function (see, e.g., [25, Ch. 10]).

1 N A (NN i A G0 (Gl
Gita (o) Yal(jw) i= {Go G)Yaljw) = G (j0)Yaljw) T IIAGD)2 < 5250
0 otherwise
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*

s = | b {U*(jw)R(jw)U(J’w) + {Y(.m _ Yduw)} Qi) {Yw) - de] }dw (24)

—o0

/oo { [U = (R+ Go"QGo) ™' G5QY4] " (R + G5QGo) [U — (R+ G3QGo) ™" G5 QY] }qw
1Y71Q - QGo (R + G3QGo) ' G3QIYa |

—oC

B. Design of the Modified Inverse-Feedforward Controller Remark 7: The aforementioned modified inverse can be used to

The modified inverse-feedforward controller can be considered a gdeoff the exact-output tracking requirement to achieve other goals

special case of the following optimization problem, which can be us Ee re(_juc_:tlo_n of mpgt and vibration control or to meet actuator band-

to design the modified inverse. Consider the problem of minimizin 'dt_h limitations as n [27]. Furthermore, the approach can be used to

the following quadratic performance index (over inpt see (24), as esign output-tracking controllers for nonsquare systems [28].

shown at the top of the page, whéreenotes the conjugate transpose

of matrices with complex elementB(jw) and@(jw) are symmetric,

positive-semidefinite, real matrices that represent the weights on theThe article established bounds on the acceptable plant uncertainty

input and the output-tracking error respectively, &fyds the desired for the use of model-based feedforward input. The worst-case output-

output trajectory specified by the user. Given a desired output trajectaraicking error (over all desired outputs) was compared a) with the use

Yy, the optimal inversion problem is stated as the minimization of thaf feedback alone (i.e., without feedforward input) and b) with the addi-

performance indeX overU. tion of the feedforward input to the feedback. The analysis showed that
Remark 6: A similar frequency-dependent quadratic performancie addition of inversion-based feedforward can lead to performance

index has been used in the past (e.g., [26]) for system regulafioa:(  improvements (at a given frequeney if the uncertaintyA(jw) in the
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|. INTRODUCTION Il. PRELIMINARIES

The robust stability methodology is useful in dealing with structured This section briefly covers preliminary results such as multiplier
uncertainties [1], [2]. In recent years, robust control theory has berDCs for time-delay by M. Jurmt al. [8] and finite frequency posi-
reformulated within the framework of integral quadratic constraintg/e real condition by T. Iwasalkt al.[9]. Notation used in the note is

standardR (R4) denotes the set of all (positive) real numbers énd
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