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Technical Notes and Correspondence_______________________________

Should Model-Based Inverse Inputs Be Used as
Feedforward Under Plant Uncertainty?

Santosh Devasia

Abstract—Bounds on thesizeof the plant uncertainties are found such
that the use of the inversion-based feedforward input improves the output-
tracking performance when compared to the use of feedback alone (i.e.,
without the feedforward). The output-tracking error is normalized by the
size of the desired output and used as a measure of the output tracking
performance. The worst-case performance is compared for two cases: 1)
with the use of feedback alone and 2) with the addition of the feedfor-
ward input. It is shown that inversion-based feedforward controllers can
lead to performance improvements at frequencies where the uncertainty
�( ) in the nominal plant is smaller than the size of the nominal plant

( ) divided by its condition number ( ), i.e., �( )
( ) ( ). A modified feedforward input is proposed that

only uses the model information in frequency regions where plant uncer-
tainty is sufficiently small. The use of this modified inverse with (any) feed-
back results in improvement of the output tracking performance, when
compared to the use of the feedback alone.

Index Terms—Feedforward, nonminimum phase, output-tracking,
robust, system-inverse.

I. INTRODUCTION

Given a vector-valued functionY (j!) 2 Cn for all ! 2 <,
kY (j!)k2 := Y �(j!)Y (j!), where the superscript� indicates
the complex conjugate transpose. The function-norm is defined as

kY (�)k2 :=
1

�1
Y �(j!)Y (j!)d!

1=2

andY (�) belongs toL2 if

kY (�)k2 is finite. Given a matrix-valued functionG(j!) 2 Cn�n for
all ! 2 (�1;1), the induced matrix 2-norm is

kG(j!)k2 := sup
Y 6=0;Y 2C

kG(j!)Y k2
kY k2

= ��[G(j!)]

where the��[G(j!)] represents the maximum singular value ofG(j!).
Furthermore,kG(�)k1 := ess sup!2< �� [G(j!)].

Inversion-based feedforward controllers (e.g., [1]–[5]) have been
used for output tracking in a variety of applications, for example,
in aircraft and aerospace systems [6], [7], and flexible structures
[3], [8], [9]. Recent successes in using noncausal inverses [3]–[5]
for systems with nonminimum-phase dynamics has further renewed
the interest in inversion-based feedforward controllers. For example,
experimental results have shown that such inverses can be used to
achieve high-precision output tracking (e.g., [9]). Previous works
[10], [11] have also shown that the inverse varies continuously with
plant parameters, which implies that the inverse isrobust to small
plant variations. However, anecdotal evidence has also shown that
inversion-based feedforward inputs can adversely affect the output-
tracking performance in the presence oflarge modeling errors. This
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raises the question of when to use inversion-based, feedforward
controllers (referred to as inverse feedforward) in the presence of plant
uncertainties. This note develops bounds on thesize of acceptable
uncertainties for guaranteed performance improvements when using
the inverse feedforward for linear, time-invariant systems. Such uncer-
tainty-acceptability bounds are often violated in typical systems; most
plants tend to have some frequency regions where plant uncertainty is
unacceptably large, usually at high frequencies and near system zeros.
To account for such large plant uncertainties in certain frequency
regions, the article develops a modified inverse feedforward that only
inverts the model in frequency regions where the plant uncertainty is
sufficiently small.

Output tracking has a long history marked by the development of
regulator theory for linear systems by Francis and Wonham [12] and
generalized to the nonlinear case by Byrnes and Isidori [13]. These ap-
proaches asymptotically track an output from a class of exosystem-gen-
erated outputs. Although the nonlinear regulator design is computa-
tionally difficult, the linear regulator is easily designed by solving a
manageable set of linear equations. However, a problem with the reg-
ulator approach is that the exosystem states are often switched to de-
scribe the desired output; this leads to transient tracking-errors after
the switching instants. Such switching-caused transient errors can be
avoided by using inversion-based approaches to output tracking [4],
[14]. Thus, it is advantageous to use inversion-based output tracking
when precision tracking of a particular output trajectory is required. In-
version was restricted to causal inverses of minimum phase systems in
the early works by Silverman and Hirschorn (e.g., [1] and [2]) because
the standard inversion approach leads to unbounded inputs in the non-
minimum-phase case. Di Benedetto and Lucibello [15] considered the
inversion of time-varying, nonminimum-phase systems with a choice
of the system’s initial conditions. Instead of choosing initial conditions,
preactuation was used in [3]–[5], which extend the inversion technique
to nonminimum-phase systems.

Inversion-based feedforward controllers (which are model based)
cannot correct for tracking errors caused by plant uncertainties [16].
However, uncertainty-caused errors in the inverse-input can be cor-
rected through feedback. For example, feedback can be used to a) first
learn the model to reduce plant uncertainty, and then second invert the
improved model to reduce errors in the inverse input (i.e., adaptive in-
version of the system model; see, e.g., [17]), or b) directly learn the
correct inverse input that yields perfect output-tracking (i.e., iterative
inversion of the system model, see, e.g., [18]). Alternatively, plant un-
certainty can be reduced by optimally designing the feedback [16], and
then applying the model-based inversion to the resulting closed-loop
system. However, errors in computing the inverse of the closed-loop
system can still be large if large uncertainties are present, which in turn,
result in substantial tracking errors. It might be better to only use the
feedback controller without the use of the inverse-feedforward input.
This issue of when to use the inverse feedforward motivates the ques-
tion: should inversion-based feedforward (which is a model-based ap-
proach) be used in the presence of plant uncertainties?

We seek to develop conditions under which the performance
with the inversion-based feedforward is better than the performance
achieved with feedback controllers alone. A related problem is the ro-
bust optimization of two-degrees-of-freedom controllers (feedforward
and feedback) under plant uncertainty; see, for example, [19] and the
references therein. It is noted that robust synthesis of feedforward
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Fig. 1. Block diagram of the system without and with feedforward input (u ).

controllers seeks to achieve the best possible performance over the
set of possible uncertainties; in the absence of modeling-error such
controllers do not yield (and do not seek to yield) perfect tracking. In
contrast, inversion-based approaches seek to achieve perfect tracking
in the absence of modeling error; the performance degrades with
increase in modeling errors [10], [11]. Another difference is that robust
synthesis of feedforward controllers are limited to causal controllers
that do not include noncausal inverse-feedforward controllers for
nonminimum-phase systems. In contrast, this article also includes
noncausal feedforward inputs that are computed offline (online
implementation is possible if preview information of the desired
output is available [20], [21]).

The article is organized as follows. Tracking errors with and without
inverse feedforward are compared in Section II. This section shows that
the use of inversion-based feedforward controllers can lead to perfor-
mance improvements if the uncertainty in the nominal plant is small
compared to the size of the nominal plant model. A general result for
the multiple-input–multiple-output (MIMO) case is presented. The de-
velopment of a modified-inversion approach to account for large plant
uncertainties is presented in Section III. Conclusions are in Section IV.

II. TRACKING ERRORSWITH AND WITHOUT INVERSEFEEDFORWARD

Consider a linear, time-invariant, finite-dimensional system with the
same number of inputs as outputs (square system) and represented by
a real rational transfer matrixG. Let the control scheme be as shown in
Fig. 1 without a feedforward controller (plot on the left). If the refer-
ence input is chosen as a desired output trajectoryyd, then the achieved
outputy = yfb is given by

Yfb := (I +GC)�1GC Yd (1)

where the capitalizationY represents the Fourier transform ofy and the
dependence onj! is not written explicitly for ease in notation. With
the addition of a feedforward controllerG� as shown in Fig. 1 (plot on
the right), the achieved outputY = Y� with the reference inputYd is
given by

Y� := (I +GC)�1G(G� + C) Yd: (2)

The corresponding tracking errorE(�; Y ) := Yd � Y� is given by

E(�; Y ) = (I +GC)�1 (I �GG� ) Yd: (3)

If the plantG is invertible, then the feedforward controller can be
chosen as the inverse of the transfer function

G� = G
�1
: (4)

With this inverse feedforward, we obtain exact-output tracking, i.e., by
substituting this feedforward control law into (2), we obtainY = Yd.
It is noted that the inversion-based feedforward input achieves exact-
output tracking of the desired output in the absence of initial condition
errors and external perturbations. However, feedback must still be used
(in conjunction with the inverse input) to correct for tracking errors.

In practice, the plantG may not be known exactly due to modeling
errors. Therefore, in the following, the feedforward controller will be
chosen as the inverse of the nominal plant modelG0 [3]

G� = G
�1
0 (5)

which assumes that the nominal plant is invertible; this will be assumed
in the rest of this article.

Assumption 1:The nominal plantG0 with G0(j!) 2 Cn�n has
full-normal rankn [22].

Remark 1: If the nominal plantG0 is nonminimum phase, then the
inverseG�10 can be accomplished using offline noncausal approaches
[3], [4]. Online implementation of the inverse is possible if preview
information of the desired output is available [20].

Remark 2: The design of the feedback controller such that the
closed-loop system remains stable is not the focus of the current
study. Therefore, in the following, it is assumed that the plant and
uncertainties are such that the closed-loop system is stable — then, we
address the question whether adding the model-based inverse input
improves the output-tracking performance.

Assumption 2:The nominal system, the uncertainty, and the con-
troller are such that the nominal and perturbed closed-loop system are
stable.

A. Measure to Evaluate the Tracking Performance

With the inverse feedforward found using the nominal plant, the
tracking error can be found from (3) as

E(�;Y ;�) = (I +GC)�1 (I �GG
�1
0 ) Yd

= (I +GC)�1 (G0 �G)G�10 Yd

:= (I +GC)�1 (�)G�10 Yd (6)

where the subscript� in the tracking errorE(�; Y ; �) indicates the
dependence on the particular plant uncertainty� := G0 � G. Simi-
larly, the tracking error without inverse feedforward (G� = 0) can be
obtained as

E(fb; Y ; �) := Yd � Yfb = [I +GC]�1 Yd: (7)

These tracking errors depend on the particular desired output trajec-
tory Yd. This dependence can be removed by normalizing the tracking
error by the size of the desired output. The worst-case normalized error
is found over all possible desired outputsYd(j!), and then compared
for two cases: 1) with the inverse feedforward and 2) without the inverse
feedforward. Formally, the measures used to evaluate the worst-case
tracking error with inverse-feedforward (Ê(�; �)(j!)) and without in-
verse-feedforward (̂E(fb; �)(j!)) are defined as

Ê(�; �)(j!) := max
kY (j!)k 6=0

kE(�; Y ; �)(j!)k2

kYd(j!)k2

=k (I +G(j!)C(j!))�1�(j!)G�10 (j!)k2

Ê(fb; �)(j!) := max
kY (j!)k 6=0

kE(fb; Y ; �)(j!)k2

kYd(j!)k2

=k (I +G(j!)C(j!))�1k2: (8)
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B. Comparison of Tracking Performance

In the following Lemma, the tracking performancêE(fb; �)(j!)
without the inversion-based feedforward (G�(j!) = 0) is compared
with the tracking performancêE(�; �)(j!) with the addition of the
inversion-based feedforward controller (G� (j!) = G�10 (j!)). We
begin with the following condition that requires the invertibility of the
nominal plant at a given frequency!.

Condition 1: The nominal plantG0(j!) is full ranked at!, i.e., it
does not have poles or transmission-zeros at!.

Along with Assumption 1, this condition implies that the rank of the
plant matrixG0(j!) is equal to the full normal rankn of the nom-
inal systemG0, and that the terms in the matrixG0(j!) are finite at
the frequency!. The next condition specifies a bound on acceptable
uncertainties which is used in following Lemmas when comparing the
tracking performance with and without the inverse feedforward.

Condition 2: Uncertainty Acceptability:The plant uncertainty sat-
isfies the acceptability condition for inversion at! if the possible un-
certainty is bounded by�(j!) such that

k�(j!)k2 � �(j!) �
kG0(j!)k2
�G (j!)

(9)

where�G (j!) is the condition number [23] of the matrixG0(j!)
based on the induced 2-norm

�G (j!) := kG0(j!)k2kG
�1
0 (j!)k2:

The following lemma states that the worst-case tracking perfor-
mance with inverse feedforward is better than (or equal to) the tracking
performance without inverse feedforward if the uncertainty satisfies
the acceptability Condition 2.

Lemma 1: At a given frequency!, let the nominal plantG0 satisfy
the invertibility Condition 1 and the uncertainty acceptability Condi-
tion 2. Then, for any feedback controllerC(j!), the output-tracking
performance with the inverse feedforward is better than or equal to the
performance without the inverse feedforward, i.e.,

Ê(�; �)(j!) � Ê(fb; �)(j!) (10)

whereÊ(�; �)(j!) andÊ(fb; �)(j!) are defined in (8).
Proof:

kÊ(�; �)(j!)k2 =k [I +G(j!)C(j!)]�1�(j!)G�10 (j!)k2

from (8)

�k [I +G(j!)C(j!)]�1 k2

� k�(j!)k2kG
�1
0 (j!)k2

�k [I +G(j!)C(j!)]�1 k2

� k�(j!)k2
�G (j!)

kG0(j!)k2
from Condition2

�k [I +G(j!)C(j!)]�1 k2 from (9)

�Ê(fb; �)(j!) from (8):

If the size of the plant-uncertainty is allowed to exceed the size
of nominal plant, then there are uncertainties for which the output-
tracking performance with the inverse feedforward is worse than the
tracking performance without the inverse feedforward (irrespective of
the choice of the feedback controllerC). This is stated formally in the
following Lemma.

Lemma 2: Let the nominal plant satisfy Condition 1 at!. Then, for
any feedback controllerC(j!) and for any scalar~� > 0 there exists an
uncertainty~�(j!) satisfying

kG0(j!)k2 < k ~�(j!)k2 � (1 + ~�)kG0(j!)k2 (11)

such that the tracking performance with the inverse feedforward is
worse than the tracking performance without the inverse feedforward,
i.e.,

Ê(�; ~�)(j!) > Ê(fb; ~�)(j!) (12)

whereÊ(�; ~�)(j!) andÊ(fb; ~�)(j!) are defined in (8).
Proof: Consider the uncertainty~�(j!) = (1+~�)G0(j!)which

satisfies the constraint in (11). Then, from (8)

Ê(�; ~�)(j!) =k [I +G(j!)C(j!)]�1 ~�(j!)G�10 (j!)k2

=(1 + ~�)k [I +G(j!)C(j!)]�1 k2

=(1 + ~�)Ê(fb; ~�)(j!) from Eq: (8)

>Ê(fb; ~�)(j!):

For MIMO systems, a sufficient condition for improvement in
output-tracking (worst-case) performance with the use of the inverse
feedforward is that the perturbation be smaller than the size of the
nominal plant divided by its condition number, i.e., satisfy (9) in
Condition 2. If this acceptance bound is violated, then for some feed-
back controllerC, the use of feedforward may make the performance
worse; the necessity of Condition 2 is shown in the next Lemma.

Lemma 3: Let the nominal plantG0 satisfy the invertibility Condi-
tion 1 at!, and have a condition number�G (j!) greater than one.
Then, given an arbitrarily small scalar�̂ > 0 there exists a controller
Ĉ(j!) and an uncertaintŷ�(j!) satisfying

1

�G (j!)
kG0(j!)k2 � k�̂(j!)k2 �

1 + �̂

�G (j!)
kG0(j!)k2 (13)

such that the tracking performance with the inverse feedforward is
worse than the tracking performance without the inverse feedforward,
i.e.,

Ê(�; �̂)(j!) > Ê(fb; �̂)(j!)

whereÊ(�; �̂)(j!) andÊ(fb; �̂)(j!) are defined in (8).
Proof: Let the nominal plant model have the following singular

value decomposition:

G0(j!) = U

�1 0 � � � 0

0 �2 � � � 0
...

...
. . .

...
0 0 � � � �n

V
� (14)

whereU andV are unitary matrices and�1 � �2 � � � � � �n. Note
that�n > 0 from the invertibility of the nominal plant model at fre-
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TABLE I
COMPARISON OFTRACKING PERFORMANCEWITH INVERSEFEEDFORWARDÊ (j!) AND WITHOUT INVERSEFEEDFORWARDÊ (j!) FOR

DIFFERENTUNCERTAINTY SIZE �(j!)

quency! (Condition 1 and Assumption 1). Furthermore, the nominal
plant’s condition number is

�G (j!) =
�1

�n
(15)

and its norm iskG0(j!)k2 = �1. Consider the following uncertainty
�̂(j!)

�̂(j!) =
1 + �̂

�G (j!)
U

�n 0 � � � 0

0 �n�1 � � � 0
...

...
. . .

...
0 0 � � � �1

V
� (16)

which satisfies the uncertainty bound in (13)

k�̂(j!)k2 =
(1 + �̂)

�G (j!)
�1 =

(1 + �̂)

�G (j!)
kG0(j!)k2

and consider the controller̂C(j!)

Ĉ(j!) = adj[G](j!) (17)

whereadj[G(j!)] stands for the adjoint of the matrixG(jw) and
(j!) is a scalar. This controller̂C(j!) input–output decouples the
plantG; the controller is not restrictive because substantial freedom is
still available in the choice of(j!); however, we do place a constraint
on its magnitude. In particular, the controller component(j!) is
chosen such thatj det(G(j!))(j!)j< 1 and the closed-loop system
is stable. With this choice of controller, we have

I +G(j!)Ĉ(j!) =I +G(j!)adj[G](j!)

=[1 + det(G(j!))(j!)]I 6= 0 (18)

and the output-tracking performancêE(fb; �̂)(j!) without feedfor-
ward input is given by

Ê(fb; �̂)(j!)

= I +G(j!)Ĉ(j!)
�1

2

=j1 + det(G(j!))(j!)j�1: (19)

Similarly, the output-tracking performance with inverse feedforward
Ê(�; �̂)(j!) can be found from (8) as

Ê(�; �̂)(j!)

= I +G(j!)Ĉ(j!)
�1

�̂(j!)G�10 (j!)
2

=j1 + det(G(j!))(j!)j�1

� k�̂(j!)G�10 (j!)k2 from Eq: (18)

=j1 + det(G(j!))(j!)j�1
1 + �̂

�G (j!)

� U

�

�
0 � � � 0

0
�

�
� � � 0

...
...

. . .
...

0 0 � � � �

�

U
�

2

using Eq: (14) and Eq: (16)

=j1 + det(G(j!))(j!)j�1
1 + �̂

�G (j!)

�1

�n

=j1 + det(G(j!))(j!)j�1(1+ �̂) from Eq: (15)

>j1 + det(G(j!))(j!)j�1 = Ê(fb; �̂)(j!):

Remark 3: When the uncertainty lies in the range

1

�G (j!)
kG0(j!)k2 � k�(j!)k2 � kG0(j!)k2

the feedback-controller may be optimally designed to reduce the
tracking error caused by modeling uncertainty in the feedforward (see
[16]).

Remark 4: The inverse feedforward is not robust at frequencies
close to an imaginary-axis transmission zero of the nominal plant.
Near imaginary-axis transmission zeros, the size of the nominal plant
is small and, hence, the amount of acceptable uncertainty is small. In
this sense, hyperbolicity of the nominal plant’s zero-dynamics [24] is
critical to the robustness of the exact inverse.

The results of the previous three lemmas are summarized in Table I.

C. Use of Inverse Feedforward for Single-Input–Single-Ouput (SISO)
Systems

The condition number of the nominal plant’s transfer function is al-
ways one for SISO systems. Therefore, a necessary and a sufficient con-
dition for improvement in output-tracking performance with the use of
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the inverse feedforward is that the uncertainty bound� must be smaller
than the size of the nominal plantkG0(j!)k2. This is stated as follows.

Theorem 1: Let a SISO system with a nominal plant modelG0

satisfy the invertibility Condition 1 at!. Then, the tracking error
E(�; Y ; �)(j!) with inverse feedforward is less than or equal to the
tracking errorE(fb; Y ; �)(j!) without inverse feedforward [defined
in (8)]

E(�; Y ; �)(j!) � E(fb; Y ; �)(j!) (20)

for all uncertainties satisfyingj�(j!)j � �(j!) if and only if the
uncertainty bound satisfies Condition 2 (acceptability condition)

j�(j!)j � �(j!) � jG0(j!)j: (21)

Proof: The condition number of the SISO plant modelG0 is al-
ways one and, therefore, the necessity and sufficiency of Condition 2
for worst-case performance improvement [(20)] follows from Lemmas
1 and 2. Furthermore, for any desired outputYd(j!), the improvement
in output-tracking performance follows by comparing the tracking er-
rors with and without inverse feedforward. Using (6) and (7)

jE(�; Y ; �)(j!)j =
�(j!)G�10 (j!)

1 +G(j!)C(j!)
Yd(j!)

=
�(j!)G�10 (j!)

1 +G(j!)C(j!)

� (1 +G(j!)C(j!))E(fb; Y ; �)(j!)

=
j�(j!)j

jG0(j!)j
jE(fb; Y ; �)(j!)j

�
j�(j!)j

jG0(j!)j
jE(fb; Y ; �)(j!)j

�jE(fb; Y ; �)(j!)j:

Remark 5: If the size of the uncertainty is sufficiently small
(j�(j!)j � jG0(j!)j), then the inverse feedforward improves the
output-tracking performance for each desired output in the SISO case
(as opposed to worst-case performance improvement as in the MIMO
case). This performance improvement with the use of the inverse input
is independent of the particular choice of the feedback controller.

III. M ODIFIED INVERSE-FEEDFORWARD

Results of the previous section show that it is better to use the inverse
input with the feedback than not to use it (i.e., only use the feedback)
whenever the plant uncertainty is relatively small. However, most ex-
perimental systems tend to have relatively large modeling uncertain-
ties in some frequency regions, e.g., at high frequencies. This does not
imply that the inverse should not be used at all. Rather, the inverse
should be only used in the frequency region where the modeling un-
certainty issmall. This motivates the development of a modified in-
verse that inverts the system dynamics in frequency regions where the
modeling uncertainty is sufficientlysmall. The use of this modified in-
verse with (any) feedback results in improvement of the output tracking
performance (pointwise in frequency as discussed in Section II), when
compared to the use of the feedback alone.

We begin with a description of the standard inverse feedforward con-
troller, and then extend it to develop a modified inverse feedforward
controller. Issues in the design of the modified inverse are also studied.

Definition 1: The exact inverseu�;exact can be described as [1]

U�;exact = G
�1
0 Yd := ĜinvŶd (22)

whereŶd is the Fourier transform of̂yd (which is a linear combination
of the desired output and its time derivatives, [1]) andĜinv is the re-
duced-order inverse of the nominal plant model.

Lemma 4: If the nominal systemG0 has hyperbolic internal dy-
namics, i.e., it has no zeros on the imaginary axis, then the exact inverse
inputU�;exact(22) belongs toL2 if Ŷd belongs toL2.

Proof: The poles of the reduced-order inverse are the zeros
of the systemG0 [1]. If the nominal systemG0 has hyperbolic
internal dynamics, i.e., it has no zeros on the imaginary axis, then
the reduced-order inversêGinv is hyperbolic, and it belongs to the
set of functionsRL1 that are essentially bounded on the imag-
inary axis, i.e.,kĜinv(�)k1 < 1. The lemma follows because
a bound on the exact-inverse inputU�;exact can be obtained as
kU�;exact(�)k2 � kĜinv(�)k1kŶd(�)k2.

A. Modified Inverse

The exact-inverse feedforward controller,G� = G�10 , is used to
define the modified inverse feedforward controllerG��(j!).

Definition 2: The modified inverse-feedforward controller,
G��(j!), is defined as shown in the equation at the bottom of the
page.

For nonminimum-phase systems, the inverse input is noncausal [3],
[4]. We note that the modified feedforward-inverse also tends to be
noncausal – even for minimum phase systems – when unacceptably-
large plant uncertainty is present over a frequency range. Such large
plant uncertainty is common at high frequencies for most models. The
noncausality of the modified inverse is shown in the next lemma.

Lemma 5: Let the reduced-order inversêGinv be bounded
(kĜinv(�)k1 < 1 as in Lemma 4), and let the plant uncertainty be
large in the setS

S := ! j k�(j!)k2 >
kG0(j!)k2
�G (j!)

: (23)

Furthermore, let the output and its time derivatives (Definition 1)Ŷd(�)
belong toL2. Then

1) the modified inverse-feedforward inputU��(�) := G��Yd(�)
belongs toL2;

2) the inverse input, which is the inverse Fourier transform of
U��, is noncausal in the time domain if the setS has a nonzero
Lebesgue measure, and the desired output trajectoryŶd(�) is
nonzero.

Proof: The first part of the Lemma follows from Lemma 4 and
Definition 2:

kU��(�)k2 =kG��(�)Yd(�)k2 � kG�(�)Yd(�)k2

=kĜinv(�)Ŷd(�)k2 � kĜinv(�)k1kŶd(�)k2 <1:

By definition, the modified inverseU��(�) is zero on the setS . If
this set has nonzero Lebesgue measure, then the Paley–Wiener Con-
dition implies that the modified inverse-feedforward input cannot be
the Fourier transform of a causal function (see, e.g., [25, Ch. 10]).

G��(j!)Yd(j!) :=
G�10 (j!)Yd(j!) = Ĝinv(j!)Ŷd(j!) if k�(j!)k2 �

kG (j!)k
� (j!)

0 otherwise
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J(u) =
1

�1

U
�(j!)R(j!)U(j!) + Y (j!)� Yd(j!)

�

Q(j!) Y (j!)� Yd(j!) d! (24)

J =
1

�1

U � (R+G0
�QG0)

�1
G�0QYd

�

(R+G�0QG0) U � (R+G�0QG0)
�1

G�0QYd

+Y �d [Q�QG0 (R+G�0QG0)
�1

G�0Q ]Yd
dw:

B. Design of the Modified Inverse-Feedforward Controller

The modified inverse-feedforward controller can be considered as a
special case of the following optimization problem, which can be used
to design the modified inverse. Consider the problem of minimizing
the following quadratic performance index (over inputU ); see (24), as
shown at the top of the page, where� denotes the conjugate transpose
of matrices with complex elements,R(j!) andQ(j!) are symmetric,
positive-semidefinite, real matrices that represent the weights on the
input and the output-tracking error respectively, andYd is the desired
output trajectory specified by the user. Given a desired output trajectory
Yd, the optimal inversion problem is stated as the minimization of the
performance indexJ overU .

Remark 6: A similar frequency-dependent quadratic performance
index has been used in the past (e.g., [26]) for system regulation (Yd =
0), however, an approximate solution to the problem was found to ob-
tain causal control laws. In contrast, we allow noncausal inputs to find
the optimal solution; these noncausal solutions can be implemented
using preview-based approaches [20], [21].

The solution to the optimal inversion problem is given in the fol-
lowing Lemma adapted from [27].

Lemma 6: Let the nominal plant satisfy Assumption 1 and Con-
dition 1 at!. Furthermore, let at least one of the matricesR(j!) or
Q(j!) be positive definite almost everywhere (a.e.) in!. Then, the
optimal input trajectoryUopt, that minimizes the performance index
[J in (24)] for the nominal model (G0) can be described by (for almost
all !)

Uopt(j!) = [R(j!) +G
�

0(j!)Q(j!)G0(j!)]
�1

�G�0(j!)Q(j!)Yd(j!): (25)

Proof: In the following, the dependence onj! is not explicitly
written for compactness. SubstitutingY (j!) = G0(j!)U(j!) into
the the performance index given by (24), we obtain the second equation
shown at the top of the page. Where[R(j!) +G�0(j!)Q(j!)G0(j!)]
is invertible almost everywhere in! because at least one of the ma-
trices,R(j!) or G�0(j!)Q(j!)G0(j!) , is invertible almost every-
where in! . Note that the first term (enclosed in square brackets) in
the performance index is quadratic and the result follows by setting
this quadratic term to zero.

Lemma 7: The modified inverse-feedforwardG�� in Definition
2 is a particular case of the optimal inverse (25) with the following
choices ofR andQ:

R(j!) =0; Q(j!) = I; if k�(j!)k2 �
kG0(j!)k2
�G (j!)

R(j!) =I; Q(j!) = 0; otherwise: (26)

Proof: If R(j!) = 0 andQ(j!) = I , then the performance
index is minimized whenU(j!) = G�1

0
(j!)Yd(j!) . This is the

exact-tracking input found by inverting the nominal closed-loop
system,G� (j!) = G�1

0
(j!). Therefore, exact inversion can be

specified at frequencies where the uncertainty is small. At frequencies
where the uncertainty is large, the inversion-based feedforward can
be turned off by choosingR(j!) = I andQ(j!) = 0 leading to
U(j!) = 0 orG� (j!) = 0 .

Remark 7: The aforementioned modified inverse can be used to
tradeoff the exact-output tracking requirement to achieve other goals
like reduction of input and vibration control or to meet actuator band-
width limitations as in [27]. Furthermore, the approach can be used to
design output-tracking controllers for nonsquare systems [28].

IV. CONCLUSION

The article established bounds on the acceptable plant uncertainty
for the use of model-based feedforward input. The worst-case output-
tracking error (over all desired outputs) was compared a) with the use
of feedback alone (i.e., without feedforward input) and b) with the addi-
tion of the feedforward input to the feedback. The analysis showed that
the addition of inversion-based feedforward can lead to performance
improvements (at a given frequency!) if the uncertainty�(j!) in the
nominal plant is smaller than the size of the nominal plantG0(j!) di-
vided by its condition number�G (j!). Additionally, because most
systems tend to have large model uncertainties in some frequency re-
gions, a modified feedforward input was proposed that only uses the
model information in frequency regions where plant uncertainty issuf-
ficiently small. The use of this modified inverse with (any) feedback
results in improvement of the output tracking performance, when com-
pared to the use of the feedback alone.
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Rational Multiplier IQCs for Uncertain Time-Delays
and LMI Stability Conditions

Myungsoo Jun and Michael G. Safonov

Abstract—This note describes a set of delay-dependent integral
quadratic constraint (IQC) stability conditions for time-delay uncertainty.
The IQCs are linearly parameterized in terms of a pair of rational
stability multipliers, each active over one of a pair of complementary
frequency intervals. Using the finite-frequency positive real lemma, each
of these finite-frequency IQC conditions are shown to be equivalent to
a frequency-independent linear matrix inequality condition, thereby
dispensing with the need for frequency-sweeping.

Index Terms—Integral quadratic constraint (IQC), multiplier, robust
control, stability criteria, time-delay system.

I. INTRODUCTION

The robust stability methodology is useful in dealing with structured
uncertainties [1], [2]. In recent years, robust control theory has been
reformulated within the framework of integral quadratic constraints
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Fig. 1. Basic feedback configuration.

(IQCs) [3], which in turn are linked via the Kalman–Yakubovich–
Popov (KYP) lemma to linear matrix inequalities (LMIs). A salient
feature of the IQC stability results is that they apply directly to
complex interconnected systems consisting of any number of different
types of IQC bounded uncertainties. Key to minimizing the conserva-
tiveness of robustness results based on IQC/LMI stability theory is the
discovery of linear parameterizations of the broadest possible classes
of IQCs for each type of uncertainty (cf. [4]).

Time-delays have been considered as a type of structured uncertainty
for analysis using robust control techniques [5], [6]. Megretskiet al.[3],
Fuet al. [7], and Junet al. [6] provideddelay-dependentresults based
on IQCs and LMIs. Scorletti [5] and Junet al. [8] expanded these re-
sults, determining the broadest available class of IQCs for time delays,
linearly parameterized in terms of a positive-real frequency-dependent
multiplier matrix. The results of [5] and [8] involve “switching multi-
pliers.” That is, a frequency-dependent multiplier matrix makes a typi-
cally nonsmooth change from one complex frequency-dependent mul-
tiplier to another multiplier at a specified frequency. Previous IQCs for
time-delay such as the ones in [3] were shown to correspond to special
cases arising from particular choices of these multipliers. This means
that the results of [5] and [8] generally produce tightest, least conserva-
tive IQC robustness bounds for systems with uncertain time delays.

However, there is an important difficulty with the results of [5] and
[8]. Switching from one frequency-depending multiplier to a constant
multiplier results in an irrational multiplier, which means that the stan-
dard KYP cannot be applied. Frequency sweeping could be used to by-
pass the KYP lemma, but no matter how fine the frequency grid, there
always remains a small risk that a crucial frequency will be missed, re-
sulting an erroneous prediction of robustness. In this note, we show how
to solve this problem by employing the recentfinite frequency strictly
positive real lemmaof [9]. Our main result is a finite-dimensional LMI
representation of switched rational-multiplier IQCs. The result elimi-
nates the need for, and the risks of, frequency-sweeping in testing the
delay-dependent IQC robustness conditions of [5] and [8].

The note is organized as follows. Preliminary background is covered
in Section II and the problem formulation is in Section III. Our main
result is given in Section IV. Finally, conclusions are in Section V.

II. PRELIMINARIES

This section briefly covers preliminary results such as multiplier
IQCs for time-delay by M. Junet al. [8] and finite frequency posi-
tive real condition by T. Iwasakiet al. [9]. Notation used in the note is
standard. ( +) denotes the set of all (positive) real numbers and
denotes the set of all complex numbers.A(s)� means para-Hermitian
conjugate, that is,A(�s)T .A�� is abbreviation of(A�)�1. Iq denotes
q�q identity matrix.herm(m) andskew(m) are Hermitian and skew
part ofm, that is,(1=2)(m+m�) and(1=2)(m�m�), respectively.
<e(�) (=m(�)) denotes the real (imaginary) part of(�). x̂(j!) means
Fourier transform of the signalx(t).

We consider the feedback system in Fig. 1 whereG and� are
bounded causal operators onLm2e[0;1) andLl2e[0;1), respectively.

0018-9286/02$17.00 © 2002 IEEE
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