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Abstract—Optimal inversion of system dynamics can be used to
design inputs that achieve precision output tracking. However, a
challenge in implementing the optimal-inversion approach is that
the resulting inverse input tends to be noncausal. The noncausality
of the optimal inverse implies that the desired output trajectory
must be pre-specified and cannot be changed online. Therefore, the
optimal inverse can only be used in trajectory-planning applica-
tions (where the desired output is known in advance for all future
time). The main contribution of this article is the development of a
technique to compute the noncausal optimal inverse when the de-
sired output trajectory is known in advance for only a finite time
interval. This future time interval, during which the desired output
trajectory is specified, is referred to as the preview time. Addition-
ally, this article develops a time-domain implementation of the op-
timal inverse and quantifies the required preview time in terms
of the specified accuracy in output tracking, the system dynamics,
and the cost function used to develop the optimal inverse. The pro-
posed approach is applied to precision (subnanoscale) positioning
of a scanning tunneling microscope (STM), which is a key enabling
tool in emerging nanotechnologies. Experimental results are pre-
sented which show that finite preview of the desired output trajec-
tory is sufficient to operate the STM at high speeds.

Index Terms—Nanotechnology, output tracking, scanning, scan-
ning tunneling microscope (STM), system inversion.

I. INTRODUCTION

MODEL-BASED inversion of system dynamics [1]–[3],
can be used to find inputs that achieve high-precision

output tracking; this input is referred to as the inverse input.
The inversion technique has been applied to a number of output-
tracking applications; for example, in the precision control of
flexible manipulators [4], [5], aircraft control [6], and high-pre-
cision positioning of piezo probes for nanoscale imaging using
scanning-probe microscopy [7]. However, the model-based in-
version approach suffers from two problems: 1) the inverse input
will be erroneous if the modeling uncertainty is large and 2)
the inverse input will be unacceptable if it violates input energy
or bandwidth limitations. These two problems have been ad-
dressed by the development of the optimal-inversion technique
in [8]. In particular, the optimal–inversion technique can be used
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to account for modeling errors by only inverting the system
model in frequency regions where the modeling uncertainty is
sufficiently small [9]. Additionally, actuator constraints such as
input energy and bandwidth limitations can be accounted for
by trading off the precision needed in output tracking. Thus,
the optimal-inversion technique extends the standard-inversion
theory to design inverse inputs in the presence of modeling un-
certainties and actuator limitations. However, a challenge in im-
plementing the optimal-inversion approach is that the resulting
inverse input tends to be noncausal [9]. (Even the exact inverse
input is noncausal when the system is nonminimum phase [2].)
The noncausality of the optimal inverse implies that the desired
output trajectory must be pre-specified for all time and cannot be
changed online. Therefore, the optimal inverse can only be used
in trajectory-planning applications (where the desired output is
known in advance for all future time).

The main contribution of this article is the development of a
technique to compute the noncausal optimal inverse when the
desired output trajectory is known, in advance, for only a fi-
nite-time interval. This future time interval, during which the de-
sired output trajectory is specified, is referred to as the preview
time. We note that such a preview-based implementation enables
the online specification of the desired output trajectory (see, e.g.,
[10]). Additionally, this article develops a time-domain imple-
mentation of the preview-based optimal inverse as opposed to
the frequency-domain computation in [8]. The time-domain rep-
resentation enables the quantification of the required preview
time in terms of the specified accuracy in output tracking, the
system dynamics and the cost function used to develop the op-
timal inverse.

The finite preview based optimal-inversion technique is
illustrated by using it for precision positioning of a probe
during high-speed surface imaging with a scanning tunneling
microscope (STM). It is noted that the STM is a key enabling
tool in emerging technologies such as nanofabrication [11].
However, in spite of its atomic-level resolution, the oper-
ating-speed (throughput) limitation prevents the STM-based
nanofabrication from competing (at least at present) with more
established techniques like electron beam (EB) and X-ray
lithography [11]. A limitation to increasing STM’s throughput
is the positioning error caused by movement-induced vibrations
in the piezo-based positioning system (i.e., piezo scanner). As
the STM’s scanning frequency (also called scan rate) is in-
creased relative to the smallest resonant-vibrational frequency
of the piezo scanner, the vibrational modes of the piezo scanner
are excited. These movement-induced vibrations increase with
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scan rate and result in errors in the STM probe’s positioning,
thereby limiting the maximum operating speed of the STM [7].
In practice, the achievable scan rate is substantially smaller
(around 100 times smaller) than the smallest resonant-vibra-
tional frequency of the STM scanner. This inability to operate
the STM at high speed currently hinders the investigation and
manipulation of ultrafast processes at the nanoscale. Therefore,
there is a need to develop high-speed precision-positioning
techniques for STM.

In general, the tracking performance of piezo-based posi-
tioning systems can be improved by using feedback control,
for example, to reduce positioning errors due to creep and
hysteresis (see, e.g., [12]–[18]). However, a problem with using
feedback-based approach is the low-gain margin, of piezo-based
positioners, that limits the achievable improvements because
high-gain feedback tends to destabilize piezo-based STM
scanners [19]. (The low gain margin is due to low structural
damping in piezo-actuators that results in high-quality factor

, i.e., a sharp-resonant peak accompanied by a rapid-phase
drop in the frequency response.) In practice, a compromise is
sought between performance and instability; feedback gains
are adjusted to improve performance without instability. Thus,
the tendency to become unstable at high gains (due to low-gain
margins) has limited the success of typical feedback-based
techniques to achieve high-speed positioning in STM applica-
tions. Furthermore, conventional sensors have relatively low
resolution during high-speed operation (because the sensor
noise tends to increase with operating speed); therefore, cur-
rently available sensors cannot be used to implement feedback
controllers for subnanometer scale positioning when operating
STMs at high speeds (under normal room temperatures).

Feedforward control approaches have been successful in in-
creasing the operating speed of STM [20]. However, when the
inverse input is noncausal, the computation of the inverse input
requires prespecification of the entire output trajectory. This
prevents the use of the inversion-based technique in online-STM
applications such as nanofabrication, where the desired output
trajectories may not be completely pre-specified and may have
to be changed online. This problem is addressed by the devel-
opment of the preview-based approach, which enables the on-
line implementation of the optimal inverse. The preview-based
optimal inversion technique is applied to a STM system and ex-
perimental results are presented to show that the STM can be
operated at high speeds when only a finite preview of the de-
sired output trajectory is available.

The paper is organized in the following format. The optimal-
inversion approach and its finite-preview-based implementation
is presented in Section II. In Section III, the preview-based ap-
proach is applied to a STM system and results (simulation and
experimental) are presented and discussed in Section IV. Our
conclusions are in Section V.

II. PREVIEW-BASED OPTIMAL-INVERSION

The optimal-inversion problem is presented as the minimiza-
tion of a quadratic-cost function and the optimal inverse is ob-
tained as a filter (as developed in [8]). Properties of
the optimal-inverse filter are analyzed and a state-

space representation of the optimal inverse is developed for a
preview-based implementation of the optimal inverse.

A. Formulation and Solution of the Optimal Inversion Problem

Consider the following linear-time-invariant (LTI) system:

(1)

where is the system state, and the number of inputs
is the same as the number of outputs, and ,
i.e., the system is square. The Laplace-domain representation of
the system is given by

(2)

We make the following assumptions.
Assumption 1: System (1) is invertible, i.e., there ex-

ists transfer matrix such that
, where is the identity matrix. Moreover,

system (1) and its inverse are hyperbolic, i.e.,
does not have poles or zeros on the imaginary axis of
the complex plane.

Remark 1: The invertibility of system (1) can be guaranteed
if system (1) has a well-defined relative degree [3]. The require-
ment that the system (1) has no zeros on the imaginary axis is
needed for computation [3] and robustness [9] of the exact in-
verse. The requirement of no poles on the imaginary axis is sat-
isfied if the system is stable. (Alternatively, the optimal inver-
sion problem could be posed after the system is stabilized, if the
system is stabilizable.)

Optimal Inversion Problem—For a given sufficiently smooth,
desired output trajectory, , the optimal-inversion
problem is to minimize the following cost function [8]:

(3)

where the superscript denotes complex conjugate transpose
and the dependence on indicates Fourier transforms of the sig-
nals. In the above cost function, is a frequency-dependent
weight on the input energy and is a frequency-dependent
weight on the output-tracking error and are chosen such that As-
sumption 2 is satisfied.

Assumption 2: At each frequency , the weights and
are chosen to be Hermitian, symmetric, semi-definite

matrices of such that
is positive-definite.

Remark 2: The requirement that the matrix is pos-
itive-definite at each is less stringent than requiring
to be positive-definite at each ; as in standard optimal control
theory [21]. The cost function (3) can be used to account for
model uncertainty and actuator constraints by choosing appro-
priate weights and [9], [20]. The approach can
also be extended to nonsquare systems (actuator-redundant or
actuator-deficient systems) as shown in [22].



ZOU AND DEVASIA: PREVIEW-BASED OPTIMAL INVERSION FOR OUTPUT TRACKING 377

Remark 3: A similar frequency-dependent quadratic perfor-
mance index has been used in the past (e.g., [21]). However, the
method in [21] aims at finding causal-control laws for output
regulation and causal-control laws may not minimize
the above cost function. In contrast, we allow noncausal-control
inputs to solve the optimal-inversion problem; these noncausal
solutions are then implemented using a preview-based approach
(as discussed in Section II-C).

Lemma 1: Solution to the Optimal Inversion Problem
[8]—The optimal inverse can be found using a filter
as

(4)

where is the transfer function of the system (2) evaluated
at , i.e., . Under the optimal control
law (4), the output of the system tracks the following optimal
desired trajectory:

(5)

Proof: See [8].
The optimal inverse was implemented offline in [8] by using

the filter given in (4). The offline computations involved: 1)
Fourier transformation of the pre-specified desired output-tra-
jectory to obtain ; 2) multiplication by the optimal-in-
verse filter to find ; and 3) inverse Fourier transforma-
tion to find the optimal inverse in the time domain. This fre-
quency-domain implementation requires the desired output tra-
jectory to be pre-specified for all time . In the
following, a time-domain implementation is developed that en-
ables a finite preview-based online implementation of the op-
timal inverse.

B. Properties of the Optimal Inverse

Properties of the optimal-inverse filter affecting its computa-
tion are investigated next. In particular, conditions are developed
under which the optimal-inversion filter is hyperbolic and it will
be shown that the optimal inverse tends to be noncausal.

Assumption 3: In the following, we assume that con-
trol-energy weight and tracking-error weight are
chosen as matrices whose entries are proper, real-coefficient,
minimal, rational functions of the Laplace variable , such that
they satisfy Assumption 2 on the imaginary axis .
Furthermore, we assume that the weighting matrices and

are invertible (e.g., [23]).
Remark 4: Invertibility of the weighting matrices

and in Assumption 3 is not necessary for solving the
optimal inversion problem. Rather, it enables us to analyze
the properties of the optimal-inverse filter defined
in Lemma 1. For previous use of rational functions to design
frequency-dependent weighting matrices, see, e.g., [21].

Lemma 2: Optimal-Inverse Filter in Transfer Function
Form—Let the control-energy and tracking-error weights
satisfy Assumption 3. Then the optimal-inverse filter can be
represented by the following transfer function :

(6)

where denotes the transpose of the matrix .
Proof: This follows from (4) because evaluated

at is equal to .
The following analysis shows that the optimal-inverse filter

tends to be unstable; in such cases the bounded op-
timal inverse is necessarily noncausal. We begin by showing that

cannot have poles on the imaginary axis (of the com-
plex plane), i.e., it is hyperbolic.

Lemma 3: Hyperbolicity of Optimal-Inverse Filter—Under
Assumptions 1 and 3, the optimal-inverse filter is hy-
perbolic.

Proof: From (6), will have no poles on the imag-
inary axis if [defined in (6)], and have
no poles on the imaginary axis (i.e., they are hyperbolic). First,
note that the poles of (with finite values) are the zeros
of . Since is positive-definite (by Assumption
2), cannot have zeros on the imaginary axis. Therefore,

can not have poles on the imaginary axis. Second, to
show that is hyperbolic, note that the pole-location pat-
tern of is a mirror image of the pole-location pattern of

with respect to the imaginary axis. This symmetric pole
location pattern implies that poles of cannot be on the
imaginary axis (by Assumption 1). Third, hyperbolicity of
follows from Assumption 2 since is finite-valued at each point
on the imaginary axis and, therefore, cannot have poles on the
imaginary axis because it is minimal by Assumption 3. Thus, the
hyperbolicity of the optimal-inverse filter follows from the hy-
perbolicity of , and .

Next, we consider how the poles of move when the
input energy weight is changed with respect to the tracking-error
weight.

Lemma 4: Asymptotic Properties of the Optimal-In-
verse Filter—Let the control-energy weight be of the form

where is a positive constant. Furthermore,
let Assumptions 1 and 3 be satisfied. Then

1) as the input energy weight is increased from zero to in-
finity (i.e., : ), the poles of the optimal inverse
filter that have finite values move from the zeros
of , , , and the poles of , to the
poles of , , , and the zeros of ; fur-
thermore, the root locus of does not intersect the
imaginary axis for ;

2) when the input energy weight is small (i.e. ), the
optimal-inverse filter tends to the inverse of the system,
i.e., ; when the input energy weight
becomes large (i.e., ), the optimal-inverse input
tends to zero.
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Proof: We start the proof by defining the following co-
prime polynomial fraction of matrices , and

(e.g., [23]):

(7)

Statement 1: Using the coprime fraction defined in (7), (6) can
be rewritten as (to simplify the notation, we omit the dependence
on s)

(8)

Note that is invertible (i.e., exists) be-
cause both and are invertible (Assumption 1 and Re-
mark 4). Therefore, by taking the limits on both sides of (8), we
have

(9)

Equations (7) and (9) show that as , the poles of
move toward the zeros of , , and the poles
of , and the optimal-inverse filter approaches to the inverse
of the system . Note that pole-zero cancella-
tions occur when .

Similarly, to find the locations of the poles of when
, we rewrite (6), by using the coprime fraction defined

in (7) as

(10)

Note the term in (10) is invertible since
is invertible (Remark 4). Therefore, by taking the limits

on both sides of (10) with (i.e., ), we have

(11)

As (i.e. ), the poles of move toward
the poles of , , , and the zeros of . The
hyperbolicity of the root locus of follows from Lemma
3. This completes the proof of Statement 1 of the Lemma.

Statement 2 of the Lemma follows from (9) and (11).
Equation (11) shows that as , is zero for
all but a finite number of complex number (at the poles
of ), hence, the optimal-inverse input obtained from
the inverse-Laplace transform of is
zero.

Remark 5: Inputs from standard linear quadratic (LQ) op-
timal control theory with cheap control (i.e., low weight on the
input energy) yields perfect tracking for minimum phase sys-
tems [24]. However, standard LQ controllers have performance
limitations when the system is nonminimum phase [25]. In con-
trast, the noncausal optimal-inversion approach finds bounded
inputs that can yield perfect output tracking in the cheap con-
trol case—even for the nonminimum phase case. The following
corollary describes the root locus of the optimal-inverse filter

for a single-input single-output (SISO) system, which
follows directly from Lemma 4.

Corollary 4.1: SISO Case—Let assumptions in Lemma 4 be
satisfied, let the system (1) be SISO and let the weights on the
input energy and tracking error be constants in the frequency
domain, i.e., , . Then, as the input en-
ergy weight tends to infinity ( : ), the root locus of the
optimal-inverse filter starts at the zeros of and

and end at the poles of the and . Therefore,
the root locus is symmetric with respect to both the real and
imaginary axes and does not intersect the imaginary axis.

Remark 6: The root locus of the optimal inverse (described
in Corollary 4.1) includes the root locus of standard optimal
control that uses causal inputs. For example, when optimal con-
stant feedback is used in a SISO system

, where is obtained by minimizing

the poles of closed-loop system are the left-half-plane roots of
the Chang–Letov Equation (summarized in [23, Ch. 3])

Therefore, the root locus of the closed-loop system by using
starts at the zeros of and that are on

the left half of the complex plane and end at the stable poles
of the and . Thus, the root locus of the closed-loop
system, obtained by using the causal control law ,
is the stable part of the root locus of the optimal-inverse filter

.
Remark 7: Optimal inverse filter is unstable—Under the as-

sumptions of Lemma 4, the poles of the optimal filter
approach to the zeros of and as the input energy
weight becomes small, i.e., as high-precision output tracking is
required. Moreover, since the optimal inverse is hyperbolic, root
locus branches associated with the nonminimum-phase zeros
of and will remain on the right hand side of
the imaginary axis (in the complex plane) as the weight on the
input energy is increased (from Lemma 4). Therefore, for gen-
eral choice of weights and , the optimal inverse filter
tends to be unstable if the system (1) has some internal dynamics
(i.e., has at least one zero).

C. Preview-Based Optimal Inverse

The noncausality of the optimal-inverse filter motivates the
development of the preview-based implementation approach
that is discussed in this subsection. We begin by rewriting the
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optimal-inverse filter as a proper transfer-function matrix to
develop a state-space representation of the optimal inverse.

Lemma 5: Optimal Inversion using a Proper Transfer
Function Matrix—Let the desired output trajectory be
sufficiently smooth. If the optimal-inverse filter is not
proper, then the optimal inverse can be rewritten as

(12)

where is proper, and denotes the Laplace trans-
form of the linear combination of the output and its time deriva-
tives. Furthermore, is hyperbolic if is hyper-
bolic.

Proof: If is proper, then we define
, . Otherwise, the optimal inversion filter

is rewritten as

(13)

where is the least common denominator polynomial of
and each entry in the numerator matrix

is a polynomial of the Laplace variable .
Let the order of polynomials in the numerator matrix be

. Furthermore, let the order of the denominator polyno-
mial be . Then, each entry in the numerator
matrix is rewritten as

(14)

where and are polynomials of with real coeffi-
cients and are chosen such that the order of is less than
or equivalent to . Then, the modified proper optimal-in-
verse filter can be obtained as

...
...

. . .
...

(15)

where

...
...

. . .
...

(16)

for . Note that the poles of and
will be the roots of with possible repetitions (see, e.g.,
[23]). Therefore, the hyperbolicity of the optimal-inverse filter

implies the hyperbolicity of .

Remark 8: The order of the output’s time derivative used
to define is the difference between the order of the
numerator polynomials and the order of the denom-
inator polynomial of the optimal-inverse filter, i.e.,

. It is noted that a similar redefinition
of the desired output (in terms of its time derivatives) was used
previously to develop a state-space realization of the exact
inverse in [1].

Remark 9: The input energy weight can be chosen to
make a proper rational function matrix, for example,
by choosing the order of the numerator polynomials in to
be sufficiently large.

State-space representation of the Optimal Inverse—The
modified optimal-inverse filter is hyperbolic (from
Lemmas 3 and 5) and can be decoupled into stable and unstable
parts by partial fraction expansion as

(17)

where has its poles on the left half plane, and
has its poles on the right-half plane. Furthermore, let the min-
imal realization (e.g., [23]) of the stable and unstable portions
of the optimal inversion filter be given by

(18)

The bounded solution to the optimal inversion problem is then
obtained by flowing the stable portion forward in time and
flowing the unstable portion backward in time [3] as stated in
the next lemma.

Lemma 6: Bounded Optimal Inverse—Let desired output
and its time derivatives be bounded uniformly in time

. The bounded solution to the optimal-inverse
input for all time is found as

(19)

Proof: This follows from arguments used to find bounded
solutions to unstable internal dynamics in [3].

Remark 10: The requirements that be bounded in
the above Lemma can be relaxed to the requirement that the
following terms are bounded: , , , and

.
Finite-preview-based Implementation of the Optimal-Inverse

Filter—The computation of the optimal-inverse input, at any
time , requires all future values of the desired output trajec-
tory. In particular, the computation of in (19) requires
knowledge of all future values of the desired output for
time interval [ , ). However, can be approximated by
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truncating the integral in (19), by only using information of the
desired output trajectory during a finite time interval [ , ],
as

(20)

and the finite-preview based optimal-inverse input is given by

(21)

Error due to Finite-preview-based Implementation—The
output-tracking error due to the finite-preview based imple-
mentation [i.e., using input found from (21) rather than infinite
preview (19)] is quantified, next. We first define the following
condition 1.

Condition 1: Positive constants , , , satisfy condi-
tion 1 if

(22)

Remark 11: The above Condition 1 is equivalent to system
(1) being stable (Assumption 1) and its corresponding op-
timal inverse being hyperbolic (Lemma 3). In this
case, and satisfying (22) can always be found if

and are chosen such that and
, where denotes the real part

of the eigenvalue of matrix .
Next, let the output obtained by applying the finite-preview

based optimal-inverse input be denoted by , and
let the resulting error in output tracking be denoted by

(23)

The tracking error can be made arbitrarily small by
choosing a sufficiently large preview time .

Lemma 7: Let , , , and satisfy condition 1. Then
for any given number , there exists a finite time

(24)

such that the output-tracking error is smaller than

(25)

for the preview time , where

is a finite positive constant, denotes the induced matrix
2-norm of matrix , is the bound on
the desired trajectory, , are as defined in (1) and , are
as defined in (18).

Proof: The proof of this lemma follows from arguments
similar to those in [10] and is therefore omitted.

The above Lemma shows that: 1) the tracking error expo-
nentially decays with the increase of preview time and 2) the
minimum preview time needed for precision output tracking

Fig. 1. Dependence of the preview-time T on the unstable poles of the
optimal inversion filter G (s).

within a specified output-tracking error decreases as (see
Remark 11) increases. It is noted that the maximum value of
is less than the minimum distance

Re

of the unstable poles of the optimal-inverse filter from the imag-
inary axis, as illustrated in Fig. 1.

Remark 12: Due to the exponential decay of the tracking
error with the distance of the unstable poles [of the optimal in-
version filter ] from the imaginary axis [see (25)], a rule
of thumb is to choose the preview time to be greater than four
times the time constant of the dominant unstable pole (i.e., four
times the inverse of the dominant unstable pole’s distance from
the imaginary axis).

III. EXAMPLE: APPLICATION TO SCANNING TUNNELING

MICROSCOPE (STM)

The preview based optimal-inversion approach is applied to a
STM (Metris-1000, Burleigh Instruments, Inc.). The goal is to
demonstrate that the use of finite preview-based optimal-inver-
sion approach enables high-speed STM imaging.1 We begin by
describing the STM system and its model.

A. Burleigh Metris-1000 STM Scanner

Principle of STM operation—The principle of STM opera-
tion is shown in Fig. 2. A piezo scanner moves the STM probe
across the sample surface as the tunneling current between the
STM probe and the sample (for an applied voltage) is mea-
sured. The tunneling current depends on the distance between
the STM probe and the sample surface. Therefore, the mea-
sured tunneling current is directly related to the sample’s sur-
face topology and is used to form images of the sample’s surface
topology. A critical component of a STM system is the piezo
scanner that positions the STM probe over the sample surface
[see Fig. 2(a]). The piezo scanner moves the STM probe parallel
to the sample surface ( – axes) as well as perpendicular to the
sample surface ( –axis). Errors in positioning the STM probe
can lead to distortions in the acquired images, since the posi-
tion error leads to the incorrect mapping of the tunneling current
signal to the – position of the STM probe. As STM’s opera-
tion speed increases, movement-induced vibrations lead to sig-
nificant positioning errors and image distortion. It is noted that

1The MATLAB code can be obtained by e-mail to the authors.
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Fig. 2. (a) STM scanner scheme and (b) scan trajectory, both drawings are
not to scale. The corresponding desired trajectory for 250 Hz scanning in (c)
x-direction and (d) y-direction.

post-correction techniques can be applied to remove the effects
of positioning error in imaging applications [19]. However, such
post-processing approaches cannot be used when online correc-
tion is critical, for example, in nanofabrication applications be-
cause post-compensation cannot prevent distortions in the fabri-
cated components. Moreover, the positioning error, if large, can
also lead to sample and/or tip damage (even in imaging applica-
tions). Therefore, online precision positioning of the STM probe
over the sample is important.

B. Scanning of the STM Probe Over the Sample Surface

The scanning motion of the STM probe is illustrated in
Fig. 2(b). To start the scanning process, the STM probe is
moved from the center to the top-left point of the image area.
Then, the tip is moved in a raster pattern to image a square
area ( , where represents Angstrom). During the
forward scan (from left to right), the tunneling current signal
is measured at a constant sampling rate, and the -position is
fixed. During the return scan (from right to left), the -position
is incremented and -position is returned to the left. The
tunneling current signal is not collected during the return
scan. The back and forth scanning pattern is repeated until the
entire desired area is imaged. During the imaging operation the

-position of the STM probe is not changed (this is referred to
as constant height mode) and the measured tunneling current is
plotted against the desired – position to generate an image
of the surface topology. (Images are plotted against the desired
x–y position rather than the actual x–y position because direct
measurement of the STM probe’s tip-position is not available
during imaging, see Section IV.) The desired – trajectory is
shown in Fig. 2(c) and (d). The scan rate of the imaging process
is defined as , where is the time to finish
one complete scan as indicated in Fig. 2(c).

C. STM Model

The dynamic model of the STM system was obtained exper-
imentally with a dynamic signal analyzer (DSA). To find the
dynamic model of the STM probe positioning in x-direction (re-
ferred to as the -dynamics for simplicity), we applied an input
voltage generated by the DSA to drive the -dynamics in
the micrometer displacement range and fed the position
signal (measured with an inductive eddy-current sensor that has
a static resolution of five ) back to the DSA. Experimental fre-
quency response was obtained from the DSA and used to iden-
tify the system model. The transfer function of the -Dy-
namics, from the input voltage (in volt) to the piezo-position

(in ), was found as

(26)

where , ,
,

and the Laplace transform variable is in rad/ms. Similarly, the
transfer function of -Dynamics, from the input voltage

(in volts) to the piezo-position (in ), was found as

(27)

where ,
,

.

D. Root Locus of the Optimal-Inverse Filter

In this section, the optimal-inversion technique is applied to
the STM and properties of the resulting optimal-inverse filter
are investigated.

Choice of Weights in the Cost Function—The optimal-inverse
filter was chosen such that perfect tracking is achieved at low
frequencies (in the operating bandwidth of 444 Hz for the -dy-
namics) and to reduce the input required at high frequencies (at
which the model also tends to become less accurate). This im-
plies that the tracking-error weight should be larger than
the input energy weight in the low-frequency range and
vice versa in the high-frequency range. For
this example, and were chosen as

(28)

where was used to adjust the relative magnitude of the input
energy and tracking-error weights. In this example,
is chosen, which yields a large tracking-error weight

for low frequencies and a large input
energy weight for high frequencies

, as shown in Fig. 3.
Root Locus of the Optimal-inverse Filter—For the above

choice of the cost function ( and ), the optimal-in-
verse filter can be written as [see (4)]

(29)
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Fig. 3. Magnitude bode plots of the input energy weight r(j!) (dash line) and
the tracking-error weight q(j!) (solid line).

As stated in Lemma 4, when is changed from zero to ,
the poles of the optimal-inverse filter move contin-
uously from (i) the zeros of and the poles
of to (ii) the poles of and the zeros of

. The root locus of with respect to is shown in
Fig. 4, where the arrows indicate the orientation of root locus
as : . It is noted that the root locus is symmetric with
respect to both the real and imaginary axis. The unstable poles
of move towards the imaginary axis as is increased,
which implies an increase in minimum preview time (see Re-
mark 12). It is noted that the piezo dynamics is nonminimum
phase [has zeros on the right-hand side, see (26) and (27)].
Therefore, from Lemma 4 and Remark 7, the optimal-inverse
filter is unstable for all values of , as can be seen from Fig. 4.

IV. RESULTS AND DISCUSSIONS

Simulations in MATLAB and experimental implementations
were carried out to show that a finite-preview time is sufficient
for on-line implementation of the optimal inversion.

A. Choice of Experiment

The main advantage of the STM is that it enables the
investigation and manipulation of surface phenomena with
subnanoscale spatial resolution. Therefore, the ability to image
subnanoscale features at high speeds when using the proposed
optimal-inversion technique was tested using the experimental
STM system. In particular, the STM was used to image carbon
atoms in highly oriented pyrolytic graphite (HOPG), in which
the spacing of the imaged atoms is less than 1 nm (2.46 ). It is
noted that the crystal symmetry and its low thermal expansion
coefficient of HOPG makes it a standard sample
used to characterize STM systems (e.g., [26], [27]). Since the
features on the calibration sample (HOPG) do not change with
the choice of the scan trajectory, distortions in the acquired
image, if any, are caused by the inability to precisely position
the STM probe along the scan trajectory. Thus, distortions in
the acquired image provides a measure of the STM scanner’s
tracking performance when imaging subnanoscale features.

The use of image distortions to quantify positioning error is
necessary when imaging and manipulating at the subnanometer
scale using the STM. It is noted that conventional sensors such
as capacitive, inductive, and laser sensors can be used to cal-
ibrate and model SPMs when the scan size (i.e., lateral posi-
tioning range) is in the hundreds of nanometers [12]. However,

Fig. 4. Symmetric root locus of the optimal-inverse filter G (s) as � =
0 ! 1, where (b) is the zoomed-in view of the region inside the dashed line
in (a) and the unit is in rad/ms.

such sensors cannot be used to calibrate or provide feedback to
correct the SPM when imaging with subnanometer resolution.
For example, the static resolution of the inductive sensor (eddy-
current sensor, that we used for modeling) is 5.0 , which is
not sufficient to provide position measurements when imaging
HOPG, in which the spacing of the imaged atoms is less than
one nanometer (2.46 ). Furthermore, even with the use of sen-
sors that have better resolution, we note that typically at normal
room temperature, the measurement noise increases with scan
frequency and results in poor resolution during high-speed STM
operation. Thus, external sensor-based measurements of STM
probe’s lateral position ( , ) are not available when imaging
HOPG samples (with subnanoscale features) at high-scan fre-
quencies. Therefore, we verify the ability to track the output
trajectory by imaging standard surfaces (HOPG) and then quan-
tifying the distortion in the acquired image. The simulation and
experimental results are presented next.

B. Simulation Results

Optimal Redesign of Desired Output Trajectories—For the
desired trajectory shown in Fig. 2(c), the optimal-inverse input
for -dynamics was found from (19); the weights and

were as given in (28) (with ). Similarly, the
optimal-inverse input for the -dynamics was computed [with
the same weights in the cost function as in (28)] for the desired
trajectory, as shown in Fig. 2(d). Simulations were performed
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Fig. 5. Output trajectory difference between the desired trajectory and
the optimal trajectory for scan rate s = 250 Hz in (a) x-direction and
(b) y-direction.

in MATLAB to find the optimal inputs and
along with the optimal desired trajectories, and
that were computed by applying the optimal inputs
and to the dynamics models and , respec-
tively. We note that the differences between the optimal desired
trajectories and the original desired trajectories are small (as
shown in Fig. 5)

Preview-based Implementation—The optimal-inverse input
was computed for different values of preview time. Simulations
were performed to find the error in output tracking with the
use of these preview-based optimal-inverse inputs. The error in
computing the optimal-inverse input and the error in
output tracking due to the computational error are
shown in Fig. 6, where

(30)

and for the signal

The errors, in computing the optimal-inverse input and the re-
sulting error in the output tracking, decay exponentially as the
preview time increases, as shown in Fig. 6 [also see (25)]. Fig. 6
also indicates that preview information of the desired output
is only needed for about 2–4 ms. Knowledge of the future de-
sired output during this 2–4 ms time interval leads to substan-
tial reduction of the error in the computation of the optimal in-
verse using the preview-based computation scheme. We note
that Remark 12 gives a thumb rule to choose a large enough
preview time based on the distance of the unstable poles of the
optimal inverse filter from the imaginary axis. For this example,
the unstable poles closest to the imaginary axis are at

, therefore, the required preview time
from Remark 12 is around . However, these
poles are not the dominant unstable poles of the optimal inverse

Fig. 6. Simulation results. (a) The relative input error E (T ) and (b) the
relative output error E (T ) for different preview times T .

system; the output vector for the unstable subsystem of the op-
timal inverse filter [ in (19)] is almost perpendicular to the
eigenvector associated with these two unstable poles , i.e.,

, where . The next unstable poles
closest to the imaginary axis are at , the
required preview time from Remark 12 is ,
which is close to the 4 ms preview time chosen for the experi-
ments.

To illustrate that insufficient preview time leads to large
output-tracking error, the optimal-inverse inputs were computed
using three different preview times, ms, ,
and ms. For each of the above preview times, the
preview-based procedure given in Subsection II-C was used
to find the optimal-inverse input [see (19)–(21)], which are
compared in Fig. 7(a). The responses of the system for these
inputs were found using simulations and are compared in
Fig. 7(b). The error in computing the optimal-inverse input
with a preview time is very small (maximum error is

V). Therefore, the optimal-inverse input (dash–dotted
line) and the preview-based optimal-inverse input for preview
time (solid line) overlap each other in Fig. 7(a); the
maximum difference in the corresponding outputs is also small
(less than 0.012 ). Thus, the simulation results show that a 4
ms of preview time is sufficient to compute the optimal-inverse
input without significant error in output tracking.

C. Experimental Results

The optimal-inverse inputs computed using different preview
times were applied to the STM; the images were acquired one
after the other using the same experiment setup. The image ac-
quired without dynamics compensation in which the input was
generated by scaling the desired trajectory with the dc gain of
the STM model [20], is shown in Fig. 8(a). This approach that
does not compensate for the STM dynamics is referred to as the
dc-gain approach. Next, the image acquired with dynamics com-
pensation using the optimal-inverse input is shown in Fig. 8(b).
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Fig. 7. Simulation results for s = 250Hz. (a) Comparison of preview-based
optimal-inverse inputs and (b) output trackings for different preview times.

Additionally, images acquired using finite-preview optimal-in-
verse inputs with preview times , 0.26 ms and 0.24
ms are shown in Fig. 9(a), (b), and (c), respectively.

Image-based Quantification of Output-Tracking Error—In
the following, we quantify the output-tracking error in terms of
atomic-spacing deviations in the acquired images. We note that
HOPG is a layered material with hexagonal lattice structures in
each layer. However, not all atoms in the hexagonal lattice are
imaged with the STM. Instead, only every other carbon atom
in the hexagonal structure appears in the images, which results
in an equidistant atom spacing of between
every adjacent atom in the acquired image (e.g., see [28, Ch.
26] for detailed discussion). Therefore, the tracking error in
positioning of the STM probe over the sample surface can
be quantified from the experiment images by measuring the
distortions in the atom spacing. To quantify distortion in the
STM-acquired images, the centers of each atoms were found
using numerical image processing [29] [see Fig. 8(c)], and
the distance between the adjacent atoms were computed
from the centers. We obtained the mean value , the standard
deviation and the maximum deviation of the measured
atom spacing of adjacent atoms from the nominal atom
spacing of as

(31)

The statistical properties of atom spacing in the acquired images
were computed for the experimental images acquired with dif-
ferent preview times and are compared in Table I.

TABLE I
COMPARISON OF ATOM-SPACING MEASURED FROM THE EXPERIMENTAL

IMAGES AT SCAN RATE OF 250 Hz

D. Discussion

The experimental results show that a finite-preview can be
used to compute optimal-inverse inputs that achieve precision
STM probe positioning for imaging at high speeds. The use of
the optimal inverse enables precision positioning of the STM
probe at 250 Hz. For example, note that the distortion of atom
spacing is small with the use of the optimal inverse, the mean
value of the atom spacing by using optimal inverse at 250 Hz
is 2.44 , which is close to the expected value of 2.46 (see
Table I). It is noted that precision positioning of the STM probe
at such a high scan rate cannot be achieved without accounting
for the dynamics of this STM system, as shown in Fig. 9(a)
and Table I (see [20] for a detailed study of high-speed STM
imaging). The experimental results (Fig. 9(b) and Table I) also
show that such precision output tracking can be achieved by
using a finite preview of the desired output when computing the
optimal-inverse input. Note that the image quality using finite
preview of ms [Fig. 9(a)] is very similar to the image
quality using optimal inverse [Fig. 8(b)]. Furthermore, the atom
spacing obtained by using preview time ms is similar to
the atom spacing obtained by using optimal inverse, as shown
in Table I (compare the third line with the fourth line).

Insufficient preview can lead to substantial output-tracking
error when using the optimal-inverse input. Note that significant
input error and output-tracking error were found using simula-
tion results with preview time of 0.26 ms and 0.24 ms (Fig. 7).
These errors cause large image distortion in the experimental
results, as shown in Fig. 9(b) and (c). Such large image distor-
tions are also evident in the computed atom spacing in Table I:
the mean error and the maximum error in atom spacing are sig-
nificantly large when compared to the case in which the preview
time is 4 ms. It is also noted that the input error and output
tracking error for ms is substantially larger than those
for : and [defined in (30)]
were increased from 32% and 40% to 49% and 64%, respec-
tively, when the preview time is decreased from ms
to ms (also see Figs. 6 and 7). Therefore, the corre-
sponding image distortion is also significantly more severe for

ms than for ms. This large difference due
to a seemingly small increase of preview time can be explained
by Fig. 6, which shows that the input error and output error (due
to finite preview time) decay exponentially as the preview time
increases [also see (25)]. Moreover, the input error and output
error curves have a sharp drop for ms. Therefore, within
this region , a small increase of preview time (i.e.,

from 0.24 to 0.26 ms) results in large decrease of input-com-
putation error and output-tracking error. However, the exponen-
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Fig. 8. Experimental STM images of graphite. (a) Image acquired without dynamics compensation and (b) with dynamics compensation using optimal inversion.
The graph connecting atom centers from the image in (b) is shown in (c).

Fig. 9. Experimental results: the STM image of graphite acquired by using preview-based optimal-inverse inputs for preview time (a) T = 4 ms ; (b) T =

0:26 ms ; and (c) T = 0:24 ms.

tial decrease of the tracking error with the preview time implies
that the tracking error can be made small by increasing the pre-
view time; precision output tracking can be achieved by using
optimal-inverse inputs computed with a finite preview time of
4ms for this experimental STM.

V. CONCLUSION

This paper showed that the noncausal optimal inverse can
be computed using a preview-based approach to achieve pre-
cision output tracking. Properties of the optimal inversion were
analyzed and the amount of preview time needed was quanti-
fied in terms of the required accuracy in output tracking, the
poles and zeros of the system, and cost function used to de-
velop the optimal inverse. The technique was illustrated by ap-
plying it to achieve high-speed nanoscale imaging with an STM.
Experimental results were presented, which show that on-line
precision output tracking can be achieved by using finite pre-
view-based optimal inverse.
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