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Rapid Information Transfer
in Swarms Under
Update-Rate-Bounds Using
Delayed Self-Reinforcement
The effectiveness of a network’s response to external stimuli depends on rapid distortion-
free information transfer across the network. However, the rate of information transfer,
when each agent aligns with information from its network neighbors, is limited by the
update rate at which each individual can sense and process information. Moreover, such
neighbor-based, diffusion-type information transfer does not predict the superfluid-like
information transfer during swarming maneuvers observed in nature. The main contribu-
tion of this paper is to propose a novel model that uses self-reinforcement, where each
individual augments its neighbor-averaged information update using its previous update
to (i) increase the information-transfer rate without requiring an increased, individual
update-rate and (ii) enable superfluid-like information transfer. Simulations results of
example systems show substantial improvement, more than an order of magnitude
increase, in the information transfer rate, without the need to increase the update rate.
Moreover, the results show that the delayed self-reinforcement (DSR) approach’s ability
to enable superfluid-like, distortion-free information transfer results in maneuvers with
smaller turn radius and improved cohesiveness. Such faster response rate with limited
individual update rate can enable better understanding of cohesiveness of flocking in
nature, as well as improve the performance of engineered swarms such as unmanned
mobile systems. [DOI: 10.1115/1.4042949]

1 Introduction

The information-transfer speed across the network impacts the
effectiveness of a network’s response to external stimuli. Aligning
with neighbors in a network can model a range of problems such
as control of autonomous mobile agents [1], distributed sensing
[2], and particle and flocking dynamics, e.g., see Refs. [3–11].
Note that faster information transfer can be achieved by increas-
ing the alignment strength, i.e., by scaling up the individual
agent’s update that is based on information from neighbors.
Nevertheless, such an increase in the alignment strength will
require an increase in the information-update rate at which each
individual agent obtains information from other agents connected
through the network and changes its own state. Bounds on the
update rate can arise due to the time needed for each individual
agent to sense, e.g., the time needed for an ultrasound sensor to
ping and measure distance to a neighbor, and process information,
e.g., the time needed for communication and computation. Hence,
there is a limit to the maximum rate of information transfer possi-
ble with a given bound on the update rate.

Alternatively, instead of changing the alignment strength, the
network connectivity could be optimized for fast response, e.g.,
see Refs. [12] and [13]. Nevertheless, the network response can be
slow if the number of agent interconnections is small compared to
the number of agents [14]. Previous works have studied conver-
gence of response under time-varying connectivity, e.g., see Ref.
[15], and shown that time-varying connections, such as random-
ized interconnections, can lead to faster response, e.g., see Ref.
[14]. Another approach is to sequence the update of the agents to
improve the response [16]. When such time-variations in the net-
work connectivity are not feasible, i.e., for a given network

connectivity, the need to maintain stability (based on the update
rate) tends to limit the range of acceptable alignment strength, and
therefore, limits the response rate. This motivates the need for
new approaches to improve the response rate when the update rate
is fixed. The main contribution of this paper is to propose a novel
model that uses self-reinforcement to increase the information-
transfer rate without the need to change the network structure or
the bandwidth (information-update rate) of the individual agents.
Rather, the proposed approach uses delayed versions of the previ-
ous updates from the network to self-reinforce the current update
and improve the overall network response. Similar use of prior
update has been used to improve the convergence of gradient-
based search algorithms, e.g., in neural networks [17,18]. In the
current article, it is shown the faster response rate can be achieved
without increasing the individual update rate. Such increase in
performance can enable better understanding of cohesiveness of
flocking in nature, e.g., see Refs. [5] and [9], as well as improve
the response of engineered swarms [19–21].

The current investigation on improved performance under con-
straints on the update rate is different from studies that seek
to ensure convergence under say communication delays [22–25]
or communication channel dynamics and resource constraints
[26–28], which do not necessarily place bounds on the update
rate, but needs to be considered when investigating stability. Pre-
vious works have also investigated the minimal data rate needed
to ensure stability in terms of the quantization of information
transferred during each update [29]. Although, such information
communication rates are not considered in this paper, such criteria
need to be met within the time between updates.

Another challenge with the current models of the neighbor-
averaged diffusive information transfer is that they do not predict
the superfluid-like information transfer observed in biological
flocking [9,30]. Superfluid-like information transfer tends to have
a linear propagation of the information with respect to time as
opposed to a square-root-type dependence on time with standard
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diffusion-type models, e.g., see Refs. [3–5]. More importantly,
superfluid-like information transfer leads to undamped propaga-
tion of the radial acceleration across the flock, which is important
to achieve equal-radius (parallel) trajectories for cohesive maneu-
vers [9]. Nevertheless, superfluid-like models also require an
increase in update rate for fast response. This paper shows that the
current diffusive models can be modified using the delayed self-
reinforcement to capture the superfluid-like information transfer
observed in nature without the need to increase the update rate of
the individual agents.

The paper begins with the response-speed limitations of current
standard diffusion-based models and then presents the proposed
delayed self-reinforcement approach in Sec. 2. Simulations are
presented in Sec. 3 to comparatively evaluate the performance
improvement with and without delayed self-reinforcement (DSR)
and to clarify the impact on cohesiveness of a swarm during turn
maneuvers. This is followed by the conclusions in Sec. 4.

2 Delayed Self-Reinforcement Approach

This section begins by describing the standard diffusion-based
information transfer model without the DSR. The response-speed
limitation with such models is described, followed by a presenta-
tion of the proposed DSR approach and an analysis of the DSR-
based model’s ability to capture superfluid-like information
transfer.

2.1 Information Transfer Without Delayed Self-
Reinforcement. The standard, diffusion-based, information-
update model can be described by, e.g., see Refs. [3] and [4]

Iiðk þ 1Þ ¼ IiðkÞ � cDiðkÞdt (1)

where Ii(k) is the information state for the ith individual in the
swarm and different integers k represent the update time instants

tk ¼ kdt (2)

the fixed time interval between updates is dt, c is the alignment
strength, and Di(k) is the average difference in the information
between the individual and agents from the set of neighbors Ni

Di kð Þ ¼ 1

jNij
X
j2Ni

Ii kð Þ � Ij kð Þ
� �

if jNij 6¼ 0

¼ 0 otherwise (3)

where jNij is the number of neighbors in the set Ni. In the
current model, the set of neighbors Ni also includes the virtual,
information-source agent s when the individual i is a leader with
direct access to the source information Is.

Remark 1 (Selection of neighbors). The information Ii of each
agent i is updated in Eq. (1) based on the information available
from its neighbors Ni. In typical flocking models, the neighbors of
an agent have been selected based on different criteria such as (i)
the field of view of each agent, (ii) the metric distance between
agents as well as (iii) the topological distance between agents,
e.g., see Refs. [4], [5], and [31].

2.2 Response-Speed Limit. Studies of starling flocks have
shown that the propagation of orientation changes (and the
corresponding information transfer) among agents can be fast
compared to spatial reorganization of the agents with respect to
each other [9]. Therefore, the information dynamics in Eq. (1) can
be rewritten, for short periods of time around any time instant tk,
without considering reorganization of agents relative to each
other, as

Iðk þ 1Þ ¼ IðkÞ � cAdtIðkÞ þ cBdtIsðkÞ (4)

where the matrices A and B are given by

Aði; jÞ ¼ �1=jNij if j 2 Ni; and j 6¼ i

¼ 1 if j ¼ i and jNij 6¼ 0

¼ 0 otherwise

BðiÞ ¼ 1=jNij if s 2 Ni

¼ 0 otherwise

(5)

The continuous-time version of the approximated dynamics in
Eq. (4) is

d

dt
I tð Þ ¼ �cAI tð Þ þ cBIs tð Þ (6)

Stability of the continuous-time dynamics in Eq. (6) can be
inferred through the graph representing the neighbor-based con-
nectivity of the agents. In particular, let the neighbor-based con-
nectivity of the agents be represented by a directed graph
(digraph) G ¼ ðV; EÞ, e.g., as defined in Ref. [22], with agents
represented by nodes V ¼ f1; 2;…; n; sg, n> 1 and edges
E � V � V, where each agent j in the set of neighbors Ni � V of
the agent i satisfies j 6¼ i with an associated edge ðj; iÞ 2 E. If all
agents have access to the virtual-source agent’s state Is through
the graph, i.e., there is a directed path from the source node s to
any node i 2 V n s, then A is Hurwitz, i.e., the eigenvalues kA of
matrix A lie in the open-left half of the complex plane, e.g., see
Ref. [32]. Moreover, when the information source Is is a fixed
value, consensus is reached asymptotically, and the information
state I of all agents approach the information source Is, i.e.,
limt!1 IiðtÞ ¼ Is for all agents i.

The response speed of the continuous-time dynamics in Eq. (6)
increases with alignment strength c when there is a directed path
from the source node s to all agents i 2 V n s. This follows since
the poles kc of the continuous-time system in Eq. (6)

kc ¼ ckA (7)

move away (toward the left) from the imaginary axis as the align-
ment strength c is increased.

There is a limit to the achievable increase in response speed of
the diffusion-based, information transfer in Eq. (1) by increasing
the alignment strength c for a fixed update rate, i.e., a fixed
update-time interval dt. Note that the increased response speed
with increases in the alignment strength c of the continuous-time
dynamics in Eq. (6) also results in an increase in the response
speed of the corresponding discrete-time dynamics in Eq. (4), pro-
vided the update-time interval dt is sufficiently small. Therefore,
the response speed of the diffusion-based, information-update
dynamics in Eq. (1) also increases with the alignment strength c.
Nevertheless, for a fixed update-time interval dt, the discrete-time
dynamics in Eq. (4) can become unstable for large values of the
alignment strength c. In particular, the poles kd of the discrete-
time system in Eq. (4), given by

kd ¼ 1� dtkc ¼ 1� dtckA (8)

can become larger than one in magnitude (jkdj > 1) if the align-
ment strength c is sufficiently large. Thus, the need to maintain
stability, i.e., for each eigenvalue kA

j1� dtckAj < 1 (9)

limits the maximum acceptable value of the alignment strength c
when the update rate dt is fixed, and therefore, limits the potential
to increase the response speed of diffusion-based information
transfer.
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2.3 Proposed Information Transfer With Delayed Self-
Reinforcement. Let the information update ½Iiðk þ 1Þ � IiðkÞ� be
reinforced by the previous update, ½IiðkÞ � Iiðk � 1Þ�, as

½Iiðk þ 1Þ � IiðkÞ� ¼ �cDiðkÞdt þ b½IiðkÞ � Iiðk � 1Þ� (10)

where b is the DSR gain on the previous update, ½IiðkÞ�
Iiðk � 1Þ�. This leads to the following modified information-
update model:

Iiðk þ 1Þ ¼ IiðkÞ � cDiðkÞdt þ b½IiðkÞ � Iiðk � 1Þ� (11)

which is illustrated in Fig. 1.
Remark 2 (DSR and no-DSR models). Note that if the DSR gain

b in Eq. (11) is set to zero, then it reduces to the standard
diffusion-based, information-update model in Eq. (1).

Remark 3 (Information to implement DSR). Implementing the
DSR does not require additional information from the neighbors.
Rather, the self-reinforcement approach requires each agent to
store a delayed version Ii(k� 1) of its current state Ii(k) and to
have knowledge of the DSR gain b as illustrated in Fig. 1.

2.4 Superfluid-Type Information Transfer. To understand
the impact of the DSR gain b selection on capturing the
superfluid-like behavior, let the information update in Eq. (11) be
first rewritten as

b
dt

Ii k þ 1ð Þ � Ii kð Þ
� �

� Ii kð Þ � Ii k � 1ð Þ½ �
� �
þ 1� b

dt
Ii k þ 1ð Þ � Ii kð Þ
� �

¼ �cDi kð Þ (12)

The above equation can then be approximated by the damped-
wave equation, when the update-time interval dt is small com-
pared to the information-transfer response, as

bdt
@2

@t2
I t;Xð Þ þ 1� bð Þ @

@t
I t;Xð Þ ¼ c

a2

2D
r2I t;Xð Þ (13)

where a is the average distance to the neighbors, X represents the
spatial location of agents, D is the number of dimensions of the
spatial variable X over which the information I is varying, and r2

represents the Laplacian.
Remark 4 (Laplacian approximation). The Laplacian is

approximated in Eq. (13) using the average difference Di(k), e.g.,
as in Ref. [9]

r2I t;Xð Þ � � 2D

a2
Di kð Þ (14)

Note that along each dimension, say the x dimension with an asso-
ciated unit vector x̂, the second partial derivative

@2

@x2
I t;Xð Þ � 1

a2
I t;X þ ax̂ð Þ � 2I t;Xð Þ þ I t;X � ax̂ð Þ
� �

¼ � 2

a2
Dx (15)

is proportional to twice the average difference Dx along the x
dimension, where

Dx ¼
I t;Xð Þ � I t;X þ ax̂ð Þ
� �

þ I t;Xð Þ � I t;X � ax̂ð Þ
� �

2
(16)

Similar averages along the N dimensions result in the approxima-
tion of the Laplacian in Eq. (14).

Remark 5 (Momentum term). The use of a nonzero DSR gain b
results in a mass-like term in the approximation in Eq. (13).
Therefore, the delayed reinforcement term [Ii(k)� Ii(k� 1)] in
Eq. (11) is referred to as the momentum-term in search algorithms
[17,18].

The proposed DSR-based information update in Eq. (11) cap-
tures a broad set of behaviors, as seen from the approximation by
the damped-wave Eq. (13). For example, note that, as the DSR
gain b increases from zero to one, the damping term (1� b) in
Eq. (13) tends to zero. Therefore, the overall behavior changes
from overdamped (e.g., b¼ 0) to undamped (b¼ 1). For small
DSR gain b ! 0, the DSR dynamics approximates the over-
damped standard diffusion-type information transfer

@

@t
I tð Þ ¼ c

a2

2D
r2I tð Þ (17)

With a larger DSR gain, b! 1, the DSR dynamics approximates
the superfluid-type information transfer, i.e.,

@2

@t2
I tð Þ ¼ ca2

2Ddt
r2I tð Þ ¼ c2r2I tð Þ (18)

where a smaller update-time interval dt (which is possible if the
individuals can respond faster) leads to a larger speed of informa-
tion propagation c.

2.5 Improvement in Performance With Delayed Self-
Reinforcement. The DSR gain b should be selected to reduce the
settling time of the system. Since the DSR gain b is a scalar
parameter, numerical search methods could be used to optimally
select it. Nevertheless, an analytical approximation-based
approach, based on the continuous-time approximation of the dis-
crete dynamics, is described below to select the DSR gain for the
case when the eigenvalues of the matrix A are real. This approxi-
mation aids in understanding the potential settling-time improve-
ment that can be anticipated with the proposed DSR method.

Similar to Eq. (6), and using arguments similar to the develop-
ment of Eq. (13), the continuous-time version of the approximated
dynamics with DSR in Eq. (11) is

d2

dt2
I tð Þ þ 1� bð Þ

bdt

d

dt
I tð Þ ¼ � c

bdt
AI tð Þ þ c

bdt
BIs tð Þ (19)

where A is Hurwitz if the associated graph is connected as dis-
cussed in the paragraph after Eq. (6) in Sec. 2.2. Let the matrix A
be similar to the matrix AJ in the Jordan form

AJ ¼ T�1
A ATA (20)

where TA is invertible, and the diagonal terms of the matrix AJ are
the eigenvalues fkA;ign

i¼1 of matrix A [33], which are assumed to

Fig. 1 Control implementation with and without DSR:
(a) dynamics of agent i without delayed self-reinforcement
(DSR) and (b) modified dynamics of agent i with DSR, which
does not need additional information from other agents
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be real. Note that the multiplicity of each eigenvalue kA,i can be
more than one. With the transformation into modal coordinates

IðkÞ ¼ TAIJðkÞ (21)

the network dynamics in Eq. (19) can be rewritten as

d2

dt2
IJ tð Þ þ 1� bð Þ

bdt

d

dt
IJ tð Þ ¼ � c

bdt
AJIJ tð Þ þ c

bdt
BJIs tð Þ (22)

where BJ ¼ T�1
A B. Therefore, for each pole si of the approximate

continuous-time dynamics in Eq. (6) without DSR, i.e.,

si þ ckA;i ¼ 0 (23)

the corresponding poles of the approximate continuous-time
dynamics in Eq. (22) with DSR are given by the roots of

s2 þ 1� bð Þ
bdt

sþ ckA;i

bdt
¼ 0 (24)

or

s2 þ 2fixisþ x2
i ¼ 0 (25)

where

xi ¼

ffiffiffiffiffiffiffiffiffi
ckA;i

bdt

s
; 2fixi ¼

1� bð Þ
bdt

(26)

Without DSR, let the settling time Ts,i associated with eigenvalue
kA,i be estimated from Eq. (23) as a multiple of the time constant
(the inverse of the distance of the eigenvalue from the imaginary
axis in the complex plane when potential effects of eigenvalue
multiplicity are neglected), e.g.,

Ts;i �
4

jsij
¼ 4

ckA;i
(27)

Critical damping for the corresponding eigenvalue with DSR (cor-
responding to eigenvalue kK,i) occurs when damping fi¼ 1, i.e.,

fi ¼
1� bð Þ
2bdt

ffiffiffiffiffiffiffiffiffi
bdt

ckA;i

s
¼ 1 (28)

with solution b*< 1 given by

b� ¼ ð1þ 2cdtkA;iÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2cdtkA;iÞ2 � 1

q
(29)

¼ 1þ 8dt

Ts;i

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8dt

Ts;i

� �2

� 1

s
(30)

Remark 6 (Reduction in settling time with DSR). Let pole si of the
approximate continuous-time dynamics in Eq. (6) be the dominant
dynamics (e.g., closest to the imaginary axis of the complex
plane) without DSR. Then, the settling time T̂ s;i with DSR can be
substantially smaller than the settling time Ts,i without DSR, if the
update time dt is small and if the settling time without DSR is
large, i.e., Ts,i� 1, since for the critically damped case, the set-
tling time T̂ s;i can be approximated, from Eqs. (26) and (27), as
(again, potential effects of eigenvalue multiplicity are neglected)

T̂ s;i �
5:8

fixi
¼ 5:8

xi
¼ 5:8

ffiffiffiffiffiffiffiffiffi
b�dt

ckA;i

s
¼ 2:9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�dtTs;i

q
(31)

3 Simulation Results and Discussion

Simulation results are presented to (i) evaluate the information
transfer improvement with DSR when compared to the case with-
out DSR; (ii) demonstrate that even second-order models cannot
capture the superfluid-like information transfer without increasing
the update rate when compared to the DSR-based model; and
(iii) comparatively evaluate the impact on cohesiveness of swarm-
ing maneuvers with and without DSR.

3.1 Information Transfer Improvement With Delayed
Self-Reinforcement. For a given system update-time interval dt,
DSR can lead to substantial performance improvement when com-
pared to the standard diffusive information transfer without the
DSR. To illustrate this, the system used in simulations is com-
posed of n¼ 225 individuals placed in a 15� 15 regular array,
where the spacing in the x and y directions was 1 m, as in Fig. 2.
The neighborhood Ni of each individual was considered to be a
disk of radius r¼ 1.2 m from the individual i. Thus, the average
distance of individuals in the neighborhood was a¼ 1 m. The
leader is the individual shown as a solid dot in Fig. 2.

In general, the information transfer improves when the align-
ment strength c is increased. However, the maximum value of the
alignment strength c is bounded for a fixed update-time interval dt

to ensure stability as in Eq. (9). In the following simulations, the
update-time interval is kept fixed at dt¼ 0.01. The initial values of
the source information Is and of all the individuals I(0) were zero.
The source information Is is switched to one at the start of the sim-
ulations. With the alignment strength c¼ 100 and without DSR,
the settling time Ts needed for information I to reach and stay
within 62% of the final value of one, i.e., reach and remain
between the horizontal black lines in Fig. 3, is 69 s. Moreover,
without DSR, the information transfer becomes unstable as the
alignment strength was increased to c¼ 101 from c¼ 100 as seen
in Fig. 3. Therefore, the alignment strength c was selected to be
high (c¼ 100) to enable a fast response, but kept smaller than the
value c¼ 101 that resulted in instability with the update-time
interval dt¼ 0.01 s.

The DSR gain b predicted to optimally improve the perform-
ance with DSR in Sec. 2.5 matches the results from a numerical
search. The DSR gain b was varied and the resulting settling time
Ts (i.e., the time needed for all the individual responses to come
within and stay within 2% of the maximum value of the source
information) is shown in Fig. 4. The settling time is minimized
with the DSR gain b¼ 0.96. Note that the estimate of the optimal
DSR gain b* from Eq. (30) with the settling time from the case

Fig. 2 The initial configuration of the 225 agents. Leader, rep-
resented by a solid dot, has access to the source information Is
from virtual agent s (not shown here).
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without DSR, i.e., Ts,i¼ 69 s and the update-time interval
dt¼ 0.01 s is 0.967, is close to the value of 0.96 obtained from the
numerical search in Fig. 4.

The DSR gain b impacts the effective damping of the
information-transfer dynamics. As the DSR gain b tends to one,
the damping term (1� b) tends to zero and the overall behavior
changes from overdamped, e.g., for DSR-gain b¼ 0 as seen in
Fig. 3(a), to an oscillatory and underdamped response as seen in
Fig. 5 for DSR-gain b¼ 0.98. Large oscillations can lead to dis-
tortions in the information transfer, and ideally, the DSR gain b
should be tuned to be close to critical damping without too much
overshoot. The minimal settling-time DSR gain of b¼ 0.96 yields

a fast response without noticeable overshoot as seen in the step
response in Fig. 5(a).

The use of DSR leads to a substantial (more than an order)
reduction in the settling time—from 69 s to 1.71 s, as seen by
comparing the results in Figs. 3(a) and 5(a). Such improvement in
the settling time with the DSR helps to increase the bandwidth of
information that can be transferred without distortion. For exam-
ple, with DSR, good tracking of information pulses can be
expected provided the time period Tp of such pulses is greater
than twice the settling time of Ts¼ 1.71 s. Without DSR, similar
substantial improvements are not possible when the update-time
interval is kept fixed at dt¼ 0.01 s since increases in the alignment
strength lead to instability as seen in Fig. 3(b). Thus, for a given
update rate dt, the proposed DSR leads to a more rapid transfer of
information when compared to the case without the DSR.

3.2 Update-Rate for Faster Response Without Delayed
Self-Reinforcement. Both the standard diffusive model in Eq. (1)
and the second-order superfluid-type model in Eq. (13) can
achieve faster information transfer, similar to the case with the
use of DSR in Eq. (11), as shown in the simulation results in
Fig. 6. Nevertheless, both these approaches require an increase in
the update rate (i.e., smaller update-time interval dt) for such
faster information transfer.

As seen in the simulation results in Fig. 6, the settling time with
the standard diffusive model in Eq. (1) is 1.71 s (with the align-
ment strength c increased about 40 times, from 100 to 4034) and
with the superfluid-like model in Eq. (32) is 1.78 s, which are sim-
ilar to the settling time of 1.71 s with the proposed DSR approach
in Eq. (11). However, the standard diffusive model required a

Fig. 3 Step responses without DSR for different alignment
strength c. The black lines show the 62% deviation from the
final value of one: (a) alignment strength c 5 100; the settling
time is Ts 5 69 s and (b) alignment strength c 5 101; the
response grows in an unbounded manner.

Fig. 4 Variation of settling time Ts for different DSR gains b

Fig. 5 Step responses with DSR for different gains b. The black
lines show the 62% deviation from the final value of one:
(a) step response with optimal DSR gain of b 5 0.96 with a set-
tling time Ts 5 1.71 s and (b) a larger DSR gain b 5 0.98 leads to
oscillations and a larger settling time Ts 5 3.51 s.
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proportional decrease in update-time interval by about 40 times,
from 0.01 s to 2.48� 10�4 s to maintain stability. The superfluid-
like simulations were computed based on Eq. (13) as

I k þ 1ð Þ ¼ I kð Þ þ _I kð Þd̂t

_I k þ 1ð Þ ¼ _I kð Þ � 1� bð Þ
bdt

_I kð Þd̂t þ
c

bdt
Di kð Þd̂t

(32)

where the update-time interval was d̂t. With the same update-time
interval of 2.48� 10�4 s, the higher-order superfluid-like model
was unstable, and hence, the results in Fig. 6(b) are shown with
the update-time interval reduced, further, by half, i.e., to
d̂t ¼ 1:24� 10�4 s.

To evaluate the information-transfer rate, the time delay Dt

between the leader and other individuals to reach 0.1 is plotted as
a function of the distance d from the leader in Fig. 7. Note that the
information transfer distance is approximately linear in time Dt

with the DSR, as seen in Fig. 7, for individuals close to the leader,
which is expected for the relationship between the information-
transfer distance d and time Dt for the superfluid-type model, e.g.,
see Ref. [9]. In contrast, the information transfer distance d is pro-
portional to the square-root of time Dt with the standard diffusion
model, as seen in Fig. 7(a), which is also as expected, e.g., see
Ref. [9]. The speed of information transfer with DSR is also close
to the expected value for the superfluid case, e.g., from the expres-
sion of c in Eq. (18). In particular, with an average distance of
a¼ 1, for the two-dimensional case D¼ 2, alignment strength
c¼ 100 and update-time interval dt¼ 0.01, the predicted speed c
in Eq. (18) is c¼ 50 m/s. This is close to the speed of information
transfer seen in the results in Fig. 7(b) for both, the second-order
superfluid-type model and the proposed DSR approach. In particu-
lar, for the case with DSR, the information is transferred over a

distance of 18.38 m in 0.38 s, i.e., at speed 48 m/s. Thus, the cur-
rent superfluid-like model and standard diffusion models can only
achieve the faster information transfer by increasing the individ-
ual, information-update rate. In contrast, the use of DSR achieves
the superfluid-type information transfer and increases the overall
information transfer rate in the network without requiring a corre-
sponding increase in individual information-update rate.

3.3 Impact of Delayed Self-Reinforcement on Flocking.
Delayed self-reinforcement can improve the cohesiveness of flock-
ing maneuvers, when the orientation of each individual is consid-
ered to be the information I being transferred using local alignment
to neighbors. It is noted that local alignment to neighbors cannot
guarantee stability of the flock formation (with or without DSR).
However, by improving cohesiveness, DSR improves the ability to
maintain the formation. To illustrate, the position components xi

and yi of each individual i are updated as

xiðk þ 1Þ ¼ xiðkÞ þ vdt cos Ii

yiðk þ 1Þ ¼ yiðkÞ þ vdt sin Ii
(33)

where v is the fixed speed of each individual and the information
Ii is the orientation in the x–y plane. Second-order models have
been used in flocking dynamics, e.g., see Ref. [11], however, such
higher-order models also require an increase in update rate to
achieve response rates achieved with the DSR approach as dis-
cussed in the last paragraph of Sec. 3.2. Note that the set of neigh-
bors can change during these simulations, and control schemes

Fig. 6 Information transfer similar to the case with DSR in
Fig. 5(a) with (a) standard diffusion model in Eq. (1) without
DSR b 5 0 but a larger alignment strength c 5 4034 and an
update-time interval 2.48 3 1024 s and (b) with the superfluid-
type model in Eq. (32) and an update-time interval 1.24 3 1024 s

Fig. 7 The time delay Dt between the leader and other individu-
als to reach 0.1 as a function of the distance d from the leader:
(a) information transfer distance d is proportional to the
square-root of time Dt with the standard diffusive model in
Eq. (1) without DSR for individuals close to the leader and (b)
linear with the DSR model in Eq. (11) and second-order
superfluid-like model in Eq. (32)
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have been developed, e.g., to maintain spacing between individu-
als, e.g., see Refs. [7], [34], and [35]. Nevertheless, to focus on
the impact of orientation-information transfer on the maneuver,
effects such as speed changes or strategy changes to maintain
spacing between individuals are not included in the simulations,
as in other previous studies, e.g., see Refs. [4] and [9].

The use of DSR leads to improved cohesiveness in maneuvers
when compared to the case without DSR, as illustrated below.
The desired information source Is (i.e., the desired orientation of
the agents) is switched from an initial value of �p/4 that is held
constant for 10 s and then switched to the final value of p/2, which
is also then held constant for 10 s, as shown in Fig. 8.

Two cases, uniform and random initial distribution, of the
agents are considered. For the random case, the initial locations
were randomly chosen in a disk of radius rd¼ 6, which was
selected to be small enough to ensure that there was at least two
individuals in each neighborhood Ni to facilitate connectivity of
the overall network, which is needed for stability and cohesion as
discussion in Sec. 2.2. The radial distance ri from the center was
chosen to be the square-root of a uniformly distributed random
variable between 0 and rd and the angle hi was selected to be a
uniformly distributed random variable between 0 and 2p radians
to yield the initial locations as xi ¼ ri cosðhiÞ and yi ¼ ri sinðhiÞ.
This square-root dependence on the radius results in a relatively
uniform distribution over the area that depends on the square of
the radius. Moreover, a uniformly distributed random noise n̂
(between �0.025 rad and 0.025 rad) was added to the estimates of
the averaged-neighbor orientation information update in Eq. (11)
to yield

Iiðk þ 1Þ ¼ IiðkÞ � cDiðkÞdt þ b½IiðkÞ � Iiðk � 1Þ� þ n̂ (34)

and the resulting initial configuration is shown in Fig. 9.
The maneuver with DSR is more cohesive, for both uniform

and random initial distribution, as seen in the similarity of the ini-
tial and final formations when compared to the case without the
DSR. Even with the addition of noise in the information update
for the case with random initial distribution, the overall motion
remains cohesive, as seen by comparing the initial and final con-
figurations of the agents, with and without DSR, in Fig. 10. Note
that the turn movement (blue solid line) of the leader, in Fig. 10,
is similar to that of an individual which is farther away, which is
an important feature in biological flocks which exhibit equal-
radius (parallel) trajectories [9]. In contrast, without DSR, the
final direction of the leader (slope of the solid red line) is different
from that of individuals farther away. Moreover, the slower trans-
fer of turn-information leads to a larger turn radius without the
DSR when compared to the case with the DSR, as seen in Fig. 10.

The radial acceleration of the agents during a turn has been
used to investigate information transfer in biological swarms, e.g.,

see Ref. [9]. In the noise-free, uniform-initial-conditions case, the
radial acceleration ar can be computed without the need for sub-
stantial filtering. For this case, the magnitude of the radial acceler-
ation ar does not reduce substantially with distance from the
leader, as seen in Fig. 11(a). Such undamped transfer of radial
acceleration across the network is considered to be a hallmark of

Fig. 8 The desired information source Is, i.e., the orientation,
is switched from 2p/4 to p/2

Fig. 9 The initial configuration of the 225 agents with random
initial conditions. Leader, represented by a solid dot, has
access to the source information Is from virtual agent s (not
shown here).

Fig. 10 Comparison of cohesiveness between the movement
of the leader (solid line) and an individual farther away (dotted
line); and the initial (black dots) and final formations (blue with
DSR, red without DSR). The solid dot represents the leader,
which has direct access to the information source Is: (a) uni-
form initial spacing without noise in the updates and (b) ran-
dom initial spacing in a circle with noise in the updates.
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superfluid-like information transfer. In contrast, without DSR, the
maximum value of the radial acceleration of the agent further
away from the leader is substantially smaller than that of the
leader, as seen in Fig. 11(b). This implies that the agent further
away takes more time to accomplish a turn than the leader, which
reduces the cohesion of the swarm during a maneuver without the
DSR approach.

The time shift Dt,c, needed for the individual radial acceleration
to best correlate with the radial acceleration of the leader, varies
linearly with distance d from the leader (for individuals close to
the leader), with the DSR approach, as seen in Fig. 12(a). Based
on this time-shift versus distance-to-leader, the overall speed of
information transfer across the network is 48 m/s since the correla-
tion time delay Dt,c is 0.38 s for a distance of 18.38 m. This is sim-
ilar to the expected information transfer speed of 50 m/s based on
the estimated value of c in Eq. (18) as described in Sec. 3.2. In
contrast, without DSR, the speed of information transfer (based on
the radial acceleration) is proportional to the square-root of the
required time Dt,c as seen in Fig. 12(b), which is expected for
diffusive information transfer. Both these features: (i) linearity of
the information transfer with time and (ii) low distortion (dissipa-
tion free) transmission of information away from the leader, are
indicative of superfluid-like flow of information observed in
nature that cannot be explained by standard diffusion models [9].

Based on these results, the proposed DSR-based modification
of the standard diffusion-based model captures the superfluid-like
information transfer and the cohesiveness of turning maneuvers
observed in natural swarms. Moreover, the proposed DSR-
approach enables such improvements in information transfer
without the need to increase the information update rate, i.e.,
bandwidth of each agent.

4 Conclusions

The speed of information transfer across the network impacts
the cohesiveness and effectiveness of the network’s response to
external stimuli. However, as shown in the paper, the information
transfer rate under the current diffusion-type models is bounded
by the bandwidth (update rate) of each agent. To address this
issue, the paper developed a new delayed self-reinforcement
(DSR) approach to increase the information transfer rate without
the need to increase the individual information-update rate. Exam-
ple simulations showed substantial improvement, more than an
order of magnitude increase, in the information transfer rate, with
the DSR approach. Moreover, the DSR approach was shown to
capture the superfluid-like, distortion-free information transfer
observed in nature. Such rapid distortion-free information transfer
with the DSR approach was then shown to enable maneuvers with
(i) smaller turn radius and (ii) improved cohesiveness, both of
which are important for the performance of natural and engi-
neered swarms.
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