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Abstract:  

This article develops a variable-speed-of-light (VSL) cosmology model. VSL has been 

used previously in cosmology models, in which either (i) the physical constants vary over 

time or (ii) the Lorentz invariance is broken locally. VSL is also allowed in the relative-

velocity-based approach, which is used in the current article to propose a VSL-type 

cosmology model. Additionally, the article evaluates the model's potential to match 

current cosmological observations. 
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I. Introduction 

The large number of anomalies in cosmological observations has led to substantial 

interest in alternatives to the standard big-bang type cosmology, e.g., [1-5]. These 

anomalies, which are challenging to explain using current models, include the large 

number of observed spectroscopic binaries with short time periods even though nearby 

visual binaries are not seen with such short time periods. Another anomaly is the apparent 

lack of time dilation in quasar observations [13]a even though time dilation has been 

observed in supernovae (SNe) light curves [12]. Some quasars also appear be closer than 

the distance indicated by their spectroscopic redshifts due to potential links with low 

redshift galaxies [15] as well as the presence of high-speed ejecta [14]. Finally, in SNe 

observations, challenges arise in explaining the farther-dimmer effect [17] as well as in 

identifying SNe progenitors [25]. These challenges make cosmology an important arena 

for testing the potential and the limitations of new theories in physics. 

 The main contribution of this article is to propose a Ritz-type, variable-speed-of-

light (VSL) cosmology model based on the following two axioms.  

1. [Velocity Axiom] Velocity of the source augments the speed of light 

[6,30]. 

2. [Geometry Axiom] The cosmos is contained in a spherical shell that is 

expanding at a constant speed V.  

The second axiom allows the kinetic energy to remain constant in a big-bang-type model 

without the need to have a size-dependent velocity as in Newtonian cosmology [18]. It is 

possible to relax the second axiom to allow for potential reduction in the expansion speed 
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V over time due to an increase in the accumulated material as the cosmos expands, or for 

a potential increase in speed V due to the addition of a cosmological force; however, 

these are not considered in this article. The first axiom, wherein the velocity of the source 

augments the speed of light, as in Ritz-type models, is controversial. Several researchers 

had suggested investigating astronomical data to test such Ritz-type models – such 

astronomical observations (e.g., irregularities in observations of double-star system) that 

were initially thought to be contradictory were later found to be consistent [6].  

Nevertheless, there remained several challenges such as the inability to (i) explain 

Fresnel drag and (ii) the lack of an accompanying electromagnetic theory, which would 

require modification of Maxwell's equations. These issues were recently addressed in [8], 

which extends Maxwell's equations to enable a Ritz-type VSL. There are two main 

changes – (i) the partial time derivative in Maxwell's equations is replaced by the total 

time derivative; and (ii) the electromagnetic force depends on the relative velocity 

between particles, which is a modification of Weber's approach [9]. The resulting 

relative-velocity-based model [8] not only captures relativity effects in optics (such as the 

Fresnel drag and transverse Doppler effects) but also explains apparent discrepancies 

between predicted and measured energy in: (i) the absorption of high-energy particles in 

cloud chambers [10]; and (ii) the average energy determination of the X-ray spectrum 

using magnetic fields [11]. Based on these efforts, the current article proposes a Ritz-type 

VSL cosmology model. 

 
VSL has been used, previously, in cosmology models [7], where physical 

constants (such as the gravitational constant) are allowed to vary over time. The 

relationships between the temporal variations of the different physical constants can be 



determined to match physical observations such as relativistic electromagnetism. The 

current article evaluates the potential for an alternate (Ritz-type VSL) model to match 

cosmological observations and explain current anomalies.  

The article begins by showing, in Section II, that the proposed Ritz-type 

cosmology model can be used to derive the standard Hubble law, and is consistent with 

the time dilation seen in current cosmological observations [12]. Then, periodic 

photosphere motions are investigated for its effect on VSL cosmology and its ability to 

match stellar observations in Section III. Issues in quasar observations such as the 

apparent lack of time dilation in quasar light curves [13] even though time dilation has 

been observed in supernovae (SNe) light curves [12] are studied in Section 4. The model 

is used to also investigate, in Section IV, observations that (i) link some quasars with low 

redshift galaxies [14,15]; and (ii) indicate the presence of superluminal ejecta [16]. 

Consistency of the model with recent farther-dimmer relation [17] in supernovae (SNe) 

observations is shown in Section V. The proposed model leads to temporal-and-spatial 

distortions in cosmological observations – the impact of such distortions is discussed in 

Section VI. Finally, potential large-scale anisotropies, e.g., in the Hubble constant, are 

discussed in Section VII, which is followed by the conclusions Section. 

 

 



II. Derivation of the Hubble Law 

The proposed model can be used to derive the Hubble law as shown below.  
 
A. The model 

The current article considers a big-bang-type model where the universe 

(containing astrophysical objects) is a uniformly expanding spherical shell (geometry 

axiom), which is similar to Newtonian cosmology models, e.g., [18]. However, in 

contrast to the Newtonian cosmology model where the expansion speed increases linearly 

with the distance from the center [18], the expansion speed is constant in the current 

model. Nevertheless, it is shown that even with a constant expansion speed, the Ritz-type 

VSL model is consistent the farther-dimmer relation seen in recent SNe-based 

observations [17]. 

Consider light emitted in all directions at the standard speed of light c  and 

frequency !e  by an emitter e  when it is at the location ee  at time t1  as shown in Fig. 1. 

According to the geometry axiom, the emitter is moving at constant speed V , i.e., 

velocity Vre  with respect to an inertial frame Ia  at a central position a  as shown in Fig. 

1, where re  is a fixed, unit vector. 

After time !t1,2 , let the light reach an observer o  at location oo  at time 

t2 = t1 + Δt1,2 , where the observer is moving at constant velocity Vro  with respect to the 

inertial frame Ia and ro  is a fixed, unit vector. With respect to the emitter inertial frame 

Ie  (moving with the emitter as shown in Fig. 1), during the time interval Δt1,2 , light has 

traveled a distance do = d(eo,oo ) = cΔt1,2 , i.e., reached a shell of radius do  centered at eo  

at time t2 . 
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FIG. 1. VSL based on reference frame: (left) reference frame at center of cosmological 

shell; (middle) reference frame associated with the emitter; and (right) reference frame 

associated with the observer. Light emitted from point ee at time t1  reaches observer at 

o at time t2 , after time Δt1,2 = t2 − t1 . Distances at observation time t2  of the emitter and 

observer from the center a  are d(a,eo ) = R  and d(a,oo ) = R , respectively. Both emitter 

and observer are moving away from the center a  at constant speed Ve = Vo = V . Distance 

between observer and emitter at emission time t1 is d(ee,oe ) = de  and at observation time 

t2  is d(eo,oo ) = do . 



The speed co  of the light observed in an inertial frame Io  on the observer o  (at 

location oo ) is given by 

co y = Vere + cy −Voro = Vre + cy −Vro             (1) 

where y  is a fixed unit vector. As in Ritz-type models, the velocity of light c  is added to 

the velocity of the source vs , i.e., c + vs to find the propagation velocity (the velocity 

axiom) in the relative-velocity-based approach. Although the proposed approach is 

different from the tired-light-type hypothesis, e.g., [1], the current model also results in a 

distance-redshift relation that matches the Hubble law as shown below. 

The magnitude co of the observed light velocity can be found using the similar 

triangles Δ(aeeoe )  and Δ(aeooo ) , to obtain the following relationship between: (i) the 

distance R = d(a,eo ) = d(a,oo )  from the center a  to the observer and emitter at 

observation time t2 ; and (ii) de = d(ee,oe )  the distance between observer and emitter at 

the emission time instant t1  

de
do

=
coΔt1,2

cΔt1,2

= co
c

=
R −VΔt1,2

R
=
R −V do

c
⎛
⎝⎜

⎞
⎠⎟

R
= 1− V

Rc
do,           (2) 

where de = coΔt1,2  since this initial distance at time t1  is covered at speed co in the 

observer frame Io . Note that the observed light speed co  is less than the standard speed 

of light c  from Eq. (2) since de ≤ do , i.e., 

co ≤ c.                  (3) 



B. Time dilation, red shift, and energy reduction. 

The cosmological expansion and the reduction in observed light speed result in  

three effects discussed below: (i) perceived time dilation; (ii) redshift; and (iii) energy 

reduction. 

i. Perceived time dilation. 

The emitter is seen to move away from the observer (in the observer frame of 

reference Io ) at a speedVe,o described by, from Eq. (1) 

Ve,o y = Vre −Vro = c − co( )y.               (4) 

Consider two photons emitted at time instants t1  and t1 + te,  which move towards the 

observer at speed co in the observer frame of reference Io . During the time interval te , 

the distance de = d(ee,oe )  between the emitter and the observer has increased by Ve,ote . 

Hence the time interval to between the observations of the two photons (in the observer 

frame Io ) is given by, from Eq. (4) 

to = te +
de +Ve,ote

co

⎛
⎝⎜

⎞
⎠⎟
− de

co

= te +
c − co( )te

co

⎡

⎣
⎢

⎤

⎦
⎥ = c

co

te.            (5) 

Therefore, a time interval te in the emitter frame appears (optically) as a dilated time 

interval to  in the observer frame with 

to = c
co

te ≥ te                        (6) 

since c ! co by Eq. (3). Consequently, events in the emitter frame Ie  appear (optically) to 

occur at a slower rate in the observer frame Io leading to a perceived time dilation. 

 



ii. Redshift. 

The observed frequencyυo  is reduced with respect to the emitted frequency !e  

due to the Doppler effect. For example, Nυ = υete  pulses sent at frequency !e  in time 

te from the emitter are received at the observer in time to , as in Eq. (6). Therefore, the 

observed frequency !o is, by using Eq. (6) 

!o = N!

to
= te
to

!e = co
c

!e,                      (7) 

which corresponds to a redshift z ≥ 0  given by 

z = υe −υo

υo

= υe

υo

−1 = c
c0

−1                      (8) 

that can be rewritten as 

1+ z = c
c0

.                               (9) 

Moreover, the distance do in Eq. (2) can be rewritten in terms of the redshift z  as 

do = Rc
V

1!
co
c

"
#$

%
&' = Rc

V
1!

1
1+ z

"
#$

%
&' = Rc

V
z

1+ z
"
#$

%
&'          (10) 

and the observed frequency in Eq. (7) can be rewritten as 

!o = co

c
!e = 1

1+ z
!e.                   (11) 

Note that the time dilation expression can be written in terms of the red shift as, from 

Eqs. (6, 9) 

to = c
co

⎛
⎝⎜

⎞
⎠⎟
te = 1+ z( )te.                    (12) 

The time dilation of 1+ z  is consistent with cosmological observations such as the time 



broadening of supernovae (SNe) light curves [12]. 

iii. Energy reduction. 

The energy of a photon is reduced in the observer inertial frame Io when 

compared to the emitter inertial frame Ie  due to the reduction in the photon frequency 

between the two frames, from !e  to !o  given by Eq. (11). The ratio of perceived 

energy Eo  (of photons) in the observer frame to the energy Ee  (of the corresponding 

photons) in the emitter frame is given by 

Eo

Ee

= hυo

hυe

= 1
1+ z

                  (13) 

where h  is the Planck constant.  Note that in addition to the change in the observed 

energy of the light-quanta due to a reduction of the observed frequency, as in Eq. (13), 

the observed energy is reduced by the perceived time dilation, as in Eq. (12), since it 

leads to a change in the arrival rate of light-quanta. Hubble suggested both these effects 

as corrections in Ref. [19].  

 



C. Luminosity distance and red shift. 

Let Le  be the total energy of photons emitted from ee  per unit time. Then, the 

energy LeΔte emitted in a small time interval !te is spread over a shell of radius do  

centered at point eo  after time Δt1,2  as in the middle plot of Fig. 1. The resulting energy 

per unit surface area Ee  of this shell (in the emitter inertial frame Ie ) is given by, from 

Eq. (10), 

Ee = Le
4!do

2 "te = Le

4! Rc
V

#
$%

&
'(

2 z
1+ z

#
$%

&
'(

2 "te.                      (14) 

In this same situation, the energy per unit surface area Eo  observed at o2  in the dilated-

time interval !to  (in the observer inertial frame Io ) is, from Eqs. (12-14) 

 

Eo = Ee

1+ z
= Le

4! Rc
V

"
#$

%
&'

2 z2

1+ z
"
#$

%
&'

(te = Le

4! Rc
V

"
#$

%
&'

2 z2

1+ z
"
#$

%
&'

(to

1+ z
= Le(to

4! Rc
V

z"
#$

%
&'

2 .       (15)  

Then, the observed brightness Bo (i.e., energy per unit area per unit time in the observer 

inertial frame Io  at Oo ) is given by  

Bo = Eo

!to

= Le

4" Rc
V

z#
$%

&
'(

2 = Le

4" dL( )2 ,                 (16)  

where the observed luminosity distance dL increases linearly with the redshift z  as     

dL = R
V

cz = H !1( )cz,                        (17) 

which can be re-written as (the Hubble law)  

Vapparent = cz = HdL ,                        (18) 



with Vapparent  being the apparent speed away from the observer (based on the redshift z ) 

and 

H = V
R

                                       (19) 

is the Hubble constant. 

C. Relation between the different distances. 

The model yields the expected relation between angular distance, proper distance 

and the observed luminosity distance dL , as described below. In the observer inertial 

frame Io , the emission is initiated at distance de – although the emitter is then seen to 

move away at speed c − co( ) . Therefore, the angle θe of the emitter in the sky and the 

perceived size Se  are related to the angular distance de  as Se = θede . The distance do  

between the emitter and observer at the observation time is considered as the proper 

distance at the time of observation. The luminosity distance dL and the proper distance 

do  are related as, from Eqs. (10, 17) 

do = Rc
V
z 1

1+ z
⎛
⎝⎜

⎞
⎠⎟ = dL

1+ z
            (20)  

The angular distance de and the proper distance do are related as, from Eqs. (2, 9) 

  de = co
c
do = do

1+ z
,                   (21)  

resulting in the following relation between the luminosity distance dL , the proper 

distance do , and the angular distance de  

dL = 1+ z( )do = 1+ z( )2 de.             (22)  

 



III. Effect of VSL on Stellar Observations 

The time dilation is affected by the speed and radius of the photosphere; the 

associated distortion of the light curves from nearby stars is studied in this section. 

A. Periodic photosphere motion. 

Consider a nearby star at distance de,o , for which cosmological expansion effects (such as 

time dilation) are negligible. This allows the following analysis to focus on just the effect 

of the velocity addition on the speed of light. Let the motion of the photosphere be 

periodic and continuous, and consider one time period, i.e., time interval te,i ,te,i + Tp⎡⎣ ⎤⎦  

where Tp  is time period of the photosphere motion. For any time instant 

t = te,i + te ∈ te,i ,te,i + Tp⎡⎣ ⎤⎦ , i.e., for the shifted emission time te = t − te,i( )∈ 0,Tp⎡⎣ ⎤⎦ , let the 

acceleration  ap te( ) = c !β p te( )  of the photosphere be given by  
!β p te( ) = fp te( ) +Ca  where 

fp te( )  is a periodic function with time period Tp in the emitter frame Ie . Note that the 

functions are described in terms of the shifted, emission time te . The constant Ca  is 

chosen such that the speed vp = cβ p  of the photosphere is periodic, and continuous at the 

endpoints of the time interval te ∈ 0,Tp⎡⎣ ⎤⎦ , e.g., 

 

vp Tp( )
c

−
vp 0( )
c

= β p Tp( )− β p 0( ) = !β p te( )
0

Tp

∫ dte = TpCa + fp te( )
0

Tp

∫ dte = 0.      (23)  

Moreover, the initial velocity vp 0( )  is chosen to ensure that the radial photosphere 

position rp (te )  is periodic, and continuous at the endpoints of the time 

interval te ∈ 0,Tp⎡⎣ ⎤⎦ , e.g., 



rp Tp( )
c

!
rp 0( )

c
= " p te( )

0

Tp

# dte = 0.                 (24) 

An example photosphere trajectory is shown in Fig. 2. 
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FIG. 2. Example periodic photosphere motion for emitter time te ![0,Tp ] . The 

acceleration varies linearly in the normalized time intervals te /Tp ![0.28,0.3) and 

te /Tp ![0.3,0.32) , and is constant elsewhere.  Specific values of the acceleration are 

ap = 2.4 !10-5 m / s2 at te Tp = 0  and ap = -1.2 !10-3 m / s2  at te Tp = 0.3.  



B. Observation and emission time intervals. 

Consider two photons emitted at time instants t = te,i  and t = te,i + te,  which move 

towards the observer at speeds c + cβ p 0( )  and c + cβ p te( ),  respectively, in the emitter 

frame Ie . Let the photons reach an observer o  (at a distance de,o ) at the two time instants 

t = to,i  and t = to,i + to,  respectively, where 

to,i = te,i +
de,o − rp 0( )
c + cβ p 0( ) ,                        (25) 

to,i + to = te,i + te +
de,o − rp te( )
c + cβ p te( ) ,                 (26) 

and the shifted observer time to = t − to,i( )  can be found by subtracting the above two 

expressions as 

to = te +
de,o

c
1

1+ β p te( ) − 1
1+ β p 0( )

⎡

⎣
⎢

⎤

⎦
⎥ − 1

c
rp (te )

1+ β p te( ) −
rp (0)

1+ β p 0( )
⎡

⎣
⎢

⎤

⎦
⎥

= te −
de,o

c
β p te( )− β p 0( )

1+ β p te( )⎡⎣ ⎤⎦ 1+ β p 0( )⎡⎣ ⎤⎦
− 1

c
rp (te )

1+ β p te( ) −
rp (0)

1+ β p 0( )
⎡

⎣
⎢

⎤

⎦
⎥.

       (27) 

For periodic emissions (with period Tp , which is assumed to be large compared to the 

time for light to travel across the photosphere radius, i.e., rp / c ) and for small 

photosphere speeds (i.e., small β p ), the above Eq. (27) can be simplified to 

to ≈ te −Tp
β p,maxde,o
cTp

⎛

⎝⎜
⎞

⎠⎟
β p te( )− β p 0( )

β p,max

⎡

⎣
⎢

⎤

⎦
⎥

= te −TpΓ p

β p te( )− β p 0( )
β p,max

⎡

⎣
⎢

⎤

⎦
⎥,

              (28) 



where c! p,max corresponds to the maximum absolute value of the photosphere speed. 

Without photosphere motion, the observation and emission time intervals would be equal, 

i.e., to = te . However, for the same emission time interval te , the observation time 

interval to  is smaller if the photosphere speed ! p  is larger since it takes less time for the 

emission to travel the distance de,o .  

For example, the observation and emission time intervals to and te,  as in Eq. (28), are 

compared in Fig. 3 for the photosphere motion in Fig. 2. The parameter ! p  in Eq. (28) is 

chosen to be Γ p = 4 ×10−4 , which corresponds to a time period Tp  of 10  days, distance 

d  of 100  parsecs, and maximum (absolute) photosphere speed of vp = 10  m/s. Note that 

other combinations of these terms can also lead to the same parameter ! p  value. The 

observation and emission time intervals to and te  are similar. Therefore, for clarity, one 

of the curves to /Tp( )  is displaced upwards in the top plot of Fig. 3. Moreover, the 

difference to ! te( ) /Tp is shown in the bottom plot in Fig. 3.  
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FIG. 3. Comparison of normalized, observation time interval to /Tp( )  in Eq. (28) with 

parameter Γ p = 4 ×10−4 ,  and normalized, emission time interval te /Tp( )  for the 

photosphere motion in Fig. 2. 



C. Brightness variation follows photosphere acceleration. 
 

If the energy-emission rate from the star were constant, then without photosphere 

motion, the observed brightness Bo  would be uniform, i.e., Bo to( ) = B* . However, with 

photosphere motion, photons that are emitted in evenly spaced intervals of time will not 

be observed in evenly spaced intervals of time due to changes in the time to  between 

observations as quantified in Eq. (28). The variation in the observed brightness is 

numerically evaluated by discretizing the emission times into small intervals, and 

mapping the emitted photons into discretized observation time intervals. The resulting 

observed brightness Bo,  with and without photosphere motion, is compared shown in 

Fig. 4.  

With a small photosphere motion, the variation of the observed brightness Bo  (in 

Fig. 4) has a similar trend as the photosphere acceleration ap  (in Fig. 2). To clarify this, 

photons observed during a small time interval Δto around the shifted, observation time to  

could be related to those from the associated emission time interval Δte  as, from Eq. (28) 

Δto = dto
dte

te( )⎡

⎣
⎢

⎤

⎦
⎥Δte = 1−

Γ pTp
β p,max

⎛

⎝⎜
⎞

⎠⎟
dβ p

dte
te( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Δte

= 1−
Γ pTp
cβ p,max

⎛

⎝⎜
⎞

⎠⎟
ap te( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Δte = 1−

de,o
c2

⎛
⎝⎜

⎞
⎠⎟
ap te( )⎡

⎣
⎢

⎤

⎦
⎥Δte.

            (29) 

Hence, the observed brightness, with photosphere motion, is related to the observed 

brightness B* without photosphere motion through 

Bo to( ) = B* Δte

Δto

= B* 1

1−
de,o

c2
⎛
⎝⎜

⎞
⎠⎟

ap te( )
,                (30) 



where the shifted observation and emission times to and te  are related by Eq. (28). In the 

logarithmic scale, for sufficiently small photosphere motions, i.e., sufficiently small 

acceleration ap , 

log10 Bo to( )⎡⎣ ⎤⎦ = log10 B*⎡⎣ ⎤⎦ − log10 1−
de,o

c2
⎛
⎝⎜

⎞
⎠⎟

ap te( )⎡

⎣
⎢

⎤

⎦
⎥

≈ log10 B*⎡⎣ ⎤⎦ + 1
ln 10( )

de,o

c2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ap te( ),

         (31) 

which results in 

log10
Bo to( )

B*

⎡

⎣
⎢

⎤

⎦
⎥ = 1

ln 10( )
de,o

c2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ap te( )∝ ap te( ).         (32) 

Thus, the variation in the observed brightness log10 Bo to( )⎡⎣ ⎤⎦  (i.e., the light curve) reflects 

the photosphere acceleration when the photosphere motion is small and slowly varying. 

This similarity in the observed light curves is seen in Fig. 4, which compares the 

numerically computed brightness (for the example photosphere motion) and the limit 

case in Eq. (32) for small, sufficiently-slowly-varying, photosphere motions. 
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FIG. 4. Comparison of observed brightness, without (top) and with (bottom) photosphere 

motion. The observed brightness Bo  has a similar trend as the photosphere acceleration 

ap  (in Fig. 2) even though the energy-emission rate is uniform. Moreover, the observed 

brightness is close to the limit case for the example photosphere motion in Fig. 2. 

 



 

Other types of photosphere acceleration (e.g., sinusoidal) are possible. The 

possible set of acceleration time patterns depends on the type of photosphere vibrations 

and the stellar dynamics. The difference between the shifted observation and emission 

times, to and te , increases with the parameter ! p  in Eq. (28). Hence, the brightness 

variation can change substantially from the limit case, in Eq. (32). To illustrate, the 

parameter ! p  is increased from Γ p = 4 ×10−4
 to Γ p = 4  and the resulting brightness 

variation (light curves) over a time period is shown in Fig. 5, which has similar patterns 

to typical light curves of binary stars. 
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FIG. 5. Observed light curves for different values of the parameter Γ p in Eq. (28). 



D. Photosphere vibration and apparent binaries. 

Different regions of the photosphere vibrations can have out-of-phase radial 

velocities, e.g., vp  and −vp  at the same time instant (say, te,i ). Note that such out-of-

phase, radial velocities readily occur in flexural vibrational modes of thin shells – these 

flexural modes can have lower associated resonance frequencies than the totally 

symmetric breathing (fundamental) mode of vibration [20]. Consequently, photons 

emitted from these regions (at te,i ) will arrive at the observer at different time instants, as 

in Eqs. (25,26) 

 

to,i+ = te,i +
de,o − rp 0( )
c + cβ p 0( ) ,                       (33) 

to,i! = te,i +
de,o ! rp te( )
c ! c" p te( ) ,                             (34) 

This leads to a time shift ( to,i! ! to,i+ ) between the observed light from these two regions 

as illustrated in Fig. 6. The photon energy observed from each region can be different, 

and depend on the relative size (and energy-emission rate) of each region. Since light 

from both regions are observed simultaneously, the total light curve can show periodic 

changes that appear like binary systems. Moreover, two periodically-varying, apparent 

velocities (red shifts) will be observed as shown in Fig. 6 since the velocities (redshifts) 

of each region will be different. Such effects could account for large numbers of observed 

spectroscopic binaries with short time periods (associated with photosphere vibrations) 

even though visual binaries tend to have substantially larger, time periods. 
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FIG. 6. Apparent binaries. (Top three plots) observed brightness Bo . The observed time 

shift (from the original brightness plot in Fig. 4) is a quarter of the time period (Tp 4 ) 

and the brightness of the shifted light curve is 3 4 th of the original brightness. (Bottom 

plot) observed photosphere speed ( β p β p,max ), where at the same (shifted observer) time 

instant to , two values of photosphere speed can be observed, which could appear similar 

to observations from a spectroscopic binary. 



Intermediate regions between the major vibrational regions will distort the simple 

addition of the two shifted light curves in Fig. 6. This distortion will depend on the 

relative size (and energy-emission rate) of the major and intermediate regions. Moreover, 

the spread of redshifts could lead a time-varying thickening of the spectrum bands rather 

than generating discrete values in the spectrum as in the above example. Higher-order 

vibrational modes can lead to multiple regions with substantially different phase. This 

can lead to more than two, shifted, light curves being observed simultaneously resulting 

in apparent multiple-star systems. These issues are not considered in this study, for 

simplicity. Nevertheless, the proposed Ritz-type model indicates that photosphere 

vibration can lead to observations that appear to be from binary or multi-star systems. 

 

IV. Quasar Distance and Time Dilation 

In this section, the cosmological expansion effect (that was neglected in the 

previous section, which studied nearby stars) is included when computing the time 

between emission and observation. The results are used to generate potential explanations 

for the apparent lack of time dilation in quasar light curves [13], as well as the 

observational links between quasars and nearby-galaxies [14, 15]. 

 

A. Time-dilation expression. 

Consider the case when a photon is emitted by a moving photosphere, which is 

considered to be spherical about the emitter e  as in Fig. 1. Let two photons be emitted at 

time instants te1 = te,i  and te2 = te,i + te , which reach the observer o  at time instants to1  

and to2  respectively. Since the center of the emitter is moving with speed ( c − co ) away 



from the observer due to cosmological expansion, in Eq. (4), during the emission time-

interval te = te2 − te1 , the initial distance d(e1,o1)  (between the centers of the emitter and 

the observer) has increased by Ve,ote = c − co( )te to the final distance d(e2,o2 ) , as 

illustrated in Fig. 7. Moreover, let the radius of the photosphere, at the two emission 

instants, be rp1 = rp te1( )  and rp2 = rp te2( )  with expansion rates cβ p1 = cβ p te1( )   and 

cβ p2 = cβ p te2( ) . Consequently, the photons emitted at time instants te1  and te2  move 

towards the observer at speeds v1 = co + cβ1  and v2 = co + c!2 . 

to1 = te1 +
d(e1,o1)− rp1

co + cβ p1

,                             (35) 

to2 = te2 +
d(e2,o2 )+ c − co( )te − rp2

co + cβ p2

.                 (36) 

Therefore, the time interval to  between observations is (provided to2 ≥ to1 ) 

to te( ) = to2 − to1 = te +
d(e1,o1)+ c − co( )te − rp2

co + cβ p2

−
d(e1,o1)− rp1

co + cβ p1

= te 1+
1− co c( )

co c + β p2( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−

β p2 − β p1( ) d(e1,o1)
c

co c + β p2( ) co c + β p1( )
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

rp2
c

⎛
⎝⎜

⎞
⎠⎟

co c + β p2( ) −

rp1
c

⎛
⎝⎜

⎞
⎠⎟

co c + β p1( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

,

      (37) 

which is similar to the expression in Eq. (27) for the case without cosmological 

expansion in the previous section. The main difference between the two cases is in the 

first term, where an additional expression is present in Eq. (37) for the case with 

cosmological expansion. This additional term tends to zero when the cosmological 



redshift is small. Moreover, the observation interval to  becomes substantially large as the 

distance d(e1,o1)  increases and the second term in Eq. (37) dominates the expression – 

even for a small change in the photosphere speed over the emission interval te . Large 

changes in the observation time interval can lead to redistributions of the light curve over 

the time period that can appear to be chaotic – similar advent of chaos has been studied in 

stellar dynamics, e.g., [21]. 

The relation between emission and observation intervals in Eq. (37) can be 

rewritten in terms of the cosmological redshift z  using Eqs. (2,9,10,19) as 

to te( ) = te 1+ z
1+ ! p2 (1+ z)( )

"

#
$
$

%

&
'
'
(

! p2 ( ! p1( )H (1z

1+ ! p1(1+ z)( ) 1+ ! p2 (1+ z)( )
"

#
$
$

%

&
'
'

(

rp2
c

)
*+

,
-. (1+ z)

1+ ! p2 (1+ z)( ) (

rp1
c

)
*+

,
-. (1+ z)

1+ ! p1(1+ z)( )

"

#

$
$
$
$

%

&

'
'
'
'

.

      (38) 

Note that the second term in Eq. (38) relates to the speed variations in the photosphere 

and the third term includes radii variations of the photosphere. The time dilation 

expression in Eq. (38) collapses to the expression to = 1+ z( )te  in Eq. (12) if the 

photosphere radius is not varying, i.e., rp1 = rp2  and the speeds ! p1  and ! p2  are zero. 

B. Periodic pulse emissions. 

Consider the case, when emissions are periodic pulses occurring when the 

photosphere has a specific speed c! p and radius rp . This could occur, for example, if the 

emission accompanies (periodic) collapses of the stellar system. Then, the relation in Eq. 

(38) between the emission and observation time intervals te  and to reduces to 



to = te 1+ z
1+ ! p 1+ z( )

"

#
$

%

&
',                       (39) 

where z  is the cosmological redshift. Note that this expression for time dilation in Eq. 

(39) is similar to that in Eq. (12) – the difference is the additional effect of the 

photosphere speed (i.e., ! p ) at the instant the pulses are emitted in Eq. (39). 
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FIG. 7. Light emitted from point e1  at time te1  and from point e2 at time te2 = te1 + te.  The 

position of the photosphere is rp1  and rp2  away from the emitter center (towards the 

observer) and the corresponding speeds of the photosphere are c! p1  and c! p2.  The 

relative speed Ve,o of the emitter e  with respect to the observer o  is c ! co( ).  In the 

reference frame of the observer Io,  in which the location of the observer is fixed, i.e., 

o1 = o2.  



C. Spectroscopic versus cosmological redshift. 

The time dilation can be expressed in terms of the measured spectroscopic 

redshift (that includes the effect of photosphere motion, i.e., ! p " 0 ) rather than the 

cosmological redshift z  in Eq. (9) due to cosmological expansion alone without 

photosphere motion, i.e., ! p = 0 . Towards this, the cosmological redshift z  is compared 

with the spectroscopic redshift zs that is given by, similar to Eq. (9) 

1+ zs = c
co + c! p

,                                   (40) 

provided 

co + c! p > 0,                                         (41) 

which is important to ensure that emitted photons have a positive speed towards (and 

reach) the observer. The spectroscopic redshift zs  can be related to the cosmological 

redshift z by using Eq. (9) as 

 

1+ zs = 1
1

1+ z
+ ! p

,              (42) 

which can be rewritten as 

1+ z( ) =
1+ zs( )

1! " p 1+ zs( ) .             (43) 

The spectroscopic redshift zs  approaches infinity as the cosmological redshift z  reaches 

a critical value zc  and the net speed of photons tends to zero. In particular, for photons to 

reach an observer, Eq. 41 should be satisfied, which also implies that the denominator of 

Eq. (42) should remain positive, i.e.,  



1+ z( )β p > −1              (44) 

yielding an expression for the critical redshift zc  for a collapsing photosphere β p < 0( ) as 

z < zc =
1
β p

−1 if β p < 0.            (45) 

D. Distance to quasars. 

When the photosphere speed is small, β p → 0 , the spectroscopic redshift zs  

approaches the cosmological redshift z  as seen in Eq. (42). However, the spectroscopic 

redshift zs can be large compared to the cosmological redshift z  when z ! zc as 

illustrated in Fig. 8. Therefore, the Hubble law in Eq. (18) would indicate that an object is 

substantially further away if the spectroscopic redshift zs is used instead of the 

cosmological redshift z . In other words, high spectroscopically-redshifted quasars might 

be nearer than previously thought, which could explain, e.g., the quasar redshift-distance 

anomalies such as potential links between high-(spectroscopic)-redshift quasars and 

lower-redshift galaxies [14, 15]. If the distance is not as large as thought, then it is 

possible that ejecta observations at superluminal speeds [16] might be traveling at much 

smaller speeds – although, the model presented here does not preclude superluminal 

speeds. 
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FIG. 8. Spectroscopic zs  versus cosmological z  redshift with an example photosphere 

speed of vp = −0.9c  ( β p = −0.9 ). This can lead to erroneous distance (and age) estimates 

from the Hubble law in Eq. (18) if the spectroscopic redshift zs  is used instead of the 

cosmological redshift z . 



E. Quasar time dilation. 

The time-dilation relation in Eq. (39) between the emission and observation time 

intervals te  and to  can be expressed in terms of the spectroscopic redshift zs  as 

to

te

= 1+

zs + β p 1+ zs( )
1− β p 1+ zs( )

⎡

⎣
⎢

⎤

⎦
⎥

1+
β p 1+ zs( )

1− β p 1+ zs( )
⎡

⎣
⎢

⎤

⎦
⎥

= 1+ zs( ) 1+ β p( ).               (46) 

Therefore, the time dilation is different by 1+ β p( )  when compared to the standard 

expression obtained by replacing the cosmological redshift z  in Eq. (12) by the 

spectroscopic redshift zs , i.e., 

to
te

= 1+ zs( ).                        (47) 

Thus, for a collapsing system, with large negative photosphere speeds, e.g., ! p = "0.9 , 

the actual time dilation from Eq. (46) can be substantially lower than the time dilation 

predicted by the standard expression in Eq. (47) as seen in Fig. 9. This could explain 

recent analysis that appears to indicate that quasars do not show anticipated time dilation 

effects even with substantial spectroscopic redshifts [13]. 

Emissions from quasar can have time dependency, which is different from the 

periodic pulses considered in the above analysis. Additionally, variations in the 

photosphere speeds can lead to more complex light curves (being observed) due to 

variations in the time dilation as predicted by Eq. (38) – these are not considered here for 

simplicity. Nevertheless, the above analysis shows the potential of the proposed model to 

account for the absence of time dilation in quasar light curves [13]. Moreover, the 



difference between the spectroscopic redshift zs  and cosmological redshift z  in the 

proposed model could explain the anomaly between smaller apparent distance (due to 

potential links to low redshift galaxies as well as the presence of superluminal ejecta) and 

large quasar (spectroscopic) redshifts [14-16]. 
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FIG. 9. Comparison of time-dilation predictions. Time dilation predictions (solid line) 

based on the spectroscopic redshift zs as in Eq. (47) can be substantially higher than the 

time-dilation (dotted line) based on the proposed model in Eq. (46). The difference 

depends on the photosphere speed, which is vp = −0.9c  ( β p = −0.9 ) for this plot. 

 



V. Consistency with Farther-Dimmer Effect 

The effect of photosphere-speed variation is evaluated as a potential explanation 

of the farther-dimmer effect in supernovae observations [17]. 

 

A. Effect of speed variation on time dilation. 

Consider the case when the photosphere speed cβ p  varies slightly over the time 

interval te . Then, the observed time dilation expression in Eq. (38) can be simplified, by 

setting β p1 = β p ,  ! p2 = ! p +" pte,  and β p2 − β p1 =α pte,  where α p  is the normalized 

photosphere acceleration. The overall photosphere changes are assumed to be small, i.e., 

 1+ β p2 (1+ z) ≈1+ β p1(1+ z) ≈1+ β p (1+ z),            (48) 

and rp2 ! rp1 + c" pte,  to obtain 

to te( ) ! te 1+ z( )
1" z

1+ z
#
$%

&
'(

) pH
"1

1+ * p (1+ z)
+

,
-

.

/
0

1+ * p 1+ z( )+, ./
.           (49) 

B. Modified Hubble law. 

Substituting the modified time-dilation expression in Eq. (49) into the derivation 

of the observed brightness, i.e., in Eq. (15), the observed brightness of supernovae BSN ,  

i.e., Bo in Eq. (16), can be rewritten as 

BSN = Le

4π Rc
V

⎛
⎝⎜

⎞
⎠⎟
2 z2

1+ z
⎛
⎝⎜

⎞
⎠⎟

1+ β p 1+ z( )

(1+ z) 1− z
1+ z

⎛
⎝⎜

⎞
⎠⎟

α pH
−1

1+ β p (1+ z)
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= Le
4π dL ,SN( )2

,       (50) 

with the following modified Hubble law in Eq. (18) for supernovae observations due to 



changes in the photosphere speed (represented by the term α p ) 

dL ,SN = Rc
V

z
1− z

1+ z
⎛
⎝⎜

⎞
⎠⎟

α pH
−1

1+ β p (1+ z)
1+ β p 1+ z( ) ,                 (51) 

where dL ,SN  is the luminosity distance for supernova observations. For small photosphere 

speeds (e.g., β p = 0.033  [22]), the above expression can be simplified, further, to 

dL ,SN !
Rc
V

z 1"
z

1+ z
#
$%

&
'( ) pH

"1 .                      (52) 

 

C. Farther dimmer with decelerating photosphere. 

If the photosphere acceleration is negative α p < 0( ) , then, the time dilation in Eq. 

(49) is increased – this results in an increase in the luminosity distance, e.g., in Eq. (52). 

This offers a potential explanation of the farther-dimmer effect [17], as discussed below. 

Based on the Hubble law in Eq. (18), the variation of the observed (normalized) 

blue-band maximum µB  from supernova (Type 1a) observations as a function of the host-

galaxy redshift can be expressed in terms of the luminosity distance dL  (or, rather, the 

redshift z ) as 

µB = KB + 5 log10
V
Rc

dL
!
"#

$
%&

= KB + 5 log10 z[ ],                (53) 

where KB is a constant. This does not match the observed data from the Supernova 

Cosmology Project (SCP) [23] as shown in Fig. 10 – leading to the possibility of an 

accelerating universe. 





With the proposed model, the variation of observed maximum light can be 

expressed in terms of the luminosity distance dL ,SN  as, from Eq. (51) 

µB = KB + 5 log10
V
Rc

dL ,SN
⎡
⎣⎢

⎤
⎦⎥

= KB + 5 log10 z
1− z

1+ z
⎛
⎝⎜

⎞
⎠⎟

α pH
−1

1+ β p (1+ z)
1+ β p 1+ z( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1
2⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

,       (54) 

which reduces to, at small photosphere speeds, β p → 0 ,  

µB z( ) = KB + 5 log10 z 1− z
1+ z

α pH
−1⎛

⎝⎜
⎞
⎠⎟
1
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.                    (55) 

The parameters KB = 43.13  and α pH
−1 = −3.18  were estimated by minimizing the least 

square error between the model's prediction from Eq. (54) and the observed data 

(NSCP = 307  pairs of blue-band maximum µB,i and redshift zi with index i = 1,...,NSCP ) 

from the Supernova Cosmology Project (SCP) [23] at an example photosphere speed of 

β p = 0.033  [22]. The residual error ESCP,i  between the observed blue-band maximum 

µB,i  and the predictions µB(zi )  from Eq. (55) at the observed redshift zi  is defined as 

ESCP,i = µB,i − µB zi( ).                  (56) 

The error norm ESCP ,  

ESCP = ESCP,i⎡⎣ ⎤⎦
2

i=1

NSCP

∑ ,                 (57) 

over all observations is plotted for different values of KB  and α pH
−1  in Fig. 11. The 

central ellipse in Fig. 11 represents the minimum of the error norm ESCP ,  which led to 

parameter estimates of KB = 43.13 and α pH
−1 = −3.18.  The resulting residual error 



ESCP,i  as in Eq. (56), shown in Fig. 11, has low correlation with the redshift – the 

correlation Rresidual  between the residual error ESCP,i  and the redshift zi  is 

Rresidual = −0.0173  with a 95% confidence interval −0.1290,0.0948( ).  Thus, the proposed 

model can account for the farther-dimmer relationship in supernova observations [17], 

without an accelerating universe. 
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Figure 11: Left: error norm ESCP from Eq. (57) for different model parameters KB  and 

α pH
−1  from Eq. (55). The central ellipse in Fig. 11 represents the minimum of the error 

norm ESCP , which led to parameter estimates of KB = 43.13  and α pH
−1 = −3.18.  Right: 

the resulting residual error ESCP,i  in Eq. (56) has low correlation, Rresidual = −0.0173 , with 

redshift zi . 



VI. Temporal and Spatial Distortions 

Variations in the speed of photons can cause temporal and spatial distortions in 

astronomical observations. Such distortions are discussed below for two cases: (i) 

temporal distortion in SNe light curves; and (ii) spatial distortion of mass distribution in 

galaxies. 

A. Temporal distortion in SNe light curves. 

An aspect of the proposed model is the potential for apparent time reversal. In the 

previous Section V.C, deceleration of the photosphere was shown to result in different 

photon speeds, which in turn, causes additional time dilation. A similar effect is possible, 

even with an accelerating photosphere due to apparent time reversal. In particular, a 

photon emitted at time te2  could be observed earlier than a photon emitted earlier at time 

te1 < te2 . Let the corresponding observation times be to1  (photon emitted earlier) and 

to2 with to1 > to2  as in Eq. (36). In this case, the time interval to between observations is, 

reversing the observation time intervals to1  and to2  in Eq. (37), 

to te( ) = to1 − to2 = −te −
d(e1,o1)+ c − co( )te − rp2

co + cβ p2

+
d(e1,o1)− rp1

co + cβ p1

= −te 1+
1− co c( )

co c + β p2( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

β p2 − β p1( ) d(e1,o1)
c

co c + β p2( ) co c + β p1( )
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⎢

⎤

⎦

⎥
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rp2
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⎞
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,

      (58) 

which can be positive to te( ) > 0  with an accelerating photosphere provided the second 

term in Eq. (58) is positive and dominates the other two terms in Eq. (58), i.e., the speed 



of the later photon β p2  is greater than the speed β p1  of the earlier photon, there is 

sufficient travel distance d(e1,o1)  for the later photon to overtake the earlier photon, and 

there is no interference between the photons. 

The apparent time reversal can lead to SNe light with the highest photosphere 

speeds to be observed first, with a continuous decrease in the observed photosphere speed 

over time – such a reduction in photosphere speed is present in current SNe observations 

[22]. Moreover, if the photosphere was accelerating during the explosion, the apparent 

time reversal can lead to apparent reversal in the direction of the observed shock waves, 

i.e., they might appear to propagate backwards towards the supernova center. Further 

study is needed to evaluate if the reverse shock waves, seen in some of the SNe remnants 

[24], could be caused by such an effect. Finally, apparent time reversal also implies that 

light from the host galaxy (which might not have the large photosphere velocities as SNe) 

travel at a slower speed when compared to the associated SNe. Consequently, the light 

from the host galaxy (observed at the same time as the SNe) can be much older than the 

SNe. This difference in age (between SNe and their host galaxies) could account for the 

difficulty in identifying SNe progenitors [25]. 

 

B. Spatial distortion of astronomical structures. 

Variations in the arrival speed (of photons) can lead to distortions in the observed 

mass distribution of astronomical structures such as galaxies. If not accounted for, 

apparent spatial distortions can raise challenges in modeling the dynamics of observed 

physical phenomena such as the rotational dynamics of galaxies, which are dependent on 

the mass distribution. To illustrate, consider an astronomical structure, illustrated by the 



disc in Fig. 12 that is rotating about an axis EO  that passes through the disc center E  

and is perpendicular to the disc. Consider light emitted from a point A  on the disc, which 

is at a distance r = d(E,A) from the disc center E  with tangential speed Vg r( ) = c!g r( ).  

Let the observer be at location O , where the distance d = d(E,O)  is large compared to 

the radius r,  which allows the approximation d(A,O) ! d.  Then, the time t r( ) for a 

photon to travel to the observer at O  is given by 

t r( ) = d(A,O)
cg

= d(A,O)

c 1! "g r( )#$ %&
2

'
d

c 1! "g r( )#$ %&
2

,          (59) 

where cosmological expansion effects  are neglected in the relative speed of light cg .  The 

difference between the travel times for emission from the center E  and the emission 

from the point A  is given by 

Δt r( ) = t r( )− t 0( ) = d

c 1− βg r( )⎡⎣ ⎤⎦
2
− d

c
= d

c
1− 1− βg r( )⎡⎣ ⎤⎦

2

1− βg r( )⎡⎣ ⎤⎦
2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.       (60) 

The above expression can be simplified, for small tangential speeds βg r( ) → 0( ),  as 

Δt r( ) = d
c

βg r( )⎡⎣ ⎤⎦
2

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.                  (61) 

Note that the travel-time difference can be a function of the radial distance r  from the 

center E , which can imply different angular rotations θ(r)  before an emission reaches 

the observer. In particular, if the angular rotation rate ω (r)  at each radius r  is assumed 

to remain constant, then the time difference in Eq. (61) corresponds to a rotation angle 

θ(r)  given by 



! r( ) = " r( )#t r( ) =
c$g r( )

r
d
c

$g r( )%& '(
2

2

%

&
)
)

'

(
*
*

= d
2r

$g r( )%& '(
3
.              (62) 

If, for example, the disc rotates as a rigid body at a constant angular rate ω ,  then the 

tangential speed is given by 

c!g r( ) = r"                         (63) 

and the corresponding angular rotation ! r( ) during the travel time difference !t r( )  is 

given by 

! r( ) = d
2r

r"
c

#
$%

&
'(

3

) r2.                       (64) 

Therefore, a straight line along the radius of the disc (e.g., EA ) will appear to be a spiral 

due to increasing travel times for emissions along the length EA  – as illustrated in Fig. 

12. Such spatial distortion in observations needs to be corrected before studying the 

rotational dynamics since it can affect the mass distribution in the disc, and therefore, can 

affect the gravitational analysis. Similar spatial distortion can also occur along other 

directions such as the radial direction, e.g., in the presence of varying radial speeds if the 

disc collapses or expands, which will require further investigation. 
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Figure 12: Spiral spatial distortion. Travel times for emissions from A  on a disc at radial 

distance r  from the disc center E  can vary with the radial distance d  as in Eq. (59) – 

this can lead to the straight segment EA  appearing as a spiral when observed at O . 



VII. The Geometry Axiom 

The spherical-shell geometry axiom allows for the total kinetic energy to be 

constant while satisfying momentum conservation. The implications and potential 

relaxation of this axiom are discussed below. 

A. Peculiar velocities. 

The expansion rate is simplified to be a constant V  (which maintains a constant 

kinetic energy) in the proposed cosmology model in contrast to a radial-distance-

dependent speed variation as in Newtonian cosmology, e.g., [18]. Nevertheless, a small 

expansion-rate variation across the thickness of the shell could be included in the 

proposed cosmology model. For example, components on the outside of the shell will 

have a net gravitational force towards the center of the shell – in contrast, there would be 

no such force on components on the inside of the shell. Therefore the speed V  of the 

outer components in the shell (farther away from the center) is expected to reduce with 

respect to the inner components in the shell that are nearer to its center. Therefore, the 

inner components of the shell might appear to be attracted towards the outside 

components, which could explain observations such as peculiar velocities of galaxy 

clusters [26]. 

B. Anisotropy in cosmic microwave background radiation. 

The spherical shell geometry leads to variation between the radial and tangential 

directions. Moreover, even within the radial direction, there is anisotropy between the 

directions towards the center and away from the center. This should lead to anisotropy in 

observations such as the measured Hubble constant in different directions and in 

observations of the cosmic microwave background (CMB) radiation. Although, some 



anisotropies have been reported in measurements of: (i) the Hubble constant, e.g., [27], 

and (ii) CMB radiation (e.g., quadrupole and octopole alignment [28, 29]), further study 

is needed to check if such anisotropies are consistent with the proposed cosmology 

model. 

C. Other geometries. 

If anisotropies in cosmological observations are not observed, then the proposed 

cosmology model can be considered without the spherical-shell geometry axiom. In this 

case, the Hubble law cannot be derived as in Section II under the proposed model. 

Therefore, the expansion of the cosmos should be considered as an axiom, as in current 

cosmology models. Nevertheless, the other results of the model, such as the explanation 

of apparent binaries in Section III, the farther-dimmer effect in Section V, and the 

temporal-and-spatial distortions in Section VI, would still be viable. 

 

VIII. Conclusions 

This article developed a Ritz-type, variable-speed-of-light (VSL) cosmology 

model, and evaluated its potential to match current cosmological observations. It was 

shown that the proposed model could explain some of the anomalies in current 

cosmological observations. Additional work is needed to evaluate potential variations in 

the Hubble constant and anisotropies in the cosmic microwave background radiation due 

to differences between the radial and tangential directions in the spherical shell geometry 

to, both, test and potentially refine the model. 

 



References 

[1] M. H. Shao, Physics Essays, 26, 183 (2013). 

[2] D. Laskaroudis, Physics Essays, 26, 452 (2013). 

[3] W. Petry, Physics Essays, 26, 315 (2013).  

[4] L. Zaninetti,  Physics Essays, 23, 298 (2010). 

[5] R. B. Driscoll, Physics Essays, 23, 584 (2010). 

[6] A. A. Martinez, Physics in Perspective, 6, 4 (2004). 

[7] J. P. Petit, Modern Physics Letters A, 3, 1733 (1988). 

[8] S. Devasia, Zeitschrift fur Naturforschung A, 64a, 327 (2009) and  

S. Devasia, Zeitschrift fur Naturforschung A, 64a, 874 (2009) 

[9] A. K. T. Assis, and H. T. Silva, Pramana Journal of Physics, 55, 393 (2000). 

[10] J. J. Turin, and H. R. Crane, Physical Review, 52, 610 (1937). 

[11] C. D. Ellis, and W. A. Wooster.  Proceedings of the Royal Society of London. Series 

A, Containing Papers of a Mathematical and Physical Character, 117, 109 (1927). 

[12] S. Blondin, T. M. Davis, K. Krisciunas, B. P. Schmidt, J. Sollerman, W. M. Wood 

Vasey, A. C. Becker, P. Challis, A. Clocchiatti, G. Damke, A. V. Filippenko, R. J. Foley, 

P. M. Garnavich, S. W. Jha, R. P. Kirshner, B. Leibundgut, W. Li, T. Matheson, G. 

Miknaitis, G. Narayan, G. Pignata, A. Rest, A. G. Riess, J. M. Silverman, R. C. Smith, J. 

Spyromilio, M. Stritzinger, C. W. Stubbs, N. B. Suntzeff, B. E. Tonry, J. L. Tucker, and 

A. Zenteno, The Astrophysical Journal, 682, 724 (2008). 

[13] M. R. S. Hawkins, Monthly Notices of the Royal Astronomical Society, 405, 1940 

(2010). 

[14] H. C. Arp, Quasars, Redshifts and Controversies (Cambridge University Press, 



Cambridge, U.K., 1987). 

[15] M. Lopez-Corredoira and C. M. Gutierrez, Astronomy and Astrophysics, 461, 393 

(2007). 

[16] M. H. Cohen, K. I. Kellermann, D. B. Shaffer, R. P. Linfield, A. T. Moffet, J. D. 

Romney, G. A. Seielstad, I. I. K. Paulinytoth, E. Preuss, A. Witzel, R. T. Schilizzi, and 

B.J. Geldzahler, Nature, 268, 405 (1977). 

[17] A. G. Riess, A. V. Filippenko, W. Li, and B. P. Schmidt, The Astronomical Journal, 

118, 2668 (1999). 

[18] A. R. Thatcher, European Journal of Physics, 3, 202 (1982). 

[19] E. Hubble, Astrophysical Journal, 84, 517 (1936). 

[20] T. A. Duffey, J. E. Pepin, A. N. Robertson, M. L. Steinzig, and K. Coleman, Journal 

of Vibration and Acoustics, 129, 363 (2007). 

[21] V. Icke, A. Frank, and A Heske, Astronomy and Astrophysics, 258, 341 (1992). 

[22] E. C. Pearce, S. A. Colgate, and A. G. Petschek, The Astrophysical Journal, 325, 

L33 (1988). 

[23] M. Kowalski, D. Rubin, G. Aldering, R. J. Agostinho, A. Amadon, R. Amanullah, 

C. Balland, K. Barbary, G. Blanc, P. J. Challis, A. Conley, N. V. Connolly, R. 

Covarrubias, K. S. Dawson, S. E. Deustua, R. Ellis, S. Fabbro, V. Fadeyev, X. Fan, B. 

Farris, G. Folatelli, B. L. Frye, G. Garavini, E. L. Gates, L. Germany, G. Goldhaber, B. 

Goldman, A. Goobar, D. E. Groom, J. Haissinski, D. Hardin, I. Hook, S. Kent, A. G. 

Kim, R. A. Knop, C. Lidman, E. V. Linder, J. Mendez, J. Meyers, G. J. Miller, M. 

Moniez, A. M. Mouro, H. Newberg, S. Nobili, P. E. Nugent, R. Pain, O. Perdereau, S. 

Perlmutter, M. M. Phillips, V. Prasad, R. Quimby, N. Regnault, J. Rich, E. P. Rubenstein, 



P. Ruiz-Lapuente, F. D. Santos, B. E. Schaefer, R. A. Schommer, R. C. Smith, A. M. 

Soderberg, A. L. Spadafora, L. G. Strolger, M. Strovink, N. B. Suntzeff, N. Suzuki, R. C. 

Thomas, N. A. Walton, L. Wang, W. M. Wood-Vasey, and J. L. Yun, The Astrophysical 

Journal, 686, 749 (2008). 

[24] K. Heng, R. McCray, S. A. Zhekov, P. M. Challis, R. A. Chevalier, A. P. S. Crotts, 

C. Fransson, P. Garnavich, R. P. Kirshner, S. S. Lawrence, P. Lundqvist, N. Panagia, C. 

S. J. Pun, N. Smith, J. Sollerman, and L. Wang, The Astrophysical Journal, 644, 959 

(2006). 

[25] M. Livio and J. E. Pringle, Astrophysical Journal Letters, 740, 1 (2011). 

[26] A. Kashlinsky, F. Atrio-Barandela, D. Kocevski, and H. Ebeling, The Astrophysical 

Journal, 686, L49 (2008). 

[27] M. L. McClure and C. C. Dyer, New Astronomy, 12, 533 (2007). 

[28] M. Tegmark, A. de Oliveira-Costa, and A. J. S. Hamilton, Physical Review D, 68,  

724 (2003). 

[29] C. L. Bennett, R. S. Hill, G. Hinshaw, D. Larson, K. M. Smith, J. Dunkley, B. Gold, 

M. Halpern, N. Jarosik, A. Kogut, E. Komatsu, M. Limon, S. S. Meyer, M. R. Nolta, N. 

Odegard, L. Page, D. N. Spergel, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. 

Wright, Astrophysical Journal Supplement Series, 192, 1 (2011). 

[30] Bradley, J. Philosophical Transactions, 35, 637 (1727). 

 


