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Abstract
This work explores modifications of electromagnetism models to allow variable speed of light
(VSL) without violating current observations and investigates the utility of VSL to explain
anomalies (unexplainable observations) in cosmology. In the proposed VSL approach the source
speed augments the speed of light, which is controversial since it violates Maxwell’s equations
that requires the speed of light to be independent of the source speed. Therefore, relative-
velocity (RV) based modifications of Maxwell’s equations are proposed to facilitate a VSL-based
cosmology, that predicts (rather than assume) the Hubble law and explains current cosmological
anomalies such as the apparent lack of time dilation in quasar observations. It is shown also that
the proposed RV-based model matches current observations in electromagnetism and optics,
such as the transverse Doppler effect and the Fresnel drag. Finally, a method to potentially
validate/refute the proposed approach using high-speed ion experiments is proposed. 1 2 3

1Chapter 1 is an adapted version reprinted by permission of Physics Essays Publication, from “Santosh
Devasia, Ritz-type Variable Speed of Light (VSL) Cosmology, Physics Essays, Vol. 27 (4), pp. 523-536,
December 2014.”

2Chapter 2 is an adapted version reprinted from “S. Devasia, Nonlinear Models for Relativity Effects in
Electromagnetism, Zeitschrift fur Naturforschung A, Vol. 64a (5-6), pp. 327-340, May-June, 2009.”

3Chapter 3 is an adapted version reprinted with kind permission of The European Physical Journal
(EPJ), from “S. Devasia, Lorentz Violation in High-Energy Ions, The European Physical Journal C,
Vol. 69 (3-4), pp. 343-346, October 2010”
and “S. Devasia (2017). Reply to comment on: Lorentz violation in high-energy ions. ResearchWorks
Archive. https://doi.org/10.6069/PDCN-Z183” ”
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1 Relative-velocity-based cosmology

1.1 Overview
The large number of anomalies in cosmological observations has led to substantial inter-
est in alternatives to the standard big-bang type cosmology, e.g., [1–5]. These anomalies,
which are challenging to explain using current models, include the large number of ob-
served spectroscopic binaries with short time periods even though nearby visual binaries
are not seen with such short time periods. Another anomaly is the apparent lack of
time dilation in quasar observations [6] even though time dilation has been observed
in supernovae (SNe) light curves [7]. Some quasars also appear be closer than the dis-
tance indicated by their spectroscopic redshifts due to potential links with low redshift
galaxies [8] as well as the presence of high-speed ejecta [9]. Finally, in SNe observations,
challenges arise in explaining the farther-dimmer effect [10] as well as in identifying SNe
progenitors [11]. These challenges make cosmology an important arena for testing the
potential and the limitations of new theories in physics.

This chapter develops a variable-speed-of-light (VSL) cosmology model. The pro-
posed model predicts the Hubble law and time dilation seen in current cosmological
observations [7] as shown in Section 1.3. Periodic photosphere motions are investigated
for its effect on VSL cosmology and its ability to match stellar observations in Sec-
tion 1.4. Issues in quasar observations such as the apparent lack of time dilation in
quasar light curves [6] even though time dilation has been observed in supernovae (SNe)
light curves [7] are studied in Section 1.5. The model is used to also investigate, in
Section 1.5, observations that (i) link some quasars with low redshift galaxies [8,9]; and
(ii) indicate the presence of superluminal ejecta [12]. Consistency of the model with
recent farther dimmer relation [10] in supernovae (SNe) observations is shown in Sec-
tion 1.6. The proposed model leads to temporal-and-spatial distortions in cosmological
observations — the impact of such distortions is discussed in Section 1.7. Finally, po-
tential large-scale anisotropies, e.g., in the Hubble constant, are discussed in Section 1.8,
which is followed by the chapter conclusions.

1.2 Main Axioms
The main contribution of this chapter is to propose a Ritz-type, variable-speed-of-light
(VSL) cosmology model based on the following two axioms.

1. [Velocity Axiom] Velocity of the source augments the speed of light [13,14].

2. [Geometry Axiom] The cosmos is contained in a spherical shell that is expanding
at a constant speed V .

7



1 Relative-velocity-based cosmology

The first axiom, wherein the velocity of the source augments the speed of light, is
controversial. It is noted that VSL has been used, previously, in cosmology models [15],
where physical constants (such as the gravitational constant) are allowed to vary over
time. The relationships between the temporal variations of the different physical con-
stants can be determined to match physical observations such as relativistic electro-
magnetism. The current work evaluates the potential for an alternate (Ritz-type VSL)
model to match cosmological observations and explain current anomalies. Several re-
searchers had suggested investigating astronomical data to test such VSL models – such
astronomical observations (e.g., irregularities in observations of double-star system) that
were initially thought to be contradictory were later found to be consistent [13]. Nev-
ertheless, there remained several challenges such as the inability to (i) explain Fresnel
drag and (ii) the lack of an accompanying electromagnetic theory, which would require
modification of Maxwell’s equations. These issues were recently reconsidered in [16],
which seeks to extend Maxwell’s equations for enabling a Ritz-type VSL, and is de-
scribed further in Chapter 2. Methods to assess the proposed theory are discussed in
Chapter 3.

The second axiom allows the kinetic energy to remain constant in a big-bang-type
model without the need to have a size-dependent velocity as in Newtonian cosmology [17].
The second axiom could be modified to allow for potential reduction in the expansion
speed V over time as the cosmos accumulates additional mass, or a potential increase in
speed V due to the addition of a cosmological force. However, these are not considered
here.

1.3 Consistency with Hubble Law
The proposed model can be used to derive the Hubble law (as opposed to being an
empirical observation in current cosmology) as shown below.

1.3.1 The model
Consider a big-bang-type model where the universe (containing astrophysical objects)

is a uniformly expanding spherical shell (geometry axiom), which is similar to Newtonian
cosmology models, e.g., [17]. However, in contrast to the Newtonian cosmology model
where the expansion speed increases linearly with the distance from the center [17], the
expansion speed is constant in the current model. Nevertheless, it is shown that even
with a constant expansion speed, the Ritz-type VSL model is consistent the farther-
dimmer relation seen in recent SNe-based observations [10].

Consider light emitted in all directions at the standard speed of light c and frequency
νe by an emitter e when it is at the location ee at time t1 as shown in Fig. 1.1. Ac-
cording to the geometry axiom, the emitter is moving at constant speed V , i.e., velocity
Ve re = V re with respect to an inertial frame Ia at a central position a as shown in
Fig. 1.1, where re is a fixed, unit vector.
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Figure 1.1: VSL based on reference frames: (top) reference frame at center a of cosmological shell;
(middle) reference frame associated with the emitter; (bottom) reference frame associated
with the observer. Light emitted from point ee at time t1 reaches observer at o at time t2,
after time ∆t1,2 = t2 − t1. Distances at observation time t2 of the emitter and observer
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1 Relative-velocity-based cosmology

After time ∆t1,2, the light reaches an observer o at location oo at time t2 = t1 +∆t1,2,
where the observer is moving at constant velocity

Vo ro = V ro (1.1)

with respect to the inertial frame Ia and ro is a fixed, unit vector. With respect to the
emitter inertial frame Ie (moving with the emitter as shown in Fig. 1.1), during the time
interval ∆t1,2, light has traveled a distance

do = d(eo, oo) = c∆t1,2, (1.2)

i.e., reached a shell of radius do centered at eo at time t2.

The speed co of the light observed in an inertial frame Io on the observer o (at location
oo) is given by

coy = Vere + cy − Voro = V re + cy − V ro (1.3)
where y is a fixed unit vector. As in Ritz-type models, the velocity of light c is added
to the velocity of the source vs, i.e., c+ vs to find the propagation velocity (the velocity
axiom) in the relative-velocity-based approach. Although the proposed approach is
different from the tired-light-type hypothesis, e.g., [1], the current model also results
in a distance-redshift relation that matches the Hubble law as shown below.

The magnitude co of the observed light velocity can be found using the similar triangles
△(aeeoe) and △(aeooo), to obtain the following relationship between: (i) R the distance
d(aeo) = d(aoo); and (ii) de = d(ee, oe) the distance between observer and emitter at
the emission time instant t1

de
do

=
co∆t1,2
c∆t1,2

=
co
c

=
R− V∆t1,2

R
=

R− V (do/c)

R
= 1− V

Rc
do. (1.4)

Moreover, since (R− V∆t1,2) ≤ R, the observed light speed co is less than the standard
speed of light c from Eq. (1.4), i.e.,

co ≤ c. (1.5)

1.3.2 Time dilation and red shift
The cosmological expansion and the reduction in observed light speed lead to three effects
discussed below: (i) perceived time dilation; (ii) redshift; and (iii) energy reduction.

Perceived time dilation:

The emitter is seen to move away from the observer (in the observer frame of reference
Io) at a speed Ve,o described by (from Eq. 1.3)

Ve,oy = V re − V ro = [c− co] y. (1.6)

Consider two photons emitted at time instants t1 and t1 + te (in the emitter frame Ie),
which move towards the observer at speed co. During the time interval te, the distance
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1.3 Consistency with Hubble Law

de = d(ee, oe) between the emitter and the observer has increased by Ve,ote. Hence the
time interval to between the observation of the photons (in the observer frame Io) is
given by (from Eq. 1.6)

to =

[
te +

de + Ve,ote
co

]
− de
co

=

[
te +

(c− co)te
co

]
=

c

co
te. (1.7)

Therefore, a time interval te in the emitter frame appears (optically) as a dilated time
interval to in the observer frame with

to = (c/co)te ≥ te. (1.8)

since c ≥ co by Eq. (1.5). Consequently, events in the emitter frame Ie appear (optically)
to occur at a slower rate in the observer frame Io, leading to a perceived time dilation.

Redshift:

The observed frequency νo is reduced with respect to the emitted frequency νe due to
the Doppler effect. For example, Nν = νete pulses sent at frequency νe in time te from
the emitter is received at the observer in time to (as in Eq. 1.8). Therefore, the observed
frequency νo is (by using Eq. 1.8)

νo =
Nν

te
=
te
to
νe =

co
c
νe, (1.9)

which corresponds to a redshift z ≥ 0 given by

z =
νe − νo
νo

=
νe
νo

− 1 =
c

co
− 1 (1.10)

that can be rewritten as
1 + z =

c

co
. (1.11)

Moreover, the distance do in Eq. (1.4) can be rewritten in terms of the redshift z as

do =
Rc

V
[1− co/c] =

Rc

V

[
1− 1

1 + z

]
=

Rc

V

[
z

1 + z

]
(1.12)

and the observed frequency in Eq. (1.9) can be rewritten as

νo =
co
c
νe =

1

1 + z
νe. (1.13)

Note that the time dilation can be written in terms of the red shift as (from Eqs. 1.8,
1.11)

to = (c/co)te = (1 + z)te. (1.14)

11



1 Relative-velocity-based cosmology

Energy reduction:

The energy of a photon is reduced in the observer inertial frame Io when compared to
the emitter inertial frame Ie due to the reduction in the photon frequency between the
two frames, from νe to νo given by Eq. (1.13). The ratio of perceived energy Eo (of
photons) in the observer frame to the energy Ee (of the corresponding photons) in the
emitter frame is given by

Eo

Ee
=
hνo
hνe

=
1

(1 + z)
(1.15)

where h is the Planck constant.

Remark 1 The time dilation of 1 + z is consistent with cosmological observations such
as the time broadening of supernovae (SNe) light curves [7].

Remark 2 In addition to the change in the observed energy of the light-quanta due to
a reduction of the observed frequency (as in Eq. 1.15), the observed energy is reduced by
time dilation (as in Eq. 1.14) since it leads to a change in the arrival rate of light-quanta.
Both these effects were suggested as corrections by Hubble [18].

1.3.3 Luminosity distance and red shift
Let Le be the total energy of photons emitted from eo per unit time. Then, the energy
Le∆te emitted in a small time interval ∆te is spread over a shell of radius do centered
at point eo after time t as in Fig. 1.1. The resulting energy per unit surface area Ee of
this shell (in the emitter inertial frame Ie) is given by, from Eq. (1.12),

Ee =
Le

4πd2o
∆te =

Le

4π(Rc
V )2( z

1+z )
2
∆te (1.16)

In particular, the energy per unit surface area Eo observed at o2 in the dilated-time
interval ∆to (in the observer inertial frame Io) is, from Eqs. (1.14-1.16)

Eo =
Le

4π(Rc
V )2( z2

(1+z))

∆to
(1 + z)

=
Le∆to

4π[(Rc/V )z]2
=

Le∆to
4π[dL]2

. (1.17)

Then, the observed brightness Bo (i.e., energy per unit area per unit time in the observer
inertial frame Io at oo) is given by

Bo = Eo/∆to =
Le

4π[(Rc/V )z]2
=

Le

4π[dL]2
(1.18)

Finally, the observed luminosity distance dL increases linearly with the redshift z as

dL =
Rc

V
z = (H)−1cz, (1.19)
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1.3 Consistency with Hubble Law

which can be re-written as (the Hubble law)

Vapparent = cz = H dL (1.20)

where Vapparent is the apparent speed away from the observer (based on the redshift z)
and

H = V/R (1.21)

is the Hubble constant.

Remark 3 (Variation in Hubble constant) The model results in the prediction of
observed redshift with distance. Over time t, the perceived instantaneous Hubble constant
H(t) = V/R(t) can decrease as the radius R(t) of the cosmos increases. The rate of
decrease is negligible if the expansion speed V is small compared to the radius R(t).

1.3.4 Relation between the different distances
The model yields the expected relation between the angular distance de, the proper
distance do, and the observed luminosity distance dL, as described below. In the observer
inertial frame Io, the emission is initiated at distance de — although the emitter is then
seen to move away at speed c− co. Therefore, the angle θe of the emitter in the sky and
the perceived size Se are related to the angular distance de as Se = θede. The distance
do between the emitter and observer at the observation time is considered as the proper
distance at the time of observation. The luminosity distance dL and the proper distance
do are related as (from Eqs. 1.12, 1.19)

do =
Rc

V
z

[
1

1 + z

]
=

dL
1 + z

. (1.22)

Moreover, the angular distance de and the proper distance do are related as (from
Eqs. 1.4, 1.11)

de =
co
c
do =

do
1 + z

, (1.23)

resulting in the following relation between the luminosity distance dL, the proper distance
do, and the angular distance de

dL = (1 + z)do = (1 + z)2de. (1.24)

Remark 4 (Matching distance relationships) The relationship between the angu-
lar distance de, the proper distance do, and the observed luminosity distance dL in
Eq. (1.24) is a direct result of the model’s axioms, and matches observed relationship to
the redshift z.
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1 Relative-velocity-based cosmology

1.4 Effect of VSL on Stellar Observations
The observed time dilation is affected by the speed and radius of the photosphere; the
associated distortion of the light curves from nearby stars is studied in this section.

1.4.1 Periodic photosphere motion
Consider a nearby star at distance de,o, for which cosmological expansion effects (such
as time dilation) are negligible. This allows the following analysis to focus on just the
effect of the velocity addition on the speed of light. Let the motion of the photosphere be
periodic, and consider one time period, i.e., time interval [tei, tei + Tp] where Tp is time
period of the photosphere motion. For any time instant t = tei + te ∈ [tei, tei + Tp], i.e.,
for the shifted, emission time te = (t− te.i) ∈ [0, Tp], let the acceleration ap(te) = cβ̇p(te)
of the photosphere be given by

β̇p(te) = fp(te) + Ca (1.25)

where fp(te) is a periodic function with time period Tp in the emitter frame Ip. Note
that the functions are described in terms of the shifted, emission time te. The constant
Ca is chosen such that the speed vp = cβp of the photosphere is periodic (with time
period Tp) and continuous at the endpoints of the time interval te ∈ [0, Tp], e.g.,

vp
c
(Tp)−

vp
c
(0) = βp(Tp)− βp(0) =

∫ Tp

0
β̇p(te)dte (1.26)

= TpCa +

∫ Tp

0
fp(te)dte = 0.

Moreover, the constant vp(0) is chosen to ensure that the radial photosphere position
rp(te) of the photosphere is periodic and continuous at the endpoints of the time interval
te ∈ [0, Tp], e.g.,

rp
c
(Tp)−

rp
c
(0) =

∫ Tp

0
βp(te)dte = 0. (1.27)

An example photosphere trajectory is shown in Fig. 1.2.

1.4.2 Observation and emission time intervals
Consider two photons emitted at shifted time instants tei and tei + te. The emitted
photons move towards the observer at speeds c + cβp(0) and c + cβp(te) in the emitter
frame Ie. Let the photons reach an observer o (at a distance de,o) at time instants toi
and toi + to, respectively, where

toi = tei +
de,o − rp(0)

c+ cβp(0)
(1.28)

toi + to = tei + te +
de,o − rp(te)

c+ cβp(te)
, (1.29)
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and to is the shifted, observation time, which can be found by subtracting the two
expressions in Eq. (1.29), leading to

to = te +
de,o
c

[
1

1 + βp(te)
− 1

1 + βp(0)

]
−

[
rp(te)

c

1 + βp(te)
−

rp(0)
c

1 + βp(0)

]

= te − de,o
c

βp(te)− βp(0)

[1 + βp(te)][1 + βp(0)]
−

[
rp(te)

c

1 + βp(te)
−

rp(0)
c

1 + βp(0)

]
(1.30)

For periodic emissions (with period Tp in the emitter reference frame), with small photo-
sphere speeds (βp << 1), and relatively small variation in radius (rp) , the second term
can be neglected and the above Eq. (1.30) can be simplified to

to ≈ te − Tp

[
βp,max

de,o/c

Tp

]
βp(te)− βp(0)

βp,max

= te − Tp [Γp]
βp(te)− βp(0)

βp,max
(1.31)

where cβp,max corresponds the the maximum magnitude of the photosphere speed. With-
out photosphere motion, the shifted, observation and emission times would be equal, i.e.,
to = te. However, for the same emission time interval te, the observation time interval
to can be smaller if the photosphere speed βp is larger since it takes less time for the
emission to travel the distance de,o at speed c(1 + βp).
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1 Relative-velocity-based cosmology

The observation and emission time intervals to, te (as in Eq. 1.31) are compared in
Fig. 1.3 for the photosphere motion in Fig. 1.2. The parameter Γp in in Eq. (1.31), is
chosen to be Γp = 4× 10−4, which corresponds to time period Tp of 10 days; distance d
of 100 parsecs; and maximum (absolute) value of photosphere speed vp = 10 m/s. Note
that other combinations of these terms can also lead to the same value of parameter
Γp. The observation and emission time intervals to, te are similar; for clarity, one of the
curves (to/Tp) is displaced upwards in the top plot of Fig. 1.3. Moreover, the difference
(to − te)/Tp is shown in the bottom plot in Fig. 1.3. Note that the difference between
the observation and emission time intervals (to − te)/Tp (in Fig. 1.3) has an inverse
relationship to the photosphere speed in Fig. 1.2.
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Figure 1.3: Comparison of normalized (and shifted) observation time to/Tp (as in Eq. 1.31 with Γp =
4 × 10−4) and normalized (and shifted) emission time te/Tp for the photosphere motion in
Fig. 1.2.

1.4.3 Brightness variation follows photosphere acceleration

If the energy-emission rate from the star is constant, then without photosphere motion,
the observed brightness (Bo) is uniform, i.e., Bo(to) = B∗. However, with photosphere
motion, photons that are emitted in evenly spaced intervals are not observed in evenly
spaced intervals due to changes in the time to between observations as quantified in
Eq. (1.31). The variation in the observed brightness (due to the difference between the
observation and emission time intervals) is numerically evaluated by discretizing the
emission times into small intervals, and mapping the emitted photons into discretized
observation time intervals. The resulting observed brightness Bo, with and without
photosphere motion, is compared shown in Fig. 1.4.
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Figure 1.4: Comparison of observed brightness without (top) and with (bottom) photosphere motion (using
Eq. 1.31). The observed brightness Bo has a similar trend as the photosphere acceleration ap
(in Fig. 1.2) even though the energy-emission rate is uniform.

With a small photosphere motion, the variation of the observed brightness (in Fig. 1.4)
has a similar trend as the photosphere acceleration ap (in Fig. 1.2), even without varia-
tions in the rate of energy emission. To clarify this, photons observed during a small time
interval ∆to around the observation time to can be related to those from the associated
emission time interval ∆te as (from Eq. 1.31)

∆to =

[
dto
dte

(te)

]
∆te =

[
1−

(
ΓpTp
βp,max

)
dβp
dte

(te)

]
∆te

=

[
1−

(
ΓpTp
cβp,max

)
ap(te)

]
∆te =

[
1−

(
de,o
c2

)
ap(te)

]
∆te. (1.32)

Hence, the observed brightness, with photosphere motion, is related to the brightness
B∗ without photosphere motion by

Bo(to) = B∗
o

∆te
∆to

= B∗
o

1

1−
(
de,o
c2

)
ap(te)

, (1.33)

where the observation and emission time intervals (to, te) are related by Eq. (1.31). In
the logarithmic scale, for sufficiently small photosphere motions, i.e., sufficiently small
acceleration ap,

log10 [Bo(to)] = log10B
∗ − log10

[
1−

(
de,o
c2

)
ap(te)

]
≈ log10B

∗ +

[
1

ln(10)

(
de,o
c2

)]
ap(te) (1.34)
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1 Relative-velocity-based cosmology

which results in
log10

[
Bo(to)

B∗

]
= [αB] ap(te). (1.35)

Thus, the variation in the observed brightness log10 [Bo(to)] (light curve) reflects the
photosphere acceleration when the photosphere motion is small and slowly varying.
This similarity in the observed light curves is seen in Fig. 1.4, which compares the
numerically computed brightness (for the example photosphere motion) and the limit
case (in Eq. 1.35) for small, sufficiently-slowly-varying, photosphere motions.

The difference between the observation and emission time intervals (to, te) increases with
the parameter Γp in Eq. (1.31). Hence, the brightness variation can change substantially
from the limit case (in Eq. 1.35). To illustrate, the parameter Γp is increased from
4× 10−4 to 4 and the resulting brightness variation (light curves) over a time period is
shown in Fig. 1.5, which has similar patterns to typical stellar light curves.
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Figure 1.5: Predictions of observed light curves for different values of the parameter Γp in Eq. (1.31).
The predicted light curves are similar to typical stellar light curves.

Remark 5 Other types of photosphere acceleration (e.g., sinusoidal) are possible. The
possible set of acceleration time patterns depends on the type of photosphere vibrations
and the stellar dynamics.
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1.4 Effect of VSL on Stellar Observations

1.4.4 Photosphere vibration and apparent binaries
Different regions of the photosphere vibrations can have out-of-phase radial velocities,
e.g., vp and −vp at the same time instant (say, tei). Note that such out-of-phase, radial
velocities readily occur in flexural vibrational modes of thin shells — these flexural modes
can have lower associated resonance frequencies than the totally symmetric breathing
(fundamental) mode of vibration [19]. Consequently, photons emitted from these regions
(at te,i) will arrive at the observer at different time instants (as in Eqs. 1.28, 1.29)

to,i+ = te,i +
de,i − rp(0)

c+ cβp(0)
(1.36)

to,i− = te,i +
de,i − rp(0)

c− cβp(0)
. (1.37)

This leads to a time shift (to,i−−to,i+) between the observed light from these two regions
as illustrated in Fig. 1.6. The photon energy observed from each region can be different,
and depends on the relative size (and energy-emission rate) of each region. Since light
from both regions are observed simultaneously, the total light curve can show periodic
changes that appear like binary systems. Moreover, two periodically-varying, apparent
velocities (red shifts) will be observed as shown in Fig. 1.6 since the velocities (redshifts)
of each region will be different. Such effects could account for large numbers of observed
spectroscopic binaries with short time periods (associated with photosphere vibrations)
even though visual binaries tend to have substantially-larger, time periods.
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Figure 1.6: Apparent binaries. (Top three plots) observed brightness Bo with bending modes of vibration
in photosphere motion. The observed time shift (from the original brightness plot in Fig. 1.4)
is a quarter of the time period (Tp/4) and the brightness of the shifted light curve is 3/4th

of the original brightness. (Bottom plot) observed photosphere speed (βp/βp,max), where at
the same (shifted observer) time instant to, two values of photosphere speed can be observed,
which could appear similar to observations from a spectroscopic binary.

Remark 6 Intermediate regions between the major vibrational regions will distort the
simple addition of the two shifted light curves in Fig. 1.6; this distortion will depend
on the relative size (and energy-emission rate) of the major and intermediate regions.
Moreover, the spread of redshifts could lead a time-varying thickening of the spectrum
bands rather than generating discrete values in the spectrum as in the above example.
Such issues are not considered in this study, for simplicity.

Remark 7 Higher-order vibrational modes can lead to multiple regions with substan-
tially different phase; this can lead to more than two, shifted, light curves being observed
simultaneously — resulting in apparent multiple-star systems. These issues are not con-
sidered in this study, for simplicity. Nevertheless, the proposed Ritz-type model indicates
that photosphere vibration can lead to observations that appear to be from binary or
multi-star systems, that can explain current observations of large numbers of observed
spectroscopic binaries with short time periods.
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1.5 Quasar Distance and Time Dilation

1.5 Quasar Distance and Time Dilation

In this section, the cosmological expansion effect (that was neglected in the previous
section, which studied nearby stars) is included when computing the time between emis-
sion and observation. The results are used to generate potential explanations for the
apparent lack of time dilation in quasar light curves [6], as well as the observational links
between quasars and nearby-galaxies [8, 9].

1.5.1 Time dilation expression

Consider the case when a photon is emitted by a moving photosphere, which is considered
to be spherical about the emitter e as in Fig. 1.1. Let two photons be emitted at time
instants te1 = tei and te2 = tei + te, which reach the observer o at time instants to1 and
to2 respectively. Since the center of the emitter is moving with speed c − co away from
the observer due to cosmological expansion in Eq. 1.6, during the emission time-interval
te = te2−te1, the distance d(e1, o1) (between the centers of the emitter and the observer)
has increased by Ve,ote = (c− co) te as illustrated in Fig. 1.7. Moreover, let the radius of
the photosphere be rp1 = rp(te1) and rp2 = rp(te1) with expansion rates cβp1 = cβp(te1)
and cβp2 = cβp(te2). Consequently, the photons emitted at time instants te1 and te2
move towards the observer at speeds v1 = co + cβp1 and v2 = co + cβp2.
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Figure 1.7: Light emitted from point e1 at time te1 and from point e2 at time te2 = te1 + te. The position
of the photosphere is rp1 and rp2 away from the emitter (towards the observer) and the
corresponding speeds of the photosphere are cβp1 and cβp2. The normalized speed Ve,o of the
emitter e with respect to the observer o is c − co. In the reference frame of the observer Io,
the location of the observer is fixed, i.e., o1 = o2.
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1 Relative-velocity-based cosmology

The arrival times for the photons at the observer are given by

to1 = te1 +
d(ee, oe)− rp1
co + cβp1

(1.38)

to2 = te2 +
d(ee, oe) + (c− co)te − rp2

co + cβp2
(1.39)

Therefore, the time interval to between observations is (provided to2 ≥ to1)

to(te) = to2 − to1

= te +
d(ee, oe) + (c− co)te − rp2

co + cβp2
− d(ee, oe)− rp1

co + cβp1

= te

[
1 +

1− co/c

co/c+ βp2

]
−

[
(βp2 − βp1)

d(ee,oe)
c

(co/c+ βp2)(co/c+ βp1)

]

−
[ rp2

c

co/c+ βp2
−

rp1
c

co/c+ βp1

]
, (1.40)

which is similar to the expression (in Eq. 1.30) for the case without cosmological expan-
sion in the previous section. The main difference between the two cases is in co/c term,
e.g., in the first square bracket in Eq. (1.40) for the case with cosmological expansion
— the differences vanish when the cosmological redshift is small, i.e., c = co as in the
derivation of Eq. (1.30). Moreover, the observation interval to becomes substantially
large as the distance de1,o1 increases and the second term in Eq. (1.40) dominates the
expression — even for a small change in the photosphere speed over the emission interval
te.

Remark 8 Large changes in the observation time interval to can lead to redistributions
of the light curve over the time period that can appear to be chaotic; similar advent of
chaos has been studied in stellar dynamics, e.g., [20].

The relation between emission and observation intervals in Eq. 1.40 can be rewritten
in terms of the cosmological redshift z using Eqs. (1.4,1.11,1.12,1.21) as

to(te) = te

[
1 +

z

1 + βp2(1 + z)

]
−
[

H−1z (βp2 − βp1)

(1 + βp1(1 + z))(1 + βp2(1 + z))

]
−
[

(1 + z)
rp2
c

1 + βp2(1 + z)
−

(1 + z)
rp1
c

1 + βp1(1 + z)

]
(1.41)

Note that the second term in Eq. (1.41) relates to the speed variations in the photosphere
and the third term includes radii variations of the photosphere.

Remark 9 The time dilation in Eq. 1.41 collapses to the expression to = (1 + z)te in
Eq. (1.14) if the photosphere radius is not varying, i.e., (rp1 = rp2) and speeds (βp1, βp2)
are zero.
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1.5.2 Periodic pulse emissions
Consider the case, when emissions are periodic pulses occurring when the photosphere
has a specific speed cβp and radius rp — this could happen, for example, if the emission
accompanies (periodic) collapses of the stellar system. Then the relation in Eq. (1.41)
between the emission and observation time intervals (te, to) reduces to

to = te

[
1 +

z

1 + βp(1 + z)

]
(1.42)

where z is the cosmological redshift. Note that this expression for time dilation (in
Eq. 1.42) is similar to the standard time dilation expression (in Eq. 1.14) — the difference
is the effect of the photosphere speed (i.e., βp) at the instant the pulses are emitted.

1.5.3 Spectroscopic versus cosmological redshift
The time dilation can be expressed in terms of the measured redshift zs (defined as
the spectroscopic redshift) that includes the effect of photosphere motion, i.e., βp ̸= 0,
rather than the redshift z (in Eq. 1.11) due to cosmological expansion alone without
photosphere motion βp = 0, where z is defined as the cosmological redshift. Towards
this, the cosmological redshift z is compared with the spectroscopic redshift zs that is
given by (similar to Eq. 1.11)

1 + zs =
c

co + cβp
(1.43)

provided
co + cβp > 0, (1.44)

which is important to ensure that emitted photons have a positive speed towards (and
reach) the observer. The spectroscopic redshift zs can be related to the cosmological
redshift by using Eq. (1.11) as

1 + zs =
1

1
1+z + βp

=
1 + z

1 + βp(1 + z)
, (1.45)

which can be rewritten as
(1 + z) = (1+zs)

1−βp(1+zs)
. (1.46)

The spectroscopic redshift zs approaches infinity as the cosmological redshift z reaches a
critical value zc and the net speed of photons tends to zero. In particular, for photons to
reach an observer, Eq. (1.44) should be satisfied, which also implies that the denominator
of Eq. (1.46) should remain positive, i.e.,

(1 + z)βp > −1 (1.47)

yielding an expression for the critical redshift zc for a collapsing photosphere (βp < 0)
as

z < zc =
1

|βp|
− 1 if βp < 0. (1.48)
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1 Relative-velocity-based cosmology

Remark 10 Emitted photons would not be observed if the associated cosmological red-
shift z is greater than the critical redshift zc = −1

βp
− 1 for a given collapsing photosphere

speed βp < 0.

1.5.4 Distance to quasars
When the photosphere speed is small (βp → 0) the spectroscopic redshift zs approaches
the cosmological redshift z in Eq. (1.46). However, the spectroscopic redshift zs can be
large compared to the cosmological redshift z when z → zc as seen in Fig. 1.8. Therefore,
the Hubble law (Eq. 1.19) would indicate that an object is substantially further away if
the spectroscopic redshift zs is used instead of the cosmological redshift z. In other words,
high spectroscopically-redshifted quasars might be nearer than previously thought, which
could explain, e.g., the quasar redshift-distance anomalies such as potential links between
high-(spectroscopic)-redshift quasars and lower-redshift galaxies [8,9]. If the distance is
not as large as thought, then it is possible that ejecta observations at superluminal
speeds [12] might be traveling at much smaller speeds — although, the model presented
here does not preclude superluminal speeds.

0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

60

70

80

90

100

Cosmological redshift z

S
p

ec
tr

o
sc

o
p

ic
 r

ed
sh

if
t 

  
z

s

Figure 1.8: Spectroscopic zs versus cosmological z redshift with an example photosphere speed of vp =
−0.9c (βp = −0.9). This can lead to erroneous distance (and age) estimates from the Hubble
law (Eq. 1.19) if the spectroscopic redshift zs is used instead of the cosmological redshift z.

1.5.5 Quasar time dilation
The time-dilation relation (in Eq. 1.42) between the emission and observation time in-
tervals (te, to) can be expressed in terms of the spectroscopic redshift zs as

to
te

=

1 + zs+βp(1+zs)
1−βp(1+zs)

1 + βp

(
(1+zs)

1−βp(1+zs)

)
 = (1 + zs) [1 + βp] . (1.49)

Therefore, the time dilation is smaller by (1+βp) when compared to the standard time-
dilation expression obtained by replacing the cosmological redshift in Eq. (1.14) by the
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Figure 1.9: Comparison of time-dilation predictions. Predicted time-dilation (solid line) based on the
standard expression with spectroscopic redshift zs as in Eq. (1.50) can be substantially higher
than the predicted time-dilation (dotted line) based on the proposed model in Eq. (1.49). The
difference depends on the photosphere speed, which is vp = −0.9c (βp = −0.9) for this plot.

spectroscopic redshift, i.e.,
to
te

= (1 + zs). (1.50)

Thus, for a collapsing system, with large negative photosphere speeds, e.g., βp = −0.9,
the actual time dilation (from Eq. 1.49) can be substantially lower than the time dilation
predicted by the standard expression (in Eq. 1.50) as seen in Fig. 1.9. This could explain
analysis that appears to indicate that quasars do not show anticipated time dilation
effects even with substantial spectroscopic redshifts [6].

Remark 11 Emissions from quasar can have time dependency, which is different from
the periodic pulses considered in the above analysis. Additionally, variations in the pho-
tosphere speeds can lead to more complex light curves (being observed) due to variations
in the time dilation as predicted by Eq. (1.41) — these are not considered here for sim-
plicity. Nevertheless, the above analysis shows the potential of the proposed model to
account for the absence of time dilation in quasar light curves [6].

Remark 12 The difference between the spectroscopic redshift zs and cosmological red-
shift z in the proposed model could explain the anomaly between smaller apparent distance
(due to potential links to low redshift galaxies as well as the presence of superluminal
ejecta) and large quasar (spectroscopic) redshifts [8,9,12].
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1.6 Consistency with Farther-Dimmer Effect

The effect of photosphere-speed variation is evaluated as a potential explanation of the
farther-dimmer effect in supernovae observations [10].

1.6.1 Effect of speed variation on time dilation

Consider the case when the photosphere speed (cβ) varies slightly over the time interval
te. Then, the observed time dilation expression (Eq. 1.41) can be simplified, by setting
βp1 = βp, βp2 = βp+αpte, and βp2−βp1 = αpte, where αp is the normalized photosphere
acceleration. The overall photosphere changes are assumed to be small, i.e.,

1 + βp2(1 + z) ≈ 1 + βp1(1 + z) ≈ 1 + βp(1 + z) (1.51)

and rp2 ≈ rp1 + cβpte to obtain

to(te) = te

[
1 +

z

1 + (βp + αpte)(1 + z)

]
−
[

H−1z (αpte)

(1 + βp(1 + z))(1 + (βp + αpte)(1 + z))

]
−(1 + z)

c

[
rp1 + cβpte

1 + (βp + αpte)(1 + z)
− rp1

1 + βp(1 + z)

]

≈ te

[
1 +

z

1 + βp(1 + z)

]
−
[

H−1z (αpte)

(1 + βp(1 + z))(1 + βp(1 + z))

]
−(1 + z)

c

[
rp1 + cβpte

1 + βp(1 + z)
− rp1

1 + βp(1 + z)

]
which can be simplified as

to(te) = te

[
(1 + βp)(1 + z)

1 + βp(1 + z)

]
−

H−1z
(αpte)

(1+βp(1+z))

(1 + βp(1 + z))

 −
[

(1 + z)βpte
1 + βp(1 + z)

]

= te

[
(1 + z)

1 + βp(1 + z)

]
−

H−1z
(αpte)

(1+βp(1+z))

(1 + βp(1 + z))

 (1.52)

i.e.,

to(te) = te(1 + z)

1− z
1+z

αpH−1

(1+βp(1+z))

1 + βp(1 + z)

 . (1.53)
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1.6.2 Modified Hubble law
Substituting the modified time-dilation expression (Eq. 1.53) into the derivation of the
observed brightness (i.e., in Eq. 1.17), the observed brightness of supernovae BSN (Bo

in Eq. 1.18) can be rewritten as

BSN =
Le

4π(Rc
V )2( z2

(1+z))

 1 + βp(1 + z)

(1 + z)
[
1− z

1+z
αpH−1

(1+βp(1+z))

]
 =

Le

4π[dL,SN ]2
, (1.54)

with the following modified Hubble law (Eq. 1.19) for supernovae observations due to
changes in the photosphere speed (represented by the term αp)

dL,SN =
Rc

V
z

√√√√√
1− z

1+z
αpH−1

(1+βp(1+z))

1 + βp(1 + z)

, (1.55)

where dL,SN is the luminosity distance for supernova observations. For small photosphere
speeds (e.g., βp = 0.033 [21]), the above expression can be simplified, further, to

dL,SN ≈ Rc

V
z

√[
1− z

1 + z
αpH−1

]
. (1.56)

1.6.3 Farther dimmer with decelerating photosphere
If the photosphere acceleration is negative (αp < 0), then, the time dilation in Eq. (1.53)
is increased — this results in an increase in the luminosity distance (e.g., in Eq. 1.56),
and offers a potential explanation of the farther-dimmer effect [10], as discussed below.

Based on the Hubble law (Eq. 1.19), the variation of the observed (normalized) blue-
band maximum µB from supernova (Type 1a) observations as a function of the host-
galaxy redshift can be expressed in terms of the luminosity distance dL (or, rather, the
redshift z) as

µB = KB + 5 log10

[
V

Rc
dL

]
= KB + 5 log10 [z] (1.57)

where KB is a constant. This does not match the observed data from the Supernova
Cosmology Project (SCP) [22] as shown in Fig. 1.10 — leading to the possibility of an
accelerating universe.

With the proposed model, the variation of observed maximum light can be expressed
in terms of the luminosity distance dL,SN as (from Eq. 1.55)

µB = KB + 5 log10

[
V

Rc
dL

]

= KB + 5 log10

z
1− z

1+z
αpH−1

(1+βp(1+z))

1 + βp(1 + z)

1/2
 , (1.58)
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Figure 1.10: Hubble diagram (solid line) with the photospheric motion model (in Eq. 1.55 with βp = 0.033)
captures the farther-dimmer relationship in supernova observations (circles) when compared
to the predictions (dashed line) from the standard Hubble law (in Eq. 1.57). The prediction
from the simplified model (in Eq. 1.59 with βp = 0) is shown for comparison — the simplified
prediction varies by less than 0.1 from the model with the nominal photospheric speed of
βp = 0.033. The circles represent 307 SNe data (that are not outliers) from the Supernova
Cosmology Project (SCP) [22].

which reduces to (at small photosphere speeds, βp → 0)

µB(z) = KB + 5 log10

[
1− z

1+zαpH
−1
]
. (1.59)

The parameters KB = 43.13 and αp = −3.18H were estimated by minimizing the least
square error between the model’s prediction (from Eq. 1.58) and the observed data
(NSCP = 307 pairs of blue-band maximum and redshift µB,i,zi with i = 1 to NSCP )
from the Supernova Cosmology Project (SCP) [22] at an example photosphere speed of
βp = 0.033 [21]. In particular, the residual error ESCP,i between the observed blue-band
maximum µB,i and the predictions µB(zi) (from Eq. 1.59) at the observed redshift zi is
defined as

ESCP,i = µB,i − µB(zi). (1.60)
Moreover, the error norm ESCP over all observations, given by

ESCP =

√√√√NSCP∑
i=1

[µB,i − µB(zi)]
2, (1.61)

is plotted for different values of KB, αpH
−1 in Fig. 1.11. The central ellipse in Fig. 1.11

represents the minimum of the error norm ESCP , which led to parameter estimates of
KB = 43.13 and αp = −3.18H. The resulting residual error ESCP,i (Eq. 1.60) shown in
Fig. 1.11 has low correlation with the redshift — the correlation Rresidual between the
residual error ESCP,i and the redshift zi is Rresidual = −0.0173 with a 95% confidence
interval (−0.1290, 0.0948). Thus, the proposed model can account for the farther-dimmer
relationship in supernova observations [10], without an accelerating universe.
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Figure 1.11: Left: error norm ESCP (Eq. 1.61) for different model parameters KB , αpH
−1 from

Eq. (1.59). The central ellipse in Fig. 1.11 represents the minimum of the error norm
ESCP , which led to parameter estimates of KB = 43.13 and αp = −3.18H. Right: the
resulting residual error ESCP,i (Eq. 1.60) has low correlation, Rresidual = −0.0173 , with
redshift zi.

Remark 13 Other, e.g., smaller, photosphere speeds are possible. The predicted Hubble
diagram at small photosphere speeds (Eq. 1.59) is close to the prediction (Eq. 1.58) with
the example photosphere speed of βp = 0.033, as seen in Fig. 1.10.

1.7 Temporal and Spatial Distortions

Variations in the speed of photons can cause temporal and spatial distortions in astro-
nomical observations. Such distortions are discussed below for two cases: (i) temporal
distortion in SNe light curves; and (ii) spatial distortion of mass distribution in galaxies.

1.7.1 Temporal distortion in SNe light curves

An aspect of the proposed model is the potential for apparent time reversal. In the
previous Section 1.6.3, deceleration of the photosphere was shown to result in different
photon speeds, which in turn, causes additional time dilation. A similar effect is possible,
even with an accelerating photosphere due to apparent time reversal. In particular, a
photon emitted at time te2 could be observed earlier than a photon emitted earlier at time
te1 < te2 — let the corresponding observation times be to1 (photon emitted earlier) and
to2 with to1 > to2 as in Eq. (1.39). In this case, the time interval to between observations
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is (reversing the observation time intervals to1, to2, in Eq. 1.40)

to(te) = to1 − to2

= −te − d(ee, oe) + (c− co)te − rp2
co + cβp2

+
d(ee, oe)− rp1
co + cβp1

= −te
[
1 +

1− co/c

co/c+ βp2

]
+

[
(βp2 − βp1)

d(ee,oe)
c

(co/c+ βp2)(co/c+ βp1)

]

+

[ rp2
c

co/c+ βp2
−

rp1
c

co/c+ βp1

]
, (1.62)

which can be positive to(te) > 0 with an accelerating photosphere provided the second
term in Eq. (1.62) is positive and dominates the other two terms in Eq. (1.62), i.e., the
speed of the later photon βp2 is greater than the speed βp1 of earlier photon, there is
sufficient travel distance d(ee, oe) for the later photon to overtake the earlier photon, and
there is no interference between the photons.

The apparent time reversal can lead to SNe light with the highest photosphere speeds
to be observed first, with a continuous decrease in the observed photosphere speed over
time — such a reduction in speed is present in SNe observations [21]. Moreover, if
the photosphere was accelerating during the explosion, the apparent time reversal can
lead to apparent reversal in the direction of the observed shock waves, i.e., they might
appear to propagate backwards towards the supernova center. Further study is needed
to evaluate if the reverse shock waves, seen in some of the SNe remnants [23], could be
caused by such an effect. Finally, apparent time reversal also implies that light from
the host galaxy (which might not have the large photosphere velocities as SNe) travel
at a slower speed when compared to the associated SNe. Consequently, the light from
the host galaxy (observed at the same time as the SNe) can be much older than the
SNe. This difference in age (between SNe and their host galaxies) could account for the
difficulty in identifying SNe progenitors [11].

1.7.2 Spatial distortion of astronomical structures

Variations in the arrival speed (of photons) can lead to distortions in the observed mass
distribution of astronomical structures such as galaxies. If not accounted for, apparent
spatial distortions can raise challenges in modeling the dynamics of observed physical
phenomena such as the rotational dynamics of galaxies, which are dependent on the mass
distribution. To illustrate, consider an astronomical structure, illustrated by the disc in
Fig. 1.12 that is rotating about an axis EO that passes through the disc center E and
is perpendicular to the disc. Consider light emitted from a point A on the disc, which is
at a distance r = d(E,A) from the disc center E with tangential speed Vg(r) = cβg(r).
Let the observer be at location O, where the distance d = d(E,O) is large compared to
the radius r, which allows the approximation d(A,O) ≈ d. Then, the time t(r) for a
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photon to travel to the observer at O is given by

t(r) =
d(A,O)

cg
=

d(A,O)

c
√
1− [βg(r)]2

≈ d

c
√

1− [βg(r)]2
, (1.63)

where cosmological expansion effects are neglected in the relative speed of light cg given
by

cg = c
√

1− [βg(r)]2. (1.64)

E
E Er A AA

O O

θ

V  tg

ct

c  tg

Observed spiral (dotted)Relative velocityEmitter (A) and observer (O)

Figure 1.12: Spiral spatial distortion. Travel times for emissions from A on a disc at radial distance r
from the disc center E can vary with the radial distance d (as in Eq. 1.63) — this can lead
to the straight segment EA appearing as a spiral when observed at O.

The difference between the travel times for emission from the center E and the emission
from the point A is given by

∆t(r) = t(r)− t(0) =
d

c
√

1− [βg(r)]2
− d

c
=
d

c

[
1−

√
1− [βg(r)]2√

1− [βg(r)]2

]
. (1.65)

The above expression can be simplified, for small tangential speeds (βg(r) → 0), to

∆t(r) ≈ d

c

[
[βg(r)]

2

2

]
. (1.66)

Note that the travel-time difference can be a function of the radial distance r from the
center E, which can imply different angular rotations θ(r) before an emission reaches the
observer. In particular, if the angular rotation rate ω(r) at each radius r is assumed to
remain constant, then the time difference (in Eq. 1.66) corresponds to a rotation angle
θ(r) given by

θ(r) = ω(r)∆t(r) =
cβg(r)

r

[
d

c

[βg(r)]
2

2

]
=

d

2r
[βg(r)]

3. (1.67)

If, for example, the disc rotates as a rigid body at a constant angular rate ω, then the
tangential speed is given by

cβg(r) = rω (1.68)
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and the corresponding angular rotation θ(r) during the travel time difference ∆t(r) is
given by

θ(r) =
d

2r

[rω
c

]3
∝ r2. (1.69)

Therefore, a straight line along the radius of the disc (e.g., EA) will appear to be a
spiral due to increasing travel times for emissions along the length EA — as illustrated
in Fig. 1.12. Such spatial distortion in observations needs to be corrected before studying
the rotational dynamics since it can affect the mass distribution in the disc, and therefore,
can affect the gravitational analysis.

Remark 14 Similar spatial distortion can also occur along other directions such as the
radial direction, e.g., in the presence of varying radial speeds if the disc collapses or
expands, which will require further investigation.

Remark 15 The observed radial speeds would be influenced by the orientation of the
galaxy with respect to the observer, which will further modify the observed shape.

1.8 Geometry
The spherical-shell geometry allows for the total kinetic energy to be constant while
satisfying momentum conservation. The implications and potential relaxation of this
axiom are discussed below.

1.8.1 Peculiar velocities
The expansion rate is simplified to be a constant V (which maintains a constant kinetic
energy) in the proposed cosmology model in contrast to a radial-distance-dependent
speed variation as in Newtonian cosmology, e.g., [17]. Nevertheless, a small expansion-
rate variation across the thickness of the shell could be included in the proposed cos-
mology model. For example, components on the outside of the shell will have a net
gravitational force towards the center of the shell — in contrast, there would be no such
force on components on the inside of the shell. Therefore, the speed V of the outer com-
ponents in the shell (farther away from the center) is expected to reduce with respect
to the inner components in the shell that are nearer to its center. Therefore, the inner
components of the shell might appear to be attracted towards the outside components,
which could explain observations such as peculiar velocities of galaxy clusters [24].

1.8.2 Anisotropy in cosmic microwave background radiation
The spherical shell geometry leads to variation between the radial and tangential di-
rections. Moreover, even within the radial direction, there is anisotropy between the
directions towards the center and away from the center. This should lead to anisotropy
in observations such as the measured Hubble constant in different directions and in
observations of the cosmic microwave background (CMB) radiation. Although, some
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anisotropies have been reported in measurements of: (i) the Hubble constant, e.g., [25],
and (ii) CMB radiation (e.g., quadrupole and octopole alignment [26,27]), further study
is needed to check if such anisotropies are consistent with the proposed cosmology model.

1.8.3 Other geometries
If anisotropies in cosmological observations are not observed, then the proposed cos-
mology model can be considered without the spherical-shell geometry axiom. In this
case, the Hubble law cannot be derived as in Section 1.3 under the proposed model.
Therefore, the expansion of the cosmos should be considered as an axiom, as in current
cosmology models. Nevertheless, the other results of the model, such as the explanation
of apparent binaries in Section 1.4, the farther-dimmer effect in Section 1.6, and the
temporal-and-spatial distortions in Section 1.7, would still be viable.

1.9 Chapter conclusions
This chapter developed a variable-speed-of-light (VSL) cosmology model and evaluated
its potential to match current cosmological observations. It was shown that the pro-
posed model can explain some of the anomalies in current cosmological observations.
Additional work is needed to evaluate potential variations in the Hubble constant and
anisotropies in the cosmic microwave background radiation due to differences between
the radial and tangential directions in the spherical shell geometry to, both, test and
potentially refine the model.

The source velocity augmentation axiom in the VSL model is controversial. A potential
rationale for it is developed in the next chapter.
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2 Relative-velocity-based electromagnetism

2.1 Overview
This chapter investigates if nonlinear relative-velocity-dependent (RV) models can be
used to match standard relativity (SR) predictions, e.g., seen from cathode-ray-tube
(CRT) experiments. The modeling approach is inspired by attempts at relative-velocity-
dependent models in electromagnetism that were proposed by Weber [28,29] before data
from CRT experiments were available. The model presented here also modifies prior
work on relative-velocity dependent models in [16] to capture the relativistic speed-
energy relationship observed in Van de Graaff electrostatic generators [30]1.

There are two major challenges in the development of relative-velocity-dependent mod-
els: (i) to capture standard relativisitic effects observed in, e.g., electromagnetism and
optics; and (ii) to maintain model-invariance between inertial reference frames. The first
challenge is addressed by modeling the nonlinearity of the proposed model to capture
the mass increase seen in CRT experiments as well as the relativistic energy-speed rela-
tionship. The second challenge, to maintain model-invariance between different inertial
frames, is addressed by developing relative-velocity dependent versions of Lorentz and
Maxwell’s equations, where spatial velocity distributions (VE , VB) are assigned to the
electrical E and magnetic fields B. It is shown that Maxwell’s equations, when adapted
to include these relative-velocity distributions, are still co-ordinate invariant. What is
noteworthy is that the relative-velocity approach models effects such as (i) the trans-
verse Doppler effect and (ii) the convection of light by moving media (Fresnel drag) that
typically required relativistic explanations.

2.2 Model
Consider a relative-velocity-based model of the Lorentz force FE on a particle a with
charge q and constant velocity Va due to an electric field E (e.g., associated with a
particle b) moving with constant velocity VE = Vb as in Fig. 2.1, with the following
general form

FE = [N⊥(Vrel)] qE⊥ +
[
N∥(Vrel)

]
qE∥, (2.1)

where E⊥ and E∥ are the components of the field perpendicular and parallel to the
relative velocity Vrel = Va,E = Va − VE between the field and the particle.

It is noted that ad-hoc choices of the nonlinearities (N⊥,N∥ in Eq. 2.1) are not
acceptable. For example, instead of a relativistic, velocity-dependent increase in mass,

1Motivated by personal communication from Max Tran pointing out that the earlier model in [16] does
not capture the results by Bertozzi in [30]
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m = m0/
√
1− β2, seen in CRT experiments, a reduction of the perpendicular Lorentz

force, such as N⊥ =
√
1− β2, might be considered, where c is the speed of light, m0 is

the rest mass and β = |Vrel|/c is the normalized speed. However, it is shown that such
a nonlinearity is not consistent with Ampere’s law for the force between two current-
carrying wires. In contrast, the proposed relative-velocity-based models capture low-
velocity effects such as the force between two current carrying wires.

a

b

V
b

V
a

O
1

O
2

V
O2

Figure 2.1: Force on a particle a with velocity Va with respect to (wrt) observer O1 due to fields generated
by particle b with velocity Vb wrt observer O1. Another potential observer is O2 moving with
constant velocity VO2 wrt to observer O1.

2.2.1 Perpendicular nonlinearity N⊥

The perpendicualr nonlinearity N⊥ (in Eq. 2.1) is identified using (i) low speed effects
(energy density invariance) and (ii) high speed (CRT) effects as in [16].

Low-speed, relative-velocity (RV) modeling of magnetic field

The Lorentz force FB on a particle a with charge q and constant velocity Va due to a
magnetic field (e.g., associated with a particle b) moving with constant velocity VB = Vb
as in Fig. 2.1, is modeled as

FB = q (V − VB)×B. (2.2)

This is effectively an electric field EB, perpendicular to the relative velocity V − VB

EB = (V − VB)×B, (2.3)

which results in a field energy that varies with the relative velocity of the charged particle
Vrel = Va − VB. The net energy can be made independent of the relative velocity Vrel,
if the apparent magnetic field BB is reduced in the perpendicular direction, as

BB = B∥ + γBB⊥ (2.4)

where γBB⊥ is the vector component of magnetic field perpendicular to the relative
velocity (V − VB), and B∥ is the vector component of the magnetic field parallel to
relative velocity (V − VB).
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Remark 16 (Energy balance) In the nominal case, when the relative velocity is zero,
i.e., V = VB, with no change in the perpendicular component, the factor γB = 1. When
the relative velocity is nonzero, the factor γB is chosen such that the net energy density of
BB and EB (due to the magnetic field B) is independent of the relative velocity (V −VB).

Matching the energy density in the field’s perpendicular component to the case when
the relative velocity is zero, results in

γ2B
2µ

|B⊥|2 +
ϵ

2
|EB|2 =

1

2µ
|B⊥|2, (2.5)

where | · | represents the magnitude of a vector, ϵ is the permittivity, and µ is the
permeability. Substituting for the apparent electric field EB from Eq. (2.3), i.e.,

EB = (V − VB)×B = (V − VB)×B⊥, (2.6)

into Eq. (2.5), yields

γ2B
2µ

|B⊥|2 +
ϵ |V − VB|2

2
|B⊥|2 =

1

2µ
|B⊥|2 (2.7)

and

γB =

√
1− |V − VB|2

c2
=
√
1− β2B , (2.8)

where c =
√
1/ϵµ is the speed of light and βB is the normalized speed

βB = |V − VB|/c. (2.9)

Low-speed, relative-velocity modeling of electric field

Similarly, an electric field E appears to have an effective magnetic field BE , perpendicular
to the relative velocity V − VE , where

BE = − ϵµ(V − VE)× E (2.10)

where the term −ϵµ is used in Eq. (2.10) to match the magnetic field produced by a
current-carrying wire (Ampere’s law). In particular, if ρ (charge per unit length) is
flowing with velocity v through a wire (which is stationary in the reference frame O)
then the electric field Eρ associated with this charge, at a distance rr̂ from the wire, is
given by Eρ = [ρ/(2πϵr)]r̂, where r̂ represents a unit direction vector. Note that the
velocity associated with this electric field is the velocity v of the charge flowing through
the wire. Therefore, from Eq. (2.10), the magnetic field Bρ at a distance rr̂ from the
wire is

Bρ = −(ϵµ) (0− v)× Eρ = (ϵµ) v × Eρ

= ϵµ[ρ/(2πϵr)]|v| v̂ × r̂
= [µI/(2πr)] v̂ × r̂

(2.11)
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where I is the current in the wire; this is the expression for magnetic field produced by a
current-carrying wire. Again, to keep the net energy independent of the relative velocity
V −VE , the following reduction γE in the perpendicular direction of the apparent electric
field EE is considered

EE = E∥ + γEE⊥ (2.12)
where γEE⊥ is the vector component of electric field perpendicular to the relative velocity
(V −VE), and E∥ is the vector component of the electric field parallel to relative velocity
(V − VE).

Remark 17 (Energy balance) Similar to the previous case for magnetic fields, when
the relative velocity is nonzero, the scaling factor γE is chosen such that the net energy
density of the fields EE and BE (due to the moving electric field E) is independent of
the relative velocity (V − VE).

The factor γE is obtained by equating the total energy density to the energy density
when the relative velocity is zero as

ϵγ2E
2

|E⊥|2 +
1

2µ
|BE |2 =

ϵ

2
|E⊥|2. (2.13)

Substituting for the apparent magnetic field BE from Eq. (2.10), i.e.,

BE = − ϵµ(V − VE)× E = − ϵµ(V − VE)× E⊥, (2.14)

into Eq. (2.13), yields

ϵγ2E
2

|E⊥|2 +
ϵ2µ2 |V − VE |2

2µ
|E⊥|2 =

ϵ

2
|E⊥|2 (2.15)

and a scaling factor

γE =

√
1− |V − VE |2

c2
. (2.16)

In summary, the net force on an electric particle (of charge q) is given by [from equa-
tions (2.2, 2.10) and (2.12)]

FE = q (V − VE)×BE + qE∥ + qγEE⊥
= q (V − VE)× {−ϵµ(V − VE)× E} + qE∥ + qγEE⊥

= q |V−VE |2
c2

E⊥ + qE∥ + qE⊥

√
1− |V−VE |2

c2

= q
[
β2E +

√
1− β2E

]
E⊥ + qE∥

= qαE⊥ + qE∥

(2.17)

where the normalized normalized speed βE and the scaling factor α are given by

βE = |V − VE |/c and α = β2E +
√
1− β2E . (2.18)

Remark 18 (Similarity of scaling factor) The expression for the scaling factor γE
for the moving electric field E in Eq. (2.16) is similar to the one for the scaling factor
γB for a moving magnetic field B in Eq. (2.8).
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Capturing high-speed effects with the relative-velocity model

The relativistic mass dependence with speed is modeled as a slip effect, where the force
on the particle reduces as the relative-velocity increases. In particular, consider the
augmentation of the Lorentz force on an electric particle, in Eq. (2.17), with relative-
velocity terms s⊥ and s∥ to obtain the general nonlinear Eq. (2.1) as

FE = [N⊥(Vrel)] qE⊥ +
[
N∥(Vrel)

]
qE∥

= [s⊥(βE)] qαE⊥ +
[
s∥(βE)

]
qE∥ = FE,⊥ + FE,∥. (2.19)

Remark 19 (Slip terms for magnetic fields) Similar to the electric field case in Eq.
consider the augmentation of The Lorentz force on an electric particle, due to a magnetic
field in Eq. (2.2) can be modelled in a similar manner with relative-velocity term s⊥ as
the electric field in Eq. (2.19), i.e.,

FB = [s⊥(βB)] q(V − VB)×B⊥ (2.20)

Remark 20 (Matching relativistic mass gain) The perpendicular slip term s⊥ is
identified by matching results from cathode-ray-tube (CRT) observations.

Consider the forces on a charge q moving with velocity V perpendicular to stationary
magnetic B and electric E fields, as in cathode-ray-tube (CRT) experiments (Thomson
1897), found from Eqs. (2.19, 2.20), as

FB = s⊥(β) q V ×B (2.21)

FE = s⊥(β) α(β) q E (2.22)

where β = |V |
c . If the fields act on the charged CRT particle over some length L, then

the change in velocity of the CRT particle along the application of the force during the
time interval ∆t = L/|V | is given by

FBL

m|V |
and FEL

m|V |

where m is the mass of the particle (electron). Therefore, the change in angles (θB and
θE) of the CRT particle’s path along the action of the fields B and E, respectively, can
be approximated by using equations (2.21, 2.22) as [31]

θB = | FBL

m|V |2
| =

s⊥(β) q |V | |B| L
m|V |2

=
s⊥(β) |B| L

m
q |V |

(2.23)

θE = | FEL

m|V |2
| =

s⊥(β) α(β) |E| L
m
q |V |2

. (2.24)
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In the absence of the relative-velocity terms (i.e., s⊥(β) = 1 and α(β) = 1), a velocity-
dependent mass variation can be used to explain the CRT data. In particular, the
estimated velocity VCRT and the estimated mass-to-charge ratio

m(βCRT )

q
=
m

q
Ψ(βCRT ),

with
βCRT =

|VCRT |
c

, (2.25)

from the CRT experiments would be related by

θB =
|B| L

m
q Ψ(βCRT )|VCRT |

(2.26)

θE =
|E| L

m
q Ψ(βCRT )|VCRT |2

(2.27)

where Ψ(βCRT ) represents the CRT-predicted variation of mass with velocity. Dividing
equations (2.23) and (2.24) by equations (2.26) and (2.27), respectively, yields

s⊥(β) =
|V |

|VCRT |
1

Ψ(βCRT )
(2.28)

s⊥(β) α(β) =
|V |2

|VCRT |2
1

Ψ(βCRT )
. (2.29)

The velocity VCRT predicted by the CRT-experiments can be obtained by dividing
Eq. (2.28) by Eq. (2.29) to obtain

|VCRT | =
|V |
α(β)

or βCRT =
β

α(β)
. (2.30)

Furthermore, the perpendicular-slip term s⊥(β) can be found by dividing the square of
Eq. (2.28) by Eq. (2.29) and then substituting for βCRT from Eq. (2.30) to obtain

s⊥(β) =
α(β)

Ψ(βCRT )
=

α(β)

Ψ( β
α(β))

. (2.31)

Case 1: matching the relativistic mass-velocity relation: The perpendicular term s⊥(β)
can be chosen, as in Eq. (2.31), to exactly match the observed velocity-dependent vari-
ation Ψ in mass. In particular, if the CRT-predicted mass increase is given by the
relativistic expression

Ψ(βCRT ) =
1√

1− β2CRT

, (2.32)
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then the expression for the slip term s⊥ is obtained, from Eq. (2.30) and Eq. (2.31), as

s⊥(β) = α(β)

{√
1−

[
β

α(β)

]2}
=

√
[α(β)]2 − β2.

(2.33)

Case 2: simplified perpendicular slip term: Consider the following, simplified expres-
sion s̄⊥ for the slip term s⊥(β)

s̄⊥(β) =
[
1 − β8

]1/4
, (2.34)

which closely approximates the perpendicular slip term s⊥ in Eq. (2.33) needed to match
the relativistic mass increase, as shown in Fig. 2.2.
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Figure 2.2: (a) The approximate perpendicular slip term s̄⊥ in Eq. (2.34), shown in green, closely matches

the perpendicular slip term s⊥ in Eq. (2.33), shown in blue, needed to match the relativistic
mass increase. (b) The magnitude of the percent difference 100 × (s⊥ − s̄⊥)/s⊥ in the
approximation is less than 1%.

The approximate slip term does not lead to an exact match of the relativistic mass in-
crease; however, it closely approximates the expression for the relativistic mass increase.
In particular, assuming this form s̄⊥(β) for the slip term, the velocity β̄CRT estimated
in the CRT experiment, as in Eq. (2.30), is given by

β̄CRT =
β

α(β)
=

β

β2 +
√

1− β2
. (2.35)

Moreover, the apparent mass variation Ψ̄ in the CRT experiment, as in Eq. (2.31), is
given by

Ψ̄(β̄CRT ) =
α(β)

s(β)
=

β2 +
√
1− β2

[1 − β8]1/4
. (2.36)
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It is noted that the variation of Ψ̄(β̄CRT ) with velocity β̄CRT in equations (2.35, 2.36),
which would be obtained from a CRT experiment, is similar to the relativistic variation

Ψ(β̄CRT ) =
1√

1− β̄2CRT

, (2.37)

as shown in Fig. 2.3. Moreover, the percentage difference Ψerror between the two ex-
pressions (equations 2.36 and 2.37) given by

Ψerror =
Ψ(β̄CRT )− Ψ̄(β̄CRT )

Ψ(β̄CRT )
× 100 (2.38)

is less than 1% as shown in Fig. 2.3. Thus, the relativistic velocity dependency of
mass in CRT experiments can be modeled using the relative-velocity approach with the
perpendicular nonlinearity (N⊥ = s⊥α) in the Lorentz force expression and a constant
mass as in Eq. (2.19).
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Figure 2.3: Proposed model matches the apparent velocity dependence of mass in CRT experiments.

Left plot: comparison of apparent mass variations Ψ(β̄CRT ) (relativistic mass model) and
Ψ̄(β̄CRT ) (simplified model) as in Eqs. (2.36, 2.37) with normalized normalized speed β̄CRT

in Eq. (2.35). Right plot: the percent difference Ψerror in predicted mass variation is less
than 1% with the simplified model in Eq. (2.38). There would be no error with the exact
relative-velocity model in Eq. (2.33).

2.2.2 Parallel nonlinearity N∥

The parallel nonlinearity N∥ (in Eq. 2.1) is identified using relativistic energy and
velocity relationship, e.g., observed in [30] and keeping the potential energy independent
of speed.

Relationship between parallel slip and kinetic energy

Consider a charged particle q moving along a straight line away from a stationary charged
particle Q at a distance rr̂ as shown in Fig. 2.4 (case 1).
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dr
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Figure 2.4: Example with force parallel direction r̂ to the relative velocity.

Taking the dot product with a small displacement drr̂ with Newton’s law on the charge
q yields

s∥(β)
Qq

4πϵr2
dr = m

dv

dt
dr =

m

2
dv2 =

mc2

2
dβ2. (2.39)

Dividing both sides by the parallel slip term s∥(β) and integrating results in∫ r2

r1

Qq

4πϵr2
dr =

∫ β2
2

β2
1

mc2

2s∥(β)
dβ2 =

∫ EKE,2

EKE,1

dEKE

dβ2
dβ2 (2.40)

where EKE is considered as the relative-velocity dependent kinetic energy of the system
since the above expression leads to the conservation law

Qq

4πϵr2
+ EKE,2 =

Qq

4πϵr1
+ EKE,1, (2.41)

in which the potential energy expression Qq/(4πϵr) is independent of the relative velocity
and the parallel slip term s∥(β). Then, the relationship between the parallel slip term
and the kinetic energy becomes (from Eq. 2.40)

dEKE

dβ2
=

mc2

2s∥(β)
, (2.42)

resulting in the parallel slip expression,

s∥(β) =
mc2

2

1
dEKE
dβ2

. (2.43)

Remark 21 (Potential energy independence) The parallel slip term s∥ in Eq. (2.43)
was developed assuming that the potential energy (PE) is independent of speed β. Other
forms could be generated if PE is assumed to depend on the speed.

2.2.3 Matching relativistic energy
If the kinetic energy (EKE) depends on the normalized speed β according to the rela-
tivistic expression

EKE =
mc2√
1− β2

−mc2, (2.44)

with
dEKE

dβ2
=

mc2

2

1√
(1− β2)3

. (2.45)
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Then, the parallel slip term to match the relativistic KE in Eq. (2.44) can be found from
Eq. (2.43) and Eq. (2.45) as

s∥(β) =

√
(1− β2)3. (2.46)

Remark 22 (Matching relativistic energy expression) The parallel slip term s∥
matches the relativistic energy and velocity relationship in Eq. (2.44) and observed by
Bertozzi in [30].

2.3 Relative-velocity-dependent Lorentz force
The relative-velocity-dependent Lorentz force in Eq. (2.19), with βE = β, becomes from
Eqs. (2.18, 2.33, 2.46),

FE = [N⊥(Vrel)] qE⊥ +
[
N∥(Vrel)

]
qE∥

= [s⊥(β)]α(β)qE⊥

=

(√[
β2 +

√
1− β2

]2
− β2

)(
β2 +

√
1− β2

)
qE⊥ +

[√
(1− β2)3

]
qE∥.

(2.47)

When the relative velocity β is small, the above Lorentz-force expression in Eq. (2.47)
can be approximated by (using Taylor series expansion)

FE ≈
(
1 +

1

2
β2E

)
qE⊥ +

(
1− 3

2
β2E

)
qE∥. (2.48)

Remark 23 (Saturation effect) The above analysis is limited to the case when the
magnitude of the relative velocity is less than the speed of light c, i.e., βE ≤ 1 and
βB ≤ 1. The approach could be extended to higher-normalized speeds by saturating the
scaling factors, e.g.,

γE = 1 ∀ βE > 1, γB = 1 ∀ βB > 1. (2.49)

In the following, it is assumed that βE ≤ 1 and βB ≤ 1.

Remark 24 (Coordinate independence) The normalized speed of particle a with re-
spect to particle b does not change for observers O1 and O2 in Fig. 2.1. Therefore, the
relative-velocity-dependent Lorentz force expression in Eq. (2.47) is coordinate indepen-
dent.

2.4 Force between two wires
The relative-velocity-dependent Lorentz force expression predicts the observed force be-
tween two current carrying wires. In particular, the increase in the electrical force
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component perpendicular to the relative velocity in Eq. (2.48) can be used to explain
the force between two current carrying wires, which are both stationary in a reference
frame O. As shown in Fig. 2.5, let the second wire (denoted by the subscript 2) be posi-
tioned at rr̂ from the first wire (denoted by the subscript 1). Moreover, let the currents
in the two parallel wires be I1 and I2, and let the corresponding moving charges (per
unit length) be −ρ1 and −ρ2 with velocities −v1V̂ and −v2V̂ , respectively, i.e.,

I1 = ρ1v1, and I2 = ρ2v2 (2.50)

where the speeds v1 ≥ 0 and v2 ≥ 0 of the charges are small, and V̂ is a unit vector
along the direction of the wire (in which current is flowing).

Figure 2.5: Force between two current carrying parallel wires separated by distance r.

Force expression

Consider the two (non-canceling) fields in the first wire: (a) E−ρ1 associated with the
moving charges (−ρ1 per unit length) with field velocity −v1V̂ given by (using Gauss’s
law, E−ρ1(2πrL) = (−ρ)L/ϵ for length L of the charged wire)

E−ρ1 = [−ρ1/(2πϵr)]r̂; (2.51)

and (b) Eρ1 associated with the corresponding stationary charges (ρ1 per unit length)
in the wire, i.e., the stationary field given by

Eρ1 = [ρ1/(2πϵr)]r̂. (2.52)

These two fields act on the moving charges (−ρ2 per unit length) and the corresponding
stationary charges (ρ2 per unit length) on the second wire. For example, the force per
unit length F−ρ1,−ρ2 on the moving charges −ρ2 due to the moving charges −ρ1 can be
obtained from equations (2.48, 2.51) as

F−ρ1,−ρ2 = −ρ2
(
1 + |(−v2)−(−v1)|2

2c2

)
E−ρ1

= −ρ2
(
1 + |(−v2)−(−v1)|2

2c2

)
[−ρ1/(2πϵr)]r̂

= ρ1ρ2r̂
2πϵr

(
1 + |v1−v2|2

2c2

)
.

(2.53)

Similarly, (i) the force per unit length Fρ1,−ρ2 on the moving charges −ρ2 due to the
stationary charge ρ1, as well as (ii) the the forces F−ρ1,ρ2 , Fρ1,ρ2 on the stationary charges
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ρ2 on the second wire due to the charges (on the first wire) −ρ1 and ρ1, respectively, are
given by

Fρ1,−ρ2 = −ρ1ρ2r̂
2πϵr

(
1 + |−v2|2

2c2

)
F−ρ1,ρ2 = −ρ1ρ2r̂

2πϵr

(
1 + |v1|2

2c2

)
Fρ1,ρ2 = ρ1ρ2r̂

2πϵr .

(2.54)

Thus, the total force per unit length F1,2 on the second wire can be found using equa-
tions (2.53, 2.54) as

F1,2 = Fρ1,ρ2 + Fρ1,−ρ2 + F−ρ1,ρ2 + F−ρ1,−ρ2

= ρ1ρ2r̂
2πϵr

[
1−

(
1 + |v2|2

2c2

)
−
(
1 + |v1|2

2c2

)
+
(
1 + |v1−v2|2

2c2

)]
= ρ1ρ2r̂

2πϵr

(−2v1v2
2c2

)
= − µI1I2

2πr r̂.

(2.55)

This force on the second wire is attractive (i.e., towards the first wire) when the two
wires carry current in the same direction.

Force between wires is incorrect with ad-hoc perpendicular slip term

Another choice of the perpendicular slip term can be found by matching the acceleration
resulting from the relativistic increase in mass with speed. For example, the slip term
s⊥(βE) in Eq. (2.19) can be chosen such that the perpendicular component of the force
due to an electric field becomes

FE,⊥ = [s⊥(βE)] qαE⊥ = qE⊥

√
1− β2E . (2.56)

The resulting force can be approximated (at low speeds βE) by

FE,⊥ ∼= qE⊥

(
1−

β2E
2

)
. (2.57)

However, this expression is not consistent with the force between two current carrying
wires. In particular, the scaling of the term β2E has the opposite sign in Eq. (2.57) when
compared to the expression in Eq. (2.48). The use of the expression in Eq. (2.57) would
lead to a force

F1,2 =
µI1I2
2πr

r̂ (2.58)

similar to Eq. (2.55); however, the force between two wires that are carrying current in
the same direction is repulsive, which is incorrect.

Remark 25 (Comparison of parallel and perpendicular slip impact) The change
is the parallel force between wires carrying current has the opposite sign as the perpen-
dicular force between wires carrying current as seen in Eq. (2.48).
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2.5 Optics
The field velocities (VE , VB) introduce extra terms in Maxwell’s equations that are re-
moved to retain co-ordinate invariance. It is shown that the proposed relative-velocity
(RV) model captures relativistic effects in: (i) the propagation speed of light; (ii) stellar
aberration; (iii) the transverse Doppler effect; and (iv) the convection of light by moving
media.

2.5.1 Relative-velocity in Maxwell’s equations
Consider an electric E and a magnetic M field, which are stationary with respect to an
inertial frame O2, and satisfy Maxwell’s equations in free space without charges

∇× E = − ∂B

∂t
(2.59)

∇×B = ϵµ
∂E

∂t
. (2.60)

Consider the same equation in a different inertial frame O1 in which the inertial frame
O2 is moving with constant velocity V = VO2 as shown in Fig. 2.1. The Galilean
transformation between the two frames

X1 = X2 + V t

gives the following relations at any location (X2 in frame O2 or X1 − V t in frame O1)

Frame O2 Frame O1 (2.61)
E(a, b), B(a, b) E(a, b), B(a, b) (2.62)
a = X2, b = t, a = X1 − V t, b = t (2.63)
VE = 0, VB = 0 VE = V, VB = V (2.64)

∂E

∂t
=
∂E

∂b

∂E

∂t
=
∂E

∂a
(−VE) +

∂E

∂b
(2.65)

= −(VE · ∇)E +
∂E

∂b
(2.66)

∂E

∂X2
=
∂E

∂a

∂E

∂X1
=
∂E

∂a
. (2.67)

Since the spatial gradient is invariant with frame, in Eq. (2.67), the curl — e.g., ∇×B
on the left hand side of Eq. (2.60) — is also frame invariant. However, the partial time
derivative in Eq. (2.66) has an extra term in frame 2. Therefore, the partial derivative
with time, such as ∂E

∂t on the right hand side of Eq. (2.60), has an extra term −(VE ·∇)E.
Hence, adding the term (VE · ∇)E to Maxwell’s Eq. (2.60) will make it frame invariant
under the relative-velocity-dependent approach; the modified equation becomes

∇×B = ϵµ

(
∂E

∂t
+ (VE · ∇)E

)
. (2.68)
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Noting that
dE

dt
=

∂E

∂t
+ (VE · ∇)E (2.69)

and using a similar argument to modify Eq. (2.59), we obtain the following inertial-
frame invariant form of Maxwell’s equations with terms that include the field velocities
(VE , VB)

∇× E = − dB

dt
(2.70)

∇×B = ϵµ
dE

dt
(2.71)

Remark 26 (Invariance with co-ordinate change) Electric E and magnetic B fields,
with field velocities VE and VB, respectively, that satisfy Maxwell’s equations in one
reference frame also satisfy it in another inertial reference frame with a Galilean trans-
formation of the field velocities. In this sense, the modified Maxwell’s Eqs. (2.70,2.71)
with the total time derivatives are invariant to Galilean transformations between inertial
reference frames.

Note that the main innovation that enables the form invariance (under Galilean trans-
formations) is the association of velocity fields VE and VB with electric and magnetic
fields E and B, respectively. An electric field E and magnetic field B with field velocities
VE,O1 and VB,O1 that satisfy the modified Maxwell’s equations with respect to an inertial
observer O1 also satisfy the same form of modified Maxwell’s equations with field veloc-
ities VE,O2 = VE,O1 + v and VB,O2 = VB,O1 + v with respect to another inertial observer
O2 where v is the velocity of frame 1 with respect to frame 2. Thus, although the values
of the field velocities (VE and VB) are different in different frames, the relative-velocity
(RV) approach results in the same form of the modified Maxwell’s equations in different
frames.

Remark 27 (Addition of current density) It is noted that a current density of the
form

µJ = µϵ (∇ · E)VE (2.72)

can be added to the right hand side of Eq. (2.71) but is not needed in the following
discussion on optics.

2.5.2 Propagation speed of light
Consider the following two wave equations, which are considered as disturbances on the
nominal electrical E and magnetic B fields, each of which has a field velocity

VE = VB = V = vz ẑ,

with magnitude vz in the ẑ direction, given by

E = ex cos (ωt− kz) x̂ (2.73)
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B = by cos (ωt− kz) ŷ. (2.74)

The terms in the modified Maxwell’s Eqs. (2.70,2.71) for the above wave equations
are computed below.

∇×B = − byk sin (ωt− kz) x̂ (2.75)

∇× E = exk sin (ωt− kz) ŷ (2.76)
dB

dt
= [−ω + kvz] by sin (ωt− kz) ŷ (2.77)

dE

dt
= [−ω + kvz] ex sin (ωt− kz) x̂ (2.78)

Substituting Eqs. (2.75-2.78) into the modified Maxwell’s Eqs. (2.70,2.71) yields

exk = − [−ω + kvz] by (2.79)

− byk = ϵµ [−ω + kvz] ex (2.80)

By setting ex = byc and µϵ = 1
c2

both the equations reduce to the common expression

ck = (ω − kvz) . (2.81)

Note that the wave propagation speed Vlight is given by ω/k; therefore, the light propa-
gation speed (in the z-direction) is additive, i.e.,

Vlight = ω/k = c + vz. (2.82)

Thus, the modified Maxwell’s equations allow the nominal velocity of the field V , in
which light is generated, to be added to the standard velocity of light when the field is
non-moving — this follows directly from the invariance of modified Maxwell’s equations.

Remark 28 (Michelson-Morley null result) The Michelson-Morley experiment is
expected to yield the null result with the relative-velocity (RV) approach with the moving
fields because the velocity of light is constant in all directions with respect to frame of
measurement (in which light is generated).

2.5.3 Effect of star’s velocity on aberration
In a reference frame on earth, the velocity of the earth Ve = veV̂e adds to the velocity of
stellar light to generate the aberration effect, see Eq. (2.82), as in the original explanation
by Bradley [14]. The angle of the light direction with respect to earth (θ measured
perpendicular to earth’s motion as shown in Fig. 2.6) is maximum if the star’s velocity
Vs = vsV̂s reduces the nominal light speed to c − vs (when angle θs = 0). Thus, the
maximum change in the light direction with respect to earth is 2θ where

tan θ =
ve

c− vs
. (2.83)
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c
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+ve

Star

Earth

θ

sθ

Figure 2.6: Aberration formula based on relative-velocity (RV) matches the classical expression [14].

For small speeds vs and ve the above expression is only linear in ve (and not linear in
vs) — it can be approximated as

θ ≈ ve
c
. (2.84)

The effect of the star’s velocity Vs on the aberration effect (due to Earth’s motion) is
small if the speed of the star is small, i.e., vs is much smaller than the nominal velocity of
light c. Therefore, with the relative-velocity (RV) approach, stellar aberration appears
to be independent of the star’s velocity Vs [32] and appears to only depend on the relative
change in the observer’s velocity [33].

2.5.4 Transverse Doppler effect
Consider the Doppler effect due to addition of velocities in different frames. Let light be
generated by a source s moving with velocity V = vV̂ relative to the receiver, with angle
θr with respect to the line between the source and the receiver, measured with respect to
the receiver. Light generated by the source has velocity Cs = csĈs (magnitude cs = c)
and angle θs. The observed velocity of light is Cr = crĈr as shown in Fig 2.7.

vcs
θs

cr

θr

r s

θs

Figure 2.7: Relative-velocity (RV) approach to explain the transverse Doppler effect: Source s, which
has relative velocity V with respect to the receiver, generates light whose velocity is cs = c.
The observed velocity of the light is at an angle θs in the receivers frame/

The magnitude cr of the observed velocity can be determined using angle θr (measured
in the receiver frame) as

(cr + v cos θr)
2 + v2 sin2 θr = c2s, (2.85)
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which implies that

cr = −v cos θr +
√
c2s − v2 sin2 θr = c

[
−β cos θr +

√
1− β2 sin2 θr

]
(2.86)

where β = v/c. Hence, the frequencies fr, fs in the receiver and source frames, respec-
tively, are related by

fr = fs
cr
cs

= fs
cr
c

= fs

[
−β cos θr +

√
1− β2 sin2 θr

]
. (2.87)

For the transverse case (θr = π/2),

fr =
{
fs
√
1− β2 if θr = π/2. (2.88)

Note that the relative velocity (RV) expression for transverse Doppler effect in Eq. (2.88)
when θr = π/2 matches the standard relativity (SR) expression

fr = fs

(√
1− β2

)
(1 + β cos θr)

(2.89)

= fs
√
1− β2 if θr = π/2. (2.90)

2.5.5 Doppler effect under circular motion
Doppler effect between an emitter and absorber in circular motion are similar for both
special relativity (SR) and relative velocity (RV) approaches. In particular, the SR-based
approach predicts a Doppler effect of [34]

fa = fe
1− βa cos (c, va)

1− βe cos (c, ve)

(
γ(βa)

γ(βe)

)
(2.91)

where fa is the frequency, va is the velocity with respect to the laboratory frame, βa
is the relative speed |va|/c and γ(βa) = 1√

1−β2
a

is the time dilation corresponding to
the absorber. Similarly, for the emitter, fe is the frequency, ve is the velocity with
respect to the laboratory frame, βe is the relative speed |ve|/c and γ(βe) = 1√

1−β2
e

is the
corresponding time dilation. c is the velocity of light from emitter to absorber in the
laboratory frame. In contrast, there is no time dilation in the RV based model, which
can lead to potential differences between SR and RV.

SR prediction: When the absorber and emitter are in circular motion with constant
angular speed ω in the laboratory frame FL, as in Fig. 2.8, SR predicts no doppler shift
between the emitter and the absorber. In particular, with small angular speeds, the SR
prediction in Eq. (2.91) becomes

fa = fe
1− β cos (θ + π

2 )

1− β cos (θ + π
2 )

(
γ(β)

γ(β)

)
= fe, (2.92)
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where β = ωr
c , r is the radius of the circular orbit, and c is the speed of light. This

result is independent of the angle θ (in Fig. 2.8 (right)) as long as the emitter and the
absorber are at the same distance r from the center of rotation. This lack of Doppler
shift has been verified [35] for the case when the emitter and absorber are on opposite
sides along the diameter with θ = π/2 as in Fig. 2.8 (left).

ω

ve

va

c

ω

ve

va c

a

e e

aθ

θ

Figure 2.8: Experimental setup with circular motion of absorber and emitter in the laboratory frame FL

RV prediction: When the absorber and emitter are in circular motion as in Fig. 2.8,
RV predictions also matches SR predictions and experimental observations in [35]. For
example, as shown in Fig. 2.9, the velocity of light ce from the emitter (in the laboratory
frame) is given by

ce = ve + c (2.93)

and the velocity of light ca observed by the absorber (in the absorbers frame) is given
by, using Eq. (2.93),

ca = ce − va, (2.94)

where the speeds of the absorber and emitter are the same va = ve = v = ωr. Here
the path of the light ce from the emitter to the absorber is approximately along the
line connecting the two since the circular motion speeds ve = va are small compared to
the speed of light, and the radius r of the circular motion is small. Note that triangles
△efa and △abe are similar since they share a common side ce, have similar sides va =
ve = v = ωr and the same angle between the similar sides, ∠fea = ∠bae = θ + π/2.
Therefore, the speed of light ca observed by the absorber (in the absorbers frame) is the
same as the speed of light c observed by the emitter (in the emitters frame), ca = c.
Hence, RV predicts no doppler shift between the emitter and the absorber,

fa = fe
ca
c

= fe. (2.95)
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Figure 2.9: Relative velocity (RV) based prediction of light speeds for circular motion of absorber and
emitter in the laboratory frame FL as in Fig. 2.8.

2.5.6 Convection of light in moving media
The effect of moving media on the velocity of light through the media is shown to be
similar to Fresnel’s drag formula without the need for Lorentz contraction that was
developed to explain this effect.

Consider a media moving with relative velocity V = vV̂ in frame 1 as shown in
Fig. 2.10. For an observer O1 in frame 1, the speed of light generated in frame 1 is c (in
vacuum); the goal is to estimate the effective speed of light ceff,O1 through the moving
media for the same observer (in frame 1). The passage of light in the moving media
can be differentiated into two types: (a) the passage of light through particles in the
media; and (b) passage through vacuum in the media — this approach is adapted from
the method by Michelson and Morley [36]. Let the mean length between particles be L
and the mean length of each particle be αL — these are measured in frame 2 that is
fixed on the moving media (as shown in Fig. 2.10). It is noted that the positive factor
α tends to be small, i.e., the particle length is small when compared to the distance
between particles [36].

V

c

L

αL
Frame 2

Moving Media

Particle Particle

Frame 1
O2O1

Figure 2.10: Relative-velocity approach to model the convection effect (Fresnel drag) in moving media.
In the moving media (frame 2) the mean length between particles is L and the average
length of each particle is αL.

Consider an observer O2 in frame 2; let the nominal speed of light through a particle
in the medium be cm when the relative velocity V is zero. However, due to motion of the
media, the speed of light (generated in frame 1) through particle is cm − v and through
vacuum is c− v for observer 2. The total velocity is not a linear summation of the two
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2 Relative-velocity-based electromagnetism

velocities; the effective speed of light ceff,O2 through the medium (for a fixed observer
in frame O2) is given by

L

ceff,O2

=
αL

cm − v
+

(1− α)L

c− v
i.e., ceff,O2 =

1
α

cm−v + (1−α)
c−v

. (2.96)

The nominal speed Cnom of the light through the media with zero relative velocity is
obtained by setting v = 0 in Eq. (2.96) as

cnom =
1

α
cm

+ (1−α)
c

. (2.97)

The effective velocity expression in Eq. (2.96) can be expanded in terms of the relative
velocity V as (where the higher order terms are neglected)

ceff,O2 ≈ cnom + −1(
α
cm

+
(1−α)

c

)2

(
α
c2m

+ (1−α)
c2

)
v

= cnom − c2nom
c2

(
αc2

c2m
+ (1− α)

)
v

= cnom − 1
η2

(
αc2

c2m
+ (1− α)

)
v

(2.98)

where η is the media’s coefficient of refraction. If α is small, then the expression in
Eq. (2.98) can be approximated by

ceff,O2 ≈ cnom − 1

η2
v. (2.99)

Rewriting in terms of observer O1 in frame 1, by adding v to the expression, leads to

ceff,O1 = ceff,O2 + v = cnom − 1
η2
v + v

= cnom +
(
1− 1

η2

)
v.

(2.100)

Therefore, the RV model predicts that the velocity of light in a media moving with
velocity v (with respect to a stationary observer) is seen (by the stationary observer) to
increase by, from Eq. (2.100) (

1− 1

η2

)
v, (2.101)

where η is the media’s coefficient of refraction. This expression exactly matches the
SR prediction of the classical Fresnel drag seen in experiments, e.g., see Equation (44)
in [37].
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2.6 Chapter conclusions
This chapter presented a relative-velocity (RV) based electromagnetism model, which
yields a plausible rationale for variable-speed-of-light cosmology discussed in Chapter 1.
The main innovation is the association of velocities with fields wherein the force between
the field and a particle depends on the relative velocity between the particle and the field.
The interesting aspect of this relative velocity (RV) model is that it matches observations
in optics such as Fresnel drag, which (in conjunction with Michelson Morley experiment)
was one of the problems that the Lorentz transformation was trying to resolve. Moreover,
the proposed RV approach matches electromagnetism effects from CRT data.
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3 Testing the relative-velocity model
The previous Chapter 2 developed a relative-velocity-dependent (RV) model that matches
standard relativity (SR) observations. In the current chapter, potential differences, in
longitudinal Doppler effect is explored to experimentally test and comparatively evaluate
the predictions of the RV and SR models.

3.1 Overview of differences in longitudinal Doppler effect
The main idea is that differences in the longitudinal Doppler effect, between the pre-
dictions of the relative-velocity-based approach and standard relativity, could be used
to match predictions with observations for comparative evaluation. In particular, the
relative-velocity-based approach predicts a Doppler effect of (from Eq. 2.87 with θr = 0)

fr = fs (1− β) (3.1)

that does not have a nonlinear effect with respect to (wrt) normalized speed β. In
contrast, the relativistic Doppler effect would predict a nonlinear effect wrt normalized
speed β, since, from Eq. (2.89) with θr = 0,

fr = fs

(√
1− β2

)
(1 + β)

= fs

(√
1− β

)(√
1 + β

) , (3.2)

A challenge is that the predictions of both theories match exactly at low normalized
speeds β. In particular, SR prediction becomes

fr ≈ fs(1− β) (3.3)

for low normalized speeds β from Eq. (3.2), which matches the RV prediction in Eq. (3.1).
However, the two predictions will diverge at high normalized speeds β. Therefore, the
differences between SR and RV predictions should be noticeable when the normalized
speed β is high, e.g., in modern high-energy experiments, which are discussed in this
chapter.
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3 Testing the relative-velocity model

3.2 SR predictions of high-energy ion experiments
High energy ion experiments assess time dilation, and can be used to experimentally
evaluate the differences between the predictions of the SR and RV theories. In high
energy ion experiments, Doppler-shifted lasers are used to excite transitions in high-
energy ions, and then, observe the resulting emissions to evaluate time dilation γ. In
particular, an ion moving with speed v = βc with respect to a laboratory frame FL

can be excited by using parallel (co-propagating) or anti-parallel (counter-propagating)
lasers as in Fig. 3.1.

= υ   γ(1-β)p = υ  γ(1+β)aυp υa

   υ  a
βc

υe

   υ  p

Ion 

Frame, FI

Laboratory 

Frame, FL

* *

υe* θ

Figure 3.1: Laser frequencies νp, νa in the laboratory frame FL are Doppler shifted to frequencies ν∗p , ν∗a
in a frame FI that is moving with the ion (circle) at speed v = βc. Photons emitted at
frequency ν∗e in the ion frame FI are observed at frequency νe in the laboratory frame FL

perpendicular to the moving ions.

The relations between associated laser frequencies νp, νa (parallel and anti-parallel to
the ion velocity with respect to the laboratory frame FL) and ν∗p , ν

∗
a (parallel and anti-

parallel to the ion velocity with respect to a frame FI attached to the moving ion) are
given by SR Doppler expressions as, e.g., [38, 39]

ν∗p = νpγ(1− β) (3.4)
ν∗a = νaγ(1 + β) (3.5)

and
γ = 1/

√
1− β2 (3.6)

is the time dilation. Similarly, the emission frequency ν∗e of photons from the ions (with
respect to the ion frame FI) and the detection frequency νe perpendicular to the moving
ions with respect to the laboratory frame FL, as shown in Fig. 3.1, are related by (from
Eq. (2.89) with angle θr = π/2)

νe = ν∗e

(√
1− β2

)
=

1

γ
ν∗e (3.7)

3.2.1 Evaluating Potential Lorentz Violation
The ratio R , given by

R =
νpνa
ν∗pν

∗
a

=
1

γ2(1− β2)
= 1, (3.8)
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3.2 SR predictions of high-energy ion experiments

is independent of the speed of the ions. Potential dependence of the measured ratio R
on speed β is used to evaluate time dilation predicted by SR and thereby, to evaluate
potential Lorentz violation.

The frequency terms ν∗p , ν∗a needed to evaluate the expression for R (in Eq. 3.8) are
not directly measurable. This inability to measure ν∗p , ν∗a can be avoided if the lasers
excite a known transition, say at frequency ν∗e in the ion frame FI . For example, in
saturation spectroscopy [38, 40], one of the laser frequencies is kept constant and the
other frequency is varied to observe the Lamb dip in the fluorescence spectrum, which
indicates that both lasers are acting on ions with the same speed, i.e.,

ν∗p = ν∗e and ν∗a = ν∗e . (3.9)

Then, the ratio R (in Eq. 3.8) can be rewritten as

R =
νpνa
(ν∗e )

2
=
νpνa
ν∗pν

∗
a

=
1

γ2(1− β2)
= 1. (3.10)

Remark 29 Since the experiments rely on the Lamb dip in the fluorescence spectrum to
ensure that both lasers are acting on ions with the same speed, the results of the experiment
can depend on which emission frequencies are being observed in the laboratory frame.

3.2.2 Transition Frequency Shift
Ideally, the transition frequency ν∗e in the moving ion frame FI should be the same as
the transition frequency νo for ions that are stationary in the laboratory frame FL, and
is therefore known — the transition frequency νo can be determined with high accuracy
using stationary ions in the laboratory frame FL. However, the transition frequency for
the moving ions can get shifted (i.e., ν∗e ̸= νo) due to external fields and charged particles
causing Stark and Zeeman effects, e.g., [40].

The potential shift in the transition frequency implies that the transition frequency
ν∗e excited in the moving ion cannot be assumed to be exactly the same as the transi-
tion frequency νo measured for stationary ions under different experimental conditions.
Moreover, this shifted frequency ν∗e is not directly measurable (in the moving ion frame
FI) — although the transition frequency νo of the stationary ions (in laboratory frame
FL) is known. Therefore, the ratio R (in Eq. 3.10) cannot be evaluated directly from
the measurements, and an expression in terms of the directly measurable frequencies
(νa, νp, νo) is sought.

3.2.3 Effect of PMT Pre-Filters
Measurements of the number of photons emitted by the moving ions (to determine exci-
tation of the ion transition) by the photomultiplier tubes (PMTs) will not be independent
of photon frequency if optical pre-filters are used before the PMTs. For example, let the
emission be observed using an interference filter (before the PMT) centered at

νe = ανo (3.11)
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3 Testing the relative-velocity model

with respect to the laboratory frame FL (where the νo is the transition frequency of
stationary ions) to detect the laser frequency where the Lamb dip occurs. In this case,
the observed Lamb dip corresponds to emitted photons of frequency ν∗e in the ion frame
FI by (from Eq. 3.7)

ν∗e = γνe = γανo. (3.12)

Remark 30 The frequency νe of emission in the laboratory frame is expected to be
smaller than the frequency ν∗e of emission in the ion frame from Eq. (3.16), when photons
arrives perpendicular to the laser axis (i.e., deviation angle ϕ = 0). However, the
centerline of the prefilter is chosen for a larger emission frequency νe with wavelength
λPMT = 500nm in the laboratory frame when compared to the stationary emission
frequency ν∗e with wavelength λo = 548.5nm in the ion frame [40], resulting in α =
1.097 > 1. Thus, the constant α > 1 in current high-speed ion experiments.

The theoretical expression Ro that can be evaluated in terms of measurable frequencies
νo, νp, νa (in the laboratory frame FL) can be found from Eqs. (3.9, 3.10, 3.12) as

Ro =
νpνa
(νo)2

=
γ2α2νpνa
(ν∗e )

2
= γ2α2 νpνa

ν∗pν
∗
a

= γ2α2 νpνa
νaγ(1 + β)νpγ(1− β)

=
α2

1− β2
> 1.

(3.13)

Remark 31 With α > 1 (in current experiments) and 1− β2 < 1, the expected value of
Ro in Eq. (3.13) is necessarily greater than one, if the measured emissions are perpen-
dicular to ion motion in the laboratory frame.

3.3 Experimental observations do not match SR predictions
Experimental observations find this ratio Ro,exp of the product of the laser frequencies
νp,exp νa,exp to the transition frequency νo,exp of the stationary ion to be a constant

Ro,exp =
νp,exp νa,exp
(νo,exp)2

= 1 (3.14)

that is independent of the speed β [40] where the subscript exp indicates an exper-
imentally obtained value. This results in a difference between theoretical (Ro) and
experimental (Ro,exp) predictions of this ratio (from Eqs. 3.13, 3.14) when α = 1,

Ro ̸= Ro,exp. (3.15)

Remark 32 For the high speed experiments with ion speed β = 0.338 [40], with α =
1.096,

Ro = 1.3561

from Eq. (3.13) by considering the Doppler effects, which is much different from Ro = 1
reported when Doppler effects are neglected.

Thus, experimental results do not match theoretical predictions when Doppler effects
are not neglected.
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3.4 Potential impact of emission angle
A potential explanation is that the measured emissions are independent of the PMT
prefilters, and that the measured photons can be assumed to directly correspond to
emissions at λ∗e = λo = 548.5nm perpendicular to the motion of the ions, in the ion frame
(where λo is measured for stationary ions) [43]. However, this leads to a substantially
large angles (upto 20o) in the laboratory frame, which would imply that the experiment
does not sufficiently focus on emissions at a specific angle-frequency relationship — and
the measurements cannot be sure of the frequency of the emissions — especially, in the
presence of large Doppler effects with ion speeds as high as β = 0.338 [40].

From special relativity (SR), the transverse Doppler provides a unique relation between
the ratio of the emitted photon frequencies ν∗e (in the ion frame FI), νe (in the laboratory
frame FL), and the measurement angle ϕ (as in Fig. 3.2)

Rν =
ν∗e
νe

=
λe
λ∗e

=
[1− β sinϕ]√

1− β2
= γ [1− β sinϕ] (3.16)

where the measurement angle ϕ is the deviation of the photomultiplier tube (PMT) axis
from the perpendicular to the laser axis (and the ion velocity) in the laboratory frame
FL, λ∗e, λe are the corresponding wavelengths, v = βc is the speed of the ion, and c is
the speed of light.

   υ  aβc   υ  p

φ

PMT 

   υ  e

Figure 3.2: Experimental setup in the laboratory frame FL

If the photon emissions are at λ∗e = λo = 548.5nm in the ion frame (where λo is measured
for stationary ions), then the expected wavelength λe (in the laboratory frame) at a
measurement angle ϕ is shown in Fig. 3.3 for two experimental cases: (i) β = 0.064 [41];
and (ii) a higher speed β = 0.338 [40]. However, the measurement angle of ϕ = 0 of
the PMT axis in previous experiments, e.g., [40, 41], does not match the center of the
filters used before the PMT. The center λPMT = 548nm of the interference filter used
before the PMT (Ref. [41], page 42) for β = 0.064 matches the expected ion emissions
(λo = 548.5nm in the ion frame) when the PMT axis is ϕ = 3 degrees away from the
perpendicular to the ion velocity (see Fig. 3.3). This deviation from the perpendicular
becomes even more significant at higher ion speeds. For example, with β = 0.338 [40],
the center of the BG39 filter is at λPMT = 500nm, which would match emissions from the
expected transition at λo when the angle of the PMT axis is ϕ = 25 degrees. While the
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3 Testing the relative-velocity model

centerline of the interference filter λPMT = 548nm is close to the expected wavelength
of λe = 549.6nm when the photon arrives perpendicular to the laser axis (i.e., deviation
angle ϕ = 0) with β = 0.064, the centerline at λPMT = 500nm is substantially further
away from λe = 582.8nm for the β = 0.338 case with deviation angle ϕ = 0.
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Figure 3.3: Variation of expected emission wavelength λe in the laboratory frame FL for different mea-
surement angles ϕ.

Even if the majority of the photons are assumed to be perpendicular to the laser axis in
the ion’s frame of reference (rather than perpendicular in the laboratory frame), the SR
expression for the measured emissions in the laboratory frame,

λe = λ∗e/γ = λo/γ; cos (π/2− ϕ) = β (3.17)

yields λe = 547.3nm, ϕ = 3.7 degrees (for β = 0.064) and λe = 516nm, ϕ = 19.8 degrees
(for β = 0.338) represented by circles in Fig. 3.3. Thus, a noticeable deviation ϕ from
the perpendicular to the laser axis (in the laboratory frame) is expected when compared
to the perpendicular placement of the PMT axis (ϕ = 0) in the experiments [40,41].

The loss of control over the angle ϕ of the photons entering the PMT, coupled with the
relatively broad half-width of the filter, implies that the experiment cannot ensure that
the photon being measured has the expected wavelength-angle (λe, ϕ) relation. Then,
the experimental analysis (e.g., for the two-level system in [41]) needs to rely on the
assumption that the measured photon is from a transition that was excited at νo = c/λo
in the ion’s frame of reference under the specific experimental conditions. However,
the results cannot validate SR and rule out Lorentz violation without this assumption
that the transition being excited still corresponds to νo in the ion’s frame (under the
experimental conditions). As discussed earlier, photons at frequency νo (the center of
the filter with β = 0.064 in the laboratory frame) that are aligned with the PMT axis
(ϕ = 0) would be observed by the PMT, which can imply Lorentz violation.

62



3.4 Potential impact of emission angle

3.4.1 Other Effects
It is possible that other effects (such as variations in the observation angle) might ex-
plain or reduce the apparent Lorentz violation; further work is needed to investigate
such effects. For example, previous work has shown that resonance fluorescence can be
affected by the observational angle [42]. Therefore, the experimental results would be
affected if the PMT is not measuring emissions that are exactly perpendicular to the ion
beam. Further analysis would be needed to evaluate such angle-deviation effects.

It is noted that systematic SR violation (or Lorentz violation) is directly related to the
amount of uncertainty in the transition. Uncertainty can occur because in addition to
potential changes in the transition under the experimental conditions, the transition it-
self is a distribution, with a range of values. Self-selection (of the transition) is possible
depending on the conditions under which the photons are observed in the Laser Spec-
troscopy experiment, since the approach depends on evaluating variations in intensity
of the emissions. Filters used to select the photons being measured should be tuned to
the right frequency for the observation angle. If the filters are too broad the approach
cannot rule out Lorentz violation. For example, let the Lorentz violation modify the
time dilation from γ to γ∆γ , and let the self-selected transition be νo∆νo instead of νo,
under the specific experimental conditions. Then, SR analysis, which assumes no change
in the transition (for a two-level transition [41]), yields

νp =
νo

γ(1− β)
; νa =

νo
γ(1 + β)

, (3.18)

where νp and νa are the measured frequencies (in the laboratory frame) of the lasers
parallel and anti-parallel to the ion velocity. However, potential Lorentz violation, which
matches the experimentally observed laser frequencies (νp, νa), can be found as

νp =
νo

γ(1− β)
=

νo∆νo

γ∆γ(1− β)
(3.19)

νa =
νo

γ(1 + β)
=

νo∆νo

γ∆γ(1 + β)
. (3.20)

Note that the Lorentz violation factor has the potential to be of the same order as the
change in the transition frequency with

∆γ = ∆νo . (3.21)

Although, bounds on the potential deviation in the transition (∆νo−1) can be estimated
theoretically, an experimental design that accounts for the transverse Doppler effect,
enables validation of the assumption that the transition being evaluated in the moving ion
(under the experimental conditions) is the same as the expected transition νo (measured
for stationary ions).
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3.5 RV prediction matches current observations
RV predictions also match current observations with the use of a prefilter νe = ανo as
in Eq. (3.11) and with the assumption that the measured photons can have a nonzero
deviation angle ϕ ̸= 0 as in Fig. 3.4 and assumed in current SR-based experimental
analysis that does not account for the substantial Doppler shift.

   υ  aβc   υ  p

φ

PMT 

   c  m

βc

   υ  e   υ  e*

   c  

Figure 3.4: RV-based analysis. Light at speed c and frequency ν∗e = νo
√

1− β2 in the ion frame is
observed at speed cm and frequency νe = ανo in the laboratory frame. The speed of the ion
is βc.

In particular, the associated emissions can be at frequency ν∗e = νo
√
1− β2 for the

emissions in the ion frame with RV models. As a result, the angle ϕ of the emissions in
the laboratory frame is given by

cm
c

=
νe
ν∗e

=
α√

1− β2
(3.22)

c2 = c2m + (βc)2 − 2cm(βc) sin (ϕ) (3.23)

sin (ϕ) =
c2m + (βc)2 − c2

2cmβc
=

( α√
1−β2

)2 + β2 − 1

2( α√
1−β2

)β
(3.24)

resulting in

ν∗e =

√
1− β2

α
νe =

√
1− β2

α
(ανo) = νo

√
1− β2 = ν∗p = ν∗a (3.25)

with ϕ = 36.8o for β = 0.338 and α = 1.096.

Moreover, the relationship between laser frequencies νp, νa (parallel and anti-parallel to
the ion velocity with respect to the laboratory frame FL) and ν∗p , ν

∗
a (parallel and anti-

parallel to the ion velocity with respect to a frame FI attached to the moving ion) are
given using relative-velocity-based approach using Eq. (2.87) as

ν∗p = νp(1− β) = νo
√
1− β2 (3.26)

ν∗a = νa(1 + β) = νo
√
1− β2. (3.27)

Then, the product of the laser frequencies divided by ν2o would lead to,

RRV =
νpνa
ν2o

=

νo
√

1−β2

(1−β)

νo
√

1−β2

(1+β)

ν2o
= 1. (3.28)
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Thus, RV can also predict the observed relationship between the laser frequencies nup, νa
and the emission frequency νo for stationary ions, if the measurements do not restrict
the frequency-angle relationship of the emissions in the laboratory frame.

3.6 RV prediction with angle and speed variatons
When measuring ions perpendicular to the laser beams in the laboratory frame, the
experiments could be self selecting ions moving at some different relative speeds βm at
an angle ψ with respect to the antiparallel and parallel laser beams (in the laboratory
frame) as shown in Fig. 3.5.

   υ  a
β  c

   υ  p

φ

PMT 

   c  m

   c  

ψ

m

Figure 3.5: RV-based analysis with angle ψ of ion motion with respect to the parallel laser in the labo-
ratory frame. Light at speed c is observed at speed cm in the laboratory frame. The speed
of the ion is βmc.

In this case relative-velocity-based approach yields speed of light from the parallel laser
cp and antiparallel laser ca as

c2 + β2mc
2 − 2βmc

2 cosψ = c2p (3.29)
c2 + β2mc

2 − 2βmc
2 cosψ = c2p (3.30)

resulting in

ν∗p
νp

=
c∗p
c

=
√
1 + β2m − 2βm cosψ (3.31)

ν∗a
νa

=
c∗a
c

=
√

1 + β2m + 2βm cosψ. (3.32)

Therefore, the ions can be excited at the transition frequency νo for stationary ions, i.e.,

ν∗p = ν∗a = νo (3.33)

and
νpνa
ν2o

=
1√

1 + β2m − 2βm cosψ
√

1 + β2m + 2βm cosψ
= 1 (3.34)

if

(1 + β2m)2 − 4β2m cos2 ψ = 1 (3.35)
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or

β2m cos2 ψ =
(1 + β2m)2 − 1

4
. (3.36)

Moreover, the observation frequency νe in the laboratory frame can also correspond
to emissions at frequency νo in the ion frame , i.e.,

c2m + β2mc
2 − 2βmcmc cos (π/2− ϕ− ψ) = c2 (3.37)

c2m + β2mc
2 − 2βmcmc sin (ϕ+ ψ) = c2 (3.38)

(cm − βmc sin (ϕ+ ψ))2 + β2mc
2 cos2 (ϕ+ ψ) = c2 (3.39)

cm
c

=
(√

1− β2m cos2 (ϕ+ ψ)
)

+ βm sin (ϕ+ ψ) =
νe
νo

= α (3.40)

from Eq. (3.11). For the specific case, when the measured photons are perpendicular to
the laser directions (in the laboratory frame), i.e., ϕ = 0,

α =
(√

1− β2m cos2 (ψ)
)

+ βm sin (ψ) (3.41)

=

(√
1− (1 + β2m)2 − 1

4

)
+
√
β2m − β2m cos2 (ψ) (3.42)

=

(√
1− (1 + β2m)2 − 1

4

)
+

√
β2m − (1 + β2m)2 − 1

4
. (3.43)

and the excitation and emissions at frequency νo (in the ion frame), are selected to
be from ions with speed βmc and angle ψ (in the laboratory frame) selected to satisfy
Eqs. (3.36) and (3.43). In particular, with α = 1.097 for the high speed experiments in
[40] as in Remark 30, the experimental observation νpνa

ν2o
= 1 as in Eq. (3.34) is possible

even with RV at a much lower relative speed βm = 0.145 and angle ψ = 44.69 rads.

3.7 Future experimental differentiation between SR and RV

To enable experimental testing of RV and SR, future experimental design could verify
the frequency of the measured photons in the laboratory frame and thereby account for
the substantial Doppler shift in the emissions. For example, it might be possible (a) to
place filters before the PMT, centered at the frequency νe = νo/γ (esp for large β such
as 0.338), and (b) to facilitate collimation to ensure that measured photons measured
correspond to angle ϕ = 0 in the laboratory frame as in Fig. 3.2. This would guarantee
that there is no shift in the transition frequency in the ion frame FI , i.e., emissions
measured correspond to frequency νo in the ion frame, which is the known value for
stationary ions.
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3.7.1 SR prediction
With the use of a prefilter

νe =
νo
γ

(3.44)

and collimation to ensure measurement of photons with angle

ϕ = 0 (3.45)

in the laboratory frame, SR would predict that the frequency ν∗e of the emissions in the
ion frame is given by (from Eq. (3.16) with ϕ = 0)

ν∗e = γνe = γ
νo
γ

= νo. (3.46)

Then, the product of the laser frequencies divided by ν2o would lead to, from Eqs. (3.4,
3.5) similar to Eq. (3.8) ,

RSR =
νpνa
ν2o

=

ν∗p
γ(1−β)

ν∗a
γ(1+β)

ν2o
=

νo
γ(1−β)

νo
γ(1+β)

ν2o
=

1

γ2(1− β2)
= 1. (3.47)

3.7.2 RV prediction
With the use of a prefilter νe = νo

γ as in Eq. (3.44) and and collimation to ensure
measurement of photons with angle ϕ = 0 as in Eq. (3.45) in the laboratory frame,
RV would predict that a frequency ν∗e of the emissions in the ion frame given by (from
Eq. (2.88) with νe = fr, ν

∗
e = fs)

νe = ν∗e
√

1− β2 =
ν∗e
γ

=
νo
γ
. (3.48)

resulting in (same as SR prediction)

ν∗e = νo. (3.49)

Thus, for this case, RV predicts the same emission frequency νo (a known value) in the
ion frame as with SR. The relationship between laser frequencies νp, νa (parallel and
anti-parallel to the ion velocity with respect to the laboratory frame FL) and ν∗p , ν

∗
a

(parallel and anti-parallel to the ion velocity with respect to a frame FI attached to the
moving ion) are given using relative-velocity-based approach using Eq. (2.87) as

ν∗p = νp(1− β) (3.50)
ν∗a = νa(1 + β). (3.51)

Then, the product of the laser frequencies divided by ν2o would lead to,

RRV =
νpνa
ν2o

=

ν∗p
(1−β)

ν∗a
(1+β)

ν2o
=

νo
(1−β)

νo
(1+β)

ν2o
=

1

(1− β2)
. (3.52)
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3 Testing the relative-velocity model

3.8 Chapter conclusions
The transverse Doppler effect, in the emissions, is substantial in high-energy ion ex-
periments [43]. It should be accounted for in order to rule out Lorentz violations in
high-energy ions and validate SR, and rule out RV-based models.

Early experiments, with much smaller ion speeds, had relatively-small angle deviations
due to transverse Doppler. For example, with β = 0.004 [44], the angle deviation was
only ϕ = 0.2 degrees. Therefore, it was difficult to experimentally verify the transition
frequency being excited in the moving ion. However, with larger speeds (β = 0.064 and
β = 0.338), the need to assume that the transition being excited is still νo in the moving
ion frame, can be removed by including the transverse Doppler effect in the experimental
measurements, i.e., matching the PMT axis angle ϕ to the center νe of the PMT filter
according to the (νe, ϕ) relation in Eq. (3.16) (with ν∗e = νo). Additionally, deviations
of measured photons from this (νe, ϕ) relation should be minimized, in high energy
experiments, by: (i) using collimation to limit the variation from the chosen angle ϕ;
and (ii) selecting narrow filters (e.g., when compared to BG39 at β = 0.338 [40]) centered
around the chosen frequency νe. Such experimental efforts could clarify and quantify,
better, the potential Lorentz violation identified in this chapter and its potential effect on
systematic errors reported in other related experiments, e.g., when the ions are moving
perpendicular to the lasers [44].

Moreover, there is a clear difference between SR and VR predictions with high-energy
ion experiments as reflected in Eqs. (3.47) and (3.52). However, current experiments
do not sufficiently account for the large Doppler effects, especially, with high ion speeds
such as β ≈ 0.3, and have to assume that the emissions are from a specific frequency νo
in the ion’s frame. Selecting appropriate PMT prefilters (to account for the substantial
angle-dependent Doppler effect) can lead to isolation of emissions at a specific frequency,
and and reduce potential errors in the analysis. Such refinement of the experiments can
be used to validate/refute SR and RV predictions. In any case, accounting for the
significant Doppler effect is needed to get better estimates of potential Lorentz violation
within the SR framework.
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