WASHINGTON

Contrast Interferometry for α

Measuring atomic recoil frequencies allows determination of the fine structure constant, α . A prototype experiment¹ (see accompanying figures) conducted in 2002 using sodium BECs proved the robustness of the contrast interferometry technique. This symmetric three-arm interferometer has signal determined by (ϕ_i = phase accumulated on path *i*)

$$A(t)\sin^{2}\left(\frac{\phi_{1}(t) + \phi_{3}(t)}{2} - \phi_{2}(t)\right)$$

eliminating many systematic effects.

Above: Sample of data from a single shot of the original contrast interferometry experiment Below: Phase versus free propagation time is fit to find recoil frequency.

Finding α

The most precise determination of the fine structure constant α comes from measurement of the electron's gyro-magnetic ratio (g) and complex QED calculations³.

Recoil experiments compare the momentum and energy of an atom to determine h/m, from which α maybe calculated using

$$\alpha^2 = \left(\frac{e^2}{\hbar c}\right)^2 = \frac{2R_\infty}{c} \frac{M_{\rm Yb}}{M_e} \frac{h}{m_{\rm Yb}}$$

Comparison of the values of α obtained by these two methods constitutes a stringent test of QED theory. ($M_{\rm yb}$ is being measured by [6]).

Interferometry with Bose-Einstein Condensates Toward a sub-ppb Measurement of α

Isotope	Natural Abunda
$^{168}\mathrm{Yb}$	0.0013
$^{170}\mathrm{Yb}$	0.0305
$^{171}\mathrm{Yb}$	0.143
$^{172}\mathrm{Yb}$	0.219
$^{173}\mathrm{Yb}$	0.161
$^{174}\mathrm{Yb}$	0.318
¹⁷⁶ Yb	0.127

- 1. Gupta, S., et al. PRL 89, 140401 (2002)

A.O. Jamison, B. Plotkin-Swing, A. H. Hansen, A. Khramov, W. H. Dowd, and S. Gupta **Department of Physics, University of Washington; Seattle, WA, USA**

References

2. Castin, Y. and Dum, R. PRL 77, 5315 (1996) 3. Hanneke, D. et al., PRL 100, 120801 (2008) 4. Bouchendira, R. et al., PRL **106**, 080801 (2011)

5. Jamison, A.O., et. al. Phys. Rev. A. 84, 043643 (2011)

6. Edmund Myers, private communication

$$\frac{\partial \omega_{rec}}{\omega_{rec}} = \frac{\partial \psi_{rec}}{\phi_{rec}} \approx \frac{\sqrt{NYb}}{8\omega_{rec}N^2T}$$

	N = 1, T = 5ms	N = 20, T = 5ms	Correctable?
c fields	0 ppb	0 ppb	easily testable
fields	<0.1 ppb	<0.1 ppb	measurable
ional curvature	0.08 ppb	0.08 ppb	measureable, scales with T^2
tial AC Stark shift	<0.001 ppb	<0.001 ppb	
nt curvature	0.2 ppb	0.2 ppb	measure & maximize ϕ_{rec}
ignment	0.6 ppb	0.6 ppb	measure & maximize ϕ_{rec}
refraction	20 ppb	1 ppb	scales w/ initial momentum or detuning
back-action/ eous scattering			believed to degrade signal, no shift (currently simulating)
nteractions	400 ppb	1 ppb	known scaling with atom number/scattering length ^{2,5}

Group website: http://www.phys.washington.edu/users/deepg Funding: National Institute of Standards & Technology, Alfred P. Sloan Foundation, and National Science Foundation.

