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Recent advances in technology have made it possible to cool atoms down to the Bose Einstein
Condensate (BEC) level, specifically through laser trapping and cooling. The lasers used need to
have a specific wavelength, though the position of the foci and the power are also key. Profiling a
beam can be quite difficult, especially for very small waists. If the beam can be well known, it still
remains to find what it should be. In this paper, a method of profiling beams is described, as well
as a simple analytical discussion of how the beam’s parameters can be optimized.

PACS numbers:

BEAM PROFILING

In order to cool the atoms to BEC temperatures, a
crossed optical dipole trap (ODT) is used. The atoms are
loaded into it from a different kind of trap, a magnetic
optical trap (MOT), and the trap depth is lowered to
evaporatively cool the atoms. Of course, this only works
well if the beams are well know, specifically their waists
and the positions of their foci.

CCD cameras can be used to do this, but they can be
quite expensive and may be limited by pixel resolution
issues. At the very least, they introduce many complex-
ities that are not usually worth the distraction. In this
proof of concept, the beam is coupled into a single-mode
fiber to output only the TEM00 mode, and have a shape
that is Gaussian and theoretically very simple. The col-
limated output of the fiber is then focused by a lens to a
waist w0 at the origin. The intensity profile for propaga-
tion along the z-axis is given by [2]:
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The waist is a function of z:
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where zr = πw2
0/λ is the Rayleigh length. What is actu-

ally measured in a lab is the power, a spatial integration
of the intensity. The waists could be different in x and y,
and this test is only sensitive to one dimension at a time.

An old method used for calculating waists simply in-
volved putting a razor blade on a translation stage and
scanning it along the x-axis, perpendicular to the axis of
propagation. This setup shows the ”razor” on two trans-
lation stages, parallel and perpendicular to the beam.

Using a power meter to capture the unblocked light
gives an error function (the integral of e−r
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, referred to
as “erf”), which can be calculated numerically very easily.
This integral is with respect to x, the direction of motion.
This method is easy to understand physically, but cannot

FIG. 1: Picture of the setup used, with blade cutting beam

resolve very small waists, and it is very difficult to get w0

without doing many measurements.

Another method is to scan along the axis of propaga-
tion, in this case z. The power is now a function of z,
and can be easily derived, giving:
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with the origin taken to be the focus and x0 and z0 the
coordinate offsets from that. The 1 comes from the def-
inition of erf, which starts at 0 and not negative infin-
ity. Physically, that infinity is reasonable because the
power meter is much larger than the beam. In reality,
the translation is not perfectly perpendicular, so that
x0 = x0 + z sin θ and z0 = z0 + z cos θ. There is also
a background term, but that is simply an offset. This is
the form of one dimensional slices of the two dimensional
landscape of x0 and z0 shown:

Multiple data runs at different x offsets show the pro-
gression from a maximum at the focus to a minimum.
Physically, this is because the blade blocks more (less)
than half of the light is x0 is positive (negative), and the
beam is getting tighter and therefore less (more) light is
getting past it. Figure 3 shows fits with one data set that
are slices through Figure 2:

This data was fit using ROOT, and the best fits were
those that had a parameter space neither too steep nor
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FIG. 2: A 3D plot of power, with z into the page

FIG. 3: Slices in x, power vs. z

too flat in w0, that is, neither too large or too small an
x offset. The data set shown is actually the worst fit,
because the blade is too far from the beam.

The example setup used a 250 mm focal length lens to
focus a beam that had an approximate diameter of 2 cm.
This gives a theoretical minimum waist of 5µm, and the
combined waist measurements give 10.6 ± .4. The pre-
vious measurements were indirect, and assigned a some-
what arbitrary error of 10%. This method can hopefully
be used to give needed information about the beams, with
smaller errors than previous values. Even better data can
be collected if a more professional setup were used, and if
small effects due to diffraction were taken into account.

Another possible improvement, though probably in this
case unjustifiable, would be to take data with robotic
help and greatly improve precision and reliability.

PARAMETER OPTIMIZATION

In these experiments, evaporation efficiency and atom
number at condensation are the key measures of a trap
configuration. What can be tweaked in the setup of the
ODT are the beam powers and waists, and the angle be-
tween the two beams. The setup that I investigated was
for the Ytterbium atom interferometry experiment, and
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FIG. 4: Frequency vs Trap Depth (unscaled units)

perpendicular beams are the most efficient for Ytterbium.
The degrees of freedom left are simply a departure from
symmetry, which for the most part should not matter.
However, Ytterbium is a heavy enough element that for
low trap depths, gravity breaks the symmetry. Therefore,
for low powers at least, there should be some interesting
effects.

The goal of evaporative cooling is to increase the phase
space density and achieve BECs as efficiently as possible
- over short time scales and not losing too many atoms.
For that, you need large atom numbers and high trap
frequencies. These quantities work against each other
somewhat: atom number is increased by having a larger
initial volume to be loaded from the MOT, and trap fre-
quencies are increased by having a tighter and therefore
smaller trap. There are some schemes for changing the
position of the foci after loading and getting the best of
both, but these are technically very challenging and not
the purpose of this investigation.

The approach taken here is to maximize the average
trapping frequency, ω̄ = (ωxωyωz)

1/3, with the constraint
that the initial volume remain constant. The decided-
upon geometry of the beams is one vertical and one hor-
izontal, with all of the waists the same except the one
in the axis of gravity. Only the radial waists contribute
much, and the one in the axis of gravity is the only one
for which asymmetry should make sense. For this setup,
and neglecting the axial contributions, each frequency is
proportional to:
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ωy = αP ν + β (6)

where P is the power and e1 is the ratio between the waist
in the gravity axis and the waists of the other axes, all of
which are the same. The intensity is given by equation
1 of the previous section, and the trap potential is pro-
portional to that, and the frequencies are derived from a
harmonic approximation. The frequency in the y axis is
much more complicated and was fit numerically. In this
axis a linear term is added on to that, making it more
complex both to find the dependence on P and the cur-
vature at the minimum of the trap. Both of these things
are small deviations and only matter towards the end of
the evaporation ramp when the traps are quite weak, and
this is precisely the region in need of study.

Another group [1] has a setup that does not decrease
trap depth, but rather increases a magnetic field gradi-
ent. This is analogous to increasing the strength of grav-
ity or to the weak trap region where gravity is relatively
stronger, and is beneficial because it reduces the depen-
dence of frequency on trap depth. However, this method
cannot be used for bosonic Yb atoms because they have
no magnetic moment in the ground state. Frequencies
are of the form:

ω̄ = f(a, e1, w, P ) ∗ P ν . (7)

It is important to decrease ν in order to have the largest
trap frequencies at the lowest trap depths. Some calcu-
lated frequencies are shown in Figure 4.
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The blue line shows the normal square root dependence
on trap depth, and the purple shows the effect of gravity
on that, keeping the frequencies slightly higher. The gold
line is an example tweaking of the power ratio, which does
not seem to be improving the frequency at all. It was
hoped that some change, possibly keeping the trap depth
in the vertical direction weak, could cause the frequency
dependence on trap depth to decrease and therefore be
larger towards the end of the trap. It is still possible that
other combinations could realize this, so more should be
done to understand the function space.

CONCLUSIONS

It is hoped that parameters producing a line similar to
the gold line, starting lower but with a lower dependence
that ends up higher, could be found. More will be done
to map this parameter space. Even if nothing interesting
comes of that, it has been found that the trap depth in

the y axis falls sharply at low powers, where the linear
term dominates the Gaussian potential. In this region,
the horizontal beam power should be kept constant, but
the other powers can be treated normally.
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