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Department of Physics

This dissertation describes a series of experiments conducted in an ultracold mixture of

fermionic 6Li and bosonic 174Yb atoms, with a focus on the creation of heteronuclear YbLi

molecules and the realization of a mixture of Bose and Fermi superfluids. Measurements of

field-dependent inelastic scattering between metastable (3P2) Yb and ground state (2S1/2) Li

are discussed, revealing the existence of interspecies Feshbach resonances which in principle

may be used to create ultracold YbLi molecules in a coherent fashion, but in practice exhibit

prohibitively large inelastic loss in the specific scattering channel used. An alternative all-

optical two-photon pathway to ground state YbLi molecules is also explored, with the initial

results presented here being the exploration of excited state YbLi molecular potentials using

photoassociation spectroscopy, and the successful production of YbLi∗ molecules in a dual-

species magneto-optical trap. An upgraded crossed optical dipole trap is implemented on the

Yb-Li experimental apparatus, with a novel application of time-averaged potential shaping

for very rapid and efficient Yb BEC production. Lastly, we detail the realization of an

interacting mixture of Bose and Fermi superfluids, and identify the exchange of angular

momentum between the superfluids by the excitation of a rotational mode of oscillation in

the bosonic component due to interspecies interactions.
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Chapter 1

INTRODUCTION

This chapter attempts to place the experiments of this thesis within the broader context of

ultracold atomic physics experiments, as well as to outline the chronological progression of my

efforts in the lab. Many of the long term goals in our group, and in a majority of the cold atom

experiments in operation today, involve utilizing the pristine control over single- and few-

body degrees of freedom offered in these systems to realize and probe novel many-body states.

Indeed, a hallmark achievement in the early days of neutral atom trapping was the realization

of Bose-Einstein condensation [2, 24], resulting in a many-body quantum state exhibiting

superfluidity. Soon after, the observation of superfluidity in two-component Fermi gases

[114] with arbitrarily tunable interactions further increased the promise of trapped quantum

gases to simulate complicated many-body systems, including the potential to study models of

high-TC superconductivity with strongly interacting fermions in optical lattices [45, 86, 20].

In addition to these pioneering studies in systems with isotropic s-wave interactions, there

has been a strong push to realize systems with long-range, anisotropic interactions using

both polar molecules [108, 85, 103, 78] and highly magnetic atoms [68, 5, 56]. It is within

this already successful, yet still burgeoning field of quantum gases that we aim to highlight

the novelty and utility of our ytterbium-lithium mixture. In the course of these past 5 years,

the prospective trajectory of the experiment has undergone a few transformations, with an

eye always towards uncovering the most fundamentally interesting physics. As we’ll see, one

must be malleable in their experimental pursuits in this field.
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1.1 Yb and Li: Mixtures and molecules

The specific choice of atoms for an ultracold quantum gas experiment is one that must be

made with considerable forethought. The time it takes to design and construct a working

apparatus is often at least few years, and the ability to switch elements down the road can be

prohibitively difficult due to the specificity of the equipment necessary for trapping a given

atom (e.g. lasers, vacuum and magnetic coil designs). Thus it behooves a lab to have an

extensive list of possible experiments to be performed on a given system, as there may be

countless, unforeseeable technical and/or fundamental limitations that may render various

endeavors impossible.

The choice of a mixture of ytterbium (Yb), which features many bosonic and fermionic

isotopes in natural abundance, and fermionic lithium-6 (6Li) in our apparatus indeed affords

a variety of physical phenomena to be explored. For the most commonly used isotope of

ytterbium in our lab, bosonic 174Yb, the interspecies combination features a very large mass

ratio of 29, and is a novel combination of a spin-singlet and spin-doublet atom. In the context

of few-body physics, this leads to the potential for realizing ultracold, heteronuclear ground

state molecules that possess both a magnetic and electric dipole moment. Furthermore, the

magnetic susceptibility(insensitivity) of Li(Yb) allows for individual addressing of Li with

magnetic fields, and the ability to control the interspecies cloud overlap. The large mass

ratio is predicted to result in 3-body Efimov bound states with small energetic spacing in

the vicinity of a Feshbach resonance, allowing for the possible detection of many trimer

resonances.

The choice of an alkaline-earth like atom (Yb) over a second alkali for the mixture has

additional advantages, owing to the richer internal structure. Yb features two optically

accessible metastable excited states, 3P2 and
3P0, which introduce the possibility of studying

interspecies or intraspecies anisotropic interactions. Furthermore, the fermionic isotopes of

Yb have non-zero nuclear spin that does not couple to the electronic angular momentum

for the 1S0 and 3P0 states, giving rise to an SU(N) symmetry of two-body interactions and
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exciting applications in quantum simulation [19].

In the realm of many-body physics, 6Li is a prototype atom for studies of strongly inter-

acting fermions. The addition of 174Yb presents a bosonic impurity probe of the fermionic

gas, and could be used to study fundamental aspects of Fermi superfluidity (e.g. critical

velocity, equation of state properties). Additionally, there is the prospect of achieving simul-

taneous superfluidity in the bosonic and fermionic components, and studying the resulting

coupled-superfluid dynamics. Such a system was first prepared in a mixture of 6Li-7Li [31],

with the realization in our lab occurring roughly 2 years later [95].

1.2 The search for tunable interactions

Many of the models that we desire to simulate in quantum gas mixture experiments require

tunability of interspecies interactions. Furthermore, the most successful method for creat-

ing ultracold heteronuclear molecules has been to coherently create loosely bound Feshbach

dimers using a Landau-Zener sweep at a Feshbach resonance, and subsequently bridge the

large energy scale to the rovibrational ground state using coherent two-photon optical trans-

fer. Thus, an important first step in the Yb-Li mixture is to go in search of such magnetically

tunable Feshbach resonances.

In many combinations of alkali species, this tunability is readily achieved because of

their specific internal structure. Though not globally true, the bialkali systems often feature

broad Feshbach resonances resulting from the strong exchange interaction, which couples the

entrance (or open) channel (e.g. triplet) to the closed, or molecular channel (e.g. singlet)

over a wide range of magnetic field values.

In the Yb-Li system, the situation is much more grim, due to the presence of only a single

scattering channel in the electronic ground state combination Yb(1S0) + Li(2S1/2). While

theorists have predicted a Feshbach resonance mechanism for this scattering complex [15],

the resulting resonances have widths on the order of mG (at best), and reside at fields near

1000 G. Thus, while the potential payoff from realizing an interspecies Feshbach resonance

in this system warranted brief searches early on, we eventually abandoned hope for these
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resonances and turned our attention to a metastable excited state in Yb. In the combination

Yb(3P2) + Li(2S1/2), there were predicted many broad Feshbach resonances resulting from

the considerable anisotropic Van der Waals coupling mechanism [35, 65].

Indeed, after considerable effort to populate and spin purify a sample of 3P2 atoms (Yb∗)

in our lab, we initiated studies of interspecies collisions as a function of magnetic fields, and

identified behavior linked to Feshbach resonances [27]. Unfortunately, the inelastic loss that

accompanies elastic tunability for resonances of this type (i.e. atoms in excited electronic

states) proved to be too great to continue towards forming Feshbach dimers of Yb∗ and Li.

The investigation of interspecies interactions in this mixture is discussed in chapter 5.

1.3 Photoassociation and prospects for YbLi ground state molecules

Shortly after our experiments in the Yb∗-Li mixture, we turned our attention back to the

ground state combination, and initiated spectroscopic studies of YbLi∗ molecular potentials

asymptoting to the 2P state in Li using photoassociation (PA). Inspired by experiments with

84Sr [102], the plan for creating ground state YbLi molecules became to utilize the enhanced

overlap of the scattering and molecular wave functions offered in a tightly confining optical

lattice to achieve efficient two-photon transfer from free atoms to a ground state, vibra-

tionally excited molecule, thus circumventing the need for a magnetically tunable resonance

altogether.

Due to initial complications encountered when attempting these measurements in the

optical trap, we opted to perform this spectroscopy in a dual-species magneto-optical trap

(MOT). Though this required overcoming various technical hurdles because of the vastly

different MOT parameters for Yb and Li, it proved to be a fruitful route towards creat-

ing excited state YbLi∗ molecules via PA, as we identified a few excited-state molecular

resonances [96].

These photoassociation studies are being revisited in our group and extended into the

optical trap. In addition to successfully locating lines deeper in the excited state potential,

we have found the position of the least bound vibrational state in the electronic ground state
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potential, a key step towards realizing the eventual goal of coherent two-photon transfer.

While further PA studies are necessary to be sure that the two-photon route chosen offers

the largest possible free atom-to-molecule coupling (i.e. that the chosen vibrational state in

the excited state has the largest possible Franck-Condon factor), the steps forward are clear,

and the implementation of a three-dimensional optical lattice imminent.

1.4 Improvements to the apparatus and combined Bose-Fermi Superfluidity

The photoassociation studies in the dual-MOT were quickly followed by an accidental loss of

ultra-high vacuum (UHV) in our experiment. While the headache of re-achieving UHV less-

ened the pace of scientific investigation in the lab, the interlude gave us time to implement

much needed upgrades to the apparatus, including making the Yb and Li MOT optics setups

much more robust with optical fibers and intensity feedback, and completely redesigning the

optical trapping setup. Concurrently, in the interim I initiated a series of numerical simula-

tions aimed at optimizing the efficiency and speed of evaporative cooling in our new optical

trap setup, utilizing the dynamical trap shaping capabilities offered with time-averaged po-

tentials. The ensuing experimental investigations with 174Yb proved surprisingly successful,

and we were able to optimize this technique to achieve the fastest experimental cycle time

for the creation of Bose-Einstein condensates in an optical trap to date, as well as the largest

ever Yb condensates [94].

In addition to enhanced 174Yb quantum degenerate gas production, the redesigned optical

trap and more robust MOT setup resulted in huge gains for our quantum degenerate mixture

preparation. With the further upgrade of adding sub-Doppler cooling for Li, the signal-

to-noise of the mixture at quantum degeneracy was significantly greater than in previous

experiments. This turned out to be a crucial ingredient to allowing us to achieve fermionic

superfluidity in our system. These experiments culminated in the achievement of a combined

Bose-Fermi superfluid mixture, the first such realization in a mixture of two different elements

[95], which is detailed in chapter 8.
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Part I

BACKGROUND AND RELEVANT CONCEPTS
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Chapter 2

TRAPPED, IDEAL ATOMIC GASES

The field of experimental atomics physics underwent a profound shift with the advent of

laser cooling and trapping of neutral atoms, beginning in the 1980s. Soon after, with the

implementation of collisional evaporative cooling in conservative potentials, Bose-Einstein

condensates (BECs) of dilute atomic gases were realized. Application of the same tools to

fermionic species of atoms further boosted the promise of ultracold atomic physics, in large

part because of the stability of strongly-interacting two-component Fermi gases. While the

history of the now ubiquitously-used tools of ultracold atomic physics is indeed rich, we

aim here to present a concise yet sufficient account of relevant physical concepts. Towards

this end, we forgo a complete discussion of laser cooling and trapping, and instead only

highlight the physical origins of the light scattering force and the dipole force (or AC Stark

effect), which are at the heart of ultracold atomic physics experiments. We then move on to

discuss the optical dipole trap, as well as the extension to time-averaged potentials using a

rapidly moving trapping laser beam focus. Finally, we present an overview of the relevant

thermodynamics of ideal, trapped quantum gases.

2.1 Atoms in laser fields

The treatment of an atom in the presence of an external electromagnetic field is of central

importance to the field of laser cooling and trapping of neutral atoms. In the beginning of

this section we will focus on the dynamic response of an atom in such a field, as well as how

the field couples to atomic motion. For more on the specifics of Zeeman slowing, magneto-

optical trapping, Doppler cooling, and sub-Doppler cooling, the reader is referred to a couple

of the many texts discussing these topics [33, 75]. We will however discuss the optical dipole
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trap in detail, as this is the ultimate tool we use to achieve quantum degeneracy, and is the

setting for most of our experiments.

2.1.1 Basic interaction

To examine the response of a real atom in a monochromatic laser field, we consider a two-

level system with a dissipation rate Γ from the excited state, corresponding to the natural

linewidth of the atomic transition. Typically, we are concerned with cycling dipole transi-

tions between S and P atomic orbitals. Within the dipole approximation, the atom-laser

interaction Hamiltonian is given by HAL = −d⃗ · E⃗, which we treat as a perturbation on top

of the bare atomic Hamiltonian H0 with eigenstates |g⟩ (ground, S) and |e⟩ (excited, P )

and energy separation Ee − Eg = ~ω0. Here, d⃗ = er⃗ and E⃗ = E⃗0 cos(ωLt − kLx), where we

assume the light is traveling in the x direction and is linearly polarized in the z direction,

i.e. E⃗0 = E0ẑ. One can then proceed to solve for the dynamics using time-dependent per-

turbation theory, where we write the atomic state as |ψ⟩(t) = cg|g⟩+ cee
−iω0t|e⟩. However, if

we work within the rotating-wave approximation, valid for ωL−ω0 ≪ ωL+ω0, the dynamics

including dissipation from spontaneous emission can be solved exactly (see for example the

treatment by Foot [33], or the more rigorous treatment by Cohen-Tannoudji [22]). The re-

sult is the famous optical Bloch equations, which govern the dynamics of the elements of the

atomic density matrix, ρ. Furthermore, using the expression for |ψ⟩(t) above one can show

that the expectation value of the dipole operator dz = d⃗ · ẑ evolves according to (at x = 0)

⟨dz⟩ (t) = 2e⟨g|z|e⟩ [u cos(ωLt)− v sin(ωLt)] , (2.1)

where u and v are the real and imaginary parts of the off-diagonal density matrix element

ρge = ⟨g|ρ|e⟩, also called the coherence.

Hence, in the presence of a driving AC electric field, the atom acquires an oscillating

dipole moment at the laser frequency, ωL, with both in-phase (u) and quadrature (v) com-

ponents. These respective components are thus associated with conservative and dissipative

interactions with the laser field. The relative strength of each of these is determined by the
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magnitudes of u and v, which, in the steady state, are given by

u =
2δ

Ω

s

1 + s+ (2δ/Γ)2
, and v =

2Ω

Γ

1

1 + s+ (2δ/Γ)2
. (2.2)

Here, Ω ≡ e⟨g|r⃗ · E⃗0|e⟩/~ is called the Rabi frequency, Γ is the rate of spontaneous emission

from the excited state, s ≡ 2Ω2/Γ2, and δ = ωL−ω0 is the detuning. The parameter s is often

used to define the saturation intensity, Isat, according to s ≡ I/Isat
1. From u/v = 2δ/Γ, we

see that the dissipative process (i.e. spontaneous scattering) dominates for small detuning,

and the conservative interaction for large detuning.

Next we compute the time-averaged force on the atom ⟨F⃗ ⟩ = −⟨dz⟩∇Ez, where the bar

indicates a time average over the period T = 2π/ωL, to get an explicit form for the respective

forces [22]. Therefore, at x = 0 we find

⟨F⃗ ⟩ = −2e

T
⟨g|z|e⟩

∫ T

0

(u cos(ωLt)− v sin(ωLt)) ((∇E0) cos(ωLt) + E0kLx̂ sin(ωLt)) dt

= −~ (u∇Ω− vΩkLx̂) . (2.3)

Writing ⟨F⃗ ⟩ = F⃗dip + F⃗scat, and using the expressions in equation (2.2) for u and v, we find

F⃗dip = −~δ
2
∇ ln

(
1 +

Ω2/2

δ2 + (Γ/2)2

)
, and F⃗scat = ~kLx̂

Γ

2

s

1 + s+ (2δ/Γ)2
. (2.4)

The magnitude of the spontaneous scattering force in equation (2.4) can be expressed as

Fscat = ~kLΓscat, where ~kL is the momentum carried by a single laser photon, and Γscat =

Γρee is the rate at which the atom scatters photons. We explicitly see here the conservative

nature of the dipole force, as it can be written as the gradient of a potential. Thus, we

express the dipole force as Fdip = −∇Vdip, where Vdip = ~Ω2/(4δ) for large detuning, and

Ω(r⃗) ∝
√
I(r⃗) depends on position through the spatial mode of the laser beam. Since

Vdip < 0 for δ < 0, we see that a local maximum of intensity can be used as a conservative

trap for atoms with a red-detuned laser beam. This type of trap is referred to as an optical

dipole trap, or ODT.

1With this form for s, and using Γ = ω3
0e

2|⟨g|r⃗|e⟩|2/(3πϵ0~c3), one can show that Isat = 2π2~cΓ/(3λ3
0),

where λ0 = 2πc/ω0.
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While the above discussion highlights the close relationship between the scattering and

dipole forces, it is only valid within the rotating-wave approximation (i.e. close to atomic

resonance). In most ultracold atom experiments, however, the ODT is produced by a focused

laser beam with very large detuning from atomic resonance. In this case, one cannot make

the rotating-wave approximation, as (ωL − ω0)/(ωL + ω0) is typically greater than 10%. To

find the form of the potential, then, one performs a perturbation theory analysis to find

the energy shift of the ground electronic state due to the trapping-laser couplings to excited

states2, which will be valid to leading order provided |ce|2 ≪ 1 (or equivalently Γscat/Γ ≪ 1).

The most general form of the AC Stark shift, including an arbitrary number of excited states

{|ei⟩}, can be found in this way to be

Vdip = −~
4

∑
i

Ω2
gei

(
1

ωgei − ωL

+
1

ωgei + ωL

)
= −~

2

∑
i

ωgeiΩ
2
gei

ω2
gei

− ω2
L

, (2.5)

where ωgei = (Eei −Eg)/~ and Ωgei = e⟨g|r⃗ · E⃗0|ei⟩/~. As found within the rotating-wave ap-

proximation, we again have Vdip ∝ I(r⃗). In general, we can write Vdip(r⃗) = −α(λL)I(r⃗)/(2ϵ0c)

[37], where α(λL) is the real part of the atomic polarizability at the laser wavelength λL.

The spontaneous scattering and dipole forces underlie all of the experimental tools used

to produce ultracold atomic gases with temperatures below 1 µK and mean velocities in the

range 1-100 mm/s, starting from atomic beams with initial mean velocities of a few 100 to

1000 m/s. The lion’s share of this tremendous bridging of energy scales is accomplished with

the spontaneous scattering force, as it is responsible for slowing of the atomic beam to near

0 m/s, and subsequently magneto-optical trapping and Doppler cooling to temperatures of

tens to a few hundred µK. The remaining cooling (neglecting sub-Doppler cooling techniques)

typically occurs in a conservative trap, by utilizing atomic collisions and the finite height

of the potential to selectively remove, or evaporate, the most energetic particles. Many

experiments utilize low-field seeking magnetic substates of certain atoms in conservative

2This analysis can be performed with a classical field using time-dependent perturbation theory, or with
a quantized electromagnetic field with time-independent perturbation theory [107]. Both methods give
the result in equation (2.5) in the limit of large photon number.
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magnetic traps to perform evaporative cooling, but as this technique is not employed in our

lab, we only discuss the ODT.

2.1.2 Optical dipole traps

As discussed in the previous section, the most basic implementation of an optical dipole trap

(ODT) involves focusing a red-detuned laser beam onto the atomic cloud. In practice, the

most common source for such a trap is the TEM00 Gaussian output mode of a single-mode

optical fiber. Accounting for the possible introduction of ellipticity, the general form for the

intensity profile is then

I(x, y, z) =
2P

πwx(z)wy(z)
e
− 2x2

w2
x(z)

− 2y2

w2
y(z) , (2.6)

where P is the total laser power, wi(z) = w0,i

√
1 + (z/zR,i)2 (i = x, y) is the transverse

distance from the beam center to the point at which the intensity has decreased by a factor

of 1/e2, w0,x and w0,y are the beam waists in the x and y directions, and zR,i = πw2
0,i/λL is

the Rayleigh range. The peak intensity is given by I0 = 2P/(πw0,xw0,y).

In choosing the wavelength λL of the trapping laser, one must consider the competition

between the spontaneous scattering and dipole forces. From the relation (valid for |δ| ≫ Γ)

Γscat = (Vdip/~)(Γ/δ) we see that using a high power laser with large negative detuning will

mitigate the issue of heating from spontaneous scattering. A standard solution is to utilize

commercially available solid state lasers at 1064 nm with output powers of up to hundreds

of Watts. For a loading trap depth of order 100 µK, this results in a scattering rate of3

Γscat = 0.5 s−1. Typically, one quickly lowers the trapping laser power after loading the

atoms from the MOT to begin forced evaporative cooling, thus lowering the spontaneous

scattering rate.

Another important parameter of the ODT is the beam waist size. In general, this becomes

a compromise between having a large enough waist to provide a large initial trap volume for

capturing atoms from the MOT, and a small, or tight, enough waist to ensure large particle

3For these estimates we use the values for Li of λ0 = 671 nm, Isat = 2.54 mW/cm2, and Γ/2π = 6 MHz.
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density and thus sustained evaporative cooling at low trap depths4. For most optical trapping

experiments, this compromise results in beam waists of 20 to 30 µm. As we will see in the

following section, one can actually satisfy both of these conditions, large initial and small

final trap volume, by using the time-averaged potential of a rapidly moving beam focus.

Using equation (2.6) and defining V0 = |V (0)| = 2|α(λL)/(2ϵ0c)|P/(πw0,xw0,y), we have

for a Gaussian beam shape

V (r⃗) = −sgn(α(λL))
V0∏

i=x,y

√
1 + (z/zR,i)2

e
− 2x2

w2
x(z)

− 2y2

w2
y(z) , (2.7)

where the atomic polarizability α(λL) > 0 (< 0) for red-detuned (blue-detuned) trapping

wavelengths. From this point forward we will assume a red-detuned ODT, or α(λL) > 0.

Typically, atomic ensembles held in an ODT quickly equilibrate by evaporation to temper-

atures satisfying V0/kBT ≈ 10. Therefore, we expect that the vast majority of atoms will

sample regions of the trap very near the potential minimum. Solving V (x∗)− V (0) = V0/10

for y = z = 0, we find x∗ = 0.46w0,x. As expected, the classical turning point corresponding

to the thermal energy kBT is close to the trap center, justifying the following expansion5 for

equation (2.7),

V (r⃗) ≈ −V0
[
1− 2x2

w2
0,x

− 2y2

w2
0,y

− z2

z2R

]
, (2.8)

where zR =
√
2(z−2

R,x + z−2
R,y)

−1/2. Ignoring the constant energy offset in equation (2.8) and

writing it as V (r⃗) = m
2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), we find

ωx =

√
4V0
mw2

0,x

, ωy =

√
4V0
mw2

0,y

and ωz =

√
2V0
mz2R

, (2.9)

where m is the atomic mass, and the quantities ωi (i = x, y and z) are referred to as the

trap frequencies. The aspect ratio of the circular Gaussian beam trap is then ωx/ωz =
√
2zR/w0 =

√
2πw0/λL, which equals 125 for w0 = 30 µm and λL = 1064 nm. This

4See section 3.2 for more details on forced evaporative cooling.

5Indeed, the ratio of the quartic and quadratic terms evaluated at the classical turning point x∗ is 20%.
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large anisotropy becomes a significant issue when trying to reach quantum degeneracy by

performing evaporative cooling at low trap depths. For this reason, additional confinement

along the axial (z) dimension is often necessary. A general solution involves intersecting the

first Gaussian beam focus with a second beam at some angle, creating a so-called crossed-

beam ODT. In the case of magnetic atoms, one can also provide this axial confinement with

magnetic field curvature along z.

As hinted at earlier, there are situations in which it is beneficial to be able to dynamically

change the trapping beam shape. While this can be accomplished by movement of the optical

elements (e.g. lenses) themselves, such a solution suffers from the slow speeds with which

such changes can be made. In the next section, we detail a technically simple method

for producing arbitrarily-shaped potentials that can be dynamically modified on very short

timescales.

2.1.3 Time-averaged optical potentials

The basic method for realizing time-averaged optical potentials involves rapidly modulating

the center position of the laser beam focus on a timescale much faster than the radial trap

frequency, and has been implemented by many groups in the past [76, 34, 1, 49, 98]. In this

case, the atoms do not respond to the instantaneous motion of the beam, and instead see a

potential proportional to the time-averaged intensity profile. We will refer to this method

as either center position modulation (CPM) or, as it is colloquially referred to, “painting”.

In this section, we will only concern ourselves with CPM in a single dimension, with the

second transverse dimension maintaining its Gaussian shape. To begin, we address the issue

of modulation bandwidth.

Trap frequencies at high ODT powers are commonly of order 1-10 kHz, necessitating CPM

frequencies of 10-100 kHz. The most straightforward way to accomplish such high bandwidth

CPM is to utilize the frequency-dependent deflection angle of an acousto-optic modulator

(AOM). In short, an AOM consists of a crystal (e.g. TeO2) attached to a radio-frequency

(RF) transducer, allowing for the creation of high-frequency sound waves in the crystal from
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Figure 2.1: (a) Bragg scattering in an AOM. A traveling sound wave in the crystal creates a

periodic modulation of the refractive index, off of which a laser beam may diffract if it satisfies

the Bragg condition mks = 2kL sin θB (first order m = 1 shown). (b) Photon-phonon picture

of first-order Bragg diffraction, in which an initial photon of frequency ωL,i and momentum

~k⃗L,i absorbs a phonon of frequency ωRF and momentum ~k⃗s. The constraints of energy

and momentum conservation give θi = θf . (c) Painting with an AOM. The time-dependent

AOM driving frequency ωRF (t) results in a time-dependent Bragg diffraction angle θB(t).

By choosing a suitable FM waveform f(t), one can realize arbitrary time-averaged intensity

profiles. The focal length f1 of the lens following the AOM determines the conversion of FM

amplitude δωRFf(t) to CPM amplitude d(t).
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a high-power RF source. The sound waves create a density modulation in the crystal at the

sound wave vector k⃗s, as shown in figure 2.1(a). This modulation forms a grating off of which

an incident laser beam can undergo Bragg diffraction, with the first-order diffracted beam

traveling at an angle 2θB = 2 sin−1(ks/(2kL)) with respect to the incident beam, where θB

is the well-known Bragg angle. Therefore, for small angles we find that the deflection angle

is proportional to the RF frequency θB ∝ ωRF = csks, where cs is the speed of sound in the

crystal.

As depicted in figure 2.1(b), this process can also be analyzed at the level of photon-

phonon interactions, whereby an incident photon with wave vector k⃗L,i absorbs a phonon

with wave vector k⃗s, resulting in a scattered photon with wave vector k⃗L,f . By analyzing

the conditions for energy and momentum conservation, one can show6 that θi = θf = θB.

In this way we can understand higher-order diffraction as multi-phonon absorption, and

negative-order diffraction as emission of phonons into the crystal.

Figure 2.1(c) gives a schematic of the CPM method for creating arbitrarily-shaped time-

averaged potentials. In this figure, we assume that the initial Gaussian beam is collimated

before the AOM. We depict two instantaneous snapshots of the first-order beam deflection

path, which varies in time due to the time-dependent Bragg angle θB(t) ∝ ωRF (t). The

diffracted beam then encounters a lens with a distance from the AOM equal to its focal

length, f1, resulting in a first-order beam which now varies in transverse displacement, d(t),

not angle. In designing such a setup, the most important consideration is the magnitude of

the beam center position displacement in the transverse plane at the ODT focus. Using a

Bragg angle of 10 mrad, a frequency modulation (FM) amplitude of δωRF/ωRF = 0.1, and

a collimating lens focal length of f = 100 mm, we find that the maximum displacement

is dmax ≈ 2θB(δωRF/ωRF )f = 200 µm. This order of magnitude is in agreement with our

experimental implementation, as with similar parameters we achieve CPM amplitudes of

6The momentum and energy conservation conditions are kL,i cos θi = kL,f cos θf , ks − kL,i sin θi =
kL,f sin θf , and ωL,f = ωL,i + ωRF . Since ωRF /ωL,i ≈ 10−7 − 10−8, we have ωL,f = ωL,i, or equiva-
lently kL,i = kL,f . From here it is easy to show that θi = θf = θB .



16

about 10w0, where w0 = 30 µm. We note here that our implementation of the painted ODT

involves two more lenses after the initial focusing lens shown in figure 2.1(c), which slightly

complicates the conversion from δωRF to dmax.

With an understanding of the technical details of CPM, we move on to the form of the

resulting time-averaged intensity profile. Without loss of generality, we assume that the

CPM occurs in the x dimension. Given a driving RF signal for the AOM with carrier ωRF,0

and FM waveform f(t) and amplitude δωRF , we expect a resulting time-dependent transverse

position in the focal plane of x′(t) = x− hf(t). The function f(t) is periodic with frequency

ωmod and attains maximum and minimum values of +1 and −1. We will refer to h as the

CPM amplitude. The time-averaged intensity profile is then given by

Ĩ(x, y, z) =
ωmod

2π

2π/ωmod∫
0

I(x− hf(t), y, z) dt, (2.10)

where I(r⃗) is given by equation (2.6). As we will see, our prescription for choosing the

function f(t) ensures that we can equivalently evaluate the time-averaged profile for half an

oscillation period, π/ωmod, provided the integration begins at a time t0 satisfying f(t0) = +1

or −1. Figure 2.2 shows the time-averaged intensity profiles for sinusoidal and triangle-

wave modulation7. We can see that sinusoidal modulation quickly results in a double-well

trap, while triangle-wave creates a one-dimensional box potential for large CPM amplitudes.

While these waveforms are simple to implement, we haven’t yet realized the goal of creating

arbitrarily-shaped potentials. What remains is devising a method to determine the necessary

function f(t) to create a desired potential shape Ĩ(x, 0, 0).

7The triangle-wave example is particularly simple to analyze. Using equation (2.6) for I(r⃗), we can
compute the time-averaged profile over a half-period of the triangle wave analytically, giving

Ĩ(x, 0, 0) =
2I0
T

T/4∫
−T/4

exp

(
− 2

w2
0

(
x− h

4t

T

)2
)

= I0

√
π

2

w0

4h

[
erf

(√
2(x+ h)

w0

)
− erf

(√
2(x− h)

w0

)]
. (2.11)
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Figure 2.2: Time-averaged potentials for sinusoidal (left) and triangle-wave (right) modula-

tion. The CPM amplitude h for each curve is given in units of the Gaussian beam waist w0.

For large h, the sinusoidal modulation develops a double-well character, while the triangle-

wave leads to a box-like potential.

To find a straightforward recipe for determining the painting function f(t) for a given

Ĩ(x, 0, 0), we adopt an approximate method where we assume the unpainted beam (the

“paintbrush”) to be a delta function in the x dimension. In what follows, we work with

one-dimensional intensity profile given by I1D(x) =
∫
Ĩ(x, y, 0) dy, which can generally be

written as I1D(x) = I1D(0)g(x/h), where g(y) is the desired potential shape satisfying g(1) =

g(−1) = 0. Since we know the desired function g, we reason that the modulation function

f(t) must spend an amount of time at the value f ′ that satisfies

dt|f=f ′

dt|f=0

=
I1D(hf

′)

I1D(0)
= g(f ′). (2.12)

Then, substituting df/ḟ for dt and defining ḟ |f=0 ≡ v0, we have

df ′

dt
=

v0
g(f ′)

. (2.13)

Integrating equation (2.13) we get

f(t)∫
0

g(f ′) df ′ = v0t. (2.14)
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Lastly, we must solve equation (2.14) for f(t) and create the suitable periodic continuation

since this prescription only gives f(t) over one-half of a period8. This can be done analytically

for many profiles, including the offset linear potential shown in figure 2.3(a)-(b), where

g(x) = (1+ax)Θ(1−|x|) and −1 ≤ a ≤ 1, giving f(t) = 1
a
(
√
1 + 2at−1) for a

2
−1 ≤ t ≤ a

2
+1.

Notice that in the limit a→ 0, the FM waveform becomes a triangle wave as expected. This

potential shape is of special interest as the linear slope can be tuned to cancel the effect of

gravity within the trapping region.

To determine the analytical form of the time-averaged potential in the case of the delta-

function paintbrush, we write the 1-dimensional profile as

I1D(x) =
2P

T

T/4∫
−T/4

dt δ(x− hf(t)), (2.15)

where we use that the 1-dimensional intensity profile for the paintbrush is given by Pδ(x),

and that our procedure for determining f(t) gives us half of a period centered on t = 0. We

then find

I1D(x) =
2P

T

T/4∫
−T/4

dt
δ(t− t0)

h|ḟ(t0)|
, (2.16)

where t0 satisfies x − hf(t0) = 0, and from equation (2.13) we have ḟ(t0) = v0/g(f(t0)) on

the domain −1 ≤ f ≤ 1. Clearly the integral in equation (2.16) will evaluate to zero unless

|t0| ≤ T/4, which is equivalent to our initial requirement that |f(t0)| ≤ 1. We can then

evaluate the integral and find

I1D(x) =
2P

hv0T
g(f(t0)) =

2P

hv0T
g(x/h). (2.17)

Thus, we see that our procedure for determining f(t) does indeed result in the correct time-

averaged shape, and that the peak intensity for the delta-function-painted potential is given

8We only get one-half of a period in f(t) because we are looking for its functional form between t− and
t+, where f(t−) = −1 and f(t+) = +1. Therefore, we can define the full period of the FM waveform
according to T = 2(t+ − t−). The second half of the period is then defined by f(t+ + t) = f(t+ − t) for
t < T/2.
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Figure 2.3: Calculated time-averaged intensity profiles for tilted-box and absolute-value

potentials. (a)-(b) Time-averaged potentials for a Gaussian paintbrush with h = 5w0 and

g(x) = (1 + ax)Θ(1 − |x|), where −1 ≤ a ≤ 1, and associated CPM waveform f(t) for

various slopes a. As a→ 0 we recover the flat box potential from figure 2.2. The waveforms

f(t) used here are found analytically according to equation (2.14). (c)-(d) Absolute value

time-averaged potentials with g(x) = Max(1−|x|, 0) for various CPM amplitudes using both

delta function (dashed lines) and Gaussian (solid colored lines) paintbrushes. The waveform

in (d) is found using the numerical scheme described in the end of the section.
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by I1D(0) = 2P/(hv0T ). In situations where f(t) can be determined analytically, one will

find that T ∝ v−1
0 , and thus v0 drops out of the expression for I1D(0).

We can also imagine situations where analytical solutions may not exist. Therefore, we

desire a generally applicable numerical scheme for determining the correct function f(t). In

general, we can write equation (2.14) as G(f(t))− v0t = 0, where G(x) is the antiderivative

of g(x), and G(0) = 0. Then, we simply need to numerically solve the equation G(f(ti)) −

v0ti = 0 for a set of times {t0, t1, ..., tN}, where t0 = G(−1)/v0 and tN = G(1)/v0. One

can then check this procedure by numerically evaluating equation (2.10) using the values

{f(t0), f(t1), ..., f(tN)}. Figure 2.3(c)-(d) shows the numerical solution for the example of

the absolute value potential, g(x) = Max(1 − |x|, 0), for both Gaussian and delta function

initial beam shapes.

We will return to the topic of time-averaged potentials in chapter 7 where we discuss

experiments that utilize the dynamic trap shaping made possible by painting to achieve

notably efficient quantum degenerate gas production, as well as the fastest all-optical BEC

production time to date of 1.6 seconds. For these measurements, as well as the subsequent

experiments on combined Bose and Fermi superfluids of Yb and Li, we choose a parabolic

time-averaged potential profile. The pristine harmonic nature of the resulting trap allows

for a quantitative understanding of the evaporation dynamics, which we then model and

optimize to achieve efficient (or fast) cooling.

2.1.4 Optical lattices

A more qualitative change of the trapping geometry involves the implementation of an optical

lattice, which creates a periodic potential for the atoms with lattice sites separated by a

distance on the order of the lattice laser wavelength. For modest lattice potential depths,

the center-of-mass (COM) wave functions of the atoms become most easily understood as

delocalized Bloch waves extended throughout the lattice, similar to those of conduction

electrons in a metal. In the case of very deep lattice potentials, one adopts the Wannier

picture of localized atomic COM wave functions at each lattice site, and nearest-neighbor
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Figure 2.4: Schematic (left) and potential landscape (right) of a typical red-detuned 1D

optical lattice formed by retro-reflection. The incident trapping beam is focused by lens 1,

collimated by lens 2, retro-reflected by a mirror, and then refocused back onto the atoms by

lens 2. While the incident beam is characterized by the electric field E⃗0 cos(ωLt − kLz) for

x = y = 0, the reflected beam has an attenuated field strength βE⃗0 cos(ωLt + kLz) due to

losses in optical elements, where 0 ≤ β ≤ 1.

hopping takes the place of the kinetic energy in the Hamiltonian. The utility of the optical

lattice in ultracold atomic physics cannot be overstated. Indeed, a large number of the

experiments described as “quantum simulation” rest on the direct analogy of neutral atoms

in optical lattices to electrons (or quasiparticles) in solid-state systems.

The standard implementation of an optical lattice involves interfering counter-propagating

Gaussian laser beams, usually accomplished by retro-reflection. As shown in figure 2.4, the

beam is first focused down onto the atom cloud on its first pass, and must therefore encounter

another lens before the retro-reflecting mirror. While the retro-reflected beam ideally retains

the full initial electric field amplitude, E0, experimental realities (e.g. losses in viewports,

lenses, mirrors, etc.) result in a reflected beam with amplitude βE0 at the atoms, where

0 ≤ β ≤ 1. The resulting potential at the position of the atoms is then given by

VL,1D(r⃗) = sgn(α(λL))V0
(
2β cos(2kLz) + β2 + 1

)
e
− 2x2

w2
0,x

− 2y2

w2
0,y , (2.18)

where kL = 2π/λL, V0 is defined as in equation (2.7), and we assume z ≪ zR for simplicity.

In the case β = 0, we recover equation (2.7), and for β = 1 we find (assuming a red-detuned
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beam)

VL,1D(r⃗) =
β→1

−4V0 cos
2(kLz)e

− 2x2

w2
0,x

− 2y2

w2
0,y . (2.19)

Importantly, the depth of the optical lattice potential with β = 1 is 4 times that of a

traveling wave ODT because of the constructive interference of the electric field amplitude.

For intermediate values of β, the potential possesses both a standing wave and traveling wave

component, as depicted in figure 2.4. To realize periodic potentials in 2D and 3D, one can

simply superimpose 2 or 3 retro-reflected 1D lattices with orthogonal vectors k⃗L, resulting

in a simple cubic lattice for the 3D case9.

For β = 1, we can expand about the potential minimum at z = 0 to get the lattice

harmonic frequency,

ωlat,z =
√
8V0k2L/m = 2Erec

√
slat/~, (2.20)

where Erec = ~2k2L/(2m) is the photon recoil energy and slat = 4V0/Erec is the lattice depth

in units of recoils. To estimate the trap frequencies involved, we consider 6Li in a λL = 1064

nm optical lattice, for which Erec/~ = 2π× 29 kHz. The much higher frequencies realized in

optical lattices compared to those in standard dipole traps make stabilization of lattice laser

power and frequency very important, as noise in the frequency band of one to a few ωlat,z

can cause heating of the atoms.

2.2 Ideal quantum gases

We consider the ideal quantum gas to be a thermodynamic system in which N identi-

cal particles are in thermal equilibrium and obey a separable many-body Hamiltonian,

H =
∑N

i=1Hi(r⃗i), where Hi(r⃗i) = p⃗ 2
i /2m + V (r⃗i). This idealization of course necessitates

9In addition to orthogonal k⃗L, it is necessary to have orthogonal polarizations for the three retro-reflected
beams to avoid additional interference effects. Since the mutually orthogonal polarization condition is
never perfectly met in practice, it is also necessary to provide a frequency offset between each beam. In
this case, any residual interference time-averages to zero.



23

that interparticle interactions be negligible, which can be the case for sufficiently weak inter-

actions in any system, or for arbitrary interactions in a sufficiently dilute system. While the

presence of interparticle interactions is essential to the production of quantum degenerate

gases using evaporative cooling, the two-body interactions of interest (i.e. s-wave interac-

tions) are usually of such short range that they can be neglected in the treatment of the

statistical properties of the gas10. Here we restrict our discussion to temperatures satisfying

kBT ≪ Eℓ=1, where Eℓ=1 ≈ ~2/(µrr
2
int) is the p-wave barrier, µr is the reduced mass of the

two-body scattering system, and rint is the range of the interaction potential. In this case,

we quantify the degree to which a gas is weakly interacting with the parameter na3, where

n is the particle density and a is the s-wave scattering length. One can further consider this

quantity to be the number of particles contained within the “scattering volume” |a|3. Using

typical values of n ≈ 1013−1014 cm−3 and a ≈ 1−10 nm, we find na3 ≈ 10−8−10−4. Lastly,

note that our definition of the ideal gas allows for the inclusion of an external potential,

V (r⃗), since this is required in order to treat our trapped atomic gases.

2.2.1 Thermodynamics and statistical mechanics

To determine the thermodynamic properties of ideal gases in arbitrary external potentials

V (r⃗) subject to either Bose or Fermi statistics, we work within the grand canonical ensemble

[32]. In this case, the thermodynamic potential of interest is the grand potential, sometimes

called the Landau free energy,

Ω = E − TS − µN ⇒ dΩ = −SdT − PdV −Ndµ. (2.21)

Thus, we can calculate the (mean) total entropy S, number N , and pressure P from

S = −
(
∂Ω

∂T

)
V,µ

, P = −
(
∂Ω

∂V

)
T,µ

, and N = −
(
∂Ω

∂µ

)
T,V

. (2.22)

10A notable exception to this occurs when the weakly-interacting gas undergoes Bose-Einstein condensa-
tion (BEC). In this case, the kinetic energy of the particles in the condensate is sufficiently small that
interactions become the dominant effect.
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In order to connect these thermodynamics quantities to particle statistics, we begin with the

grand canonical partition function, Z = exp(−Ω/kBT ), which is defined in the context of

the probability for a many-particle system S to be in a given state. Specifically, we define

Pi,N to be the probability that the system S is in a many-particle state |i⟩ with total energy

Ei and total particle number N , both of which we assume may vary (e.g. by exchange with

a neighboring thermodynamic system), giving

Pi,N =
e−β(Ei−µN)

Z
, (2.23)

where β = 1/kBT . From the constraint
∑

i,N Pi,N = 1, we find that the normalization factor

is Z =
∑

i,N e
−β(Ei−µN).

For an ideal gas, we may use that the total energy of the many-particle state i is deter-

mined by the distribution nα of the N =
∑

α nα particles into single particle quantum states

with energy εα, giving Ei =
∑

α εαnα. Denoting the set of all possible distributions for a

given total number N by {nα}, we find that the partition function can be written as

Z =
∞∑

N=0

eβµN
∑
{nα}

e−β
∑

α εαnα × δNi,
∑

α nα

=
∑
{nα}

∏
α

(
e−β(εα−µ)

)nα

=
∏
α

∑
n

(
e−β(εα−µ)

)n
. (2.24)

Note that in going from the first to second lines above, the sum over sets of occupation

number sets {nα} becomes unrestricted, or independent of the total sum. Furthermore, in

going from the second to third line, the summation over occupation number sets becomes a

simple sum over all possible particle numbers for a single state.

For indistinguishable bosons, the occupation number may be any nonnegative integer,

n = 0, 1, ...,∞, while for indistinguishable fermions, n = 0 or 1 due to the Pauli exclusion

principle. Thus, for both types of particles, we can easily perform the summation in equation
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(2.24) and find Z =
∏

α Zα, where

Zα,B =
1

1− e−β(εα−µ)
(bosons), Zα,F = 1 + e−β(εα−µ) (fermions). (2.25)

Then, using Ω = −kBT lnZ, we find that Ω =
∑

α Ωα, with

Ωα = ± 1

β
ln
(
1∓ e−β(εα−µ)

)
, (2.26)

where the upper sign refers to bosons, and the lower to fermions. The thermodynamic

quantity of most interest to us at present is the mean occupation of the various quantum

states. Using equation (2.22), we can express the mean particle number as

N =
∑
α

n̄α, where n̄α =
1

eβ(εα−µ) ∓ 1
= f(εα). (2.27)

The distributions f(εα) are of course the famous Bose-Einstein (upper sign) and Fermi-

Dirac (lower sign) distributions for non-interacting many-particle quantum systems. Note

that in the high-temperature limit, we recover the result for a classical Boltzmann gas,

f(ε) = exp (−β(ε− µ)).

It is assumed in the grand canonical ensemble that the particle number may change

through exchange with a neighboring system. However, in practice we fix the particle number

in equation (2.27) and use the sum over energy levels to determine the chemical potential, µ.

The topic of the next section will be performing this sum in a useful way for trapped atomic

gas experiments.

2.2.2 Trapped quantum gases

As discussed in section 2.1.2, we are primarily concerned with atomic gases held in harmonic

traps, where

V (r⃗) =
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (2.28)

where m is the mass of the particle and ωi is the trap frequency in the i = x, y or z direction.

In general, the distributions of interest to us are the spatial density distribution and the
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momentum distribution of the ensemble. While one can easily solve for the single particle

quantum states for the potential in equation (2.28), ε(nx, ny, nz) =
∑

i=x,y,z ~ωi

(
ni +

1
2

)
,

and use these levels to determine the thermodynamic quantities discussed in section 2.2.1,

this would only give us global quantities for the entire ensemble (e.g. the total number

N and total entropy S), and not local ones like the spatial density profile n(r⃗). In order

to determine local quantities we invoke the Thomas-Fermi approximation, which is a semi-

classical approximation allowing us to replace the quantized energy level spectrum εα with a

continuous one corresponding to the classical energy ε(r⃗, p⃗) = p⃗ 2/2m+V (r⃗), while retaining

the quantum statistics of the particle through the distribution function (equation (2.27)).

This approximation is valid for kBT ≫ ~ωi, and amounts to replacing the idea of occupation

of eigenstates of the Hamiltonian with occupation of a cell in {r⃗, p⃗} phase-space of volume

(2π~)3. Accordingly, we replace the summation over discrete energy levels εα with an integral

over the continuous variables r⃗ and p⃗,
∑

α → (2π~)−3
∫
d3r d3p.

Thus, the particle distribution function from equation (2.27) becomes

f(r⃗, p⃗) =
1

e
β
(

p⃗ 2

2m
+V (r⃗)−µ

)
∓ 1

. (2.29)

from which we calculate the spatial density [58]

n(r⃗) =
1

(2π~)3

∫
d3p f(r⃗, p⃗) = ± 1

λ3dB
Li3/2

(
±eβ(µ−V (r⃗))

)
, (2.30)

where the upper and lower signs refer to bosons and fermions, respectively, λdB =
√
2π~2/mkBT

is the de-Broglie wavelength, and Lim(z) is the mth order polylogarithm11 of z. Then, we

can determine the total atom number (or, pragmatically speaking, fix the total atom number

11The polylogarithm is defined as Lim(z) =
∑∞

k=1
zk

km , but can also be expressed as

Lim(z) =
1

πm

∫
d2mx

1

ex⃗ 2/z − 1
,

where x⃗ is a 2m dimensional vector. The important limiting values for us are

lim
z→0

Lim(z) = z and lim
z→∞

−Lim(−z) =
1

Γ(m+ 1)
lnm(z).
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and determine the chemical potential) from

N =

∫
d3r n(r⃗) = ±

(
kBT

~ω̄

)3

Li3
(
±eβµ

)
, (2.31)

where ω̄ = (ωxωyωz)
1/3 is the geometric mean trap frequency.

The first limit we consider for the trapped quantum gas is that of high temperature,

where we expect both the boson and fermion cases to reduce to the classical Boltzmann gas.

Indeed, for T → ∞, exp(β(µ− V (r⃗)) → 0, and we find the classical result

ncl(r⃗) = λ−3
dBe

βµe−
βm
2 (ω2

xx
2+ω2

yy
2+ω2

zz
2) =

N

π3/2RxRyRz

e−
∑

i x
2
i /R

2
i , (2.32)

where Ri =
√
2kBT/mω2

i . We can extend equation (2.32) to apply to ideal gases after they

have been suddenly released from the trap and allowed to undergo ballistic expansion for

a time t. In this case, the radii Ri become rescaled in a time-dependent fashion, Ri(t) =

Ri(0)
√

1 + ω2
i t

2 =
√
Ri(0)2 + 2kBTt2/m. Thus, ballistic expansion provides a simple yet

very precise way to measure the temperature of a classical trapped gas. Note that in the

limit t ≫ ω−1
i , the temperature T is the only fit parameter on a curve of Ri(t), and the

initial size becomes irrelevant.

Next we consider the properties of quantum degenerate gases, where the onset of quantum

degeneracy occurs when nλ3dB = 1. Here, the quantity nλ3dB is referred to as the phase space

density, and can be roughly thought of as the number of particles occupying a cell in phase

space of volume ~3.

Lastly, one can also show that

∞∫
−∞

dx Lim

(
ze−x2

)
=

√
πLim+1/2(z)
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2.2.3 Quantum degeneracy

For fermions in the limit T → 0, we determine the chemical potential µ(T = 0) from equation

(2.31),

N = −
(
kBT

~ω̄

)3
1

Γ(4)
(βµ)3 ⇒ EF ≡ µ(T = 0) = ~ω̄(6N)1/3, (2.33)

where we have defined the Fermi energy EF . To see what this quantity represents, observe

that in the limit T → 0, the Fermi-Dirac distribution function equation (2.27) becomes a

step function, limβ→∞ f(εα) = Θ(µ− εα) = Θ(EF − εα). Thus, the Fermi energy equals the

energy of the highest occupied energy level at zero temperature. Two convenient quantities

to define at this point are the Fermi temperature, TF = EF/kB, and the Fermi wave vector,

kF =
√
2mEF/~. Using equation (2.31), we find a simple formula for the ratio of the

temperature T to the Fermi temperature TF ,

T

TF
=
[
−6 Li3(e

βµ)
]1/3

. (2.34)

For Fermi gases with 0 < T/TF ≪ 1, the spatial distribution is given by equation (2.30),

while for the T = 0 Fermi gas, we find

n(r⃗) =
1

λ3dB

1

Γ(5/2)
β3/2 [max (EF − V (r⃗), 0)]3/2

=
(2m)3/2

6π2~3
[max (EF − V (r⃗), 0)]3/2

=
8N

π2RF,xRF,yRF,z

[
max

(
1−

∑
i

x2i
R2

F,i

, 0

)]3/2
, (2.35)

where RF,i =
√

2EF/mω2
i is the Fermi radius in the xi direction. In practice, the difference

between the density distribution in equation (2.35) and that in equation (2.30) is remarkably

small for T/TF ≪ 1, making accurate thermometry difficult for deeply degenerate Fermi

clouds. This problem is compounded with the fact that measurements of quantum degenerate

clouds using absorption imaging correspond to integrating along the line of sight of the

imaging beam, resulting in the density distribution n2D(x, y) ∝
∫
dz n(x, y, z). Figure 2.5
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Figure 2.5: 2D profiles (integrated along the line of sight direction z of an absorption

imaging beam) of a non-interacting Fermi gas for various temperatures T/TF . The particle

number N and Fermi energy EF = kBTF = ~ω̄(6N)1/3 are equal for all curves. The vertical

axis is normalized to the peak 2D density for a zero temperature Fermi gas.

shows the 2D density profiles 12 for zero-temperature and finite-temperature Fermi clouds,

where we set y = 0 and display the shape along the x direction, in units of the Fermi radius

RF,x. It is clear that for T/TF < 0.1, the difference between the finite-temperature and

zero-temperature cloud shapes becomes quite small. Indeed, when one considers the noise

inherent in absorption imaging measurements, it becomes infeasible to extract temperatures

12After performing the integration along the imaging beam direction, the Fermi gas profiles for the zero
and finite temperature clouds become

n2D(x, y, T = 0) = n0

[
max

(
1− x2

R2
F,x

− y2

R2
F,y

, 0

)]2
and

n2D(x, y, T ̸= 0) = −2n0

(
T

TF

)2

Li2

(
− exp

[
βµ− TF

T

(
x2

R2
F,x

+
y2

R2
F,y

)])

Here n0 is the peak 2D density of the zero-temperature Fermi gas, and the additional factors in front of
the polylogarithm ensure that the total number in either case is the same (for the same Fermi energy EF ).
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below 0.05− 0.07TF with a fit.

Note that the shapes in figure 2.5 would be identical if we transformed to cylindrical co-

ordinates where ρ2/R2
F,ρ = x2/R2

F,x+y
2/R2

F,y and plotted the density as a function of ρ/RF,ρ.

This turns out to be of considerable use in fitting absorption images of deeply degenerate

Fermi clouds, since one-dimensional slices of the imaged 2D profile (like that shown in figure

2.5) have low signal-to-noise, especially in the tails of the distribution. Instead, one can

perform an elliptical average of the whole 2D image, and thus obtain an identically shaped

distribution to the one in figure 2.5, but with large signal-to-noise in the tails.

For bosons, the behavior of the ensemble as T approaches zero, or more specifically in

the regime of quantum degeneracy nλ3dB ≈ 1, is remarkably different. To see this, let us first

remark on the behavior of the chemical potential for the fermionic case. In the limit of high

temperature, we can rewrite equation (2.30) to find the phase space density at the center of

the trap

n(0)λ3dB = eβµ ⇒ µ = kBT ln
(
n(0)λ3dB

)
. (2.36)

Since we know the phase space density is much smaller than unity at high temperature, we

find that the chemical potential is large and negative in the Boltzmann regime. Thus, in

going from high to low (T/TF ≪ 1) temperature, where the chemical potential approaches the

Fermi energy, µ must cross smoothly through zero. For the Bose gas, inspection of equation

(2.27) reveals that this clearly cannot happen. Setting the ground state energy ε0 to zero, we

find that the ground state population diverges if µ → 0, which is the phenomenon of Bose-

Einstein condensation. Turned on its head, this argument instead gives us the chemical

potential in terms of the ground state, or condensed population N0. For N0 ≫ 1, we find

µ ≈ −kBT/N0. Thus, while the ground state population need not formally diverge (i.e. µ

need not be exactly zero), we may take µ to be zero at and below a critical temperature Tc

in computing the statistical properties of all other energy levels, or semiclassically, for all

momenta p⃗ ̸= 0. Setting µ = 0 in equations (2.30) and (2.31), we find for the non-condensed
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component13 the density distribution

nth(r⃗) =
1

λ3dB
Li3/2

(
e−βV (r⃗)

)
, (2.37)

and at the phase transition T = Tc the total number

N =

(
kBTc
~ω̄

)3

Li3(1) ⇒ Tc = ~ω̄
(
N

ζ(3)

)1/3

= 0.94~ω̄N1/3. (2.38)

At the transition, the phase space density at the center of the cloud fulfills the condition

for Bose-Einstein condensation of a homogeneous Bose gas n(0)λ3dB = Li3/2(1) = ζ(3/2) =

2.612, and remains saturated at this value for lower temperatures. Below the transition

temperature, the number of non-condensed atoms is found to be Nth = N(T/Tc)
3, while the

rest pile up in the ground state. Thus, we find the number of atoms in the Bose-Einstein

condensate (BEC) to be N0 = N −Nth, or in terms of the condensed fraction

N0

N
= 1−

(
T

Tc

)3

. (2.39)

The combination of condensed and non-condensed components of the ensemble below the

critical temperature result in a bimodal density distribution,

n(r⃗) = n0(r⃗) + nth(r⃗). (2.40)

For the non-interacting Bose gas, the condensate distribution n0(r⃗) is the square of the

harmonic oscillator ground state wave function multiplied by N0. However, due to the

large density and small kinetic energy ≈ ~ω̄ characteristic of BECs, the interaction energy

term dominates the kinetic energy term even though n0a
3 ≪ 1. Consequently, interactions

cannot be neglected in solving for n0(r⃗) for most realistic systems, but the BEC may still be

considered weakly interacting. In the next chapter, we will explore the effects of interparticle

interactions in a variety of settings, including the solution of the Schrödinger equation for a

weakly interacting BEC.

13 Equations (2.30) and (2.31) explicitly neglect the contribution from the ground state. In the semiclas-
sical formalism, we see this because the measure in the integral d3p = 4πp2dp, and therefore the zero
momentum state is given zero weight. If formulated in terms of an energy levels, the sum over quantum
state occupations (equation 2.27) becomes the integral N =

∫∞
0
dε g(ε)f(ε), where g(ε) ∝

√
ε for the

homogeneous Bose gas and g(ε) ∝ ε2 for the harmonically trapped Bose gas. In both cases, the state ε = 0
is again explicitly not included in the integral.
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Chapter 3

INTERACTING ATOMIC GASES

Due to the extremely dilute nature of trapped atomic gases, interactions tend not to

strongly affect the statistical and thermodynamic properties of the system for a wide range

of conditions. That being said, interparticle interactions are required in order to perform

the collisional evaporative cooling necessary to reach quantum degeneracy. The diluteness

of these atomic systems implies that only two-body interactions feature and we can neglect

three or higher-body interactions, greatly simplifying the theoretical treatment. In the case

of weakly-interacting BECs, the large decrease in kinetic energy with respect to that of the

thermal gas ensures that interactions, which enter at the mean-field level, play a dominant

role in the dynamics. Importantly, interactions in a BEC give rise to the phenomenon of

superfluidity. In special circumstances, the few-body and many-body physics of an atomic

system can be strongly altered with the use of tunable two-body scattering resonances,

referred to as Feshbach resonances. As we’ll see, molecular physics plays a central role in

determining the scattering behavior of a two-body atomic system. In fact, one can exploit

these scattering resonances to form ultracold diatomic molecules (in either a coherent or

incoherent fashion). The utilization of Feshbach resonances for studies of many-body physics

in ultracold atomic systems reached profound heights with the realization of superfluidity

in two-component Fermi gases across the so-called Bose-Einstein condensate to Bardeen-

Cooper-Schreiffer (BEC-BCS) crossover [58], including studies of the unitary Fermi gas [79,

80, 67]. In this chapter we review concepts of interacting atomic gases in both the few and

many-body context, focusing on examples relevant to the work presented in part II of this

thesis.
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3.1 Elastic scattering

Elastic scattering refers to an interaction event between free particles that does not change

the internal quantum state or quantum numbers of the participating particles. A simple

example of such a system is two spin-half particles (e.g. two hyperfine states of 6Li in its

ground electronic state 2S1/2). In this case, the spin angular momentum of the two scattering

partners can add to be S = 0 or 1 (i.e. singlet or triplet), which constitute the two possible

scattering channels, each with an associated molecular potential. Our statement of elasticity

implies that upon scattering, the two-particle system remains in the same scattering channel

as it was in prior to the interaction. The case of multi-channel scattering, i.e. when the

various collision channels are coupled by the scattering interaction, is an important one

which we will consider in our discussion of Feshbach resonances later in this chapter.

3.1.1 Basic formalism

The scattering problem of two free atoms at low collision energy features elegant simplicity

as it can be parametrized by a single quantity, the s-wave scattering length a. To see why

this is, we begin with the characterization of the interacting two-body system in the center-

of-mass coordinate frame. For two particles (labeled 1 and 2) with phase space coordinates

(r⃗1, p⃗1) and (r⃗2, p⃗2) in the reference frame where the center-of-mass is motionless, we are

left with only the relative coordinate r⃗ = r⃗2 − r⃗1 and relative momentum p⃗ = p⃗2 − p⃗1. For

the systems we’ll consider here, the interatomic potential V (r) is assumed to be spherically

symmetric, as is the case for the Van der Waals interaction (V (r) = −C6/r
6) between two

S orbital atoms1. The kinetic energy is then given by E = p⃗ 2/(2µr) = ~2k2/(2µr), where

µr = m1m2/(m1 + m2) is the reduced mass and we’ve defined the scattering wave vector

k⃗ = p⃗/~. At large interatomic distance and for k⃗ = kẑ, the scattering wave function has the

1The case where one or both of the atoms have finite orbital angular momentum or spin angular momentum
will be of interest for results presented later in this thesis. In this case, the Van der Waals interaction
has some angular dependence and the collision need not conserve ℓ or mℓ. In the context of multi-
channel scattering, this allows for the coupling of incoming s-wave scattering states with outgoing states
in molecular potentials (i.e. channels) of higher orbital angular momentum ℓ = 2, 4, 6...
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form [100]

ψ(r⃗) ∝ eikz + f(k, θ)
eikr

r
, (3.1)

where we clearly see that the scattering state is a linear combination of an incident plane wave

and a scattered spherical wave. The coefficient f(k, θ) is typically referred to as the scattering

amplitude, and quantifies the amplitude of the scattered spherical wave into the angle θ given

the collision momentum ~k. By considering the incoming and outgoing probability flux due

to the scattering event, we find that the differential cross section is dσ
dΩ

= |f(k, θ)|2. One can

show that the scattering amplitude for a spherically symmetric potential can be written as

f(k, θ) =
∞∑
ℓ=0

(2ℓ+ 1)fℓ(k)Pℓ(cos θ), (3.2)

where Pℓ is the Legendre polynomial of degree ℓ, and fℓ(k), called the partial-wave amplitude,

quantifies the strength of the effect of the scattering potential on the ℓth partial wave. Then,

similarly expanding the plane wave eikz in terms of spherical waves, we find

ψ(r⃗) ∝ 1

2ikr

∞∑
ℓ=0

(2ℓ+ 1)Pℓ(cos θ)
[
(−1)ℓ+1e−ikr + (1 + 2ikfℓ(k))e

ikr
]
. (3.3)

Thus the scattering wave function is shown to be the combination of incoming and outgoing

spherical waves with unequal coefficients. By combining the fact that the central potential

cannot couple partial waves of different angular momentum with the fact that the incoming

and outgoing fluxes of probability must be equal, we find that the coefficients of the spherical

waves in equation (3.3) must be of equal magnitude for each ℓ [100]. Defining the S-matrix

element Sℓ ≡ 1 + 2ikfℓ(k), this implies that |Sℓ| = 1. Thus, the action of the scattering

potential is to provide a phase shift to the outgoing scattering wave, while leaving the

incoming wave unchanged. By convention, we write this phase shift as Sℓ = e2iδℓ , which

results in the following expression for the partial-wave amplitude [100]:

fℓ(k) =
eiδℓ sin δℓ

k
=

1

k cot δℓ − ik
. (3.4)
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Either by direct integration of the differential cross section or by utilizing the optical theorem,

we now find the total cross section in terms of the phase shift of each partial wave

σtot =
4π

k
Im [f(k, θ = 0)] =

4π

k2

∞∑
ℓ=0

(2ℓ+ 1) sin2 δℓ. (3.5)

We remark here that since the central potential cannot mix states of different orbital

angular momentum, ℓ, the scattering problem may be solved individually for each partial

wave. This is also the reason that the S-matrix has only one index, i.e. it is diagonal in the

quantum number ℓ. Thus, we can write the scattering wave function as

ψ(r⃗) ∝
∞∑
ℓ=0

(2ℓ+ 1)Pℓ(cos θ)
ϕℓ(r)

r
, (3.6)

where the radial wave functions obey the one-dimensional Schrödinger equation

− ~2

2µr

d2ϕℓ

dr2
+

(
V (r) +

~2ℓ(ℓ+ 1)

2µrr2

)
ϕℓ = Eϕℓ. (3.7)

For large interatomic separation r, the centrifugal term presents a long-range barrier that

dominates the effective potential (so long as V (r) falls off faster than 1/r2) for all ℓ ̸= 0. This

allows us to argue qualitatively that, for low collision energies E = ~2k2/(2µr) and ℓ > 0,

the incoming plane wave is almost entirely reflected by the centrifugal barrier, and thus does

not contribute to the scattered wave (i.e. fl → 0 for ℓ > 0). More quantitatively, one can

show that for scattering off a short range potential near the collision threshold k → 0, the

phase shift obeys the relation tan δℓ ∝ k2ℓ+1 [99]. Therefore, in the limit k → 0, the s-wave

contribution to the scattering phase shift dominates. As was introduced in the early days of

nuclear physics [8], we can perform an effective range expansion of the s-wave phase shift in

the k → 0 limit as follows:

k cot δ0 = −1

a
+

1

2
reffk

2 +O(k4), (3.8)

where a = − limk→0 tan δ0/k is called the s-wave scattering length, and reff is the effec-

tive range of the potential, which is typically of order the Van der Waals length rVdW =

(2µrC6/~2)1/4/2. It is usually sufficient to drop the effective range term, resulting in the
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s-wave scattering amplitude f0 = (−a−1 + reffk
2/2 − ik)−1 → −a, and the total scattering

cross section

σtot(k → 0) = 4πa2, (3.9)

which is identical to the scattering cross section for a hard sphere of radius a [100].

3.1.2 Identical particles

There is an important subtlety in the case of identical particles which modifies the result in

equation (3.9). Recall that the scattering wave function is a function of the relative coordi-

nate r⃗ = r⃗2 − r⃗1 only. Therefore, the (anti)symmetrization requirement for identical parti-

cles implies that ψ(r⃗) = ±ψ(−r⃗), where the (lower)upper sign applies to (fermions)bosons.

Writing this condition as ψ(r, θ) = ±ψ(r, π − θ), we see the proper wave functions are

ψB = (ψ(r, θ)+ψ(r, π− θ))/
√
2 and ψF = (ψ(r, θ)−ψ(r, π− θ))/

√
2, from which we see that

the differential cross section becomes

dσ

dΩ
= |f(k, θ)± f(k, π − θ)|2, where 0 ≤ θ ≤ π/2. (3.10)

Recalling that f(k, θ) is a sum over Legendre polynomials Pℓ(cos θ) times the ℓth partial-wave

amplitude, and that Pℓ(−x) = (−1)ℓPℓ(x), we see that the (anti)symmetrization requirement

results in a cancellation of the (even)odd partial-wave amplitudes for (fermions)bosons. Since

the integral over Ω now includes half the range of θ as it did before, the net effect of

the (anti)symmetrization is to double the (odd)even partial-wave amplitudes for identical

(fermions)bosons relative to equation (3.5), giving

σtot =
8π

k2


∑

ℓ even

(2ℓ+ 1) sin2 δℓ (bosons)∑
ℓ odd

(2ℓ+ 1) sin2 δℓ (fermions)
. (3.11)

Specifically, in the s-wave limit we find that the cross section for fermions vanishes, and that

for bosons becomes σtot = 8πa2. This fact that identical fermions cannot interact in the

s-wave limit makes ultracold atomic gases of fermions arguably the most ideal quantum gas

system.
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3.1.3 Pseudo-potentials and mean-field interaction energy

When the de-Broglie wavelength of the constituent particles is much larger than the range of

the interparticle interactions λdB ≫ rVdW, as is typically the case in ultracold atomic systems,

the fine details of the potential V (r) are irrelevant. In this case, it may be replaced with any

model potential that produces the same phase shift upon scattering as would V (r). This

is easily achieved using the zero-range, or contact pseudo-potential V (r⃗) = gδ(r⃗). Using

the first-order Born approximation, one can show f0 = µrg/(2π~2). Thus, to match the

partial-wave amplitude f0 = −a from section 3.1.1, we find that g must equal 2π~2a/µr.

The delta-function pseudo-potential is especially useful for evaluating the energetic con-

sequences of s-wave scattering for a single particle with a large number of other particles,

be they identical or distinguishable. For purposes of this derivation, we consider a T = 0

Bose-Einstein condensate (BEC) in which all atoms occupy the same single particle state,

ϕ(r⃗i), normalized such that
∫
d3r |ϕ(r⃗)|2 = 1. This single particle wave function is at this

point unknown, but will be found shortly using a variational calculation. The ansatz for the

many-body wave function is simply

Ψ(r⃗1, r⃗2, ..., r⃗N) =
N∏
i=1

ϕ(r⃗i). (3.12)

Then, using the contact potential above, the Hamiltonian for the condensate is

H =
N∑
i=1

(
p⃗ 2
i

2m
+ VT (r⃗i)

)
+
g

2

N∑
i=1

∑
i̸=j

δ(r⃗i − r⃗j), (3.13)

where VT (r⃗) is the external trapping potential, and the factor of 1/2 in the interaction energy

term accounts for the double counting of the summations. The total energy of the many-body

wave function E = ⟨Ψ|H|Ψ⟩ is then be found to be [89]

E =

∫
d3r

(
−N ~2

2m
|∇ϕ(r⃗)|2 +NVT (r⃗)|ϕ(r⃗)|2 +

N(N − 1)

2
g|ϕ(r⃗)|4

)
. (3.14)

To proceed, we introduce a Lagrange multiplier −µN to this functional and minimize the

quantity E − µN with respect to ϕ∗, which ensures that we maintain the normalization of
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ϕ(r⃗). Here we anticipate the connection to the BEC chemical potential in our definition of

µ. Defining the wave function for the condensate as ψ(r⃗) =
√
Nϕ(r⃗) with associated particle

density n(r⃗) = |ψ(r⃗)|2, this minimization results in the Gross-Pitaevskii equation(
− ~2

2m
∇2 + VT (r⃗) + g|ψ(r⃗)|2

)
ψ(r⃗) = µψ(r⃗). (3.15)

Thus, in this mean field picture, the effect of s-wave scattering of a single particle with the

rest of the ensemble is to produce an effective potential given by

VMF (r⃗) = gn(r⃗) =
2π~2n(r⃗)

µr

. (3.16)

While this derivation utilized the specific example of a BEC, the mean-field interaction

potential in equation (3.16) applies to both distinguishable and indistinguishable particles,

and to fermionic systems as well as non-condensed bosonic systems. In this work, we will

utilize equation (3.16) for modeling elastic interactions in a mixture of Bose and Fermi

superfluids of 174Yb and 6Li in chapter 8.

3.2 Evaporative Cooling

Evaporative cooling is a ubiquitous process in nature (e.g. the atmosphere, cups of coffee),

but holds a special place in the field of atomic physics. Indeed, the implementation of evap-

orative cooling in the context of trapped atomic gases was essential to the realization of

Bose-Einstein condensation, and is still the primary method for producing quantum degen-

erate gases. As discussed in chapter 2, Doppler cooling involves the continuous absorption

and spontaneous emission of photons, and typically produces atomic gases with tempera-

tures in the range 10− 100 µK. For experiments on quantum degenerate gases, we desire a

trapping potential that is conservative and does not have a fundamental lower limit on the

ensemble temperature. To this end, the Doppler-cooled gas is subsequently transferred into a

conservative magnetic or optical potential, where evaporative cooling can then occur. While

the kinetics of evaporation are identical for magnetic and optical traps, there are particular

aspects of evaporative cooling in magnetic traps that distinguish the method from that in
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optical traps (e.g. RF evaporation). However, since this thesis deals only with experiments

in optical traps, we will not touch on these details.

We begin with an overview of the kinetic model for evaporative cooling of a classical

Boltzmann gas, then move on to discuss evaporation dynamics when the height of the conser-

vative trap is forcibly reduced, and finally present the full equations for modeling evaporative

cooling in the presence of inelastic loss mechanisms.

3.2.1 Kinetics of evaporative cooling

To model the dynamics of an evaporating atomic gas, we restrict ourselves to considering a

Boltzmann ensemble (i.e. nλ3dB ≪ 1) held in a conservative trap of the form2

VT (r⃗) = min
(m
2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, V0

)
, (3.17)

where we refer to V0 as the trap depth, where the atoms interact with a scattering cross-

section σ. We follow the treatment from [72], where we assume that the gas is sufficiently

ergodic and that the Boltzmann distribution function is modified by truncating it at the

energy corresponding to the trap depth, V0:

f(ε) = n0λ
3
dBe

−βεΘ(V0 − ε), (3.18)

where n0 = N(mω̄2/2πkBT )
3/2 is the peak density of a classical gas in a harmonic trap.

As done in chapter 2, we can similarly define the distribution function in {r⃗, p⃗} phase

space. The assumption of ergodicity implies that the phase-space distribution is a function

of the single particle energy only, f(r⃗, p⃗) =
∫
dε δ(p⃗ 2/2m+ VT (r⃗)− ε)f(ε), giving

f(r⃗, p⃗) = n0λ
3
dBe

−β(p⃗ 2/2m+VT (r⃗))Θ(V0 − p⃗ 2/2m− VT (r⃗)). (3.19)

The dynamics of the distribution f(r⃗, p⃗) of the gas are then described by the Boltzmann

kinetic equation (for a detailed derivation of the following results, see [72]). Since we are

2The Gaussian optical potentials used in most evaporative cooling experiments have significant anhar-
monicities associated with their shape. However, as we’ll see, for atoms with large enough scattering cross
sections σ, the resulting fast evaporation rate ensures that the vast majority of atoms are cold enough to
be sampling only the parts of the potential near r⃗ = 0, where it is well approximated as harmonic.
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interested in the number of atoms with energy greater than the trap depth, we would like to

transform the Boltzmann kinetic equation into an equation governing the dynamics of the

distribution function in energy. This is accomplished by multiplying each side of the kinetic

equation by the density of states ρ(ε) = (2π~)3
∫
d3r d3p δ(p⃗ 2/2m + VT (r⃗) − ε), resulting in

the equation

ρ(ε)ḟ(ε) =
1

(2π~)3

∫
d3rd3p δ(p⃗ 2/2m+ VT (r⃗)− ε)I(r⃗, p⃗), (3.20)

where I(r⃗, p⃗) is the usual collision integral. Note that the number of atoms in the trap with

an energy between ε and ε + dε is given by ρ(ε)f(ε)dε. Thus, this protocol gives us a way

to determine the rate at which the high-energy tail of the distribution is repopulated by

collisions.

We now assume that the atoms in the tail of the distribution with energy greater than

the trap depth are immediately lost to evaporation, resulting in the number loss rate

Ṅevap = −
∞∫

V0

dε ρ(ε)ḟ(ε)

= − mσ

π2~3

∫
ε4>V0

dε1dε2dε3 ρ(ε3)f(ε1)f(ε2), (3.21)

where ε1 and ε2 are the energies of the two colliding atoms before the collision, ε3 and ε3

are those after, and σ is the two-body scattering cross section. It is assumed here that σ is

energy independent, as is usually the case for s-wave scattering3. The integral is evaluated

on the domain that satisfies the following conditions: the energies of the incoming particles

are each less than the trap depth, or ε1 < V0 and ε2 < V0, and the energy of one of the

outgoing particles is greater than the trap depth, ε4 = ε1 + ε2 − ε3 > V0. Then, equation

(3.21) becomes

Ṅevap = −n0σv̄
Vevap

Veff

N, (3.22)

3For the unitary Fermi gas, the scattering length diverges and one is left with the maximum two-body
collision cross section σ = 4π/k2 allowed by the optical theorem.
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where v̄ =
√

8kBT/πm is the mean particle speed, Veff = N/n0 = (2πkBT/mω̄
2)3/2 is the

effective volume of the harmonically trapped gas, and the evaporation volume is given by

Vevap = λ3dBe
−η

V0∫
0

dε ρ(ε)
[
(η − ε/kBT − 1)e−ε/kBT + e−η

]
, (3.23)

where η = V0/kBT . Note that the prefactor n0σv̄ in equation (3.22) is the peak elastic

scattering rate Γel in the trapped gas. Using the density of states for the harmonic potential

VT (r⃗), ρ(ε) = ε2/2(~ω̄)3, the evaporation volume becomes

Vevap =
λ3dB(kBT )

3

6(~ω̄)3
[
24e−η + 6(η − 4) + ηe−η(18 + η(6 + η))

]
. (3.24)

Then, in the limit kBT ≪ V0, or η ≫ 1, this simplifies to

Vevap = Veff(η − 4)e−η. (3.25)

Our final expression for the evaporative loss rate then becomes

Ṅevap = −n0σv̄(η − 4)e−ηN. (3.26)

What remains is to determine the effect of the evaporative loss on the temperature

dynamics. Similarly to the number loss rate, we find the rate of change of internal energy of

the gas from

Ėevap = −
∞∫

V0

dε ερ(ε)ḟ(ε). (3.27)

One can show that in the limit η ≫ 1, this reduces to [72]

Ėevap =

(
V0 +

η − 5

η − 4
kBT

)
Ṅevap. (3.28)

Thus we see that the effect of evaporation on the total energy of the trapped gas is that, for

each particle removed by evaporation, the ensemble loses an average energy of ≈ V0 + kBT .
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To connect the internal energy dynamics to temperature, we turn to the equation of state

for an ideal gas in a harmonic trap, E = 3NkBT . Taking the time derivative, we find

Ṫevap =
Ėevap

3kBN
− T

Ṅevap

N

=

(
η +

η − 5

η − 4
− 3

)
Ṅevap

N

T

3
. (3.29)

3.2.2 Forced evaporative cooling

Due to the exponential factor e−η in equation (3.26), the rate of evaporative loss slows

greatly as the gas is cooled at fixed trap depth V0. Typically, on timescales relevant for

quantum gas experiments (10−20 seconds) the temperature of the gas asymptotes to a value

T ≈ V0/(10kB). Since the trap depth upon loading of the atomic gas from the Doppler cooling

stage is typically in the range 100 µK - 1 mK, this saturation of the evaporative cooling power

would not feasibly permit temperatures below 1 µK. To overcome this in optical traps, the

solution is to dynamically reduce the trap depth by decreasing the trapping laser intensity

over time. This process is referred to as forced evaporative cooling. For a Gaussian-shaped

optical trapping beam of fixed waist, there is a reduction of the trap frequencies associated

with the changing trap depth V0. From equation (2.9), we find

˙̄ω

ω̄
=

1

2

V̇0
V0
. (3.30)

Since the harmonic confinement decreases while performing forced evaporative cooling, the

potential energy of the gas changes, provided the change is adiabatic. Writing the potential

energy as Epot = Ex + Ey + Ez, where Ei = mω2
i ⟨x2i ⟩/2 = Epot/3, we find that

Ėpot =
Epot

3
(ω̇x + ω̇y + ω̇z) = Epot

˙̄ω

ω̄
. (3.31)

Then, recalling that E = Epot/2 for the harmonic oscillator, we find the adiabatic contribu-

tion to the temperature change

Ṫad =
˙̄ω

ω̄
T. (3.32)
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It is important to note here that although the adiabatic reduction of temperature associated

with reducing the trap depth can be used to achieve impressively low temperatures, there is

no associated gain in phase-space density since the change is adiabatic.

A well-known problem with performing forced evaporative cooling in optical traps is that

the continued reduction of laser power and thus trap frequencies results in very small collision

rates at the lowest depths, and thus long evaporative cooling timescales. In chapter 7 of this

thesis we will discuss a method which overcomes this issue using time-averaged potentials

(see section 2.1.3). In short, one can dynamically change the size of the optical trapping

beam at its focus to achieve independent control over the trap depth V0 and frequency ω̄.

3.2.3 Effects of background and inelastic loss

Up to this point we have only considered the consequences of elastic interactions. However, in

many situations there are inelastic scattering processes that can greatly limit the efficiency

of evaporative cooling. In general, inelastic scattering refers to a scattering event where

the particles exit in a different scattering channel, which covers a broad range of possible

scenarios. In this section, we will evaluate the consequences of two-body and three-body

inelastic loss for the rate equations governing the number N and temperature T evolution

in the trap. Additionally, we will look at the effects of atom loss due to collisions with

background gas particles in the vacuum chamber, i.e. one-body loss.

Three-body loss is a scattering event in which three free particles come together, two of

them associate to form a molecule, and the third carries away the necessary energy and mo-

mentum to satisfy conservation laws. This is often referred to as three-body recombination.

The other important type of inelastic scattering in the cold atom context, two-body inelastic

scattering, involves the release of internal electronic energy from one or both of the atoms in

a two-body scattering event. For three-body loss, the energy released is typically far larger

than the trap depth, resulting in loss of all atoms involved from the trap, while for two-body

loss, the amount of energy released depends on the loss channel in question.

The relative importance of two-body and three-body loss depends sensitively on the
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choice of atomic species. For bosons, three-body inelastic collisions are always an issue,

and dominate the number loss at high densities, while the strength of two-body loss pro-

cesses depend on the structure of the atom in question. Alternatively, for experiments on

two-component fermionic gases away from a Feshbach resonance, three-body recombination

is greatly inhibited due to the Pauli exclusion principle, as it would require two identical

fermions to encounter each other at short range.

For a trapped gas with local density n(r⃗), the effects of background one-body loss and

two-body and three-body inelastic loss are described by the rate equation

ṅinelastic(r⃗) = −
(
Γbg +K2n(r⃗) +K3n

2(r⃗)
)
n(r⃗), (3.33)

where Γbg is the density- and temperature-independent rate of collisions with background

gas particles and K2 (K3) is the two-body (three-body) inelastic loss rate coefficient. To find

the net effect on the atom number N =
∫
d3r n(r⃗), we integrate equation (3.33) over space

using n(r⃗) = n0 exp[− m
2kBT

(ω2
xx

2 + ω2
yy

2 + ω2
zz

2)], giving

Ṅinelastic = − (Γbg + Γ2b(N, T ) + Γ3b(N, T ))N, (3.34)

where

Γ2b(N, T ) = K2N

(
mω̄2

4πkBT

)3/2

∝ N

T 3/2
(3.35)

is the two-body per-particle loss rate and

Γ3b(N, T ) =
K3N

2

√
27

(
mω̄2

2πkBT

)3

∝ N2

T 3
(3.36)

is the three-body per-particle loss rate. Note that the per-particle loss rate due to evaporation

in equation (3.26) also scales as N/T 3/2 since this is also a two-body collisional effect.

To evaluate the effects of these loss processes on the temperature of the gas, we first

determine the dynamics of the total energy of the ensemble, and then relate this to tem-

perature using the equation of state. The local energy density of the gas is given by
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E(r⃗, p⃗) = (p⃗ 2/2m + VT (r⃗))n(r⃗). Thus, we find the rate of change of the total ensemble

energy from [109]

Ėinelastic =

∫
d3rd3p Ė(r⃗, p⃗) =

∫
d3r
(
⟨p⃗ 2/2m⟩⃗p + VT (r⃗)

)
ṅinelastic(r⃗). (3.37)

Using the classical gas result ⟨p⃗ 2/2m⟩⃗p = 3kBT/2 and defining the density-weighted integrals

Xl =
1

nl
0

∫
d3r (n(r⃗))l and Zl =

1

nl
0

∫
d3r VT (r⃗)(n(r⃗))

l, (3.38)

equation (3.37) becomes

Ėinelastic =
3kBT

2
Ṅinelastic −

(
Γbg

Z1

X1

+K2
Z2

X2
1

N +K3
Z3

X3
1

N2

)
N. (3.39)

For these spatial integrals, we assume the untruncated form of the trapping potential VT (r⃗) =

m
2

∑
ω2
i x

2
i and integrate over all space.

Next, we connect these energy dynamics with temperature using the equation of state E =

3kBT , as done in section 3.2.1. Using the relation Ṫinelastic = Ėinelastic/(3kBN)−TṄinelastic/N

and equations (3.34) and (3.39), one finds the following equation for the temperature dy-

namics in terms of the two- and three-body per-particle loss rates [106]:

Ṫinelastic =

(
Γ2b(N, T )

4
+

Γ3b(N, T )

3

)
T. (3.40)

Note that there is no contribution from the one-body loss term to the temperature dynamics

because this process occurs uniformly throughout the gas and thus does not affect the average

energy. On the other hand, two- and three-body inelastic processes are favored near the

center of the trap where the density is highest. Since these atoms have a local average energy

smaller than that of the trap-averaged ensemble, we can think of causing a sort of “anti-

evaporation,” whereby atoms are removed from the low-energy portion of the distribution

n(E) and the remaining ensemble equilibrates to a larger average energy.

3.2.4 Heating from spontaneous scattering

Even though the atoms are held in a far off-resonant optical dipole trap, they still undergo

some amount of spontaneous scattering. This results in a small, but non-zero heating term
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Ėscat = ΓscatErecN , where Γscat = (V0/~)(Γ/δ) is the rate of spontaneous scattering from the

ODT beam, Erec = ~2k2L/2m is the recoil energy for a photon with wave vector kL, Γ is the

natural linewidth of the atomic transition in question, and δ = ωL−ω0 is the detuning of the

ODT laser from the atomic transition frequency (usually very large). Here we approximate

the heating rate to be constant across the whole cloud and given by the peak scattering rate

in the trap, which is reasonable for clouds with a large value of η. Again using the equation

of state to relate the temperature dynamics to those of the total energy, we find that

Ṫscat =
ΓscatErec

3kB
. (3.41)

3.2.5 The full dynamical equations

At this point we are in a position to quantitatively describe all of the dynamics involved

during forced evaporative cooling experiments. First, let us define the per-particle rate of

evaporative cooling in the high-η limit (see equation (3.26)), Γevap ≡ Ṅevap/N = Γel(η−4)e−η.

Then, the complete equation for the number evolution is

Ṅ = Ṅevap + Ṅinelastics

= −(Γevap(N, T ) + Γbg + Γ2b(N, T ) + Γ3b(N, T ))N, (3.42)

and for temperature

Ṫ = Ṫevap + Ṫinelastics + Ṫad + Ṫscat

= −
(
Γevap

3

(
η +

η − 5

η − 4
− 3

)
− Γ2b

4
− Γ3b

3
−

˙̄ω

ω̄

)
T +

ΓscatErec

3kB
. (3.43)

We will return to this system of equations in chapter 7 when we simulate the evaporation

dynamics for Yb in a dynamically shaped time-averaged potential.

3.3 Feshbach resonances

Until this point, we have been considering two-body elastic collisions that occur in a single

scattering channel in the s-wave limit, and can therefore be characterized by a fixed scattering
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length a. As discussed in section 3.1, the specific value of a for a given two-body collision

system is determined by the S-matrix element S0 = e2iδ0 (i.e. by the scattering phase

shift δ0), which in turn is determined by the interatomic potential, V (r⃗). In many realistic

situations, however, the two colliding particles have internal structure that results in more

than one possible scattering channel, and therefore multiple potentials Vα(r⃗). Furthermore,

there often exists an interaction mechanism that couples states from the different channels.

In this case, the S-matrix acquires new indices corresponding to the labels for the scattering

channels4, Sαβ, and is no longer diagonal. Typically, this coupling is very weak and the

scattering can be taken to be intra-channel only (i.e. Sαβ diagonal). However, in the case

where a bound state of one channel becomes degenerate in energy with the scattering state in

another channel, the channels become mixed and the scattering character strongly modified.

This resonance phenomenon is an example of what are referred to as Feshbach resonances,

which is a more general class of scattering resonances involving the coupling of bound states

to a continuum. For a complete treatment of Feshbach resonances in ultracold gases, the

reader is referred to some of the many great reviews on the topic [64, 21, 58].

3.3.1 An illustrative example: Two hyperfine states in 6Li

While it is possible to have many scattering channels for a given two-atom collision system,

it is illustrative and often sufficient to consider just two channels in the vicinity of a Feshbach

resonance. As an example system, we consider two distinguishable spin one-half particles,

namely the two lowest energy hyperfine states in the 6Li 2S1/2 electronic ground state, with

nuclear spin I = 1. At zero magnetic field, these states, labeled |1⟩ and |2⟩, are specified

by the quantum numbers F = 1/2, mF = 1/2 and F = 1/2, mF = −1/2, respectively. At

finite field, however, only mF = mI +mJ is a good quantum number and is conserved by the

scattering interaction [21]. Thus, only channels with the same value of mF may be coupled

by the interaction.

4In this expression for the S-matrix we drop the angular momentum label ℓ, since we are considering only
ℓ = 0 scattering.
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It is useful to consider the scattering problem in the total spin basis, where S⃗ = S⃗1 + S⃗2

for atoms i = 1 and 2 with electronic spin S⃗i. In this case, the two channels of interest

correspond to the singlet and triplet combinations with S = 0 and 1, respectively, and

associated interatomic potentials Vs(r) and Vt(r). The two-channel interaction operator can

then be written as [10]

V̂ (r) = 1
4
(3Vt(r) + Vs(r)) + S⃗1 · S⃗2 (Vt(r)− Vs(r))

= 1
4
(3Vt(r) + Vs(r)) + 2S⃗1 · S⃗2Vex(r), (3.44)

where Vex(r) is the exchange potential. Clearly, the tensor term proportional to S⃗1 · S⃗2

will be responsible for any inter-channel coupling. However, if the scattering states are

eigenstates5 |S,mS⟩ of the total spin S⃗, no such coupling will occur since the off-diagonal

terms ⟨1,mS|S⃗1 · S⃗2|0, 0⟩ and ⟨0, 0|S⃗1 · S⃗2|1,mS⟩ vanish. Of course, the states |1⟩ and |2⟩

under consideration are not true eigenstates of the spin operator S⃗i, and therefore don’t form

pure spin singlets or triplets.

At high magnetic field, the two lowest hyperfine states can be written in the |mSi
,mIi⟩

basis as

|1⟩ =
√

1− η1 | − 1
2
, 1⟩+√

η1 |12 , 0⟩

|2⟩ =
√

1− η2 | − 1
2
, 0⟩+√

η2 |12 ,−1⟩, (3.45)

where η1 ≪ 1 and η2 ≪ 1 are the residual effects of the hyperfine interaction. Thus, away

from a scattering resonance, the collision is entirely of triplet character, as mS1 = mS2 =

−1/2. However, near a resonance, the admixing of different mSi
states in equation (3.45)

due to the hyperfine interaction allows for non-zero off-diagonal terms in the two-channel

interaction operator above. It is important to note that although the hyperfine admixing

is weak, Feshbach resonances of this type are quite strong because the exchange interaction

term in equation (3.44) is typically quite large.

5Note that for 6Li in the 2S1/2 ground state, there is no orbital angular momentum and J⃗ = S⃗. Therefore,
we use mJ and mS interchangeably in this context.
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3.3.2 Two-channel resonance scattering

In general, we refer to the channel in which the atoms predominately scatter in the absence of

resonances as the entrance channel or open channel, and the channel to which it is coupled

as the closed channel. A necessary ingredient for realizing a scattering resonance is the

tunability of the energy of a bound state in the closed potential relative to the energy of the

free scattering state in the entrance channel. In this section, we focus on magnetically tunable

Feshbach resonances, where the two channels involved have different magnetic moments6.

Figure 3.1(a) depicts the typical two-channel situation where the scattering state in the

entrance channel has a detuning δE relative to some bound state in the closed channel.

For our earlier example of states |1⟩ and |2⟩ in 6Li, these channels correspond to the triplet

(entrance) and singlet (closed) potentials, and the detuning from resonance is given by δE =

δµ(B − B0) = 2µB(B − B0), where B0 is the field at which the uncoupled free and bound

states have equal energy. As the free and bound states approach each other in energy,

the inter-channel coupling replaces the bare free scattering state with a superposition state

consisting of both entrance- and closed-channel character.

In terms of elastic scattering in the open channel, the effect of the coupling is to cause

the scattering phase shift δ0 to go through the value (n+1/2)π, at which point the scattering

length has a pole. This is described by the following Breit-Wigner form for the phase in the

s-wave limit (k → 0) [21]

δ0(k) = δbg(k)− tan−1

(
Γ0/2

E(k)− (δE − δE0)

)
, (3.46)

where E(k) = ~2k2/(2µr), abg = − limk→0 tan δbg/k is the background scattering length in

the entrance channel, and the inter-channel coupling is responsible for the finite width Γ0 and

energy offset δE0 of the resonance position7. As k → 0, the background phase δbg vanishes,

6We’ll see later how such tunability can also be achieved in the context of optical Feshbach resonances
using the frequency of a laser beam which couples the scattering state in a ground electronic state potential
to a bound state in an electronically excited potential.

7In general, the width Γ0 and energy offset δE0 depend on k, but we take them to be their threshold
values here since we will soon take the limit k → 0.
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Figure 3.1: Two-channel model of a magnetic Feshbach resonance. (a) The potentials cor-

responding to each channel are tuned relative to each other using an external magnetic field.

In the situation where the bound state energy is below(above) that of the scattering state,

a > 0(a < 0). (b) Behavior of the s-wave scattering length a(B) (red curve) and the dressed

molecular state binding energy Eb (blue curve) in the vicinity of a Feshbach resonance. The

dashed black line corresponds to the energy tuning of the bare, uncoupled molecular state,

which crosses the magnetic field axis a distance δE0/δµ from the true resonance position. For

B > Bres, the molecular state disappears into the open channel continuum, but the effects

on the scattering length remain.
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but the resonant component remains. Defining the resonance field Bres = B0 + δE0/δµ and

width ∆ = Γ0/(2kabgδµ), we arrive at the following magnetic field dependence for the s-wave

scattering length [21]:

a(B) = abg

(
1− ∆

B −Bres

)
. (3.47)

Figure 3.1(b) shows the scattering length (red curve) in the vicinity of a Feshbach resonance.

The energy of the bare, uncoupled bound state is depicted by the dashed line, which crosses

the magnetic field axis at the unshifted position Bres − δE0/δµ.

For large positive scattering lengths, the two atoms are in a dressed molecular state with

binding energy Eb, shown by the blue curve in figure 3.1(b), while for a < 0, the molecular

state “dissolves” into the open channel continuum. Close to resonance where the inter-

channel mixing is strong, the binding energy follows the universal formula Eb = −~2/(2µra
2).

Far away from resonance with a > 0, however, the dressed molecular state resides almost

entirely in the closed channel, and therefore has binding energy Eb = δµ(B−B0). In fact, one

can utilize the avoided crossing depicted in figure 3.1(b) to coherently create closed channel

molecules by adiabatically sweeping the magnetic field from the a < 0 to a > 0 side of the

resonance.

3.3.3 Feshbach resonances with inelastic decay

In our treatment of Feshbach resonances so far, we have assumed that the two-atom system

occupies a state in the two-channel subspace. In many cases, however, there are external

channels with which the entrance or closed channel may couple that result in a net outgoing

flux of probability from the two-channel subspace. The non-unitary character of this scat-

tering process is captured in the open-channel S-matrix element S00 by adding a positive

imaginary part to the phase shift [52]. We then modify the Breit-Wigner formula (equation

(3.46)) to account for the finite lifetime of the state

δ0(k) = δbg(k)− tan−1

(
Γ0/2

E(k)− (δE − δE0) + i(~γ/2)

)
, (3.48)
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Figure 3.2: Real and imaginary parts of the complex scattering length ã in units of the

background scattering length abg in the vicinity of a Feshbach resonance with decay rate γ.

For these particular curves, we set 2Γ0/(~γ) = 10kabg.
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where γ is the decay rate. Writing the resulting complex scattering length as ã = a− ib and

defining δE = δE − δE0, we find as k → 0 [21]

a = abg −
1

2k

Γ0δE
δ2E + (~γ/2)2

and b =
1

2k

Γ0(~γ/2)
δ2E + (~γ/2)2

. (3.49)

Because of the threshold behavior of the resonance coupling Γ0 ∝ k, a and b remain finite

in the limit k → 0. In contrast to equation (3.47), the real part of the scattering length no

longer diverges, and the imaginary part is peaked at the resonance location (see figure 3.2).

The two-body inelastic collision rate coefficient (units of (length)3/time) associated with the

decay channel is then found from

K2 =
4π~g
µr

b, (3.50)

where g = 1 for distinguishable scatterers and g = 2 for identical scatterers. When the kinetic

energy gain associated with the decay is much larger than the trap depth, both atoms will

be immediately lost from the trap. In this case the inelastic collision rate is equivalent to a

loss rate coefficient, or ṅ = −K2n
2.

In the context of magnetic Feshbach resonances, the inelastic decay channels are states of

lower energy than the scattering state that preserve the projection of total angular momen-

tum onto the magnetic field axis. In chapter 5, we will discuss measurements of Feshbach

resonances in an ultracold mixture of Li (2S1/2) and metastable Yb (3P2) where the ability

of Yb to decay to lower lying electronic states results in very large inelastic decay rates.

3.3.4 Optical Feshbach resonances and photoassociation

In addition to accessing collisional resonances between free and bound two-body states with

external magnetic fields, one can couple a pair of free scattering atoms to an electronically

excited molecular state using laser fields. Figure 3.3 shows the general energy diagram for

such an optical Feshbach resonance (OFR), where the laser photon energy ~ωL, usually in

the optical domain, bridges the large energy scale between electronic states. In this case,

the coupling between free and bound states is provided by the dipole coupling of the laser
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electric field to the induced dipole moment of the molecule [55],

~Γstim(I) = 2π ×
(
2πI

c

)
|⟨ψmol| d⃗ · e⃗ |ψscat⟩|2

= 2π ×
(
2πI

c

)
d2MfFC , (3.51)

where |ψscat⟩ and |ψmol⟩ are the interatomic scattering and molecular bound states (including

both electronic and nuclear parts), I and e⃗ are the intensity and unit polarization vector for

the coupling laser, Γstim is the stimulated scattering rate, d⃗ is the dipole moment operator,

dM is the molecular dipole moment, and fFC , the Franck-Condon factor, is the square of the

overlap between the nuclear wave functions for the scattering and bound states, with units

of inverse energy. In contrast to magnetic Feshbach resonances, we see that one can tune

the strength of the coupling in an OFR by varying the intensity of the laser beam used to

couple free and bound states.

For near-threshold transitions, the molecular dipole moment can be written as dM =

frotdA, where frot is the Hönl-London factor accounting for the change in nuclear orbital

angular momentum [82], and dA = ~Ωa/|E0| is the atomic dipole matrix element with as-

sociated Rabi frequency Ωa. Using equation (3.51) and Ω2
a = Iγ2/(2Isat), where γ is the

molecular rate of spontaneous emission and Isat = 2π2~cγ/(3λ3) is the saturation intensity

for the atomic transition, we find8 [82]

Γstim =
3Iγλ3frotfFC

8πc
. (3.52)

For near-threshold transitions in heteronuclear diatomic molecules, the spontaneous emission

rate is well approximated by the atomic value, γ = γa. If instead the two atoms are identical,

proper symmetrization of the molecular wave function in the excited electronic state gives

rise to super- and sub-radiant states, for which γ = 2γa and γ = 0, respectively.

In the dressed state picture, we remove the large energy offset between the free and

bound states by considering the combined states |ψscat, N + 1⟩ and |ψmol, N⟩, where the

8In this expression we use Gaussian units and write the laser electric field as E2
0 = 8πI/c. In SI units,

where E2
0 = 2I/(cϵ0), the stimulation rate becomes Γstim = 3Iϵ0γλ

3frotfFC/(2c).
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Figure 3.3: Schematic of an optical Feshbach resonance (OFR). In an OFR, one couples

free scattering atoms to an electronically excited molecular state using the dipole coupling

from a laser beam. The molecular state has an associated decay rate γ, resulting in a strong

inelastic component to the resulting collisional resonance. The inelastic scattering events

correspond to the creation, or photoassociation (PA) and subsequent decay of electronically

excited molecules, resulting in loss of atoms from the trap. The inelastic character of OFRs

thus offers a sensitive method for performing laser spectroscopy of molecular potentials.
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interatomic scattering and molecular bound states are dressed with N + 1 and N photons,

respectively. Then, the energy difference between the free and bound dressed states is given

by ~δ, which is easily controllable via the laser frequency. The resulting modification of

the background scattering properties near the molecular resonance δ = 0 is quite similar to

that of the inelastic magnetic Feshbach resonance discussed in the previous section, with the

main difference being that the dipole coupling from the laser field can stimulate population

transfer from the excited to ground state, and thus adds to the decay rate of the resonance.

For more details, the reader is referred to a particularly nice semianalytical treatment of the

OFR problem by Bohn and Julienne [11, 12]. Here, we quote the result for the complex

s-wave scattering length ã = a− ib:

a = abg +
1

2k

Γstimδ

δ2 + (γ/2)2 − (Γstim/2)2
, b =

1

2k

Γstimγ/2

δ2 + 1
4
(γ + Γstim)2

. (3.53)

The imaginary part of the scattering length, b, represents actual molecule formation in

the excited electronic state. This process of molecule formation using a coupling laser field

is referred to as photoassociation (PA), and has the associated inelastic rate coefficient

K2,PA =
gπ~
µrk

Γstimγ

δ2 + 1
4
(γ + Γstim)2

. (3.54)

The wave vector associated with the collision is given by k =
√
2Eµr/~. For a thermal cloud,

we take the energy E = 1
2
µrv⃗

2
rel of the collision to be given by the mean value,

⟨E⟩ = µr

2
⟨(v⃗1 − v⃗2)

2⟩

=
µr

2

(
⟨v⃗ 2

1 ⟩+ ⟨v⃗ 2
2 ⟩ − 2⟨v⃗1 · v⃗2⟩

)
=
µr

2

(
3kBT1
m1

+
3kBT2
m2

,

)
(3.55)

where v⃗i and mi are the velocity and mass of particle i = 1 or 2, and Ti is the temperature

associated with each ensemble.

We can then find the maximum PA rate coefficient at a given temperature by maximizing

the function in equation (3.54) with respect to Γstim for δ = 0 (i.e. on resonance PA), giving

Kmax
2,PA =

gπ~2√
3kBTeffµ3

r

, (3.56)
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where the effective temperature Teff is defined as

Teff =
m2T1 +m1T2
m1 +m2

. (3.57)

For the Yb-Li system, we have g = 1 and µr = 5.8 amu, giving Kmax
2,PA =

√
100µK/Teff×5.7×

10−10 cm3s−1. It is often the case that the intensities necessary to achieve this maximum rate

coefficient are unreachable in experiments because of the large reduction of the stimulation

rate Γstim due to the free-to-bound Franck-Condon factor fFC.

Photoassociation resonances provide a simple experimental method to perform spec-

troscopy of molecular potentials, because immediately following formation of excited state

molecules, the two-body system decays and both atoms are lost from the trap. This spec-

troscopy may be performed in a MOT, or in conservative optical or magnetic potentials.

In practice, these experiments typically involve starting with the coupling laser frequency

tuned just below the bare atomic resonance (i.e. asymptote of the molecular potential), and

scanning downwards in frequency until a PA loss feature is discovered. While there were

early hopes that the elastic part Re(ã) of the OFR would offer a general method to tune

interactions in any two-body system [11], it has proved to be very difficult to overcome the

loss associated with PA.

3.4 Interacting quantum gases

While it is often reasonable to neglect the effects of interactions for trapped gases with low

phase space density (i.e. classical gases), even modest two-body scattering lengths a result

in drastic modifications of the properties of trapped gases in the quantum degenerate regime

for typical densities. In the case of bosons, an important consequence of interactions is that

the BEC ground state wave function in a harmonic trap is not that of the quantum harmonic

oscillator, but one in which kinetic energy can largely be ignored (as we’ll see). Furthermore,

it is because of interactions that BECs acquire the property of superfluidity. For trapped

fermions, we will concern ourselves primarily with the case of two-component systems in

which the scattering length is arbitrarily tunable using a Feshbach resonance. In this case,
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one can access the so-called Bose-Einstein condensate to Bardeen-Cooper-Schreiffer (BEC-

BCS) crossover, a spectrum of fermionic superfluidity which smoothly connects the regimes

of Bose-Einstein condensation of diatomic molecules (a→ 0+) and condensation of Cooper-

paired fermions (a → 0−) [113]. At the position of the Feshbach resonance, the scattering

length diverges and the resulting scattering cross section is limited by the constraints of

unitarity. This so-called unitary Fermi gas, in which the Fermi wave vector provides the

only relevant length scale k−1
F , is of immense theoretical interest [6, 50, 46, 47, 104] and is an

example of a many-body quantum system that can be experimentally simulated in trapped

atomic gases [79, 80, 67] to inform and benchmark many-body theoretical techniques.

3.4.1 Weakly interacting BECs

The ground state, many-body wave function for a trapped BEC is determined by the time-

independent Gross-Pitaevskii equation,(
− ~2

2m
∇2 + VT (r⃗) + g|ψ(r⃗)|2

)
ψ(r⃗) = µψ(r⃗). (3.58)

which we derived in section 3.1.3. Here, g = 4π~2/m, the BEC density distribution is given

by n(r⃗) = |ψ(r⃗)|2, VT (r⃗) = m
2
(ω2

xx
2+ω2

yy
2+ω2

zz
2) is the external trapping potential, and µ is

the BEC chemical potential. Equation (3.58) may be solved numerically in general. However,

it turns out that in most experimentally relevant situations, the contribution of the kinetic

energy term is negligible compared to the interaction energy term [89]. Writing the chemical

potential in the local density approximation (valid for µ ≫ ~ω̄) as µ(r⃗) = µ − VT (r⃗) and

dropping the kinetic energy term, we find the following form for the BEC density distribution:

n(r⃗) =
1

g
max (µ− VT (r⃗), 0)

= n0max

(
1−

∑
i

x2i
R2

i

, 0

)
, (3.59)

where n0 = µ/g and Ri =
√

2µ/(mω2
i ). The approximation leading to equation (3.59)

is called the Thomas-Fermi approximation, and the quantities Ri the Thomas-Fermi radii.
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From the normalization condition N =
∫
d3r n(r⃗), we find that n0 = 15N/(8πRxRyRz). The

chemical potential is then found to be

µ =
~ω̄
2

(
15Na

aho

)2/5

, (3.60)

where aho =
√

~/(mω̄) is the (geometric mean) harmonic oscillator length. In typical experi-

ments, the BEC chemical potential is kB×100’s of nanoKelvin, while the harmonic oscillator

energy for trap frequencies of ω̄ = 2π × 10− 100 Hz is ~ω̄/kB = 0.5− 5 nK. Thus, trapped

atomic BECs are well within the limits of the local-density approximation.

Though not discussed here, there is a time-dependent version of the Gross-Pitaevskii

equation (equation (3.58) with µ → i~ ∂
∂t
), from which one can derive the spectrum of

elemenatary excitations within the BEC. The resulting dispersion relation, describing the

so-called Bogoliubov modes, is given by [23]

ϵ(q) =

√
c2q2 +

(
~2q2
2m

)2

, (3.61)

where q is the wave vector of the excitation and c = gn/m is the speed of sound in the BEC.

For small q, the dispersion is linear and corresponds to phonon modes, while for large q the

dispersion smoothly approaches that of a free particle.

3.4.2 Strongly interacting fermions: Overview

With the use of a Feshbach resonance, the s-wave scattering length for a two-component

Fermi gas can be tuned with a magnetic field as shown in figure 3.1(b). A crucial part to the

utility of Feshbach resonances for studying strongly interacting fermions is the remarkable

stability of two-component Fermi gases at and around unitarity where |a| → ∞. In bosonic

gases in the vicinity of a Feshbach resonance, three-body inelastic collisions in which a

Feshbach molecule and a spectator atom collide to form a deeply bound molecule and release a

large amount of kinetic energy are dramatically enhanced. This loss severely limits the ability

to observe elastic effects on reasonable timescales in unitary Bose gases. In contrast, in large
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part because of the Pauli exclusion principle, collisions involving a Feshbach molecule and

free atom in two-component Fermi gases are greatly inhibited around unitarity [28, 92, 26],

allowing for not only robust studies of strongly interacting Fermi gases in equilibrium, but

also very efficient evaporative cooling at the Feshbach resonance.

With well established weakly interacting theories in both the far BEC (1/kFaF → ∞)

and far BCS (1/kFaF → −∞) limits, trapped quantum gases of fermions with tunable

interactions constitute an analog quantum simulator for determining various properties (e.g.

thermodynamic quantities and excitation spectra) of interacting many-body systems with

arbitrary values of 1/kFaF . This allows for the testing of novel theoretical techniques in

regimes where weakly interacting theories break down [9].

With such a pristine testbed for quantum simulation of many-body physics with strong

correlations, there are many properties of strongly interacting fermions that one may desire

to investigate. Of these, some of the most successful results (and those most relevant to this

work) are the measurement of the zero-temperature equation of state (EoS) n(µ, aF ) of the

strongly interacting Fermi gas [80], which determines the thermodynamic properties of the

strongly correlated many-body ground state, and that of the finite temperature EoS n(µ, T )

of the unitary Fermi gas (UFG) with 1/kFaF = 0, which includes measuring the critical

temperature for the superfluid phase transition [67]. We will discuss the UFG EoS in detail

in chapter 8 in the context of performing thermometry of a superfluid Fermi gas of 6Li in

our system. In the following section, we will look at the zero-temperature EoS across the

BEC-BCS crossover.

3.4.3 Strongly interacting fermions: The zero-temperature equation of state

In this section, we will recount the zero-temperature EoS of a strongly interacting Fermi gas

as measured in Navon et al. (2010), and follow their notation in doing so. For details regard-

ing the measurement method and analysis, the reader is referred to the original publication

[80]. To begin discussing the strongly interacting Fermi gas EoS at zero-temperature, we

first focus on the special case of unitarity where 1/kFaF = 0. At unitarity, the only length
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scale in the problem is given by the interparticle spacing, and usually represented by the

inverse Fermi wave vector k−1
F . Thus, like the ideal Fermi gas, the zero-temperature UFG

is a scale invariant fluid, and one can show (see for example [113]) that the thermodynamic

properties of the UFG are identical to those of the ideal Fermi gas times a universal con-

stant. This universality is typically presented by writing the UFG chemical potential at zero

temperature as

µ = ξEF , (3.62)

where ξ is called the Bertsch parameter, and the quantities µ and EF are understood to

be local quantities (i.e. not defined for a trapped ensemble). From measurements of the

finite-temperature UFG EoS, the Bertsch parameter has been measured to be ξ = 0.37(1)

[67, 112]. Recalling that EF = ~2k2F/(2m) and kF = (3π2n)1/3, we can write the density as

n(µ) =
1

3π2

(
2mµ

ξ~2

)3/2

. (3.63)

By integrating the Gibbs-Duhem relation, n = (∂P/∂µ)T , we find the local pressure of the

gas to be

P (µ) =
2

15π2

(
2m

~2

)3/2

ξ−3/2µ5/2 ≡ 2P0(µ)ξ
−3/2, (3.64)

where P0(µ) is the pressure of a single-component Fermi gas.

To parametrize the zero-temperature EoS for nonzero values of 1/kFaF , we write the

pressure of the interacting gas as [80]

P (µ, aF ) = 2P0(µ̃)h(δ), (3.65)

where

µ̃ = µ+
~2

2ma2F
(3.66)

is the chemical potential without the contribution from the Feshbach molecule binding energy,

and

δ =
~

aF
√
2mµ̃

(3.67)
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is a generalization of the parameter 1/kFaF . Subject to the proper constraints in the limits

δ → −∞ (ideal, non-interacting gas with BCS mean-field correction) and δ → ∞ (weakly

interacting BEC of molecules), as well as h(0) = ξ−3/2, the function h(δ) was measured in

[80] using the following parametrization9:

h(δ) =

 δ2+α1δ+α2

δ2+α3δ+α4
δ > 0 (BEC)

β1+β2δ+β3δ log(1+δ)+β4δ2+β5δ3

1+β6δ6
δ < 0 (BCS)

. (3.68)

The function h(δ) is plotted in figure 3.4(a).

Until this point, we have been discussing the zero-temperature EoS in terms of lo-

cal variables (i.e. those for a homogeneous gas). However, since we endeavor to apply

this EoS to trapped Fermi gases, we need to transform these quantities to those useful

for describing experiments in a harmonic trap. Toward this end, we begin by examin-

ing the doubly integrated density distribution in the local density approximation where

µ(r⃗) = µ(0)− m
2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) [80]:

n̄(z) =

∫
dxdy n(x, y, z)

=
2

mωxωy

∫
dx̃dỹ n(x̃, ỹ, z)

(
x̃2i =

m
2
ω2
i x

2
i

)
=

4π

mωxωy

∫
r̃dr̃ n(r̃, z)

(
r̃2 = x̃2 + ỹ2

)
=

2π

mωxωy

µ(z)∫
−∞

dµ n(µ) (dµ = −2r̃dr̃)

=
2π

mωxωy

P (µ(z))

(
n(µ) =

∂P

∂µ

)
, (3.69)

where µ(z) = µ(0) − m
2
ω2
zz

2. Now we can enforce the total atom number constraint in the

9The measured parameter values from [80] are α1 = −1.137, α2 = 0.533, α3 = −0.606, α4 = 0.141,
β1 = 3.78, β2 = 8.22, β3 = 8.22, β4 = −4.21, β5 = 3.65, and β6 = 0.186
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harmonic trap to determine the chemical potential at the center of the trap µ(0),

N =

z0∫
−z0

dz n̄(z)
(
z0 =

√
2µ(0)/(mω2

z)
)

=
4π

mωxωy

z0∫
0

dz P (µ(z))

= π

(
2

mω̄2

)3/2
µ(0)∫
0

dµ
P (µ)√
µ(0)− µ

=
16

15π

1

(~ω̄)3

µ(0)∫
0

dµ
µ2√

µ(0)/µ− 1
h(δ(µ)). (3.70)

Then, changing variables from µ to δ = ~/(aF
√
2mµ), one can arrive at the following ex-

pression for kFaF in the trap (i.e. where kF =
√

2mω̄(3N)1/3/~) as a function of the central

value δ0 ≡ ~/(aF
√

2mµ(0)):

(kFaF )
6 =

32

5π

∞∫
δ0

dδ
h(δ)

δ7
√
(δ/δ0)2 − 1

for δ > 0 (BEC) (3.71)

and

(kFaF )
6 = − 32

5π

δ0∫
−∞

dδ
h(δ)

δ7
√
(δ/δ0)2 − 1

for δ < 0 (BCS). (3.72)

One can now solve for δ0 numerically as a function of 1/kFaF , as is shown in figure 3.4(b).

Because δ0(1/kFaF = 0) = 0, we can write the function as

δ0

(
1

kFaF

)
= b1

(
1

kFaF

)
+ b2

(
1

kFaF

)2

+ ... (3.73)

As an application of this equation, let us solve for the Fermi wave vector k0F = (3π2n(0))1/3

at the center of the trapped cloud as a function of aF and the trapped Fermi wave vector kF

defined above. Using the Gibbs-Duhem relation, one can show

k0F = kFg

(
1

kFaF

)
, (3.74)
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Figure 3.4: Zero-temperature equation of state for the strongly interacting two-component

Fermi gas. (a) Pressure normalized to that of the non-interacting Fermi gas. δ > 0 cor-

responds to the BCS side and δ < 0 to the BEC side of unitarity (δ = 0). (b) Value of

δ(µ) = ~/(aF
√
2mµ) at the center of the harmonic trap, with associated chemical potential

µ(0). (c) Ratio of the interacting to non-interacting Fermi wave vector g(1/kFaF ) = k0F/kF

across the crossover. At resonance, g(0) = ξ−1/4.
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where

g

(
1

kFaF

)
= (δ0kFaF )

−1

(
h(δ0)−

δ0
5

∂h

∂δ

∣∣∣∣
δ0

)1/3

. (3.75)

Thus, the function δ0(1/kFaF ) gives us a way to convert between the Fermi wave vector for

the non-interacting gas (kF ) and that for the strongly interacting gas (k0F ) for any value of

1/kFaF , as shown in figure 3.4(c).

For the UFG, using the local density approximation µ(r⃗) = µ(0) − m
2

∑
i ω

2
i x

2
i and in-

tegrating n(µ(r⃗)) from equation (3.63) over all space, one can show that µ(0) =
√
ξEF ,

where EF = ~ω̄(3N)1/3. Therefore, we find that the ratio of the peak density of the unitary

Fermi gas to that of the non-interacting gas is n(
√
ξEF )/n(EF ) = ξ−3/4, and the ratio of

Fermi wave vectors g(0) = k0F/kF = (n(
√
ξEF )/n(EF ))

1/3 = ξ−1/4. Thus, since we know

h(0) = ξ−3/2, it follows that

lim
1/kF aF→0

(δ0kFaF )
−1 = ξ1/4 ⇒ b1 = ξ−1/4. (3.76)

Indeed, computing δ′0(0) with the numerical solution to equation (3.73) agrees with the result

b1 = ξ−1/4.
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Chapter 4

LITHIUM AND YTTERBIUM

The choice of combining ytterbium and lithium for an ultracold quantum gas mixture

experiment was made for a variety of reasons, including exciting potential applications in

mass-mismatched fundamental few-body physics, paramagnetic dipolar ultracold molecules,

and impurity studies using a bosonic probe (174Yb) inside of a large Fermi superfluid (6Li). In

this chapter, we outline some of the basic properties of these two elements, as well as some

of the experimental techniques used in our lab to leverage the specific internal structure

of Yb and Li for various purposes, focusing on new additions to our experimental toolkit.

For a complete discussion of laser cooling, trapping, and absorption imaging of lithium and

ytterbium in our apparatus, the reader is referred to the theses of Anders Hansen [42] and

Alex Khramov [61]. While an important feature of ytterbium is the availability of many

different bosonic and fermionic isotopes in natural abundance, which are also easily trapped

with the same laser systems, the work presented in this thesis deals almost entirely with

the bosonic 174Yb isotope, with the exception of brief photoassociation studies of 172Yb and

176Yb in combination with 6Li to detect the shift of excited state molecular resonances due

to a changing reduced mass. Therefore, we only focus in this chapter on the properties of

the 174 isotope.

4.1 Atomic properties

Some of the most important degrees of freedom in ultracold atomic gas systems are the

internal states described by the atomic energy level structure, which can be precisely ma-

nipulated with external fields. To begin our background discussion of the internal states of

174Yb and 6Li, we look at their low-lying electronic energy level structures, and then discuss
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the Zeeman spectrum of the 6Li F = 1/2 and F = 3/2 hyperfine states in the electronic

ground state.

4.1.1 Energy level structure

The electronic energy level structures for 6Li and 174Yb are shown in figure 4.1, where we

only include those states relevant to our experiment. In Li, all laser cooling and absorption

imaging utilize the 2S1/2 → 2P3/2 and 2S1/2 → 2P1/2 transitions, often referred to as the D2

and D1 lines, respectively. The nuclear spin of I = 1 in 6Li splits each fine structure level

into a set of hyperfine states. Because of the modest hyperfine splitting in the ground state

of 228 MHz, laser cooling on the F = 3/2 D2 line and repumping on the F = 1/2 D2 line

can be performed with a single laser source shifted by an AOM to access both hyperfine

states. Furthermore, because the hyperfine structure in the 2P3/2 state is unresolved on

the scale of the natural linewidth Γ/2π = 5.9 MHz, the pumping of atoms into the lower

F = 1/2 hyperfine state is considerable, requiring 6 repumping beams with appreciable inten-

sity. Additionally, the unresolved hyperfine structure in the excited state renders standard

sub-Doppler cooling techniques infeasible. Later in this section, however, we will discuss

the implementation of so-called “gray molasses”, or “D1 cooling” of Li below the Doppler

temperature of ~Γ/(2kB) = 140 µK.

The energy level structure of Yb is in many ways more rich, as is shown in figure 4.1(b).

Due to the large atomic number Z = 70, the exchange interaction in the 6s6p configura-

tion is quite large, resulting in a large difference between the two most commonly used Yb

wavelengths of λ = 399 nm (1S0 → 1P1) and λ = 556 nm (1S0 → 3P1). Because the bosonic

isotopes of Yb have zero nuclear spin, I = 0, there is no hyperfine substructure. In principle,

the transition to 3P1 is forbidden due to the necessity of changing the electron spin from

S = 0 to S = 1. However, due to the strong fine structure interaction in the excited state,

there is an admixture of the 1P1 state, resulting in a dipole allowed transition to 3P1 with a

narrow linewidth of Γ/2π = 180 kHz. This type of transition is referred to as an intercom-

bination line. Due to the low Doppler temperature associated with the 3P1 transition of 4.5
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Figure 4.1: Energy level structure for (a) Li and (b) Yb including experimentally relevant

states. The nuclear spin of I = 1 in 6Li leads to depicted hyperfine substructure of each

fine structure level. In Yb, the primary transitions used in the experiment are the broad

dipole transition at λ = 399 nm for Zeeman slowing and absorption imaging, and the narrow

intercombination line at λ = 556 nm for magneto-optical trapping. Additionally, we utilize

the electric quadrupole transition from 1S0 → 3D2 at λ = 404 nm in order to populate the

metastable 3P2 state via spontaneous emission from 3D2. The metastable state is subse-

quently detected by pumping back to the ground state using the 3P2 → 3S1 transition at

λ = 770 nm, and repumping the atoms lost to 3P0 after spontaneous decay using the 3P0 →
3S1 transition at λ = 649 nm. The configurations of the two valence electrons in Yb for the

levels (1S0,
1 P1,

3 PJ ,
3D2,

3 S1) are (6s2, 6s6p, 6s6p, 5d6s, 6s7s).
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µK, this line is particularly useful for magneto-optical trapping. The broad transition from

1S0 to 1P1 at λ = 399 nm with Γ/π = 28 MHz allows for efficient Zeeman slowing, and is

also used for absorption imaging.

In addition to the dipole allowed transitions from the 1S0 ground state, Yb features ad-

ditional optical transitions with very narrow linewidths. Indeed, the 1S0 → 3P0 transition

in the fermionic isotope 171Yb with a natural linewidth of Γ/2π = 10 mHz is now commonly

used in some of the world’s most precise atomic clocks [69]. Another state of interest for

ultracold atom experiments is the relatively long-lived 3P2 metastable state, which features

large angular momentum and the potential for anisotropic, tunable interactions. In our sys-

tem, we have studied inelastic collisional behavior between this metastable state of ytterbium

with itself as well as with ground state 6Li over a range of magnetic fields (see chapter 5).

Later in this chapter, we will detail our method for populating and detecting 3P2 ytterbium,

which involves utilizing both the 3D2 and 3S1 states.

4.1.2 6Li hyperfine structure in the 2S1/2 ground state

The spectrum of magnetic sublevels in the ground 2S1/2 state of 6Li at finite magnetic

field is shown in figure 4.2. The states {|1⟩,|2⟩,|3⟩,|4⟩,|5⟩,|6⟩} connect at zero field to the

|F,mF ⟩ hyperfine eigenstates {|1
2
, 1
2
⟩, |1

2
,−1

2
⟩, |3

2
,−3

2
⟩, |3

2
,−1

2
⟩, |3

2
, 1
2
⟩, |3

2
, 3
2
⟩}, and at high field

asymptotically to the |mS,mI⟩ eigenstates {|− 1
2
, 1⟩, |− 1

2
, 0⟩, |− 1

2
,−1⟩, |1

2
,−1⟩, |1

2
, 0⟩, |1

2
, 1⟩}.

In our system, we primarily work with the two lowest hyperfine states |1⟩ and |2⟩, as there

is no inelastic decay due to spin relaxation in this mixture, and because there exists a broad

Feshbach resonance centered at 832 G with which one can study strongly interacting fermions

and Fermi superfluidity, as discussed in chapter 3.4.

Figure 4.2(b) shows the s-wave scattering length between states |1⟩ and |2⟩ as a function of

magnetic field. The scattering length between these states at zero field is nearly zero. Thus,

to perform evaporative cooling in a mixture of |1⟩ and |2⟩, we often ramp the magnetic field

to ≈ 300 G, where the scattering length is large and negative (≈ −290 a0). For higher

magnetic fields but below the Feshbach resonance position, there is enhanced inelastic loss
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Figure 4.2: (a) Energy spectrum versus magnetic field of the magnetic sublevels of the

2S1/2 F = 1/2 and F = 3/2 hyperfine manifold. At high fields, where F is no longer a valid

quantum number, the states approach pure |mS,mI⟩ eigenstates, where mS = −1/2(+1/2)

for the lower(upper) three states, and the shift between states of the same slope is the re-

maining perturbation from the hyperfine interaction. (b) s-wave scattering length a12(B)

between states |1⟩ and |2⟩ as a function of magnetic field (units of 103 a0). The broad Fesh-

bach resonance centered at 832 G makes this an ideal system to study strongly interacting

fermions.

due to atom-molecule collisions, which causes severe heating of the cloud. Thus, to achieve

large atom number clouds at unitarity (832 G), we perform a magnetic field sweep from low

field to the resonance position with only a single spin state of Li present, and subsequently

prepare a spin mixture using an RF pulse.

4.1.3 RF spectroscopy of Li

Upon loading Li from the compressed MOT into the ODT, we optically pump all atoms out

of the F = 3/2 state and into the F = 1/2 state to avoid the fast inelastic decay from spin

relaxation that would otherwise result. Thus, we always begin an experimental cycle with a
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50:50 spin mixture of states |1⟩ and |2⟩. In many circumstances, it is desirable to work with

just a single spin state of Li. These situations include experiments that necessitate magnetic

field sweeps across the lossy region of the magnetic Feshbach resonance in figure 4.2(b), and

for our experiments with a single spin state of metastable 3P2 Yb. Furthermore, once we

have a spin pure ensemble of Li atoms, we can perform coherent manipulation of the internal

state using RF pulses.

To remove either state |1⟩ or |2⟩, we simply apply light resonant with the D2 (2S1/2,

mJ = −1/2 → 2P3/2, mJ = −3/2) transition at a high field, ensuring both frequency

selectivity between the two states, as well as decoupling of the nuclear spin degree of freedom

from the electronic degrees of freedom resulting in a perfect cycling transition. This is the

same technique we use to achieve state-selective absorption imaging. With a gas of Li

atoms in a single spin state, we can then apply an RF magnetic field to couple states with

∆mF = 0,±11.

Figure 4.3(a) shows a typical RF resonance spectrum between states |1⟩ and |2⟩ at the

position of the Feshbach resonance B = 832 G. For this particular spectrum, the RF power

was 1 Watt, and the exposure time 1 ms. The resonance frequency at this field is f0 = 76.276

MHz. The fitted full width at half maximum (FWHM) is 900 Hz (from a Gaussian fit

returning a 1/e1/2 radius of 380 Hz), which is consistent with the Fourier-transform-limited

width for a 1 ms exposure.

Additionally, we can perform Rabi oscillations between states |1⟩ and |2⟩, as shown in

figure 4.3(b), performed again at 832 G. For this particular measurement, we use 2 Watts

of RF power at the resonance frequency f0 found in 4.3(a). The 1/e decay time for these

Rabi oscillations is τ = 15 ms, and the Rabi frequency Ω12/h = 430 Hz. If we perform

the same measurement with 1 Watt of RF power, the observed Rabi frequency is 300 Hz,

consistent with the expected reduction by a factor of
√
2. It is important to note that

1Note that although these RF manipulations occur at a large field where F is no longer a valid quantum
number, the projection of the total angular momentum mF = mS +mL +mJ onto the magnetic field axis
is a valid quantum number, and obeys the selection rule for magnetic dipole transitions ∆mF = 0,±1.
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Figure 4.3: RF manipulation of Li states |1⟩ and |2⟩. (a) RF resonance spectrum at B = 832

G. We show the atom number remaining in state |1⟩ after the application of a 1 ms, 1 Watt

RF pulse. The extracted FWHM of 900 Hz is consistent with that expected from the Fourier-

transform-limit. (b) Rabi oscillations between |1⟩ and |2⟩ (state |1⟩ atom number shown).

The fit returns a Rabi frequency of 430 Hz, and 1/e decay time of 15 ms. (c) Landau-Zener

transfer from state |1⟩ (red circles) to |2⟩ (blue squares). Fits return a 1/e timescale of 20

ms for a 1 Watt RF pulse with a 50 kHz wide sweep.
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the ability to resolve multiple Rabi oscillations in our system is restricted to being in the

high-field regime of the Li Breit-Rabi spectrum (figure 4.2(a)). At lower fields, there is

a large variation of the resonance frequency f12 with magnetic field, with the result that

magnetic field inhomogeneities quickly lead to decoherence. In fact, assuming variations in

the magnetic field are proportional to B (which is usually the case), the decoherence rate

scales as ∂f12
∂B

×B, which has its maximum around 60 G [40].

While it is straightforward to use a π/2 pulse with fixed RF frequency to prepare the

superposition state (|1⟩ + |2⟩)/
√
2, we find the preparation of this state to be much more

reliable using a Landau-Zener sweep, like that shown in figure 4.3(c). This is because slight

variations of the magnetic field at the position of the atoms are inevitable on the timescale of

days to weeks, and would require us to relocate the center position of the |1⟩− |2⟩ resonance

often. With the Landau-Zener transfer, we can choose a large sweep window approximately

centered on the resonance position that is insensitive to these small changes in magnetic

field. Typical Landau-Zener pulse times for creating the superposition state (|1⟩ + |2⟩)/
√
2

are 5-20 ms, using 1-2 Watts and frequency sweep ranges of 10-50 kHz.

4.2 Optical Trapping of Yb and Li

Because of the vastly different mass and electronic structure of Yb and Li, their optical

confinement properties are quite different, and the range of wavelengths usable to trap both

species restricted. Indeed, many groups working with Yb only choose to operate their ODT

at 532 nm, as the polarizability of Yb is large and high powers are readily available in

commercial laser systems. However, since Li is untrapped at 532 nm, the logical choice for

simultaneous optical trapping of both species is to operate the ODT at 1064 nm, where it is

again easy to find high power commercial laser systems.
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4.2.1 Optical trapping at 1064 nm

Using equation (2.5) for the dipole potential Vdip(r⃗) = −α(λL)I(r⃗)/(2ϵ0c), one can find the

polarizabilities for Li and Yb with a trapping laser wavelength of λL = 1064 nm to be:

α(λL = 1064 nm)

2ϵ0c
=

 8.4× 10−37 m2s Li

3.7× 10−37 m2s Yb
. (4.1)

Thus, we see that the ratio of the trap depth for Li to that of Yb is αLi/αYb ≈ 2.3. This has

the consequence that, when performing evaporative cooling of Yb with both species in the

trap, Li is sympathetically cooled and maintains a very large value of ηLi = (V0/kBT )Li ≈

(αLi/αYb)(V0/kBT )Yb ≈ 2.3× 10. Indeed, whether Li is prepared as a collisionless ideal gas

or as a |1⟩-|2⟩ spin mixture with a large scattering length (e.g. at 300 G), we do not observe

much loss of Li over the course of sympathetic evaporative cooling to quantum degeneracy.

From the values in equation (4.1), we find the following ratio of trap frequencies for Li

and Yb:

ωLi

ωYb

=

√
αLi

αYb

mYb

mLi

≈ 8. (4.2)

This has the fortunate consequence that the degeneracy temperatures for the two species

have the scaling

TF
TC,Yb

=
~ω̄Li(3NLi)

1/3

0.94~ω̄YbN
1/3
Yb

≈ 12

(
NLi

NYb

)1/3

. (4.3)

Therefore, in our typical situation of a large bath of Yb cooling a smaller cloud of Li, Yb

remains a thermal cloud and can cool Li far below the Fermi temperature before crossing

the BEC transition (and thus becoming a weaker cooling bath). Another consequence of the

scalings in equations (4.2) and (4.3) is that there is an interesting possibility to use Yb as

an impurity thermometer of a deeply degenerate, strongly interacting Li Fermi gas, which is

a notoriously difficult regime in which to perform thermometry.
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4.2.2 Controlling interspecies overlap with a magnetic field gradient

While the large mass mismatch between Yb and Li offers exciting possibilities to study novel

few-body physics, it presents a technical challenge due to the large resulting differential

gravitational sag. In the linear regime, the gravitational sag from the minimum of the

optical potential is ∆y = g/ω2
y, with the end result that at low optical depths, the two

clouds completely separate, making sympathetic cooling and interaction studies difficult in

this regime. Fortunately, we can utilize the different internal structures of Yb and Li to

mitigate this effect by imposing a linear potential on Li only using a magnetic field gradient

B′ = ∂B/∂y in the vertical bias field direction. The resulting potential is

VLi(r⃗) =
αLiI(r⃗)

2ϵ0c
+mLigy + µB′y

=
αLi

αYb

[
αYbI(r⃗)

2ϵ0c
+
αYb

αLi

(mLigy + µB′y)

]
. (4.4)

Therefore, if we choose a gradient such that (αYb/αLi)(mLig + µB′
overlap) = mYbg, the Li

potential takes the form

VLi(r⃗) =
αLi

αYb

VYb(r⃗), (4.5)

and the two cloud centers will be perfectly overlapped. The corresponding optimal magnetic

field gradient is

B′
overlap =

αLi

αYb

mYbg

µB

(
1− αYbmLi

αLimYb

)
= 68 G/cm, (4.6)

where we’ve used µ/h = µB/h = 1.4 MHz/G for states |1⟩ and |2⟩ of Li at high field.

As we’ll see in chapter 8, there is an important technical limitation to using the magnetic

field gradient to tune interspecies spatial overlap. Especially in situations with tight vertical

confinement, but weak confinement in the horizontal plane, any relative misalignments of the

directions of the forces of gravity and the magnetic field gradient can lead to large differential

displacements of the clouds in the horizontal plane.
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4.2.3 One-dimensional optical lattice implementation

An optical lattice at 1064 nm is a necessary tool for many future experiments with Li-Yb

mixtures and molecules. During my time in the lab, we demonstrated one dimension of what

will eventually become a three-dimensional optical lattice for quantum simulation studies.

The lattice light is derived from the combination of a home built external cavity diode

laser (ECDL) setup and a commercial 50 W single frequency fiber amplifier (Nufern NUA-

1064-PD-0050-D0). After the ECDL seed light is sent through a polarizing beam splitting

cube and coupled into a polarization maintaining optical fiber, there is typically about 70

mW of 1062-1067 nm light entering the fiber amplifier, which can be easily amplified up to 50

W. The ECDL master laser spectrum is continuously monitored on a scanning Fabry-Perot

cavity to ensure that its operation is single mode. Following the fiber amplifier is a high

power isolator (Thorlabs IO-5-1064-HP) and various half-wave plates (CVI QWPM-1064-

10-2), polarizing beam splitters (CVI TFPN-1064-PW-1025-UV) and AOMs (Intraaction

ATM-2004DA6) for controlling the frequencies and powers of the individual axes of the

lattice. The prepared lattice beams are then coupled into polarization maintaining fibers2

and ported over to the main experiment where an intensity feedback scheme is implemented

using a photodiode and the respective AOM.

In order to demonstrate the first dimension of what will be a three-dimensional optical

lattice, we began by implementing the vertical axis of the lattice. Each lattice beam must

be combined with an existing MOT beam path using two dichroic mirrors on either side

of the main chamber, focused onto the position of the atoms, and then retro-reflected to

form the standing wave. For the first dimension, we chose a beam waist of 100 µm and

performed experiments with Yb. We initially aligned the lattice beam using a CCD camera

2For the lattice fibers, we began by using a standard 980 nm 6/125 PM fiber patchcord from Oz Optics
(PMJ-A3HPC,A3HPC-1064-6/125-3AS-8-1) terminated with a high power air gap connector to allow for
higher output powers. Unfortunately, we burned the high power connector on one of these fibers when
attempting to couple in more than 5 W for a standard traveling-wave optical trapping application. For
replacements, our plan is to keep the power somewhat lower and use a cheaper PM fiber from Thorlabs
(PM980-XP).
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Figure 4.4: Implementing a one-dimensional optical lattice at 1064 nm. (a) Kaptiza-Dirac

diffraction (as shown in part (c)) to calibrate the lattice beam alignments. We vary the

power per beam P with a fixed square pulse time τ = 8.6 µs, and detect the transfer of

population from the p = 0 to p = 2n~kL momentum state in the limit of small transfer,

where kL = 2π/λL, and λL = 1064 nm. This data is then fit (black lines) to the functions

[Jn(βP )]
2 to extract β = 2V0τ/(~P ), where V0 is the Stark shift from a single beam. (b)

Lifetime of Yb in a 1D optical lattice with depth parameter s = 4V0/ER = 37 and power

per beam P = 0.2 W, where ER is the recoil energy for a single lattice photon. From an

exponential fit to the data with no vertical offset, we find a 1/e decay time of 11.3±0.8 s. (c)

Absorption image taken after a Kapitza-Dirac diffraction pulse populating many momentum

states.
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imaging setup focused on the atom cloud. The lattice beam focus was then positioned onto

the Yb cloud location on the camera, and subsequently varied to maximize the effect of the

Stark shift and then center the beam on the Yb cloud. The initial alignment of the retro-

reflected beam was accomplished by coupling the light back into the optical fiber, and was

then optimized by performing Kapitza-Dirac diffraction of an Yb BEC (see figure 4.4(a)).

For a Kapitza-Dirac square-shaped pulse of duration τ , the relative population transferred

to the 2n~kL momentum state is given by [Jn(θ)]
2, where Jn is the nth Bessel function of

the first kind, and θ = 2V0τ/~, where V0 is the Stark shift from a single pass of the optical

lattice beam (i.e. the full lattice depth is 4V0). For a pure BEC the initial state is entirely

n = 0. For the measurements in figure 4.4(a), where we fix the duration τ = 8.6 µs and vary

the power per beam P , we fit to the functions [Jn(βP )]
2 for n = 0 and n = 1 in the limit of

small population transfer. From this we find β = 5.0± 0.1 W−1.

After calibrating the beam alignments, we measured the lifetime of the Yb BEC in the

lattice with very little confinement from the ODT3. The result is shown in figure 4.4(b) for

a lattice power of 200 mW per beam. From the calibration in figure 4.4(a), we find that this

power corresponds to a lattice depth parameter of s = 4V0/ER = 2βP~/(ERτ) = 37, where

ER = ~2k2L/2m is the single photon lattice recoil. The fitted 1/e decay time of 11.3 ± 0.8

s at this large lattice depth is encouraging for future quantum simulation experiments in a

full three-dimensional optical lattice.

4.3 Metastable 3P2 Yb

As discussed in section 1.2, it became clear early on in my time in the group that realizing

magnetically tunable interactions between Li and Yb would require searching in a combi-

nation of ground state Li and metastable 3P2 Yb (Yb∗). To this end, we opted to prepare

this state in Yb by an indirect pumping scheme, which is depicted in figure 4.1(b). First,

1S0 Yb atoms are excited by a laser at 404 nm to the 3D2 state, from which they decay

3The ODT power was set to about 100 mW, which would in the absence of the lattice would be too little
power to suspend the Yb atoms against gravity.
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to 3P2 (branching ratio of 12%) and 3P1 (branching ratio of 88%). We decided on this in-

direct excitation scheme as opposed to the direct 1S0 → 3P2 excitation because the latter

is a magnetic dipole transition requiring clock-level stability of the excitation laser, while

the 3D2 transition is electric quadrupole, and thus considerably easier to drive. For more

information about the 404 nm laser stabilization and details of the excitation scheme, the

reader is referred to the thesis of Alex Khramov [61].

Since the eventual goal was to locate Feshbach resonances by performing inelastic loss

spectroscopy of Yb∗ in the presence of Li as a function of magnetic field, we desired to

prepare a spin pure ensemble of Yb∗. In order to do so, we began by selectively exciting Yb

to the mJ = −2 state of 3D2, from which it decays to both mJ = −1 and mJ = −2 in 3P2.

Then, we exploited the different polarizabilities and magnetic moments of these two states to

selectively spill the mJ = −2 state from the trap with a strong magnetic field gradient. As

shown in figure 4.5(b), for crossed orientations of the bias magnetic field and ODT electric

field, the mJ = −2 state is weakly trapped at λL = 1064 nm, making it simple to spill these

atoms without affecting the mJ = −1 atoms.

With a spin pure sample of mJ = −1 Yb∗ atoms, we could then proceed to prepare

other spin states using RF Landau-Zener transfer (figure 4.6(a)). Figure 4.5(a) shows mea-

surements of the polarizability of the mJ = 0,−1, and −2 states of Yb∗ by diabatic trap

squeezing. After suddenly changing the trapping laser power, the atoms begin executing a

quadrupolar breathing mode. Furthermore, since we already know the polarizability of the

1S0 state at 1064 nm, simply measuring the breathing frequencies of the Yb∗ states relative

to 1S0 gives us their absolute polarizabilities.

Measurements of the stability of a mixture of Li |1⟩ and mJ = −1 Yb∗ at low magnetic

field (B = 12 G) are shown in figure 4.6(b). The lifetime measurements are consistent

with no loss of Li, and reveal a two-body inelastic rate coefficient for Yb∗-Yb∗ collisions of

K2 = 2.5×10−11 cm3s−1. In chapter 5, we will discuss experiments in which we extend these

measurements of interspecies inelastic behavior over a wide range of magnetic field values.

While the purification scheme used here in principle allows us to perform experiments
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Figure 4.5: Measurements of the polarizability of the Yb 3P2 magnetic substates for per-

pendicular orientations of the bias magnetic field and optical trap electric field. (a) Trap

frequency measurements by diabatic excitation of a quadrupole breathing mode for 1S0 and

|mJ | = 0 (green), 1 (red), and 2 (blue) of 3P2 for the same trapping laser power. The

measurement of the 3P2 state frequencies relative to the 1S0 state gives the absolute polariz-

ability. (b) Polarizability calculation from the group of S. Kotochigova for |mJ | = 0, 1, and

2 (same colors as (a)). The polarizability of 1S0 is shown by the dashed black line. (Inset)

Polarizability measurements (solid circles) at 1064 nm. Adapted from [59].
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Figure 4.6: (a) Preparation of spin pure gases of Yb∗. Following the purification and RF

transfer scheme describe in the text, we detect the spin composition by applying a strong

magnetic field gradient after releasing the atoms from the optical trap, resulting in a Stern-

Gerlach separation in the vertical y direction of the magnetic substates. (b) Measurement

of Yb∗-Yb∗ and Yb∗-Li (state |1⟩) inelastic scattering in the mJ = −1 substate at B = 12

G. Solid lines are fits to rate equations for number and temperature coupled dynamics. The

Li number evolution is consistent with zero inelastic loss, while the Yb∗ decay returns an

inelastic rate coefficient K2 = 2.5× 10−11 cm3s−1. Adapted from [59].

with ground state Li and any single magnetic substate of 3P2, additional challenges prevented

us from doing so. Due to the large, sudden change in polarizability upon transferring the Yb∗

population from the mJ = −1 to either adjacent spin state, the cloud would begin executing

breathing oscillations and heat up, thus making measurements of interactions with Li very

difficult. A more straightforward way to realize mixtures of Li with arbitrary pure spin states

of Yb∗ is to perform the direct 1S0 → 3P2 transfer at 507 nm, where a particular mJ substate

may be selectively populated at finite field. However, this transition requires optical-clock-

level stability and ultra low expansion cavity technology, and therefore was neither easily

nor quickly adaptable to our system.
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4.4 Sub-Doppler cooling of Li

In the later stages of my time in the group, we set off to realize a mixture of a superfluid

Fermi gas of 6Li and a BEC of Yb. In earlier attempts in the lab, the atom number losses

and heating incurred while trying to ramp the magnetic field from low values (≈ 300 G) to

the center of the |1⟩-|2⟩ Feshbach resonance at 832 G proved too great, and resulted in low

signal-to-noise absorption images. However, with a completely redesigned crossed optical

trap optimized for efficient CMOT loading and evaporative cooling (described in chapter 7),

we were capturing many more Li atoms from the CMOT than previously. To enhance our

Li quantum degenerate gas production even more, we decided to implement a sub-Doppler

cooling scheme often referred to as “gray molasses” or “D1 cooling.”

First demonstrated on D2 transitions in alkalis (Rb and Cs) in the mid-1990s [14, 13, 29],

gray molasses involves dressing the ground state with counter-propagating laser beams of

equal frequency that are blue detuned from an F → F ′ = F (F → F ′ = F − 1) transition,

creating one (two) dark states that uncoupled by the light [30]. The coupled state expe-

riences a spatially dependent Stark shift upwards in energy relative to the dark state, and

preferentially gets excited to F ′ near the top of an energetic “hill,” and falls into the dark

state, thus losing kinetic energy (i.e. Sisyphus mechanism).

Nearly two decades later, the group of Christophe Salomon at ENS adapted this technique

to cool fermionic 40K [30] and bosonic 7Li [36] on the D1 transition, two species where the

small hyperfine splitting in the 2P3/2 excited state makes traditional sub-Doppler cooling

techniques (e.g. polarization gradient Sisyphus cooling) very difficult (K) or impossible (Li).

In this situation, a complete description of the cooling mechanism is quite involved, since

the role of the lower F = 1/2 hyperfine state cannot be neglected. For more details, the

reader is referred to the great papers from the ENS group on the topic [30, 36, 101]. Another

particularly useful reference involves the first implementation of D1 cooling in 6Li by the

Florence group [16], where an impressive minimum temperature of 40 µK was reached with

109 atoms in the molasses. This was quickly followed up by simultaneous D1 cooling of 40K
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and 6Li by the ENS group [101].

For the source of the molasses beams in our experiment, we use the output of a home-

made tapered amplifier (TA) system seeded by a Toptica DL100 external cavity diode laser,

resulting in ≈ 350 mW after the isolator following the TA4. This light is then split into two

paths by a half-wave plate and polarizing beam splitter (PBS) cube, each of which is sent

through a double-pass AOM setup (negative first order) to prepare the necessary frequen-

cies to address the F = 3/2 → F ′ = 3/2 (cooling) and F = 1/2 → F ′ = 3/2 (repump)

transitions. In practice, we establish the various detunings by fixing the frequency of the

cooling light AOM to be fAOM,,C = 208.0 MHz, resulting in the cooling laser frequency

ωC = ωL − 2π × 2fAOM,,C = ωL − 2π × 416 MHz. Therefore, for δC = 0 the diode laser itself

has a frequency of ωL = ωD1,F=1/2 +2π× (416− 228.2) MHz = ωD1,F=1/2 +2π× 187.8 MHz,

where ωD1,F=1/2 is the resonance frequency for the 2S1/2, F = 1/2 → 2P1/2, F
′ = 3/2 transi-

tion. Then, we can vary the 1-photon cooling detuning δC by varying the lock point of the

laser ωL, and the two-photon Raman detuning δ = δR − δC by varying the frequency of the

repump AOM fAOM,R. The Raman resonance condition is fulfilled for fAOM,R = 93.9 MHz,

and δ < 0(δ > 0) for fAOM,R > 93.9 MHz(fAOM,R < 93.9 MHz).

Following the double-pass AOMs, the cooling and repump beams are combined in a PBS

cube, resulting in orthogonal polarizations, and then coupled into a polarization maintaining

fiber. After the fiber, the cooling and repump beam powers are PC = 40 mW and PR = 10

mW, and we install an expanding telescope to make the beam waist ≈ 4−5 mm at the atoms.

These beams are then combined with the existing MOT beams using PBS cubes before the

quarter-wave plates. Therefore, the D1 molasses beams and the MOT beams have opposite

polarization (i.e. σ+ → σ−). However, this is not an issue for the molasses since it must be

performed at zero magnetic field.

The frequency ωL of the diode laser is stabilized to a commercial wave meter (High Finesse

WS7/1275) using a Labview program to provide proportional and integral feedback with a

4This laser system is the same one used for the dual-MOT photoassociation measurements described in
chapter 6.
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Figure 4.7: D1 gray molasses cooling of 6Li. (a) Relevant energy levels for the blue-detuned

molasses beams. The relative, or Raman detuning is defined as δ = δR−δC . (b) Dependence

of temperature (blue circles) and number (red triangles) on Raman detuning (in units of

the natural linewidth) for a 1 ms molasses duration. (c) Dependence of temperature (blue

circles) and number (red triangles) on the molasses exposure time for δ/Γ ≈ 0.2.
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maximum bandwidth of ≈ 100 Hz. Importantly, the D1 cooling mechanism is relatively

insensitive to the absolute detunings of the cooling and repump beams (δC and δR in figure

4.7(a)), and therefore our slow frequency lock is not an issue. However, the cooling is much

more sensitive to the relative stability of the two molasses beams, given by the Raman

detuning δ = δC − δR. This Raman detuning is set by the relative stability of the VCO

RF sources for the AOMs, which is plenty stable to achieve sufficient coherence between the

beams.

In practice, we don’t bother locking the diode laser frequency ωL to an absolute refer-

ence, and instead vary the lock point in the Labview program to maximum the observed

cooling. Figure 4.7(b) shows the measured dependence of D1 cooling in our system on the

Raman detuning δ in units of the natural linewidth Γ = 2π×5.9 MHz, for the experimentally

optimized 1-photon detuning δC . Then in figure 4.7(c), we see the dependence of 6Li tem-

perature on the duration of the molasses, with a minimum around 0.5 ms, for the optimal

Raman detuning of δ ≈ 0.2Γ. After further optimization of our system, we were able to

achieve 6Li clouds consisting of 3 × 108 atoms at a temperature of 70 − 80 µK. One of the

most important technical issues we encountered when trying to get the molasses working

was the residual magnetic fields that persist after compressing the MOT and shutting the

coils off. To mitigate this issue, we carefully set pretriggers on each of the coils, each with its

own particular decay time, in order to have as close to zero magnetic field as possible upon

applying the gray molasses. When optimizing D1 cooling for loading into the optical trap,

the parameters had to be tweaked a little bit due to the Stark shift introduced by the ODT.
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Chapter 5

MAGNETIC FIELD-DEPENDENT INTERACTIONS IN
6Li(2S1/2) + 174Yb(3P2)

In section 4.3 we detailed our procedure for creating spin-polarized gases of metastable 3P2

Yb (Yb∗). After establishing the stability of the Li 2S1/2 + Yb∗ mixture at zero magnetic field

(see figure 4.6), we set out to detect interspecies magnetic Feshbach resonances by performing

inelastic loss spectroscopy. What follows in this chapter is a summary of the measurements

and analysis that constitute our 2015 publication on the detection of Feshbach resonances

in the lithium - metastable ytterbium mixture [27].

In “traditional” inelastic loss Feshbach spectroscopy, the atoms reside in the electronic

ground state and the dominant loss mechanism is three-body collisions close to the resonance

position, resulting in a deeply bound molecule and free atom, both of which have enough

energy to leave the trap. Furthermore, it is typically the case that there is little to no inelastic

loss away from the Feshbach resonance, and thus no background with which to compete. In

this situation, it is common to perform the loss spectroscopy by measuring the atom number

at a given magnetic field for one short and one long hold time, and taking the ratio to look

for resonant, field-dependent loss features.

The situation when using an electronically excited metastable state is quite different.

First of all, the dominant loss mechanism is two-body loss, as the energy released corresponds

to internal electronic decay and not the formation of a diatomic molecular bond, meaning

there is no need for a third scattering particle to carry away the necessary energy and

momentum. Furthermore, there is a strong background of Yb∗-Yb∗ inelastics for all magnetic

fields, and, as we quickly found after investigating interspecies inelastics at fields around 100

G, strong Li-Yb∗ inelastics that grow steadily with magnetic field. Thus, there are various
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backgrounds that could obscure the detection of Feshbach resonances, and that cannot be

easily overcome by going to lower and lower density (as would be the case for three body

loss).

Therefore, to make our loss spectroscopy as sensitive as possible, we performed well

resolved lifetime measurements of Li and Yb∗ atom number versus hold time together in the

trap at a given magnetic field. Then, by fitting to the observed dynamics we extracted the

inter- and intraspecies inelastic loss rate coefficients, K ′
2(B) and K2(B), which would reveal

a Feshbach resonance as a peak versus magnetic field.

5.1 Measurement of field-dependent inelastics

In order to search for resonant features in the inelastic loss spectrum K ′
2(B) of Li + Yb∗, it is

important to have spin-polarized gases of both Li and Yb, as it would otherwise be difficult

to know from which channel the resonance originated. The procedures for preparing pure

spin states of both Li and Yb∗ are detailed in chapter 4, as well as in our first publication on

the interspecies mixture [59]. For these measurements, the atoms are primarily trapped in a

horizontally oriented single beam optical trap at 1064 nm, with a second, much weaker beam

at 1070 nm oriented vertically (parallel to the direction of the force of gravity) to provide

additional axial confinement and thus increase the value of the Li-Yb∗ density-density overlap

integral.

After 4 seconds of evaporative cooling of Yb (1S0) and simultaneous sympathetic cooling

of Li, we are left with a mixture 500× 103 Yb ground state atoms and 25× 103 Li state |1⟩

atoms at a temperature of T = 1.1 µK. The trap frequencies for Yb 1S0 in the horizontal

beam only at this point are given by (ωx, ωy, ωz)Yb,1S0
= 2π × (500, 500, 4.9) Hz, and the

vertical beam has a power of 500 mW and waist w0 = 80 µm. After performing the 404 nm

excitation from 1S0 to 3D2 and purifying the resulting 3P2 atoms to realize a spin-polarized

mJ = −1 gas, we then have 20× 103 Yb∗ and 10× 103 Li atoms at temperatures of 1.7 and

1.5 µK, respectively.

For the magnetic field dependent inelastics measurements, we always perform the 3P2
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state preparation at 100 G, and quickly ramp the magnetic field to the desired value imme-

diately (< 5 ms) following the excitation to monitor loss dynamics. To make the magnetic

field ramp as fast as possible, we utilized our smaller set of coils, usually used for providing

MOT gradient, because of the small inductance. Furthermore, in order to eliminate the

effect of gravitational sag on Yb∗ and ensure the maximum possible overlap between the

two species, we perform the lifetime measurements with a magnetic field of 20 G/cm applied

against gravity. This gradient was supplied with our largest set of coils, usually called the

“Feshbach” coils.

5.1.1 Analysis of Li-Yb∗ lifetimes

Typical lifetime curves are shown in figure 5.1 for magnetic fields of 100 G and 450 G. In

order to extract the interspecies, density-independent inelastic rate coefficient K ′
2(B), we

must integrate the following equations and fit the solution to our data:

ṅYb = −K ′
2(B)nLinYb − 2K2(B)n2

Yb

ṅLi = −K ′
2(B)nLinYb. (5.1)

In order to do so, we have to account for the highly anharmonic nature of the potential in

the axial z dimension. To begin, we write the overall potential for Yb 3P2, mJ = −1 as

VmJ=−1(r⃗) =
mYbβV

2
(ω2

xx
2 + ω2

yy
2) + f(z), where βV = 1.04 is the ratio of the polarizability

of Yb∗ mJ = −1 to that of 1S0 for a vertically polarized ODT (i.e. E⃗ODT ∥ B⃗), and the trap

frequencies are those for the ground state. Including the vertical “dimple” ODT beam and

treating the axial confinement from the horizontal ODT beam as a harmonic potential, the

overall axial potential is written as

f(z) =
mYbβV

2
ω2
zz

2 + βHV0,vert

(
1− e−2z2/w2

0

)
, (5.2)

where V0,vert is the
1S0 depth corresponding to the vertical beam and βH = 0.65 is the ratio

of polarizability of mJ = −1 to that of 1S0 for a horizontally polarized ODT (i.e. E⃗ODT ⊥ B⃗)

[43]. This full analysis is necessary because kBT > βHV0,vert, and therefore the harmonic
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Figure 5.1: Example lifetime curves for Li state |1⟩ (red circles) in the presence of mJ = −1

3P2 Yb (blue circles) at 100 G (open markers) and 450 G (solid markers). The dashed

and solid lines are fits from a rate equations analysis including interspecies (Li-Yb∗) and

intraspecies (Yb∗-Yb∗) two-body inelastic decay. From [27].

approximation for the vertical ODT beam is not valid. We can write the Li potential in a

similar fashion, with VLi(r⃗) =
mLi

2
αLi

αYb
(ω2

xx
2 + ω2

yy
2) + g(z), where αLi/αYb = 2.3 is the ratio

of Li to Yb polarizabilities, and

g(z) =
αLi

αYb

(mLi

2
ω2
zz

2 + V0,vert

(
1− e−2z2/w2

0

))
. (5.3)

Writing the Yb∗ density profile as nYb(r⃗) = n0,Yb exp(−VmJ=−1(r⃗)/kBT ), we find

n0,Yb =
NYb

πRxRy

[∫
dz e−f(z)/kBT

]−1

, (5.4)

and similarly for the Li density profile nLi(r⃗). Thus, we can integrate the rate equations

in (5.1) over space, performing the necessary integrals in the z dimension numerically, and

end up with rate equations for the total atom numbers NYb and NLi. The dashed and solid

lines in figure 5.1 are fits to these spatially integrated rate equations at 100 G and 450 G,

respectively.
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Since we observe little to no change in temperature over the course of these lifetime

measurements, we do not include temperature dynamics into this model [27]. Furthermore,

because of diabatic effects associated with the Yb∗ state preparation, we limit our analysis

of interspecies lifetime measurements to the first 20 ms, where the two clouds have not lost

more than 10% of the initial overlap. These diabatic effects include both the impulse from

the 404 nm light exposure and magnetic field gradients along the weak axis of the trap,

which affect the two species differently.

5.1.2 Inelastic loss spectrum

In order to improve the determination of the interspecies inelastic rate coefficient, K ′
2(B),

we take a separate lifetime measurement at each magnetic field with Yb∗ present only, where

we blast Li away immediately before ramping the magnetic field to the desired value. We

then fit the solution to ṅYb = −2K2(B)n2
Yb to the observed Yb∗ lifetime measurements, thus

fixing K2(B) in the analysis of the measurements with Li. This results in markedly better

fits and uncertainties for K ′
2(B).

The resulting inelastic loss spectrum as a function of magnetic field from 100 to 520 G is

shown in figure 5.2. While the inter- and intraspecies inelastic rate coefficients are comparable

around 100 G, the interspecies inelastics clearly dominate for higher magnetic fields, with

several peak-like features pronounced above the overall rise in K ′
2(B). Furthermore, after

the peak value of the broadest feature around 450 G, the rate coefficient appears to decrease

noticeably. The Yb∗-Yb∗ intraspecies inelastic coefficient K2(B) appears to be constant as

a function of magnetic field.

For s-wave scattering between two distinguishable particles with an isotropic Van der

Waals interatomic potential, V (r) = −C6/r
6, one can show that, when the probability of

“reaction” (in our case meaning decay to an inelastic scattering channel) is high at small

interatomic separation, the two-body inelastic rate coefficient approaches a universal value
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Figure 5.2: Measured inelastic loss rate coefficients for Yb∗-Yb∗ (K2(B), blue triangles) and

Yb∗-Li (K ′
2(B), red circles) as a function of magnetic field. The dashed line corresponds to

the universal rate of K ′
2,univ = 3.0× 10−10 cm3s−1.

[53],

K ′
2,univ =

4π~
µr

ā, (5.5)

where µr is the reduced mass,

ā =
4π

Γ
(
1
4

)2 rVdW, (5.6)

and

rVdW =
1

2

(
2µrC6

~2

)1/4

(5.7)

is the Van der Waals length, which quantifies the range of the interaction. In our 2014

publication [59], our theory collaborators (the group of S. Kotochigova) calculated the C6

coefficients for the Born-Oppenheimer Li(2S1/2) + Yb(3P2) potentials {2Σ,4 Σ,2 Π,4Π} to be

C6Σ = 3279.87Eha
6
0 and C6Π = 2402.98Eha

6
0. One can then find the isotropic C6 coefficient
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from the relation C6 =
1
3
(C6Σ +C6Π) = 2695.3Eha

6
0. Therefore, we find a universal loss rate

for this collision complex of K ′
2,univ = 3.0 × 10−10 cm3s−1, depicted by the dashed line in

figure 5.2.

5.2 Theoretical model for Yb∗-Li Feshbach resonances

Given our experimentally determined inelastic spectrum (figure 5.2), the theory group of

S. Kotochigova developed a theoretical model to calculate the various interaction potentials

and the consequences of Yb∗-Li scattering versus magnetic field. For a full description of

the theoretical model, the reader is referred to their paper [91], published in parallel with

our experimental results [27]. In this section, we will simply recount the anisotropic Van der

Waals coupling mechanism [90] that gives rise to the observed Feshbach resonances.

Figure 5.3 shows a schematic of the important channels involved in anisotropy-induced

interactions in the Yb∗-Li system. Unlike “standard” alkali Feshbach resonances (see section

3.3.1), which couple different channels corresponding to different electronic spin configura-

tions (e.g. triplet and singlet), anisotropy-induced Feshbach resonances result in the cou-

pling of channels with different internuclear orbital angular momentum ℓ⃗. As depicted by

the green potential in figure 5.3, the entrance channel for our measurements is always the

s-wave (ℓ = 0) scattering state with (J,mJ)Yb = (2,−1) and (mJ ,mI)Li = (−1/2, 1). The

anistropic Van der Waals interactions conserve Mtot = mYb +mLi +mℓ, where mYb and mLi

are the total angular momentum projections for the two species and mℓ the projection of

the relative nuclear orbital angular momentum ℓ⃗ onto the magnetic field axis. Furthermore,

these interactions only couple even ℓ.

The molecular, or closed channels that will give rise to magnetic Feshbach resonances

are those with dissociation energies above the entrance channel (e.g. the red curve in figure

5.3 asymptoting to the state mJ = −1 but with ℓ = 4). The potentials below the entrance

channel give rise to inelastic decay. For our Yb∗ state of mJ = −1, this decay includes both

Zeeman sublevel changing collisions and fine structure level changing collisions (i.e. 3P2 →
3P1).
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Figure 5.3: Depiction of the relevant channels involved in anisotropic Van der Waals scatter-

ing. The entrance channel (green curve) is set by the atomic labels (J,mJ)Yb and (mJ ,mI)Li

and the relative nuclear orbital angular momentum ℓ = 0 for the s-wave scattering state.

This channel may be coupled by the Van der Waals, or dispersion potential in equation (5.8)

to other channels with ∆ℓ even. For Feshbach resonances, the entrance channel couples to

bound states of potentials (e.g. red curve) with dissociation energy greater than the entrance

channel. Inelastic decay may occur to lower lying potentials (gray curves) by changing the

Zeeman sublevel or fine structure quantum numbers.
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The full Van der Waals, or dispersion interaction operator can be written in the form [90]

Vdisp(r⃗) =
1

r6

∑
kq

∑
i

c
(i)
k (−1)q

√
4π

2k + 1
Ykq(θ, ϕ)T

(i)
kq , (5.8)

where c
(i)
k are the dispersion coefficients, which can be determined from the Born-Oppenheimer

potentials (e.g. c
(1)
0 = −C6 =

1
3
(C6Σ+C6Π)), Ykq(θ, ϕ) are the spherical harmonics, the coor-

dinates (θ, ϕ) give the angle of the internuclear axis relative to the magnetic field, and T
(i)
kq

is a tensor of rank k involving tensor products of the individual atomic electronic orbital

angular momenta ℓ⃗Yb and ℓ⃗Li. In order to elucidate the explicit coupling mechanism, let

us assume that the main contribution to the anisotropic part of the potential comes from

the k = 2, q = 0, and i = 1 term (as was found to be the case in [90]), and write the full

dispersion potential as

Vdisp(r⃗) = −C6

r6
+

∆C6

r6
3 cos2 θ − 1

2
T

(1)
20 , (5.9)

where ∆C6 is referred to as the anisotropic Van der Waals coefficient. Thus, if the scattering

state begins as a single partial wave ℓ (i.e. as a spherical harmonic), this state will evolve

under the interaction term given by equation (5.9) because [Vdisp, ℓ⃗
2] ̸= 0, and may be coupled

to bound states of other molecular potentials with ∆ℓ ̸= 0 and even.

The result of the full close-coupling scattering calculation [91, 27] fitted to our experi-

mental data is shown in figure 5.4. In order to perform the fit, the short range shapes of the

potentials {2Σ,4 Σ,2 Π,4Π} were varied, thus changing the inelastic rate coefficient spectrum

K ′
2(B). For this reason, one cannot rule out the possibility of other potentials that are con-

sistent with the experimental data. The fit reveals one clear Feshbach resonance at 450 G,

with some weaker modulations at lower fields. The quantum numbers for this resonance, in

the separated atomic basis, are (J,mJ)Yb = (2,−1) and (mJ ,mI)Li = (1/2,−1), with relative

nuclear orbital angular momentum of both g-wave (60%) and d-wave (40%) character, and

mℓ = 1. This particular molecular channel is depicted by the red curve in figure 5.3.

The very high inelastic rate coefficient at the resonance position makes the prospect of

tuning elastic interactions or creating heteronuclear molecules rather grim in this combination
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Figure 5.4: Interspecies inelastic rate coefficient K ′
2(B) spectrum with fitted theory curve,

from [27] and [91]. The fit reveals a clear, broad resonance at 450 G, with a peak inelastic

rate coefficient nearly equal to the universal rate of 3.0× 10−10 cm3s−1.

Yb(3P2,mJ = −1)+Li(|1⟩). However, calculations by the Kotochigova group show that the

dominant loss mechanism in this combination is decay to the mJ = −2 state. This Zeeman

sublevel changing inelastic channel is eliminated if one uses the mJ = −2 state, and the

predicted loss rates at high magnetic field are an order of magnitude smaller than those for

mJ = −1 [91]. Unfortunately, our state preparation scheme for Yb∗ is not easily amenable

to preparing the mJ = −2 state, and thus performing experiments in that mixture would

require implementing the direct 1S0 to 3P2 excitation.
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Chapter 6

PHOTOASSOCIATIVE PRODUCTION OF YbLi∗

After our experiments with lithium and metastable (3P2) ytterbium revealed dwindling

prospects for producing heteronuclear Feshbach molecules, we turned our attention to an

all-optical route to ground-state YbLi molecules. The idea is inspired by experiments from

the group of Rudi Grimm, in which they achieved a conversion efficiency of 30% in the trans-

fer of free atoms to ground state, vibrationally excited Sr2 molecules in an optical lattice

using stimulated Raman adiabatic passage (STIRAP) [102]. For reference, the production

scheme used to create ultracold KRb [81], RbCs [78, 103], NaK [85], and NaRb [39] molecules

involves first coherently creating Feshbach molecules using either an adiabatic field sweep or

radio frequency pulse on the molecular side of the resonance, and subsequently coherently

transferring the loosely bound Feshbach molecules to the absolute ground state using STI-

RAP through an intermediate electronically excited molecular state. While the two-photon

STIRAP transfer in the Feshbach molecule case has near unit efficiency, the formation of

the Feshbach molecules themselves limits the final molecule number and phase-space density,

with typical efficiencies of 30-40%. Therefore, the overall efficiency achieved in the Sr2 case in

an optical lattice is quite impressive, and shows that the tight confinement in a single lattice

well can act to mimic the enhanced wave function overlap that is realized with Feshbach

molecules (i.e. increase the free-to-bound Franck-Condon factor).

Thus, our first goal became to identify a feasible two-photon pathway from free Yb and

Li atoms to a vibrationally excited molecular state in the YbLi ground state potential by

performing photoassociation (PA) spectroscopy. It is important to note here the qualita-

tive differences in the Yb-Li combination that contrast with the Sr2 situation. First, the

homonuclear Sr(1S0) + Sr(3P1) potential features a long range potential of the form −C3/r
3.
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This results in molecular states with Condon points at much longer internuclear separations,

which allows for greater wave function overlap between the free scattering and bound states

(i.e. greater Franck-Condon factor). Second, the light mass of 6Li makes tight confinement in

an optical lattice very difficult, while heavy atoms like Yb and Sr are easily pinned down to

single lattice sites. Nevertheless, the all-optical route to ground state YbLi molecules holds

good promise, and would be an important demonstration of a general method for creating

heteronuclear ground state molecules irrespective of the existence (or usability) of magnetic

Feshbach resonances.

6.1 Preparing the system for interspecies photoassociation

There were various important considerations in deciding how to perform the interspecies

PA spectroscopy. First, we needed to decide from which atomic transition to begin the

search, which determines the molecular potential for the intermediate STIRAP state. From

the LeRoy-Bernstein formula for the energy of vibrational states near dissocation in a 1/r6

potential,

∆(ν) = −
(
Γ(7/6)

Γ(2/3)

)3(
8π~2

µr

)3/2
1√
C6

(νF − ν)3, (6.1)

we see that the spacing between adjacent levels scales as µ
−3/2
r , where µr is the reduced mass,

ν = −1,−2,−3, ... is the vibration quantum number, ν = −1 is the least bound state, and

νF is a parameter with a value between 0 and 1 that accounts for the short range part of

the potential. Therefore, for the YbLi system with µr ≈ mLi, the spacing between adjacent

levels becomes large very quickly. This has the practical consequence that searching “in the

dark” for PA resonances becomes difficult after the first few bound states, and it is necessary

to extrapolate down in vibrational quanta ν using equation (6.1). For this reason, as well

as because of the readily available high laser powers at 671 nm, we chose to perform PA

spectroscopy below the 2P asymptote in Li. This transition features a much larger linewidth

Γ/2π = 5.9 MHz than the 556 nm transition in Yb with Γ/2π = 180 kHz, and thus makes

the prospect of searching in the dark for PA resonances much more reasonable.
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A second consideration for interspecies PA studies is whether to perform the spectroscopy

in a magneto-optical trap or an optical dipole trap. Previous photoassociation studies have

been successfully executed in both settings, with some of the relevant advantages for each

being the high spatial densities realized in the ODT, and the ability to sweep large frequency

ranges in the MOT because of the steady-state nature of the measurement. After brief

attempts at PA spectroscopy of weakly bound vibrational states in the ODT, we realized

that overcoming the deleterious effects of spontaneous scattering in Li would prove quite

difficult in the ODT, but could be mitigated in the MOT because of the continuous reloading

of atoms. While the PA studies presented in this chapter take place entirely in a dual-species

Yb-Li MOT, we have recently extended these studies into the ODT after significant upgrades

to the system preparation and using knowledge of the YbLi∗ molecular potentials acquired

from these MOT studies.

6.1.1 The dual-species MOT

Because neither Li nor Yb feature the ability to implement a dark-spot MOT, we cannot

increase the spatial densities beyond the limits imposed by light-assisted collisions in the

MOT. Therefore, we enhance our sensitivity to interspecies PA by choosing parameters for

the combined MOT that create a probe and bath situation for Yb and Li, respectively.

To this end, we operate with an axial magnetic field gradient B′
axial = 20 G/cm that

maximizes Li atom number and density. Because of the large mismatch in linewidth for

the transitions used for MOTs of both species, ΓLi/ΓYb = 33, this results in a considerably

smaller Yb cloud size than Li. Furthermore, because the gradient is far larger than the

optimal Yb loading gradient of 3 G/cm, the Yb MOT loading rate and thus equilibrium

number is much reduced compared to normal operation, and NYb/NLi ≪ 1.

The parameters used for the Li cooling (repumping) light addressing the F = 3/2 →

F ′ = 5/2 (F = 3/2 → F ′ = 5/2) transition are δcool = 5ΓLi (δrep = 3ΓLi) and Icool/Isat,Li = 8

(Irep/Isat,Li = 0.9) per beam, where Isat,Li = 2.54 mW/cm2. For the Yb 1S0 → 3P1 MOT

transition, we use a detuning of δYb = 20ΓYb and intensity of IYb/Isat,Yb = 160, where
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Isat,Yb = 0.14 mW/cm2. The absorption images of the resulting MOT clouds are well fit by

Gaussian profiles for both Yb and Li. The atom number, cloud sizes, and peak density of each

species in the absence of the other are determined by these Gaussian fits to be NLi = 7× 107

(NYb = 5× 106), wa,Li = 700 µm (wa,Yb = 200 µm), wr,Li = 900 µm (wr,Yb = 300 µm), and

nLi(0) = 2× 1010 cm−3 (nYb(0) = 5× 1010 cm−3), where wa and wr are the 1/e cloud radii in

the axial and radial dimensions, respectively. By observing the cloud expansion in time-of-

flight absorption images, we find the MOT temperatures to be TLi = 1 mK and TYb = 130

µK.

When operating the two MOTs simultaneously, the two-body interspecies inelastics (i.e.

light-assisted collisions) result in a reduction of the steady-state Yb number of a factor of

3, and have no effect on the Li number due to the probe-bath nature of the system. To

measure the inelastic dynamics, and for the eventual PA spectroscopy measurements, we

monitor the fluorescence of the Yb (Li) MOT on a photomultiplier tube (photodiode). By

assuming a constant Gaussian density profile in the trap over time (validated by absorption

imaging measurements), we can then calibrate the PMT and PD voltage to atomic density

in the trap. The fluorescence monitors also give us a method for optimizing the interspecies

cloud overlap, by adjusting the Li MOT beam pointing to minimize the fluorescence of the

Yb MOT.

With optimized interspecies cloud overlap, we perform measurements of inter- and in-

traspecies inelastic dynamics by closing the Yb atomic beam shutter and recording the ensu-

ing fluorescence over time. Figure 6.1 shows Yb MOT lifetime measurements both without

(a) and with (b) the Li bath present. We quantify the MOT lifetime dynamics using the

rate equations

ṅα = ℓα − γαnα − 2K2
2,αn

2
α −K ′

2nβnα, (6.2)

where α = Yb(Li) and β = Li(Yb) for the Yb(Li) dynamics,K2,α andK ′
2 are the homonuclear

and heteronuclear two-body inelastic rate coefficients, γα is the one-body background lifetime,

and ℓα is the spatially dependent loading rate. Because of the large mismatch in MOT
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Figure 6.1: Measurement of interspecies inelastics in the Yb-Li double MOT. (a) Without

Li, the Yb atom number decay is due to background γYb and intraspecies two-body inelastic

K2,Yb loss. (b) In the presence of Li, the interspecies inelastic process K ′
2 dominates all other

loss. Adapted from [96].

number and cloud size for the two species, we can treat Li as unperturbed by the Yb cloud,

and replace nLi(r⃗) in equation (6.2) with the constant peak value nLi(0). Then, we can

integrate equation (6.2) over space, and solve for the resulting atom number evolutionNYb(t),

and fit to the data in figure 6.1. Due to the vastly different timescales of the inelastics with

and without Li present, it is necessary to perform an independent lifetime measurement

without Li in order to extract K2,Yb. From the fits to the data in figure 6.1(a), we determine

the values K2,Yb = 9.8(3) × 10−13 cm3s−1 and γYb = 13.5(3) × 10−3 s−1. Then, fixing these

quantities and using the measured peak Li density nLi(0) = 1.9× 1010 cm−3 for the fit to the

data with Li, we extract the interspecies loss rate coefficient K ′
2 = 2.3(2) × 10−11 cm3s−1.

Because of the large disparity between the inter- and intraspecies inelastic coefficients, we

find the same value of K ′
2 if we fit the data in figure 6.1(b) to a one-body loss curve with

time constant [K ′
2nLi(0)]

−1.
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6.1.2 PA beam considerations

With the dual-species MOT optimized for interspecies cloud overlap, we move on to consid-

erations for the photoassociation beam. The PA beam is derived from a home built tapered

amplifier (TA) system seeded by a Toptica DL100 external cavity diode laser at 671 nm.

Because of the broad tails in the output frequency spectrum of the TA, which is due to am-

plified spontaneous emission (ASE), we place two bandpass filters, centered at 670 nm with

a transmission full width at half maximum of 10 nm. This removes frequency components at

the 6s6p 3P1 → 6s7s 3S1 transition in Yb at 680 nm, which otherwise leads to much reduced

Yb atom number in the MOT. This light is then coupled into a polarization maintaining

fiber, resulting in a total power in the PA beam at the experiment of 100 mW.

The most important consideration for the PA beam is the waist. In order to determine

the optimal size of the beam, we examine the loss term of interest for interspecies PA,

ṅYb,IPA = −K ′
2(I, ωL)nLi(0)nYb, (6.3)

where K ′
2(I) = K ′

2,bg +K ′
2,PA(I, ωL) is the frequency and intensity dependent inelastic loss

rate coefficient, accounting for the effects of photoassociation. In general, the PA loss term

on the molecular resonance ωL = ω0 takes the form (see section 3.3.4)

K ′
2,PA = K ′

2,max

4Γstim/γm
(1 + Γstim/γm)2

, (6.4)

where Γstim ∝ I is the stimulated scattering rate, γm is the spontaneous emission rate of the

excited molecular state, and K ′
2,max is the maximum achievable loss rate. Since it is usually

the case that Γstim ≪ γm for typical PA powers and Franck-Condon factors, we assume here

that K ′
2,PA ∝ I. Therefore, in order to maximize the total loss rate of Yb, we want to

maximize the right hand side of equation (6.3) integrated over all space, which amounts to

maximizing

J(w0) =

∫
d3r I(r⃗)nYb(r⃗), (6.5)
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Figure 6.2: Value of the overlap integral of PA Beam intensity and Yb density profiles, for

a spherical Yb cloud with 1/e radius wYb = 300 µm (vertical dashed line). Clearly, once

the beam is smaller than the radius of the cloud, the gains in intensity for smaller waist are

offset by the loss in overlap between the two profiles.

where I(r⃗) = (2P/πw2(z)) exp[−2(x2+y2)/w2(z)], w(z) = w0

√
1 + (z/zR)2 is the z-dependent

beam waist, and zR = πw2
0/λ is the Rayleigh range. For simplicity here, we assume a spher-

ical Yb cloud nYb(r) = n0 exp(−r2/w2
Yb) with a 1/e radius of wYb = 300 µm. Assuming the

centers of the PA beam and Yb cloud are the same, equation (6.5) becomes

J(w0) = A

∫
dz

wYbe
−z2/w2

Yb

w2(z) + 2w2
Yb

, (6.6)

where A = 2n0PwYb. The value of J(w0)/A is plotted in figure 6.2.

In fact, this analysis explained some of our early confusion, as we did not observe an

increase in the loss due to 3P1 → 3S1 scattering in Yb upon decreasing the waist below the

size of the Yb cloud. Eventually we settled on a PA beam waist of about 80 µm. After an

initial unsuccessful round of interspecies PA spectroscopy, we decided to increase the effective

intensity by recycling the PA beam 4 times and then retro-reflecting the beam, resulting in
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Figure 6.3: Li2 photoassociation in the Yb-Li dual MOT. The two broad resonances corre-

spond to the ν = −82 and −83 vibrational states of the 13Σ+
g potential. Because a reduction

of Li (red curve) leads to a decrease in interspecies inelastic loss of Yb (blue curve), there is

strong enhancement of Yb fluorescence at the Li2 resonances. From [96].

a total of 8 passes at the atoms. This resulted in a peak intensity of about 6 kW/cm2.

6.1.3 Li2 photoassociation in the dual-species MOT

To perform photoassociation spectroscopy in the dual-species MOT, we frequency stabilize

the diode laser to a a High Finesse WS7/1275 wave meter using Labview, and sweep the

stabilization point in a triangle-wave fashion over a range of 500 MHz with a sweep frequency

of 3 mHz. Concurrently, we record the fluorescence from each MOT in Labview and average

over 2 periods of the triangle-wave sweep.

Figure 6.3 shows a compiled spectrum from a number of 500 MHz sweeps in the vicinity

two Li2 PA resonances, corresponding to the ν = −82 and −83 vibrational states of the 13Σ+
g
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excited-state potential. In order to understand the striking response of the Yb fluorescence

on the Li2 PA resonances, we examine the spatially integrated rate equation

ṄYb = LYb − γ′YbNYb −
K ′

2

VLi
NLi(δPA)NYb, (6.7)

where LYb is the loading rate in atoms/s, γ′Yb is a one-body loss term that now includes loss

due to 3P1 → 3S1 scattering, VLi = NLi/nLi(0), and we write the Li number as a function

of the PA laser beam detuning from the atomic resonance (D1 line) δPA. Note that we have

ignored the Yb-Yb two-body inelastic term because the relatively large Yb-Li inelastic term

ensures a low density of Yb. Furthermore, because of the increased one-body loss γ′Yb due

to 3P1 → 3S1 scattering, Yb intraspecies inelastics are irrelevant even in the absence of Li.

Solving equation (6.7) for NYb in the steady state, we have

NYb =
LYb

γ′Yb +K ′
2NLi(δPA)/VLi

, (6.8)

where we find that K ′
2NLi(δPA)/(VLiγ

′
Yb) ≈ 10 from Yb lifetime measurements away from

PA resonances. Thus, to first order the Yb atom number is inversely proportional to the

Li atom number, and only saturates to its one-body limited value NYb = LYb/γ
′
Yb for very

large Li loss. From figure 6.3, we see that this inverse relationship of atom number leads to

a marked enhancement of the signal-to-noise at Li2 PA resonances in the Yb atom number

detection channel.

6.2 YbLi∗ photoassociation

Because of the relatively dense background of Li2 PA resonances in the search for YbLi∗

resonances, it is necessary to use the combined information of Yb and Li MOT fluorescence

to normalize away the dependence of the Yb atom number on that of Li. In other words,

we want only the variation of the interspecies inelastic rate coefficient, K ′
2, with PA laser

frequency, and not any residual signal from Li PA. From equation (6.8) we find that

K ′
2 =

VLiLYb

NLiNYb

(
1− γ′Yb

LYb

NYb

)
, (6.9)



106

where NYb/(LYb/γ
′
Yb) can be determined from the ratio of the Yb MOT fluorescence with

and without Li present. Writing K ′
2 = K ′

2,bg +K ′
2,PA(δPA) and noting that we already know

the value K ′
2,bg from section 6.1.1, we see that we can therefore extract the spectrum of

K ′
2,PA(δPA) in absolute units. Note that we do not need to know the value in absolute units

of the prefactor in equation (6.9), since we can simply scale the spectrum to match the known

background value.

6.2.1 Observed spectrum

Figure 6.4 shows both the raw fluorescence measurements and extractedK ′
2,PA(δPA) spectrum

in the vicinity of the 4 YbLi∗ PA resonances found in our dual-MOT experiment. Each

of the peaks in figure 6.4(b) has a double-peak substructure consistent with the ground

state hyperfine splitting of 228 MHz in Li. For the strongest detected PA resonance at

δPA/2π = −15.70 GHz, the molecule production rate is 5× 105 s−1.

Our PA search in the dual-species MOT covered the frequency range δPA = 0 to -250

GHz, where δPA is the PA laser frequency detuning from the 2S1/2 → 2P1/2 atomic transition

frequency. As we’ll see in the next section, these PA resonances correspond to the second

most weakly bound vibrational states, ν = −2, for various excited state potentials. Thus,

there is another set of lines closer to the atomic resonance. However, due to the drastic

increase in spontaneous scattering, we cannot perform PA spectroscopy here. For lines more

deeply bound than those shown in figure 6.4(b) (down to δPA/2π = −250 GHz), we can

conclude that the Franck-Condon factors are below our detection sensitivity.

While the 228 MHz substructure of each peak ensures that the resonances are due to the

presence of 2S1/2 Li, we must further confirm that the molecules created are not Yb∗Li∗. To

check this, we perform separate tests for the two strongest PA lines at 15.70 and 22.39 GHz,

in which we remove excited-state Yb atoms during the PA light exposure by pulsing the Yb

MOT light and PA light 180◦ out of phase with a 10 kHz square wave. The 3P1 spontaneous

emission rate of Γ = 2π × 180 kHz ensures that the excited state population is gone for the

vast majority of the half period in which the MOT light is off. The detection of the same
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Figure 6.4: Observation of YbLi∗ photoassociation. (a) Raw fluorescence spectra for Yb

(blue curve) and Li (red curve) revealing two interspecies PA resonances (highlighted in

green) on top of a broad Li2 PA feature. (b) Extracted two-body inelastic rate coefficient

for YbLi∗ PA K ′
2,PA(δPA), where PA resonances now appear as peaks. For each of the 4 clear

interspecies PA resonances, there is a double-peak structure with a separation of 228 MHz,

corresponding to the ground state hyperfine splitting in Li. From [96].
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Figure 6.5: (a) Dependence of interspecies PA line position on Yb isotope. The changing

reduced mass of YbLi∗ results in slight shifts of the bound state position. For 172Yb(176Yb)

the isotope shift is +510(-510) MHz relative to the 174Yb position. (b) Dependence of Li

hyperfine peak substructure on the Li MOT repumping beam power. As the repump power

is reduced, the population of the F = 3/2(F = 1/2) state decreases(increases), leading to

the observed changing imbalance between the peaks in K ′
2,PA.

PA resonances under these conditions verifies that the molecules are indeed YbLi∗.

To gain more information about the observed 174Yb6Li∗ PA resonances, we repeat the

PA spectroscopy with two other ytterbium isotopes, 172Yb and 176Yb. The results are shown

in figure 6.5(a). The changed reduced mass of YbLi∗ upon changing the Yb mass results in

small shifts of the vibrational state position, with opposite direction for greater/smaller Yb

masses. For the measurements at the 15.70 GHz resonance, we find a symmetric shift for

172Yb and 176Yb of positive and negative 510 MHz, respectively. Similarly, at the positions

of the 22.39 and 20.89 GHz resonances, we find shifts of 405 and 390 MHZ, respectively.

The sign of the isotope shifts are consistent with an accumulated bound state energy shift

starting form the bottom of the molecular potential.

Additionally, we investigate the dependence of the PA resonance substructure on the
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power in the MOT repumping beams. In figure 6.5(b), we plot the extracted value of K ′
2,PA

in the vicinity of the strongest PA resonance for three different repump powers. As the

repump power is decreased, the equilibrium population in the lower energy hyperfine state

F = 1/2 increases, and that in F = 3/2 decreases. Since our rate equations analysis assumes

that all Li atoms participate in PA at a single resonance position, the redistribution of ground

state Li atoms manifests as a changing imbalance between the two peaks in K ′
2,PA.

6.2.2 Molecular potential identification and Franck-Condon factors

Armed with the measured spectrum for K ′
2,PA, the theory group of S. Kotochigova calcu-

lated the relativistic molecular potentials asymptoting to the 2P1/2 and 2P3/2 states [96].

Even though the fine structure splitting of the 2P state Efs/h = 10.05 GHz in Li is small,

relativistic (i.e. spin-orbit) effects cannot be ignored for vibrational levels near dissociation.

In the relativistic Hund’s case (c), the quantum numbers of interest are the total electronic

angular momentum j⃗ = l⃗1+ s⃗1+ j⃗2, its projection onto the internuclear axis Ω, and the total

angular momentum J⃗ = j⃗ + ℓ⃗. Here, l⃗1 and s⃗1 are the electronic orbital and spin angular

momentum for Li, j2 = 0 is the total electronic angular momentum of Yb, and ℓ⃗ is the

relative nuclear orbital angular momentum. Thus, there are 3 relativistic potentials with

ℓ = 0 for Yb(1S0) + Li(2P1/2,3/2), j = 1/2, Ω = 1/2, and j = 3/2, Ω = 3/2 and 1/2, which

are labeled A(Ω = 1/2), B(Ω = 3/2), and C(Ω = 1/2), respectively.

The ab initio relativistic potentials are used for the short range part of the potential, and

are then smoothly connected to long range dispersion interaction potentials calculated using

second-order degenerate perturbation theory. Then, the depth of the short range potentials

and a heuristically added −C8/r
8 long range term are varied to fit the observed PA resonance

locations and isotope shifts. Because the MOT temperatures are well below the p-wave

threshold, we begin with ℓ⃗ = 0 in the ground scattering state, and therefore have J = 1/2

before PA. Due to the additional unit of angular momentum introduced by the photon, the

scattering state then couples to potentials with J = 1/2 and 3/2. The resulting line position

and potential identification for the 4 PA resonances are shown in Table 6.1. Figure 6.6 shows
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∆174/2π δ176−174/2π Potl. J v

(GHz) (MHz) (MHz)

E −12.63 −

T −12.63 −512 B 3/2 -2

E −15.70 −510

T −15.71 −513 A 1/2 -2

E −20.84 −390

T −20.94 −398 C 3/2 -2

E −22.39 −405

T −22.26 −405 C 1/2 -2

Table 6.1: PA resonance line positions and potential identifications for the YbLi∗ resonances

in figure 6.4. The experimental (E) and theoretical (T) values for the 174Yb6Li∗ position

∆174/2π and 176Yb-174Yb isotope shift δ176−174/2π are compared in the second and third

columns.

the square of the vibrationally averaged dipole moments (VADM2) between the ground state

scattering wave function and the 4 relevant excited states. The VADM is proportional to the

Franck-Condon factor, and thus this plot suggests that the Franck-Condon factors for nearby,

more deeply bound vibrational states are indeed much lower, as found experimentally. For

more details on the calculations involved, the reader is referred to the original publication

[96].
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Chapter 7

EVAPORATIVE COOLING IN DYNAMICALLY SHAPED
OPTICAL TRAPS

Optical dipole traps (ODTs) are an extremely valuable tool in ultracold atomic physics1,

as they do not restrict they type of spin state in a magnetic atomic species that may be

trapped, as is the case with magnetic traps. Furthermore, ODTs allow for the trapping of

atoms with magnetically insensitive electronic ground states, which includes many of the

exciting elements used in cold atom experiments today (e.g. Yb and Sr). Because the size

scale of the trapping potential in an ODT is set by the Gaussian waist of a tightly focused

laser beam, there result large confinement forces and small trap volumes (and thus high

atomic densities). However, a shortfall of the ODT is that, in performing forced evaporative

cooling by reducing the trapping laser power, the harmonic confinement near the trap mini-

mum decreases as well. This has the end result that the rate of elastic scattering, and thus

evaporative cooling, slows appreciably at low trap depths. While one could consider choos-

ing a very small beam waist to ensure sufficiently high confinement at low depths for fast

evaporation rates, this introduces the problem of excessively high densities at high depths

leading to strong three-body inelastic loss and heating. Thus, we see that achieving effi-

cient cooling is a problem of competing timescales which can change in hierarchy throughout

forced evaporative cooling.

A useful way to analyze the competition of timescales in evaporative cooling dynamics is

to define the ratio R = Γel/Γloss, where Γel = n0σv̄ is the elastic collision rate and Γloss is the

per-particle loss rate for the loss process of interest (e.g. background single-body loss and two-

body or three-body inelastic decay). In this chapter, we will concern ourselves only with the

1See section 2.1.2 for a full discussion of optical dipole traps.
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case of a gas of identical bosons in their electronic ground state. In this case, we can neglect

two-body decay mechanism and only consider background loss and three-body inelastic decay.

Using the values n0 = N(mω̄2/2πkBT )
3/2, σ = 8πa2, and v̄ =

√
8kBT/πm for a harmonically

trapped gas of identical bosons in the s-wave limit, we find that Γel ∝ Nω̄3T−1. From the

analysis in section 3.2, we have that Γbg = constant and Γ3b ∝ N2ω̄6T−3, resulting in scalings

of R ∝ Nω̄3T−1 and N−1ω̄−3T 2, respectively.

To quantify the idea of “efficient evaporative cooling,” we introduce a logarithmic measure

of the gain in (peak) phase space density ρ = n0λ
3
dB achieved for a given loss of atom

number, defining the evaporation efficiency parameter γ = − ln(ρf/ρi)/ ln(Nf/Ni), where

the subscripts i and f refer the initial and final quantities. We see that large values of the

ratio R will result in efficient cooling, as in this case fewer atoms are lost to background

or inelastic decay (i.e. Nf/Ni is not too small for a given ρf/ρi). From the scaling of the

phase space density, ρ ∝ Nω̄3T−3, we see that, in the background-loss-dominated regime,

maintaining large atom number N and high trap frequency ω̄ throughout evaporation leads

to a large value of R and evaporation efficiency γ [57]. However, when three-body inelastic

loss dominates, high values of N and ω̄ lead to a diminished evaporation efficiency. Thus,

we desire a method to ensure that, even in the presence of three-body loss channels, the

gas is maintained in the regime R > 1 throughout evaporation. While some groups have

implemented numerical optimization of the power trajectory P (t) during evaporative cooling

in Gaussian-shaped traps [109, 84], the lack of independent control over the trap depth V0

and frequency ω̄ significantly hinders the ability to create large atom number condensates,

or condensates with fast cycle times.

The solution we present here is general to all cold atom experimental setups, as it only

involves the implementation of time-averaged potentials created by center position mod-

ulation (CPM), or “painting” of the trapping laser focus by an acousto-optic modulator

(AOM). For these experiments, we focus and evaporative cooling of 174Yb only. The basic

idea is to utilize the additional degree of freedom offered by changing the effective size of

the trapping beam at the laser focus to achieve independent control over the trap depth
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V0 and frequency ω̄. This allows for dynamic shaping of the trapping potential. With this

capability, the trajectory of laser power and painting amplitude may be numerically and/or

experimentally optimized to achieve fast or efficient evaporation. We note that although a

similar approach of dynamically changing the trap shape has been implemented with good

success using a moving lens [63], the scheme presented here offers a much simpler method

with faster dynamical shaping bandwidth.

As we’ll see, in our experiments this approach turned out to be very successful, and

allowed us to create the largest pure Yb BECs to date, as well as to achieve the fastest

experimental cycle time for BEC production in optical traps to date [94]. We begin with a

discussion of the specific time-averaged potential profile used in our experiments.

7.1 Parabolic time-averaged potentials

While one can realize virtually any time-averaged potential shape2 using the technique of

CPM, the potential chosen for these experiments is the parabolic potential. The main im-

petus for this choice lies in the simplicity of modeling the evaporative cooling dynamics in

harmonic traps, as presented in section 3.2. In this section, we begin with a derivation of the

FM waveform necessary to achieve a parabolic time-averaged potential. Then, we discuss

the resulting trap depth and frequency dependence on the CPM amplitude h, as well as the

application of this model for the potential to the actual potential used in our experiment.

7.1.1 FM waveform derivation

To implement this potential experimentally, we need to know the FM waveform that must

be sent to the AOM. Using the formalism from section 2.1.3, we can solve for the necessary

2It is important to recall here that the protocol for creating time-averaged shapes presented in section 2.1.3
assumes a delta-function focus. Thus, when the CPM amplitude is not much larger than the beam waist,
the Gaussian features of the true focus shape feature strongly in the resulting time-averaged potential.
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painting function f(t) using

f(t)∫
0

df ′ g(f ′) = v0t, (7.1)

where v0 = ḟ |t=0 is a constant fixed by the modulation frequency and g(x) = (1−x2)Θ(1−|x|)

is the desired potential shape. Performing the integration we arrive at the cubic equation

f(t)− f(t)3/3− v0t = 0, (7.2)

with solutions plotted in figure 7.1(a). Clearly, the solution of interest for us is the one which

spans the range −1 ≤ f ≤ 1. We then create the periodic FM waveform I1D(x, h) using the

prescription described in section 2.1.3, resulting in the time-averaged potential plotted in

figure 7.1(b). For these Gaussian-beam-painted profiles, we use the 1-dimensional initial

profile IGauss,1D(x) = P (w0

√
π/2)−1 exp(−2x2/w2

0).

To calculate the analytical form for the delta-function parabolic potential, we again refer

to the formalism developed in section 2.1.3. From equation (2.17), we have

I1D(x, h) =
2P

hv0T
g(x/h), (7.3)

where T is the full period of the FM function f(t). Using equation (7.2) and noting by

inspecting figure 7.1(a) that f(−T/4) = −1 and f(T/4) = 1, we find T = 8/(3v0), giving

I1D(x, h) =
3P

4h3
(h2 − x2)Θ(h− |x|). (7.4)

The delta-function-painted potential for various values of h are shown in figure 7.1(b). For

CPM amplitudes h larger than a few beam waists, w0, the painted potential for the Gaussian

beam becomes nearly identical to that for a delta-function beam.

7.1.2 Trap frequencies and depth

For the purposes of modeling the evaporation dynamics, we would like to know the depen-

dence of the trap frequencies ωi and trap depth V0 on the painting amplitude for the realistic
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Figure 7.1: Creating a parabolic time-averaged potential. (a) Solutions to the cubic equation

(7.2). The dashed yellow curve (root 2) is the one with which we create the periodic FM

waveform. (b) 1-dimensional time-averaged profiles for Gaussian (red solid lines) and delta-

function (black dashed lines) initial beam profiles for various values of the CPM amplitude

h in units of the Gaussian beam waist w0. From [94].
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Gaussian beam paintbrush, where we again assume that painting occurs in the x dimen-

sion. In this analysis we will neglect the effects of gravity, but will consider the full realistic

trapping potential for our experiment in the following section. Since producing the time-

averaged intensity profiles for the Gaussian beam in figure 7.1(b) is a numerical procedure,

we do not have an analytical expression with which to calculate these directly. Instead, we

can extract these quantities from the numerically calculated profiles themselves by using the

peak calculated value for the intensity to determine V0, and by performing a parabolic fit

in the vicinity of x = 0 to determine ωi. To connect these values with the familiar ones for

a standard Gaussian beam optical trap, we define the CPM trap frequencies and depth as

follows:

ω2
x =

8αP

πmw4
0

(fω(h/w0))
2, ω2

y =
8αP

πmw4
0

fV (h/w0)

ω2
z =

4αP

πmw2
0z

2
R

fV (h/w0), V0 =
2αP

πw2
0

fV (h/w0). (7.5)

Here, α is the atomic polarizability for the particular ODT wavelength. Note that the

trap frequencies in the y and z dimensions are only affected by the painting through the

reduction of peak intensity, which is quantified with the reduction factor fV (h/w0), which

clearly must satisfy fV (0) = 1. The x trap frequency reduction factor fω(h/w0) is determined

by comparing a quadratic fit to the numerically calculated potential with the curvature of

the Gaussian potential at h = 0, ensuring fω(0) = 1. The two reduction factors are plotted

in figure 7.2.

We expect that for CPM amplitudes much larger than the beam waist, h≪ w0, the trap

depth and frequency in the painting dimension should approach those of the delta-function-

painted potential in equation (7.4). By comparing the peak values and harmonic expansion

near x = 0 of I1D(x, h) in equation (7.4) and IGauss,1D(x), one can show

ω2
δ (h)

ω2
x(h = 0)

=

√
π

2

3w3
0

8h3
and

Vδ(h)

V0(h = 0)
=

√
π

2

3w0

4h
, (7.6)

where ωδ(h) is the trap frequency and Vδ(h) the trap depth for an atom in the delta-function-

painted potential with CPM amplitude h. Figure 7.2 shows the comparison between the
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w0. The black dot-dashed (dashed) line is the trap depth (frequency) of the delta-function-

painted potential relative to the unpainted Gaussian trap. For large values of h, we see that

the difference between the Gaussian and delta-function paintbrushes is negligible. Adapted

from [94].
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7.2 Experimental realization of the parabolic time-averaged potential

In this section we describe the specific implementation of the parabolic CPM trap with 174Yb

in our crossed optical dipole trap, as well as describe the full treatment of the trap depth

and frequencies of the crossed trap in the presence of a linear gravitational potential. This

theoretical model for the crossed, painted ODT is then compared with good agreement to

measurements of the trap frequency and depth for various combinations of power and CPM

amplitude.

7.2.1 Full potential in the presence of gravity

Figure 7.3 shows a schematic of our trapping scheme, where we recycle a single beam to

form the crossed trap in order to double the maximum power achievable at the atoms. In

this diagram, the y direction is the direction of the force of gravity (i.e. the vertical), and

all of the CPM occurs in the horizontal plane.
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The output of a 1064 nm fiber laser (IPG YLR-100-LP) is sent through an AOM (80MHz,

Intraaction ATM-804DA6B) that receives a frequency-modulated RF signal ωRF (t) = ωRF,0+

δωRFf(t), where f(t) is the FM function derived in section 7.1.1, and diffracts a maximum

of about 70 W into the first-order beam. This light is then focused onto the atoms and

subsequently recycled and imaged back onto the atoms at an angle of 65◦ with a magnification

of 5/6 and with orthogonal polarization. Due to losses in viewports and lenses, the power in

the second recycled beam at the atoms is about 90% of that in the first pass. For the largest

FM amplitudes used of 7 MHz (14 MHz peak-to-peak), we achieve CPM amplitudes at the

atoms of 260 µm (520 µm peak-to-peak).

Introducing a rotated coordinate system (x′, y′, z′) for the second pass of the beam, which

is related to (x, y, z) by a 65◦ rotation in the z−x plane, we can express the complete potential

felt by the atoms as

VT (x, y, z, P, h) = V1(x, y, z, P, h) + V2(x
′, y′, z′, P, h) +mgy, (7.7)

where

Vi(x, y, z, P, h) = Vi,0(z, P, h)
I1D(x, h)

I1D(0, h)
e−2y2/wi,y(z,P ) (7.8)

is the potential for the i = 1, 2 pass of the beam, and

Vi,0(z, P, h) =
2αPfV (h/wi,x(0, P ))

πmwi,x(z, P )wi,y(z, P )
. (7.9)

Note that since α < 0, we have Vi,0 < 0. The potential shape in the painting dimension (x)

is given by the function I1D(x, h)/I1D(0, h) from section 7.1.1 (see the red curves in figure

7.1(b)). In equation (7.8) we include the effects of beam ellipticity and thermal lensing

by using two independent, power-dependent waists wi,x(z, P ) and wi,y(z, P ). The power

dependence of the x and y beam waists is calibrated by monitoring the trapping beam focus

on a CCD over the full range of powers used in the experiment.

In order to compute the trap depth and frequencies of the crossed, painted ODT in the

presence of gravity, we begin by analyzing the total potential in the vertical direction at
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the horizontal trap center, VT (0, y, 0, P, h). The action of gravity is to tilt the crossed beam

potential, displace the total potential minimum, and reduce the effective depth of the trap, V0.

Thus, in order to calculate ω̄ and V0 for arbitrary values of P and h, we must first numerically

solve for the two roots y∗1(P, h) and y∗2(P, h) of the equation ∂VT (0, y, 0, P, h)/∂y|y=y∗i
= 0.

Because these numerical solutions are rather time consuming, and because we will need

these roots for many points (P (t), h(t)) while performing numerical simulations of the forced

evaporative dynamics, we solve for the two roots numerically for a dense grid of points (P, h)

spanning the domain of experimentally used values. We then convert these values into a 2D

interpolating function in Mathematica, which can be easily and quickly referenced at each

step of a numerical integration of the dynamics.

Assuming y∗1(P, h) < y∗2(P, h) (i.e. y∗2 corresponds to the trap minimum), the effective

depth of the trap can then be found from

V0(P, h) = VT (0, y
∗
1(P, h), 0, P, h)− VT (0, y

∗
2(P, h), 0, P, h)

= V1,0(0, P, h)
[
e−2(y∗1)

2/w2
1,y − e−2(y∗2)

2/w2
1,y

]
+ V2,0(0, P, h)

[
e−2(y∗1)

2/w2
2,y − e−2(y∗2)

2/w2
2,y

]
+mg(y∗1 − y∗2), (7.10)

where we’ve removed the arguments (P, h) from y∗1, y
∗
2, w1,y, and w2,y for simplicity. Then, by

expanding the single-beam potentials Vi(ϵ, y
∗
2, 0, P, h), Vi(0, y

∗
2+ϵ, 0, P, h),and Vi(0, y

∗
2, ϵ, P, h)

for small displacements ϵ about the trap minimum position (0, y∗2, 0), we find the trap fre-

quencies for each beam to be

ωi,x(P, h) =

[
8|α|P

πmwi,yw3
i,x

e−2(y∗2/wi,y)
2

]1/2
fω

(
h

wi,x

)
,

ωi,y(P, h) =

[
8|α|P

πmwi,xw3
i,y

fV

(
h

wi,x

)
e−2(y∗2/wi,y)

2

(
1−

(
2y∗2
wi,y

)2
)]1/2

,

ωi,z(P, h) =

[
4|α|Pλ2

π3mw3
i,xw

3
i,y

fV

(
h

wi,x

)
e−2(y∗2/wi,y)

2

]1/2
, (7.11)

where λ is the trapping laser wavelength. We are now in a position to write the total potential
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in the harmonic approximation as (dropping the P and h arguments)

VT (x, y
∗
2 + y, z) ≈ m

2

(
ω2
1,xx

2 + ω2
1,yy

2 + ω2
1,zz

2 + ω2
2,x(x

′)2 + ω2
2,y(y

′)2 + ω2
2,z(z

′)2
)
, (7.12)

where the two coordinate systems are related as follows:
x′

y′

z′

 =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ



x

y

z

 , (7.13)

and θ is the angle between the two crossed beams (65◦ in our case). Thus, the total trap

frequency in the y direction is simply given by ωy =
√
ω2
1,y + ω2

2,y. Furthermore, performing

the coordinate transformation in equation (7.13), we can write the potential in the x − z

plane as the following quadratic form:

VT (x, z) =
m

2

x
z

⊤ a b/2

b/2 c

x
z

 , (7.14)

where

a = ω2
1,x + ω2

2,x cos
2 θ + ω2

2,z sin
2 θ,

b = 2 cos θ sin θ(ω2
2,x − ω2

2,z),

c = ω2
1,z + ω2

2,x sin
2 θ + ω2

2,z cos
2 θ. (7.15)

We now want to diagonalize the 2 × 2 matrix in equation (7.14), since the eigenvectors are

the principal axes of the trap in the x− z plane, and the eigenvalues the trap frequencies ωx

and ωz. In fact, we only care about the eigenvalues, since the directions of the principal axes

do not feature in the evaporation dynamics. Thus, we arrive at the final trap frequencies:

ω2
x =

1

2

(
a+ c+

√
b2 + (a− c)2

)
ω2
y = ω2

1,y + ω2
2,y

ω2
z =

1

2

(
a+ c−

√
b2 + (a− c)2

)
. (7.16)
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For the purpose of simulating forced evaporation dynamics, we evaluate the trap depth

V0(P, h) and geometric mean trap frequency ω̄(P, h) for a dense grid of points (P, h) as

done for the two roots y∗1 and y∗2, and create interpolating functions in Mathematica. These

may then be evaluated very quickly for arbitrary values of P and h in each iteration of the

numerical integration.

7.2.2 Comparison of trap model with experiment

With a theoretical model for the trap depth V0(P, h) and frequency ω̄(P, h) of our crossed,

painted ODT, we now compare our predicted trap parameters with those observed in the

experiment with 174Yb. To measure the trap depth, we load the Yb cloud from the com-

pressed MOT, quickly change the power and CPM amplitude to desired values, and monitor

the evaporation dynamics (i.e. number and temperature as a function of time) at fixed trap

depth. Furthermore, at the given setting (P, h), we measure the Yb trap frequencies (to be

compared with the model later) using the parametric heating method. We then perform a

least squares fit to the data N(t) and T (t) using the number and temperature evolution de-

scribed by the evaporation dynamics equations in section 3.2.5. We assume that only s-wave

scattering occurs as the d-wave threshold for 174Yb is 75 µK, resulting in the collision cross

section σ = 8πa2, where a = 5.6 nm. Since there are no two-body loss channels for ground

state Yb, Γ2b ∝ K2 = 0, and thus the free parameters in this fit are the initial number N(0),

the initial temperature T (0), the three-body inelastic rate coefficient K3, the background

lifetime Γbg, and the trap depth V0(P, h). Figure 7.4 shows the measured number and tem-

perature dynamics for 3 different fixed trap settings (P, h), along with fits to the evaporative

dynamics equations. The extracted trap depths are in good agreement with those predicted

by the model over a large dynamic range (from ≈ 10 µK to ≈ 1 mK).

In addition to comparing predicted and measured trap depths, we also want to know

how well our model reproduces the trap frequencies, or for evaporation dynamics modeling

purposes, the geometric mean ω̄. For this comparison, we measure using the parametric

heating method the 3 trap frequencies for 6 different settings of (P, h), including the 3 used
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Figure 7.4: Comparison of trap depth model with experiment. For 3 different settings of

(P, h), we measure the number N(t) (blue points) and temperature T (t) (red points) evolu-

tion at fixed depth. The black solid lines are least squares fits to the data using the equations

for evaporation dynamics Ṅ and Ṫ from section 3.2.5. The three trap configurations used

are: (1, solid circles) P = 58 W, h = 259 µm; (2, solid squares) P = 58 W, h = 130 µm; (3,

solid triangles) P = 2.2 W, h = 113 µm. The fitted depths V0,i for each situation are given

on the graph above. Our trap model predicts the values V0,1/kB = 300 µK, V0,2/kB = 575

µK, and V0,3/kB = 13.3 µK. From [94].



125

5

6

7

8
9

100

2

3

4

5

8

1
2 3 4 5 6 7 8

10
2 3 4 5 6

h = 89 µm
h = 113 µm
h = 130 µm
h = 181 µm
h = 259 µm

Power per beam (W)

ω
/2

̟
 (

H
z
)

Figure 7.5: Comparison of measured (solid circles) and predicted (open triangles) values for

the geometric mean trap frequency. Different CPM amplitudes h are depicted by different

colors (see legend). The 3 boxed points correspond to the same trapping conditions used in
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for the depth measurements in figure 7.4. The results are shown in figure 7.5, where we plot

the geometric mean trap frequency ω̄ as a function of power, and present different values of

the CPM amplitude using different colors. As with the trap depth, there is good agreement

between the measured values and those predicted by the model in section 7.2.1.

The ability of our trap model to quantitatively reproduce the depth and frequency of the

crossed, painted ODT potential over such a large range of P and h values instills confidence

that we can use this model to perform simulations of the forced evaporative cooling dynamics

for arbitrary trajectories of power P (t) and CPM amplitude h(t). These simulations can then

for instance be used to optimize the evaporation efficiency and guide the parameters used in

the experiment. This optimization procedure will be the topic of the next section.
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7.2.3 Numerical optimization of the forced evaporative cooling trajectory

In the absence of inelastic and background loss and heating due to spontaneous scattering, it

is possible to construct analytical solutions to the equations of forced evaporation dynamics

that maintain a given value of the parameter η(t) = V0(t)/(kBT (t)), assuming the fixed

relationship ω̄ ∝ P 1/2 [83]. These analytical solutions can then be analyzed to maximize

the evaporation efficiency γ given the constraint η̇ = 0. With independent control over

both the depth V0 and frequency ω̄ using the laser power and CPM amplitude, however, it

becomes essential to implement a numerical optimization procedure in order to predict the

most efficient trajectories (i.e. time-dependent profiles) P (t) and h(t). Similarly, in order

to include the realistic effects of inelastic loss and heating, one must also turn to numerical

methods. Thus, we aim to utilize our trap model for the depth and frequency as a function

of the power and CPM amplitude to maximize the efficiency of forced evaporative cooling

by numerically integrating the dynamical equations Ṅ and Ṫ from section 3.2.5.

To this end, we implement a gradient ascent optimization method with the evaporation

efficiency γ̃ = − ln(ρ(tf )/ρ(0))/ ln(N(tf )/N(0)) as the parameter to be maximized. Here, we

require that the final time tf satisfy ρ(tf ) = 1, i.e. we optimize the evaporation trajectory to

the point of quantum degeneracy. For these simulations, we use values for the background

lifetime Γ−1
bg and three-body inelastic rate coefficient K3 that are consistent with the experi-

mentally optimized trajectory presented later in this section. Furthermore, we fix the initial

number N(0) and temperature T (0) (and thus initial phase space density ρ(0)) to be equal

to the measured initial conditions3. Thus, the only parameters to be varied in performing

these simulations are those determining the trajectories of power and CPM amplitude. La-

beling these parameters {pi}, the evaporation efficiency can be written as a function of these

only, γ̃({pi}), and the gradient ascent optimization may be executed by running an evapora-

tion simulation to point of quantum degeneracy for some initial set {pi,0}, calculating γ̃ for

that trajectory, taking the gradient (numerically) with respect these parameters ∇p⃗γ̃, and

3For these optimization experiments, we always begin forced evaporative cooling with the same trapping
conditions, with P and h equal to the values corresponding to the purple points in figure 7.5
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iterating until a maximum efficiency γ̃opt is found for the optimized parameter set {pi,opt}.

For this optimization, we attempt both exponential P (t) = P0e
−t/τP and bi-exponential

P (t) = P0

(
ce−t/τP1 + (1− c)e−t/τP2

)
power profiles, while for the CPM amplitude, we try

profiles of the form h(t) = h1e
−t/τh+(h0−h1), h(t) = max(h0−βt, 0), h(t) = max(h0−h1(1−

e−t/τh), 0), and h(t) = max(h0 − (t/τh)
2, 0). As noted above, the initial power P0 = 58 W

and CPM amplitude h0 = 259 µm for each of these are fixed while running the optimization

algorithm.

From optimizing the evaporation trajectory using a variety of CPM amplitude profiles h(t)

with the bi-exponential power profile, we find that the algorithm pushes the bi-exponential

towards a single exponential, with τP1 → τP2 . Furthermore, the optimized evaporation

efficiency is very robust to the form of the CPM amplitude profile, with only 1% differences

in the optimized efficiency values γ̃opt for all of the profiles h(t) above in conjunction with the

exponential power profile with τP = 1 s. Because of this lack of dependence on the specific

details of the profile h(t), we choose to utilize the linear profile for subsequent optimization,

as it is the simplest option.

In addition to the robustness of the optimized efficiency to the shape of the CPM ampli-

tude profile, γ̃opt depends very weakly on the timescale of evaporation. To investigate this,

we run the optimization algorithm for fixed values of the power trajectory decay constant

τP , varying only the slope of the linear CPM amplitude ramp, β. The results for the range

0.8 s ≤ τP ≤ 3 s are shown in figure 7.6, where we plot both γ̃opt and the optimized value of

the slope βopt. Clearly, the maximum achievable efficiency varies little over this range of τP ,

with the slope βopt simply changing to recreate the same final CPM amplitude for each power

decay timescale. The slight downward slope of γ̃opt versus τP is likely due to the presence of

the fixed background loss timescale, Γ−1
bg , which cannot be mitigated using dynamical trap

shaping. The relatively large value of γ̃opt ≈ 4 and its lack of dependence on the evaporation

timescale suggests that our parabolic CPM trap successfully mitigates three-body inelastic

loss and ensures a large value of η throughout evaporation.
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Figure 7.6: Evaporation efficiency optimization for fixed power decay timescale τP , revealing

the robustness of γ̃opt to the total evaporation time in this range. The optimized slope βopt

of the linear CPM amplitude profile h(t) adjusts with τP in order to achieve a similar final

trap configuration. From [94].

7.2.4 Experimental optimization of the forced evaporative cooling trajectory

In order to investigate the evaporation efficiency for different power and CPM amplitude

trajectories in the experiment, we perform forced evaporative cooling all the way to BEC, and

optimize the total number in the condensate. In agreement with the numerical simulation

results presented in the previous section, we find through experimental optimization that

the maximum efficiency achievable is quite robust to the exponential timescale τP , and that

the system favors a single exponential decay of power as opposed to the bi-exponential.

Furthermore, the largest experimental value of γ is realized for the linear CPM amplitude

profile.

Figure 7.7 shows a typical experimentally optimized evaporative cooling trajectory, with

an efficiency γ = 3.8 close to the largest values predicted by our numerical model (see figure

7.6). Before beginning the reduction of power and painting for these measurements, we wait
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Figure 7.7: Experimentally optimized trajectory for evaportive cooling of 174Yb in the

dynamically shaped ODT. Measured number ((a), blue circles) and temperature ((b), red

circles) evolution with least squares fit (solid black line) to the evaporation dynamics equa-

tions Ṅ and Ṫ from section 3.2.5 using the CPM trap model described in section 7.2.1. The

temperature trajectory T (t) = U(t)/(10kB) is nearly equal to the fitted trajectory for the

entirety of the cooling, demonstrating that the dynamically shaped ODT successfully main-

tains a large value of η. The inset shows the corresponding trajectory of phase space density

(PSD), revealing that our theoretical model successfully captures the evaporation dynam-

ics over 3 orders of magnitude in PSD. (c) Trap frequency and depth (inset) evolution for

these measurements (solid lines) compared to the those with fixed CPM amplitude (dashed

lines). (d) Per-particle loss rates for evaporation (solid line) and three-body inelastic loss

(dot-dashed line) throughout the cooling sequence. From [94].
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500 ms for atoms in the wings of the trap to escape. For the fits in figure 7.7(a) and (b) to

the number and temperature evolution, the only free parameters are the initial number N(0)

and temperature T (0) and the three-body inelastic rate coefficient K3. The least squares fit

to the data of the theoretical model, which includes the forced evaporative cooling dynamics

described in section 3.2.5 and the CPM trap model described in 7.2.1, shows very good

agreement with the observed dynamics over 3 orders of magnitude in phase space density

(inset to figure 7.7(a)), and returns a value of K3 = (1.08± 0.03)× 10−28 cm6s−1.

From the experimental power and CPM amplitude profiles, we can plot the evolution of

the trap frequency ω̄(t) and depth V0(t) (see figure 7.7(c) and inset). Clearly, the dynamically

shaped ODT successfully maintains a large value of ω̄ throughout evaporation, while still

reducing the depth enough to reach quantum degeneracy. As is clear from the behavior of

ω̄(t) and V0(t) without CPM amplitude control (dashed lines in figure 7.7(c) and inset), the

standard ODT would result in a drastically reduced elastic scattering rate, and therefore

evaporative cooling rate, at the end of evaporation.

Finally, figure 7.7(d) demonstrates the ability of the dynamically shaped ODT to mitigate

the problem of three-body inelastic loss, and maintain a dominance of evaporative loss over

three-body loss. Furthermore, while maintaining a roughly constant value of η(t) ≈ 10, the

evaporative cooling rate begins increasing after an initial fast decay, due to the CPM trap’s

ability to maintain a high trap frequency. Clearly, with the dynamically shaped trap it is

possible to achieve runaway evaporation where dΓel/dt > 0. However, we do not find this to

be an efficient cooling protocol due to the strong enhancement of three-body inelastic loss

due to the large densities resulting from such trajectories.

7.3 Application to large and fast BEC production

In order to produce the largest condensates, we begin with an evaporation trajectory to the

point ρ = 1 identical to that used for the measurements in figure 7.7, since this resulted

in the largest efficiency γ and therefore largest final number N(tf ). However, as can be

seen in figure 7.7(d) towards the end of the sequence, the three-body inelastic loss rate grows
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Figure 7.8: Achievement of the largest Yb BECs to date using the dynamically shaped optical

trap. (left) Absorption image and (right) horizontally integrated optical density profile after

50 ms time-of-flight. The black solid line is a fit to a pure, Thomas-Fermi BEC distribution,

giving an atom number of 1.2× 106 atoms. From [94].

appreciably as the cloud approaches quantum degeneracy. Thus, in order to proceed towards

the creation of a pure condensate, we stop the initial trajectory at the point ρ ≈ 1 with P = 1

W and h = 130 µm, and subsequently fix the power and increase the CPM amplitude to 180

µm, resulting in the final trap frequencies (ωx, ωy, ωz) = 2π × (17, 110, 10) Hz. This further

reduces the trap depth and decreases the density for the final stage of evaporation. Using

this two-stage evaporation sequence, we can reliably create pure 174Yb BECs consisting of

1.2× 106 atoms (see figure 7.8), which is a factor of 4 improvement over the largest Yb BEC

reported previously [41].

For the creation of BECs with fast cycle times, we cannot utilize the numerical simulations

detailed in section 7.2.3 because the fast timescales violate the adiabaticity criterion, and the

gas does not remain in a constant state of thermal equilibrium. Thus, we are left to optimize

BEC production for speed by experimental means. After attempting many different schemes

for reducing the laser power and painting amplitude, we find the 3 stage sequence shown in

figure 7.9 to be best. In this evaporation sequence, the power is reduced in 3 segments with
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Figure 7.9: Experimentally optimized trajectory of power and CPM amplitude for fast BEC

production. The sequence involves 3 stages of exponential power reduction, followed by a

short hold at constant power for final evaporation to a nearly pure BEC to occur. The CPM

amplitude is linearly reduced to zero during the first stage, resulting in a very high elastic

scattering rate for the remainder of the sequence.

progressively increasing exponential timescale τP . The most notable difference between these

profiles and those used for maximizing efficiency is the abrupt reduction of CPM amplitude

at the beginning of evaporation to zero after 150 ms.

The resulting measurements of number and temperature during the first two stages of

evaporation are shown in figure 7.10(a) and (b). To achieve the shortest cycle time possible,

we decrease the MOT loading and compression time to a total of 0.8 s, and begin the forced

evaporation sequence in figure 7.9 immediately after loading the atoms from the compressed

MOT into the optical trap. The temperatures as measured in the horizontal and vertical

directions initially decouple due to the non-adiabatic increase in the horizontal trap frequency

associated with the rapid reduction the painting amplitude. Then, immediately following the

painting reduction, the cloud rethermalizes. Figure 7.10(c) shows a progression for different

final evaporation powers Pf towards a nearly pure BEC of N = 1 × 105 atoms for a total

cycle time of 1.8 s. By shortening the MOT loading and compression time to a total of 0.6 s,
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we can create nearly pure BECs of 0.5×105 atoms in 1.6 s. These cycle times are the fastest

BEC production times to date in optical dipole traps, and make the dynamically shaped

trap an attractive method to be applied in precision measurement experiments with BECs,

where the usual long production times limits the rate of statistical sampling.

While it may seem from figure 7.9 that the CPM amplitude plays a small role in the

achievement of fast BECs, the initial large volume afforded by the control over CPM is es-

sential for this rapid cooling to quantum degeneracy. In fact, with the initial CPM amplitude

of 259 µm, we are able to capture about 50% of the atoms from the compressed MOT into

the optical trap, while without CPM, we typically capture 5 − 10%. The subsequent fast

reduction of h quickly compresses the trapped cloud, increasing the density and therefore

evaporation rate. Though this scheme will not result in a large value of γ, the large initial

atom number gives the cloud significant cooling power that can be used to rapidly increase

the phase space density to the point of quantum degeneracy, and indeed to create very fast

BECs.
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Figure 7.10: 1.8 second total cycle time for Yb BEC production. (a) and (b) Number and

temperature evolution during the first two stages of the sequence depicted in figure 7.9.

The horizontal and vertical temperatures initially decouple due to the non-adiabaticity of

the painting reduction in the horizontal plane. (c) Bimodal fits to horizontally integrated

OD density profiles with associated absorption images, taken after 25 ms time-of-flight. For

Pf = 0.41 W, we detect a nearly pure BEC of 1× 105 atoms. From [94].
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Chapter 8

TWO-ELEMENT MIXTURE OF BOSE AND FERMI
SUPERFLUIDS

In this chapter we will discuss our experimental realization of a two-element mixture of

Bose and Fermi superfluids, namely a mixture of bosonic 174Yb and fermionic 6Li. We first

establish the existence of simultaneous superfluidity through direct observation of conden-

sation of the bosonic and fermionic components, and show the mixture to be long-lived.

By selectively exciting dipole, or center-of-mass, oscillations in the bosonic component of

the superfluid mixture, we directly observe elastic coupling between the two species, and

determine the previously unknown sign of the interspecies s-wave scattering length to be

positive, aBF = 13±3 a0 [54]. In addition, we simultaneously detect the exchange of angular

momentum between the superfluids from the observation of a scissors mode of oscillation in

the bosonic component excited by interspecies interactions.

While the first realization of a Bose-Fermi superfluid mixture was reported just a couple

of years ago (2014) in a mixture of 7Li and 6Li [31], ours is the first reported realization of

such a mixture including two different elements from the periodic table 1. As we shall see in

this Chapter, utilizing elements from different rows and columns of the periodic table leads

to a qualitatively different mixture than isotopic mixtures of a single element, or mixtures

of elements from within the same group (e.g. alkalis).

Historically, the study of combined Bose-Fermi superfluid mixtures was motivated by the

successful realization of superfluidity in liquid 3He and 4He, separately. The experimental

prospect of preparing a homogeneous mixture of superfluid 3He and 4He led to numerous

1Concurrently with our realization of a 174Yb-6Li superfluid mixture, a group from the USTC in Hefei,
China reported the detection of simultaneous Bose and Fermi superfluidity in a mixture of 41K and 6Li
through the observation of a two-species vortex lattice [110].
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theoretical proposals (see for example [3]). An important prediction from such studies of

combined superfluidity is the appearance of a dissipationless drag between superfluids with

relative velocity, and is often referred to as entrainment, or the Andreev-Bashkin effect. This

drag, which exists for relative velocities below the Landau criterion, results from elastic

forward scattering (i.e. scattering that does not change the momenta of the scattering

particles) between the superfluids. Recently, theoretical interest in entrainment physics

has been strongly renewed in the context of neutron stars due to possible implications of

entrainment coupling between the neutron superfluid in the crust and an underlying lattice

of nuclei [88].

In the case of 4He-3He mixtures, the propensity towards phase separation for dissolved

3He concentrations above 6-7% (at 1 atm) results in an extremely low critical temperature

(for bulk fluids) on the order of 10 to 100 µK [97]. While efforts are still underway to achieve

such low temperatures in a bulk system, the technical challenges are considerable. Thus,

cold atom systems offer a complementary approach where interspecies interactions do not

greatly restrict the accessible phase space for combined Bose-Fermi superfluidity.

8.1 Preparation and detection of the Bose-Fermi superfluid mixture

This section describes the experimental procedure used to create the Bose-Fermi superfluid

mixture in our Yb-Li apparatus, as well as the methods used to detect and characterize the

superfluidity of each component. The achievement of Fermi superfluidity was a longstanding

goal in the lab, however early attempts were thwarted due to low Li atom number (and

thus low signal-to-noise absorption images) at temperatures low enough for condensation.

The improvements to the apparatus detailed in chapter 7 as well as the implementation

of D1 cooling for Li proved essential to our ability to efficiently create large atom number

quantum degenerate gases of 174Yb and 6Li. To begin, we will discuss properties of the Yb-Li

combination that make it attractive for studies of combined Bose-Fermi superfluidity.
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Figure 8.1: Relevant scattering lengths for the 174Yb-6Li mixture in the vicinity of the 832G

Feshbach resonance in 6Li. The magnetic field independent scattering lengths are aB = 106 a0

for Yb-Yb (blue) and aBF = 13 a0 for Yb-Li (green). Note that the Li-Li scattering aF (B)

is scaled down by a factor of 100 in the plot.

8.1.1 Relevant properties of the 174Yb-6Li system

Utilizing the combination of Yb (spin-singlet) and Li (spin-doublet) to form a Bose-Fermi

superfluid mixture offers many advantageous and intriguing properties. As highlighted in

the beginning of this chapter, interspecies interactions play a crucial role in the viability

of achieving combined superfluidity in a Bose-Fermi mixture. As we will see, the relatively

weak interspecies interactions and magnetic insensitivity of the Yb-Yb (aB) and Yb-Li (aBF )

scattering lengths ensure miscibility of the mixture across the Feshbach resonance between

states |1⟩ and |2⟩ in Li centered at 832G (see figure 8.1). In addition, the large mismatch in

mass between the two species is expected to result in interesting modifications of scattering

properties, and suggests the use of Yb as an impurity thermometer for the strongly interacting

Li Fermi gas [111].
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To investigate the miscibility of a mixture of Bose and Fermi gases at zero temperature,

we begin by defining the energy functional

E =

∫
d3r⃗ E(nB(r⃗), nF (r⃗)), (8.1)

where E(nB, nF ) =
1
2
gBBn

2
B+gBFnBnF+EF (nF ) is the energy density (units of energy/length

3)

for the Bose-Fermi mixture in the mean-field approximation. In this expression, gBB =

4π~2aB/mB is the boson-boson coupling constant, where aB is the s-wave scattering length

associated with boson-boson collisions, gBF = 2π~2aBF/µBF is the boson-fermion cou-

pling constant, with associated s-wave scattering length aBF and reduced mass µBF =

mBmF/(mB + mF ), and EF (nF ) is the internal energy of the fermionic component, de-

termined by the equation of state.

For simplicity, we will consider the case of uniform Bose and Fermi gases, which serves

to elucidate the general characteristics of phase separation in the mixture [105]. To find the

condition for dynamical stability of the homogeneous mixture, we minimize the functional

E − µFNF − µBNB with respect to nB(r⃗) and nF (r⃗). Here µB and µF are the chemical

potentials of the Bose and Fermi gases. Setting ∂(E − µFnF − µBnB)/∂nα = 0 for α = F

and B, we get the usual expression for the chemical potential, µα = ∂E
∂nα

. Now, in order for

this extremum to be a local minimum (and not maximum), we must have a positive definite

Hessian matrix,

H =

 ∂2E
∂n2

B

∂2E
∂nF ∂nB

∂2E
∂nB∂nF

∂2E
∂n2

F

 . (8.2)

Using ∂E
∂nα

= µα, the condition for dynamical stability then becomes

∂µB

∂nB

∂µF

∂nF

− ∂µB

∂nF

∂µF

∂nB

> 0. (8.3)

Then, using the expression for E(nB, nF ) above, the inequality (8.3) becomes

∂µF

∂nF

>
g2BF

gB
=
π~2a2BF

aB

(mB +mF )
2

m2
FmB

. (8.4)
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We immediately see that the phase of the combined gas does not depend on the den-

sity of the bosonic component. It is interesting to note that this is only true for weakly

interacting Bose gases, or more precisely, for systems where nBa
3
B ≪ 1. When nBa

3
B is not

small, the famous Lee-Huang-Yang (LHY) correction introduces a term proportional to n5/2,

thus bringing bosonic density dependence into the stability criterion. Using µF = ηEF =

η ~2
2mF

(3π2nF )
2/3, where η = 1(ξ) for a non-interacting(unitary) two-component Fermi gas,

and ξ = 0.38 is the Bertsch parameter, we find

n
1/3
F <

(3π2)2/3

3π

aB
a2BF

ηmFmB

(mF +mB)2
. (8.5)

For the scattering lengths in the Yb-Li Bose-Fermi system (see figure 8.1), this yields the

constraint nF < 5.9 × 1018 cm−3 for a non-interacting Fermi gas, and nF < 3.2 × 1017 cm−3

for a unitary Fermi gas. Considering typical fermion densities of order 1013 − 1014 cm−3, we

are clearly quite far from phase separation at unitarity.

On the far BEC side of the Feshbach resonance, we can use the mean-field expression

µd = gddnd for the chemical potential of the molecular condensate, where gdd = 2π~2ad/mF ,

ad = 0.6aF [92], and nd = nF/2. Lastly, using µd = 2µF we find that inequality (8.4) reduces

to the condition aF > 10
3

(mB+mF )2

mBmF

a2BF

aB
≈ 170 a0. From this we can conclude that the dual

superfluid mixture should be dynamically stable2 for magnetic fields above 570G.

Other relevant properties of the 174Yb-6Li superfluid combination include the respective

electronic structures and large mismatch in mass. The combination of a spin-half alkali atom

(Li, 2S1/2) and spin-zero alkaline-earth-like atom (Yb, 1S0) results in interspecies collisions

that are independent of magnetic field (aBF ), and allows for the use of magnetic fields as a

species-specific tool. In the case of the 7Li-6Li system, the magnetic field dependence of both

aBF and aB restricts the range of magnetic fields accessible near the 832G Feshbach resonance

in 6Li. Furthermore, the large Yb-Li mass ratio of mB/mF = 29 ensures a significant

difference in the harmonic trapping frequencies of the two species (ωF/ωB ≈ 8 at 1064 nm),

2In fact, for magnetic fields well below the resonance position (B . 700G), two-body atom-dimer inelastic
collisions become the limiting effect for stability [60].
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allowing for species-selective excitations by carefully choosing the timescale of trap parameter

variation. In addition to being a useful tool, the large mass mismatch is predicted to result

in interesting interaction phenomena in the superfluid mixture, including a change in the

character of excitations leading to the Landau critical velocity criterion [18] and a strong

modification of the Bose-Fermi interaction energy in the BEC regime [111].

Lastly, one can imagine using Yb as a precise thermometer of a deeply degenerate,

strongly interacting Li Fermi gas. Because of the large ratio of trap frequencies, the de-

generacy temperatures for the two species scale as TC

TF
= 0.06

(
NB

NF

)1/3
, where TC is the Yb

BEC transition temperature. Hence, for a mixture with NF/NB = 30, a measured Yb con-

densate temperature of T/TC = 0.5 implies a Fermi temperature of T/TF = 0.01, assuming

thermalization. Demonstrating such a technique for precise thermometry of Fermi gases

near T = 0 would be a nontrivial advance for the field, as many experiments in quantum

simulation using ultracold fermions offer no direct method for measuring temperature [45].

In recent experiments in a mixture of 6Li and 41K, the impurity thermometry technique was

used at a magnetic field of 1180 G (BCS side of resonance) to measure temperatures of a

deeply degenerate mixture of Li states |1⟩ and |2⟩ as low as T = 0.063(5)TF [71].

8.1.2 Inelastic losses in the BEC-BCS crossover in 6Li

An important consideration when attempting to create superfluid Fermi gases is the unavoid-

able inelastic losses associated with coupling to deeply bound molecular states near Feshbach

resonances. While two-component Fermi gases are remarkably stable in the vicinity of such

scattering resonances owing to Pauli suppression of three-body collisions, the presence of a

distinguishable third scattering partner, in our case bosonic Yb, introduces a new three-body

inelastic scattering process. This process results in the loss of one Li |1⟩ atom, one Li |2⟩

atom, and one Yb atom, with rate coefficient K ′
3 ≈ 10−27 cm6s−1 at 810 G [60]. Hence, for

typical peak densities in our crossed ODT of nF (0) ≈ 1013 cm−3 and nB(0) ≈ 1014 cm−3, we

expect lifetimes of order 1 s near unitarity. Moreover, for lower magnetic fields correspond-

ing to the molecular, or aF > 0, side of the Feshbach resonance, both Yb-Li2 and Li-Li2
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two-body collisions become severely lossy, with rate coefficients in excess of 10−13 cm3s−1.

When one considers the order 10 s timescale for evaporative cooling of Yb and simultane-

ous sympathetic cooling of Li to quantum degeneracy3, it is clear that such a long procedure

cannot be performed with a two-component Li gas near the 832 G Feshbach resonance.

Therefore, there are two clear alternative options from which to choose: (1) complete all or

most of the evaporative plus sympathetic cooling at a benign field with both states |1⟩ and

|2⟩ of Li, and subsequently ramp the field very quickly to the strongly interacting regime, or

(2) work with only a single spin state of Li during the sympathetic cooling stage, and create

a spin mixture of |1⟩ and |2⟩ at 832 G using an RF pulse once the cloud is deeply degenerate.

In our experiment, we find option (1) above to be an infeasible route towards Fermi

superfluidity due to limitations on our magnetic field ramp speed. In fact, even our minimum

ramp time from low field (530 G) to unitarity (832 G) of about 1 ms is too slow to prevent

large atom losses and heating while crossing the notably lossy regime between 600 and 700

G. It is natural to consider ramping down to 832 G from far above resonance (i.e. far BCS

side), but for the maximum magnetic field (≈ 1200 G) accessible with the Helmholtz coils in

our system, the three-body losses incurred during the long sympathetic cooling step are too

great. For these reasons we plan our dual superfluid preparation procedure around option

(2).

Since option (2) requires preparing a spin mixture beginning from a near zero-temperature

Fermi gas, it is important to consider how much further cooling is necessary to reach the

Fermi superfluid transition. Here, we will use a greatly simplified model to gain a rough sense

of the cooling necessary. To start, let us consider a single spin Fermi gas with N atoms in

a harmonic trap with geometric mean frequency ω̄. We will then calculate the final reduced

temperature (T/TF )f after preparing a 50:50 spin mixture from a spin-polarized Fermi gas

3While we were able to achieve very fast cycle times (≈ 2 s) for Yb quantum degenerate gas production
using the dynamically shaped trap, the addition of Li introduces the challenges of the interspecies ther-
malization timescale and the need for a large atom number Yb cloud (i.e. total heat capacity) in order to
mitigate the heat load presented by Li.
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with initial temperature (T/TF )i. To begin, we compute the (mean) total energy,

Etot =

∫ ∞

0

ϵg(ϵ)n(ϵ)dϵ, (8.6)

where g(ϵ) = gsϵ2

2(~ω̄)3 is the density of states, gs is the number of spin states involved, and n(ϵ)

is the Fermi-Dirac distribution. Using the Sommerfeld expansion for integrals involving the

Fermi-Dirac distribution function [4], we find

Etot =
gs

2(~ω̄)3

∫ ∞

0

ϵ3n(ϵ)dϵ ≈ gs
2(~ω̄)3

[∫ µ(T )

0

ϵ3dϵ+
π2

6
(kBT )

2 d

dϵ
(ϵ3)

∣∣∣∣
ϵ=µ(T )

]

=
gsµ

4

8(~ω̄)3

[
1 + 2π2

(
kBT

µ

)2
]
. (8.7)

Thus, we need to know the temperature dependence of the chemical potential µ(T ), which

is determined by fixing the total particle number N =
∫∞
0
g(ϵ)n(ϵ)dϵ. The result is (again

using the Sommerfeld expansion)

µ(T ) = EF

[
1− π2

3

(
kBT

EF

)2

+O(T 4)

]
, (8.8)

where the Fermi energy here is defined as EF = ~ω̄
(

6N
gs

)1/3
. Combining equations (8.7) and

(8.8) we get

Etot ≈
3

4
NEF

[
1 +

2π2

3

(
T

TF

)2
]
. (8.9)

Finally, assuming the Fermi cloud fully rethermalizes after the 50:50 spin mixture is

prepared, we can solve for the final temperature (T/TF )f by equating the total energy of the

initial and final clouds, yielding(
T

TF

)
f

=

[
3

2π2

(
21/3

(
1 +

2π2

3

(
T

TF

)2

i

)
− 1

)]1/2
. (8.10)

Therefore, if we begin in a spin-polarized Fermi gas with temperature (T/TF )i = 0.2, the

resulting two-component Fermi gas should thermalize to a temperature (T/TF )f = 0.3. In

fact, even if we begin with a zero-temperature spin-polarized Fermi gas, the spin mixture

will acquire a temperature of (T/TF )f = 0.2.
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Figure 8.2: Calibration of the magnetic field gradient needed for optimum spatial overlap

of the Yb-Li superfluid mixture. (a) We plot the fraction of Li atoms remaining after a 500

ms hold with Yb at 740 G, where Li loss is dominated by inelastic atom-dimer collisions

between Yb and Li2 molecules. (b) Qualitative schematic of the relevant directions in our

trap. Slight misalignments of the magnetic field axis and nearly vertical principal axis of

the optical trap with respect to gravity lead to an offset of the Li and Yb horizontal cloud

centers. As shown in the figure, θB < 0 and θtrap > 0.

8.1.3 Tuning interspecies overlap with B′

While inelastic effects near the 832 G Feshbach resonance present an obstacle to Fermi

superfluid formation, they can be used as a tool to probe the spatial overlap of the Yb and

Li clouds. To investigate the gradient-tunable interspecies overlap, we measure the inelastic

coupling between the Yb and Li clouds at 740 G as a function of B′. At this magnetic field,

Yb-dimer collisions dominate over Li-dimer collisions [60]. Due to the density dependence of

the atom-dimer loss rate, then, we expect to see a strong dependence of Li loss as a function

of applied gradient, with the peak loss location corresponding to maximum interspecies

overlap. The measurements are shown in figure 8.2(a), where we plot the fraction of Li

atoms remaining after a 500 ms hold at 740 G in the presence of Yb. We identify a range

of gradients from 20 − 65G/cm for which the system exhibits strong interspecies spatial

overlap, with the peak loss occurring at B′ = 39G/cm.
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It is interesting to note that the peak loss does not occur at the “theoretical” overlap

gradient of 68 G/cm. In our system this is due to slight differences in the directions defined

by the bias magnetic field, gravity, and the nearly vertical principal axis of the ODT. Fig-

ure 8.2(b) provides a simplified 2D schematic of the directions involved, and the resulting

displacement between the Yb and Li clouds for B′ = 68 G/cm. Due to the angles θB and

θtrap of the magnetic field and nearly vertical trap principal axis with respect to gravity,

Li and Yb will experience different horizontal displacements when their vertical centers are

overlapped. For the “theoretical” overlap gradient, we have4 µBB
′/mFω

2
y,F = g/ω2

y,B, which

gives a relative displacement of the horizontal cloud centers of

xB − xF
xB

= 1− sin(θtrap − θB)

sin θtrap
≈ θB
θtrap

. (8.11)

Hence, for the situation depicted in figure 8.2(b), where we have θB < 0 and θtrap > 0, we

see that Li will be pushed further from the center of the optical trap than Yb. Of course,

in reality these three independent directions (gravity, the magnetic field, and the vertical

trap axis) are not likely to lie in a plane, but this analysis gives a good estimate of the

displacements involved.

8.1.4 Improved Yb-Li quantum degenerate mixture

As mentioned in the beginning of this section, the upgrades made to the optical trapping

setup detailed in chapter 7, along with the implementation of D1 cooling of Li were necessary

to push our two-species quantum degenerate gas production to the point where simultaneous

superfluidity was possible. Thus, the first step towards creating an Yb-Li superfluid mixture

was to realize high signal-to-noise (i.e. large atom number) degenerate Fermi clouds of Li

in our apparatus with T/TF ≤ TC,F/TF = 0.19 [67, 31], where TC,F is the critical temper-

ature for superfluidity in a spin-balanced, two-component, harmonically-trapped Fermi gas

at unitarity (1/kFaF = 0). In this section we will detail the techniques used to improve our

4Note here that we neglect the force of gravity on Li, as the force from the applied magnetic field gradient
is roughly 60 times greater. Furthermore, we neglect the effects of the angles θB and θtrap in calculating
the vertical displacement, as these come in at second order.
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degenerate Fermi gas production and subsequently create the Yb-Li Bose-Fermi superfluid

mixture.

A major difference in our redesigned crossed ODT is the much larger maximum trap

volume achievable relative to our earlier configuration. This, in combination with the signifi-

cantly reduced Li CMOT temperature after D1 molasses of 60−70 µK, allows us to perform

a Li-first ODT loading scheme, opposite our previous Yb-Li experiments. We find this to

be an important improvement to our cooling scheme, as we can evaporatively cool Li in a

mixture of states |1⟩ and |2⟩ at 330 G before loading Yb, thus significantly decreasing the

heat load presented by Li on Yb. In fact, since the trap depth ratio for the two-species is

UF/UB = 2.2, once Yb is loaded into the ODT, only Yb atoms will escape during forced

evaporative cooling, as Li will be continuously sympathetically cooled and will maintain a

large value of η = UF/kBT . Therefore, we have to be careful not to have too many Li atoms

in the trap upon loading of Yb, as it can hinder the final achievable phase space density

at low trap depths. We solve this problem by simply evaporating further with Li at 330 G

prior to Yb load, allowing us to begin sympathetic cooling with a larger initial phase space

density for Li.

In a typical sequence, we load the Li MOT for 2 s and apply a moderate compression

step before applying the D1 molasses for 300 µs, resulting in 2 − 3 × 108 atoms at 60 − 70

µK. After capturing up to 107 atoms in a 50:50 mixture of states |1⟩ and |2⟩ in the crossed

ODT with initial power P = 55 W and CPM (or “painting”) amplitude h = 390 µm, we

hold for 100 ms at 330 G to allow for transient evaporation and thermalization, resulting

in NF = 5 × 106 atoms at T = 60 µK. We then perform forced evaporative cooling of Li

by reducing the laser power a factor of 10 in about 1 s, after which NF = 6 × 105 atoms

remain. Next, we remove the 330 G bias field before loading the Yb MOT, making the Li

cloud collisionless as the |1⟩-|2⟩ scattering length vanishes at B = 0.

During the Yb MOT loading time of 5 s, we observe no adverse effects on the trapped Li

cloud5 as the MOT is vertically displaced from the ODT location during load. In the 300 ms

5For this 5 s duration it is very important that the ODT laser power is low, as we observe significant
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Figure 8.3: Simultaneous quantum degeneracy of Yb and Li. (Left) Optical density image

and associated azimuthally averaged density profile of a single spin state (|2⟩) Li Fermi gas of

NF = 3× 105 atoms imaged at 1 ms ToF. The solid line is a fit to a Fermi-Dirac distribution

yielding a temperature of T/TF = 0.07(1), while the dashed line is an attempted fit to a

Gaussian distribution. (Right) Optical density image and 2d horizontally integrated density

profile of a nearly pure Yb BEC of 2 × 105 atoms imaged at 25 ms ToF. Solid line is a fit

to a bimodal distribution consisting of a Gaussian thermal component (dashed line) and

Thomas-Fermi condensed component.

preceding compression of the Yb MOT, we adiabatically increase the trapping laser power

to the maximum 55 W, and maintain the CPM amplitude of 390 µm. Following 200 ms of

Yb MOT compression, we capture NB = 20 − 30 × 106 atoms at 30 − 40 µK in the ODT.

We then immediately blast away all Li state |1⟩ atoms by ramping the magnetic field to 530

G and applying a light pulse resonant with the 2S1/2 → 2P3/2 transition.

With NF = 3 × 105 Li atoms in state |2⟩ remaining in the trap to be sympathetically

cooled, we begin forced evaporative cooling of Yb in our dynamically shaped ODT utilizing

the same concepts discussed in chapter 7. While we were able to push the cycle time of

heating of the Li cloud at high laser power due to stimulated two-photon transitions from the two beams
of the crossed ODT. To minimize this heating, we tune the half-wave plate for the second pass of the ODT
to maximize the Li lifetime. Nevertheless, there are some residual components of the electric fields from
both ODT beams that have parallel polarization, allowing for these two-photon transitions.
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our Yb only quantum degenerate gas production to below 2 seconds, the situation with

Li is fundamentally limited by the thermalization rate between the two species, which is

further limited by the large mass ratio [54]. Furthermore, large atom number Yb clouds

are necessary for absorbing the heat load presented by the Li cloud. Thus, we find forced

evaporation timescales on the order of 10 s to be necessary. We use exponential and linear

ramp profiles for the power and CPM amplitude, respectively, until the point where Yb

reaches quantum degeneracy.

We finish evaporative cooling to a pure Yb BEC by increasing the painting amplitude

considerably from 80 µm to 450 µm and slightly increasing the laser power from 1 to 1.5

W, resulting in final trap frequencies for Yb of (ωx, ωy, ωz)B = 2π × (23, 150, 10) Hz. This

decreases the depth while greatly increasing the volume (and lowering the density), limiting

the negative effects of three-body inelastic loss in the condensate. During this last evapora-

tion step, the Li and Yb clouds thermally decouple, as the cloud centers are separated by 11

µm for a vertical Yb trap frequency of 2π × 150 Hz.

At this point, we achieve degenerate Li Fermi gases of 3 × 105 atoms in state |2⟩ with

T/TF ≈ 0.2, and pure Yb BECs of up to 3× 105 atoms. For smaller values of the final CPM

amplitude (h . 100 µm) we can prepare degenerate Li Fermi gases with temperatures as

low as T/TF = 0.07, but with slightly smaller Yb BECs (see figure 8.3). The lower Fermi

gas temperature is presumably due to the larger horizontal trap frequencies associated with

smaller CPM amplitude, which help maintain interspecies thermalization at the lowest trap

depths. As we will see in section 8.1.5, the large gravitational sag of Yb and resulting

complete spatial decoupling is advantageous for our Fermi superfluid preparation.

8.1.5 Fermi superfluid production

We are now poised to create a 50:50 mixture of states |1⟩ and |2⟩ in Li and proceed towards

crossing the Fermi superfluid transition by performing forced evaporative cooling with a

unitary Li gas. Figure 8.4 shows the characterization of our |1⟩−|2⟩ spin mixture preparation,

beginning from a spin-polarized Li |2⟩ cloud. After ramping the magnetic field to 832 G,
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we create the spin superposition state 1√
2
(|1⟩ + |2⟩) by applying a 10 ms Landau-Zener RF

(linear) frequency sweep from 76.261 MHz to 76.281 MHz using 1 Watt of RF power.

To measure the decoherence time of this superposition state, we monitor the aspect ratio

of the Li cloud at 1.1 ms ToF as a function of time after the Landau-Zener pulse (see figure

8.4(a)). As the cloud decoheres and becomes a 50:50 mixture of |1⟩ and |2⟩, it immediately

becomes collisionally hydrodynamic, resulting in an inversion of the aspect ratio at long ToF

with respect to that of a non-interacting gas. An exponential fit to the measurements in

figure 8.4(a) yields a 1/e time of τ = 36(2) ms. Hence, 94% of the atoms have decohered

after 100 ms.

In parts (b) and (c) of figure 8.4, we show two typical optical density (OD) images with

elliptically averaged one-dimensional profiles for hold times of 10 ms and 1 s, respectively.

Immediately, we can see in the image itself the aspect ratio inversion, signifying the transition

from a spin-polarized, non-interacting gas to a collisionally hydrodynamic one. For the 1D

profile in 8.4(b), we can easily extract the reduced temperature T/TF = 0.18(1) using a

Fermi-Dirac distribution.

For the strongly interacting cloud in 8.4(c), the task is a little more difficult as the ToF

expansion is not ballistic, but hydrodynamic. However, one can get a rough estimate of

the temperature at unitarity by noting that the shape of the cloud in ToF is related to

the in-trap shape by hydrodynamic scalings, and assuming that the functional form of the

unitary Fermi gas differs little from that of a non-interacting Fermi gas6. Pragmatically, one

performs a Fermi-Dirac fit to the elliptically averaged density profile, yielding an “empirical

temperature” T̃ . Using the EOS for a trapped, unitary Fermi gas, µ(T = 0) =
√
ξEF , one

can argue that T̃ ≈ T/(TF
√
ξ) [62]. For the profile in figure 8.4(c), the value determined

by the fit of T̃ = 0.48(4) thus corresponds to a reduced temperature of T/TF = 0.30(3).

This is not far off from the value predicted by equation (8.10) of (T/TF )f = 0.28 for an

6This assumption is inspired by the identical dependence of the equations of state of the non-interacting
and unitary Fermi gases at T = 0 on density (E ∝ n5/3). In fact, this method was used in the group of
John Thomas to obtain one of the early experimental estimates for the superfluid transition temperature
of a unitary Fermi gas [62]
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Figure 8.4: Decoherence of a spin-polarized, degenerate Li Fermi gas in the state (|1⟩ +

|2⟩)/
√
2 at 832 G. (a) Evolution of the aspect ratio of Li at 1.1 ms ToF vs. time t after

application of the Landau-Zener RF pulse. As Li becomes strongly interacting with 1/kFaF =

0 upon decohering, the aspect ratio at long ToF inverts due to the cloud being collisionally

hydrodynamic. For these measurements, the in-trap aspect ratio is ωy/
√
ωxωz ≈ 7, where

y points in the vertical direction. The solid line is a fit to an exponential decay, yielding a

1/e time of τ = 36(2) ms. (b)-(c) OD images of Li at 1.1 ms ToF with associated elliptically

averaged 1D profiles for hold times of 10 ms and 1 s after the Landau-Zener pulse. The

quoted distance corresponds to the major axis of the elliptical equipotential contours. The

black solid lines are fits to Fermi-Dirac profiles, from which we determine temperatures of

T/TF = 0.18(1) and 0.30(3) for the 10 ms and 1 s data, respectively, which agrees well with

the prediction of equation (8.10). See discussion in section 8.1.5 for details on determining

T/TF for a unitary Fermi gas.
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initially spin-polarized Fermi gas with temperature (T/TF )i = 0.18. It is important to note

here that estimated final temperature in equation (8.10) assumes that the equation of state

(EoS) before and after the spin-composition change are identical, which is not the case at

unitarity. Nevertheless, the reduced temperature estimated using the empirical temperature

method gives a rough sense of the further cooling needed to achieve Fermi superfluidity.

At this point, the Yb BEC is unaffected by increased temperature of Li, as the two are

still thermally decoupled due to the gravitational sag of Yb. With a 50:50 mixture of states

|1⟩ and |2⟩ at T/TF ≈ 0.3, we proceed towards crossing the superfluid transition at 832

G by applying a magnetic field gradient, thus lowering the trap depth for Li. Typically,

we increase the gradient from zero to its final value in 500 ms, and then hold for 200 ms.

Because of the unitary-limited collision cross section for Li at 832 G, evaporative cooling

is extremely efficient. As we increase the gradient for Li-only evaporation, we control the

interspecies separation such that by the time the two species acquire appreciable overlap, Li

is cold enough to not cause heating of Yb.

8.1.6 Li thermometry: molecular BEC entropy determination

While performing evaporative cooling of a unitary Fermi gas is a relatively simple matter,

performing precise thermometry and detecting superfluidity is a notoriously difficult task

in this regime. The empirical temperature method discussed earlier in this section gives a

rough idea of the reduced temperature T/TF , but is certainly not quantitatively accurate.

Methods developed over the years for directly detecting superfluidity include the rapid ramp

technique [93], in situ detection of phase separation between a paired superfluid core and

a shell of spin-polarized normal fermions in spin-imbalanced clouds [87, 25], measuring the

equation of state (EoS) and observing a peak in the compressibility as a function of pressure

[67], and exciting vortices and observing their subsequent crystallization into a lattice [114].

While these are wonderful techniques for verifying the presence of a Fermi superfluid, our

apparatus was lacking certain technical capabilities at the time to easily adopt any of these.

Instead, we opted for an indirect thermometry measurement in which we ramp the magnetic
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field to the weakly-interacting molecular BEC regime on the timescale of a few ms7, measure

the entropy of the resulting molecular BEC, and compare that entropy with the EoS of a

unitary Fermi gas [67, 47].

Specifically, we ramp the magnetic field from 832 G to 690 G in 5 ms, and image the

resulting molecular cloud in ToF. Since the binding energy of the Li2 molecules is less than

the natural linewidth, the imaging beam first dissociates molecules and then images the

resulting atom cloud in the standard way. However, the Franck-Condon factor between

the Li2 Feshbach molecule and Li∗+Li scattering state reduces the efficiency of molecule

dissociation [7]. By comparing absorption images taken at 832 G and 690 G, we find the

reduction in our detection efficiency to be 30%. Figure 8.5(a) displays images of molecular

clouds for various final B′ values, where we clearly see the appearance of a bimodal density

distribution for B′ > 25 G/cm. For a final evaporation gradient of B′ = 41 G/cm, we

detect pure molecular condensates consisting of 0.4× 105 molecules, coexisting with a pure

Yb superfluid of 1.1 × 105 atoms (figure 8.5(b)). The applied gradient of 41 G/cm ensures

complete interspecies spatial overlap. For these measurements 1/kFaF = 2.9 at 690G,

where kF =
√
2mF ω̄F (3NF )1/3/~ is the Fermi wave vector for a harmonically-trapped, non-

interacting, two-component gas withNF atoms, and ω̄F is the geometric mean trap frequency.

To perform thermometry of Li using the observed bimodal distributions at 690 G, we

utilize the fact that the entropy of the molecular BEC after the field ramp provides an upper

bound on that of the initial unitary Fermi gas. Indeed, since the radius of a trapped Fermi

gas changes drastically between unitarity and the deep BEC regime, one can excite collective

modes by ramping the magnetic much faster than the inverse trap frequency, thus heating

the cloud (i.e. the ramp is at best adiabatic). A potential issue is the possibility of cooling by

evaporation or by collisions with Yb during the ramp to 690 G. To determine if this affects

our measurement, we first verify that removing the gradient B′ before ramping the field does

not affect the detected condensate fraction. Since removal of this gradient increases the Li

7In practice, this timescale was set by the inductance of our magnetic field coils. We simply wanted to
ramp as quickly as possible to avoid Yb-Li and Li-Li inelastic effects.
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Figure 8.5: Evidence for simultaneous superfluidity of 174Yb and a unitary Fermi gas of 6Li.

(a) OD images and vertically integrated 1D Li density profiles imaged at 690 G following a

5 ms field ramp from 832 G for various final evaporation gradient values. For B′ > 25 G/cm

we detect a bimodal density distribution signifying the presence of a molecular BEC, with

a pure BEC of 0.4 × 105 molecules for B′ = 41 G/cm. For these images, the ToF is 2 ms,

and the scale bar indicates 100 µm. The condensate fractions from top to bottom are 0, 0.2,

0.5, and 1. See discussion in section 8.1.5 for connection between condensation at 690 G

and superfluidity at 832 G. (b) OD image and horizontally integrated 1D density profile of

a pure Yb BEC of 1.1× 105 atoms coexisting with the Li superfluid at B′ = 41 G/cm. The

ToF is 30 ms. (c) Measurement of decay of Yb and Li condensate fractions as a function of

hold time together at 832 G, where we ramp the magnetic field to 690 G in 5 ms after the

variable hold. Exponential fits to the data return 1/e times of 1.8 s and 0.7 s for Yb and Li,

respectively. Adapted from [95].
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trap depth by a factor of 6 and consequently prohibits evaporation, we conclude that no

evaporative cooling occurs in the case with B′ present. Furthermore, the 5 ms timescale

for the field ramp is 2 orders of magnitude smaller than the evaporation timescale at 832

G, where the collision rate is highest. Second, we perform the same ramp to 690 G after

removing the Yb cloud from the trap with a resonant laser pulse, and find that the condensate

fraction is again unchanged. Thus we can safely utilize the detected molecular BEC entropy

to infer the Li temperature at unitarity.

For our typical condensate sizes (≈ 0.4×105 molecules) at 690 G, we find that nm(0)a
3
m =

0.001, allowing us to treat the molecular BEC in the Thomas-Fermi regime. Here nm(0) =

1.3 × 1013 cm−3 is the peak condensate density and am = 0.6aF = 0.6 × 1420 a0 is the

molecule-molecule scattering length [92]. However, even though the interaction parameter

nm(0)a
3
m is small, we cannot neglect interactions in the determination of the entropy, since

it is the ratio of µm to kBT that determines whether the gas is mostly in the free-particle

regime, the phonon regime, or in between. Using the results of [17], we find that the entropy

of the molecular BEC including the leading-order mean-field correction is

S = NmkB(1− fc)

(
4ζ(4)

ζ(3)
+

3µm

kBT

)
, (8.12)

where Nm = NF/2 is the total number of molecules, fc is the condensate fraction, and µm is

the chemical potential of the molecular BEC. This result is accurate to 10% for µm/kBT < 10.

For the pure condensate with 0.4 × 105 molecules, we use ω̄F = 2π × 260 Hz and find

µm/kB = 290 nK.

To estimate the entropy of the purest condensate in Fig. 1(a), we use the thermal fraction

corresponding to the detection limit of our system, 1−fc ≤ 0.15. The temperature consistent

with this fraction is T = (1− fc)
1/3Tc,m = 230 nK, where Tc,m = 0.94~ω̄F (Nm)

1/3/kB is the

critical temperature for Bose-Einstein condensation of the molecules. Thus, we arrive at the

upper bound for the entropy per fermionic particle of S/(NFkB) ≤ 0.55, where we divide

by the total number of fermions NF in anticipation of connecting this quantity with the

per-particle entropy of the unitary Fermi gas.
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8.1.7 Li thermometry: connection with unitary Fermi gas equation of state

In order to compare our measured upper bound on the molecular BEC entropy with the

homogeneous unitary Fermi gas (UFG) equation of state (EoS) measurements from [67], we

must transform the homogeneous quantities to trap-averaged ones. In principle, this can be

done for the entropy by computing

S =

∫
d3r⃗ nF (r⃗)s

h(r⃗), (8.13)

where sh(r⃗) is the per-particle entropy of the homogeneous UFG evaluated at the point r⃗

using the local-density approximation. Unfortunately, computing sh(r⃗) requires knowing

the cloud temperature T and the local density n(r⃗) a priori (or equivalently knowing the

“local” T/T h
F (r⃗), where kBT

h
F (r⃗) = Eh

F (r⃗) = ~2(3π2nF (r⃗))
2/3/(2mF ) is the Fermi energy of a

homogeneous two-component Fermi gas with density nF (r⃗)), which is exactly what we are

trying to find.

An alternative method [66] to compute the trap-averaged entropy involves starting with

the form of the UFG EoS that involves the density nF , the chemical potential µF , and the

temperature T . Due to the scale invariance of the unitary Fermi gas, one can show that this

EoS must take the universal form

nFλ
3 = fn(βµF ), (8.14)

where λ =
√

2π~2
mF kBT

is the thermal de Broglie wavelength, β = 1/kBT , and fn(βµF ) is

a universal function8 of the dimensionless quantity βµF (see [50] for a derivation of the

universal relations). Our goal is to find expressions for the trap-averaged thermodynamic

quantities9 that are necessary for computing the total entropy in the trap, S, in terms of the

8In the case of the ideal Fermi gas (also a scale invariant system), we know the phase-space density takes
the form nFλ

3 = −2Li3/2(− exp(βµF )), giving fn(βµF ) = −2Li3/2(− exp(βµF )), where Lim(x) is the

mth-order polylogarithm of x. The series expansion form of Li3/2(− exp(βµF )) automatically gives the
virial coefficients in this case.

9Unless noted otherwise, all thermodynamic variables correspond to those averaged over the trap, not
the homogeneous quantities (for which we use a superscript “h”). The “F” subscripts are used wherever
necessary in order to be consistent with the definitions of fermionic versus bosonic variables throughout
this chapter.
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homogeneous EoS equation (8.14), which has been measured [67].

We start with the definition of the (homogeneous) grand potential,

Ωh = Eh − TSh − µFN
h
F

dΩh = −ShdT − P hdV −Nh
FdµF (8.15)

where Eh is the total energy, P h is the pressure, and V is the volume. For the homogeneous

gas, the relation

Ωh = −P hV (8.16)

follows from the extensive nature of Ωh(T,V , µF ). From equations (8.15) and (8.16) we arrive

at the Gibbs-Duhem relation

dP h =
Sh

V
dT + nFdµF . (8.17)

Thus in the trap, we can now speak of the “local” quantities

nF (r⃗) =

(
∂

∂µF

P h(µF (r⃗), T )

)
T

, and Ωh(r⃗) = −P h(µF (r⃗), T )δV(r⃗), (8.18)

where δV(r⃗) is a volume element at the point r⃗, and we invoke the local-density approxima-

tion, writing µF (r⃗) = µ0
F − VT,F (r⃗) = µ0

F − mF

2
(ω2

x,Fx
2 + ω2

y,Fy
2 + ω2

z,F z
2), where µ0

F is the

chemical potential at the center of the trap. Integrating the second equation in (8.18) to get

the total grand potential in the trap Ω =
∫
d3r⃗Ωh(r⃗) and taking a derivative with respect

to µF , we find (
∂Ω

∂µF

)
T,V

= −
∫
d3r⃗

∂

∂µF

P h(µF (r⃗), T )) = −NF . (8.19)

Thus given the function NF (µF , T ), which we can easily get by integrating equation (8.14),

we have a prescription for calculating Ω.

In the trap, the total grand potential is defined in analogy with equation (8.15), namely

Ω = E − TS − µ0
FNF , from which we find

S =
1

T
(E − Ω− µ0

FNF ). (8.20)
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From the relation Ω = −E/3, valid at unitarity10 (see for example [51]), we find S =

(−4Ω− µ0
FNF )/T . Integrating equation (8.14) over space to get the total number, we have

NF (µ
0
F , T ) =

(
kBT

~ω̄F

)3

F(βµ0
F ). (8.21)

where

F(βµ0
F ) =

2√
π

∫ βµ0
F

−∞
dx (βµ0

F − x)1/2fn(x). (8.22)

From this result we can also parametrize the reduced temperature, T/TF , in terms of βµ0
F ,

where TF = ~ω̄(3NF )
1/3/kB is the Fermi temperature in the trap,

T

TF

∣∣∣∣
βµ0

F

= (3F(βµ0
F ))

−1/3. (8.23)

To get the total grand potential, we integrate equation (8.19),

Ω(µ0
F , T ) = −

∫ µ0
F

−∞
dµ′NF (µ

′, T )

= −kBT
(
kBT

~ω̄

)3
2√
π

∫ βµ0
F

−∞
dy

∫ y

−∞
dx(y − x)1/2fn(x), (8.24)

where y ≡ βµ′. Next, we integrate by parts on the variable x, and use the fact that

lim
x→−∞

fn(x) = 2ex, which follows from the leading order term in the virial expansion (i.e. the

Boltzmann limit). This gives

Ω(µ0
F , T ) = −kBT

(
kBT

~ω̄

)3
4

3
√
π

∫ βµ0
F

−∞
dy

∫ y

−∞
dx(y − x)3/2

d

dx
fn(x)

= −kBT
(
kBT

~ω̄

)3
4

3
√
π

∫ 0

−∞
dx̃ (−x̃)3/2 d

dx̃

∫ x̃

−∞
dỹ fn(ỹ + βµ0

F )

= −kBT
(
kBT

~ω̄

)3

G(βµ0
F ), (8.25)

where

G(βµ0
F ) =

4

3
√
π

∫ βµ0
F

−∞
dx (βµ0

F − x)3/2fn(x), (8.26)

10For the homogeneous (untrapped) gas, this relation is E = −3
2Ω, where the factor of 2 difference comes

from the quadratic nature of the trapping potential.
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and we have performed two sequential changes of variables: first x̃ = x − y, then ỹ =

y − βµ0
F + x̃. Using equations (8.21) and (8.25), we can rewrite equation (8.20) as

S

NFkB
=

4G(βµ0
F )

F(βµ0
F )

− βµ0
F . (8.27)

To evaluate F(βµ0
F ) and G(βµ0

F ), we use an interpolating function for fn(βµ) between the

data points from [67], which exist for −1.56 ≤ βµ0
F ≤ 3.97, and join this in a piecewise

fashion with the known fourth-order virial expansion for βµ0
F < −1.56 [70, 79, 67].

The results of this analysis are shown in figure 8.6. In figure 8.6(a) we plot the ini-

tial EoS fn(βµF ) from equation (8.14) normalized by that of the non-interacting Fermi gas

fn,0(βµF ) = −2 Li3/2(− exp(βµF )), where the red open circles are the measurements from

[67]. In figure 8.6(b), we show the trap-averaged reduced temperature T/TF as a func-

tion of βµ0
F for both the unitary Fermi gas and the non-interacting Fermi gas. In the

case of the non-interacting Fermi gas, equation (8.22) can be calculated analytically, giving

F(βµ0
F ) = −2 Li3(− exp(βµ0

F )). We then show the total trap energy EoS E(T/TF ) in fig-

ure 8.6(c). Lastly, we plot the trap-averaged entropy per particle S/(NFkB) vs. T/TF in

figure 8.6(c). Because the measurements in [67] only exist for trap-averaged reduced tem-

peratures of T/TF ≥ 0.15, we additionally plot the theoretical prediction from [47], which

agrees quite well with the MIT group’s data where available. By comparing our observed

upper bound on the per-particle entropy, S/(NFkB) ≤ 0.55 (open black triangle in figure

8.6(d)), with the values from [47], we extract an upper bound on the UFG temperature of

T ≤ 0.12TF = 0.55Tc,F . Thus the Li cloud prepared with an evaporation gradient of B′ = 41

G/cm is deep in the superfluid regime, and we have established the existence and stability

of the Yb-Li Bose-Fermi superfluid mixture.

8.2 Observation of elastic coupling

In general, observing the effects of interspecies mean-field interactions is a subtly difficult

thing to do11. While elastic collisions are ubiquitously used in ultracold atomic physics (e.g.

11The most precise way to determine the value of the interspecies mean-field is to perform molecular
spectroscopy of the ground state scattering potential, as the scattering length can be calculated exactly
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Figure 8.6: Transformation of the homogeneous EoS for the UFG from the MIT experiment

[67] to trap-averaged quantities. For all plots, the superfluid transition is marked by a

vertical dashed line. (a) Homogeneous EoS for the phase-space density (PSD), nFλ
3 =

fn(βµ), in units of the ideal Fermi gas (IFG) PSD fn,0(βµ), with 3rd and 4th order virial

expansions shown for comparison. Error bars from [67] not shown. (b) Trap-averaged reduced

temperature as a function of βµ0
F for the IFG and UFG. (c) Total energy in the trap as a

function of T/TF . For the UFG at T = 0, E =
√
ξ3NFEF/4, where ξ = 0.37 is the Bertsch

parameter [67, 112]. (d) Trap-averaged entropy EoS (per particle) versus T/TF . For (c)-(d),

we also show the theoretical EoS from [47], which enables us to use the upper bound on the

entropy per particle S/(NFkB) ≤ 0.55 in our system to find T ≤ 0.12TF = 0.55Tc,F .
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evaporative cooling, sympathetic cooling, etc.), they are in fact distinct from the effects

of mean-field interactions. Specifically, elastic collisions correspond to collisions in which

the directions of the particle momenta change as a result of the collision, while mean-field

interactions arise because of a phase shift acquired from undergoing forward scattering. As

an illustration of the difficulty in directly observing the mean-field interaction, we note that

our lab was able to determine the Li-Yb s-wave collision cross section σLi-Yb ∝ |aBF |2 a little

over 5 years ago using interspecies thermalization studies [54], but the sign of aBF remained

unknown until completing the measurements described in this section.

8.2.1 Selective excitation of bosonic dipole modes

To probe elastic interactions in the Bose-Fermi superfluid mixture, we selectively excite

vertical dipole oscillations in the bosonic component. Because of the large ratio of trap fre-

quencies ωF/ωB = 8 for the two components, we can achieve this species-selective excitation

by changing the vertical trap center position on a timescale that is diabatic for Yb and

adiabatic for Li. As the Yb cloud subsequently undergoes dipole oscillations, we expect the

mean-field interactions with Li will decrease(increase) the apparent oscillation frequency for

repulsive(attractive) interactions, thus giving us a method for determining the sign of aBF .

In the experiment, we begin with the superfluid mixture in the crossed ODT with frequen-

cies (ωx, ωy, ωz)B = 2π × (23, 150, 10) Hz and an applied magnetic field gradient of B′ = 41

G/cm. Anticipating that we will increase the gradient to 68 G/cm in order to perfectly

overlap the vertical cloud centers, we first slowly increase the ODT power from 1.5 to 4.1

W, as Li would otherwise spill out of the trap. Then we simultaneously increase the power

from 4.1 to 4.8 W and increase the gradient to 68 G/cm over 1 ms in a linear fashion. This

results in the diabatic excitation of a vertical dipole oscillation Yb, while Li adiabatically

follows the changing vertical trap center position as ωy,F = 2π× 3.1 kHz. We do not observe

from this potential. An alternative method is to measure interaction shifts on clock transitions, but this
method suffers from the fact that one only determines the difference in mean-field energy between the two
internal states involved.
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the excitation of any modes in Li as a result of the ODT power ramp.

The trap frequencies after the excitation are (ωx, ωy, ωz)B = 2π × (59, 388, 26) Hz, with

typical atom numbers of NB = 105 and NF = 1.3× 105 atoms, resulting in peak densities12

of nB(0) = 4 × 1014 cm−3 and nF (0) = 3 × 1013 cm−3, a ratio of cloud radii of RB/RF =√
αF

αB

µB

µF
= 0.35, and relative interspecies mean-field interaction energy of VBF (FB)(0)/µF (B) =

0.10(0.13). Here αF (B) is the polarizability of Li(Yb) and VBF (FB) is the mean-field interaction

energy of Yb on Li (Li on Yb). Thus we can treat the interspecies mean-field as a small

perturbation on each species.

The dipole oscillation measurements are shown in figure 8.7, where we ramp the mag-

netic field to 780 G during the species-selective excitation to increase the magnitude of the

interspecies interaction effect on the Yb oscillation frequency. Clearly the presence of Li has

an effect on the Yb oscillation, as the two data sets are roughly π/2 out of phase at 50 ms.

When we perform the same measurement without a magnetic field present, we observe no

effect on the Yb dipole oscillations, thus verifying the necessity of the species-selective tool

for establishing interspecies coupling. In order to ensure that both species remain superfluid

throughout the measurement, we perform a similar lifetime measurement to that shown in

figure 8.5(c) and find that the data in figure 8.7 is within a single 1/e time.

While the presence of Li has a clear effect on the Yb dipole oscillations, we do not

observe back action onto Li as a result of the oscillating Yb cloud. This can be understood

by considering the trap frequency ratio. As Yb executes dipole oscillations, the Li cloud

feels a time-dependent potential and adiabatically deforms as the mean-field interaction

term oscillates at ωy,B ≪ ωy,F .

By fitting the data to damped sinusoidal functions, we find oscillation frequencies with

and without Li of ωy,B = 2π × 387.7(3) Hz and ω′
y,B = 2π × 381.3(4) Hz, respectively.

Thus, the presence of the Li superfluid results in a reduction of the Yb dipole oscillation

frequency of 1.7(2)%. This provides the first measurement of the sign of the interspecies

12For the estimates in this paragraph we use the density profile of a T = 0 unitary Fermi gas.
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Figure 8.7: Vertical dipole oscillations of an Yb BEC in the absence (blue circles) and
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of the Yb center-of-mass at 30 ms ToF is plotted for different hold times after the species-

selective excitation. The solid lines are fits to damped sinusoids. The oscillation with Li

is of lower frequency than that without, indicating a repulsive interspecies interaction (i.e.

aBF > 0).
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s-wave scattering length, and determines it to be positive (i.e. repulsive interactions). As

we will see in the next section, this shift is in agreement with a theoretical calculation based

on a mean-field model.

The extracted exponential decay constants with and without Li of τ ′ = 0.11(3) s and

τ = 0.17(7) s are within error of each other. The finite damping in the measurements

with only Yb reveals that our trapping potential has a finite quality factor (i.e. is slightly

anharmonic). Still, a natural question is whether the presence of Li dampens the oscillatory

motion of Yb. Now, for a unitary Fermi gas at zero temperature, the critical velocity for the

creation of an excitation is13 vc,F = ξ1/4vF/
√
3 ≈ 0.45vF [48], where vF =

√
2EF/mF and

EF = ~ω̄F (3NF )
1/3. For the measurements in figure 8.7, we have EF/kB = 2.4 µK, yielding

vF = 82 mm/s and vc,F = 37 mm/s. We then want to compare this to maximum velocity

attained by Yb during the dipole oscillation, vB,max. We can easily compute this value from

the initial amplitude A of the oscillations in figure 8.7, and using the known ToF time tToF,

giving vB,max = A/tToF = (40µm)/(30ms) = 1.3 mm/s. Hence, we are roughly a factor of

30 below the critical velocity for the Fermi gas14. It is thus unfeasible for our experiment

to probe critical velocity phenomena in this mixture using dipole oscillations of the bosonic

component. While the damping times with and without Li are within error bars, we cannot

rule out the possibility of increased damping due to a finite thermal component of the Fermi

gas.

13It is important to note the 1/4 power of ξ in this expression, in contrast to
√
ξ dependence that appears in

many theoretical treatments (see for instance [48]). The discrepancy is due to whether one is considering
a harmonically-trapped Fermi gas or a homogeneous one. As we saw in section 3.4.3, the Fermi wave
vectors for the two cases are related by khomF = kF /ξ

1/4. Hence, the Fermi velocities are related by the

same factor, giving vc,F = vhomF

√
ξ/3 = vF ξ

1/4/
√
3.

14The nature of the critical velocity in a Bose-Fermi superfluid mixture is in fact still an open question.
There is theoretical and experimental work to support the claim that vc = vc,B + vc,F [31, 18], where vc,B
is the critical velocity in the BEC (i.e. the sound velocity), but the measurements are also consistent with
vc = vc,F .
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8.2.2 Mean-field model for dipole frequency shift

To model the effect of the fermionic component on the boson dipole oscillations, we use a

mean-field model and calculate the local curvature of the full potential seen by the bosonic

component [31]. Namely, we begin with VB(r⃗− d⃗) = VT,B(r⃗− d⃗)+gBFnF (r⃗), where we center

the coordinate system on the Fermi cloud center and allow for arbitrary offsets of the cloud

centers, indicated by d⃗. Here, VT,B(r⃗) =
mB

2
(ω2

x,Bx
2+ω2

y,By
2+ω2

z,Bz
2) is the optical trapping

potential seen by bosonic component. To compute the effective trap frequency for Yb at the

point d⃗, then, we have

mBω
′2
y,B = mBω

2
y,B + gBF

∂2nF

∂y2

∣∣∣∣
r⃗=d⃗

. (8.28)

In the local-density approximation, nF (r⃗) = nF [µF (r⃗)], and we can use the zero-temperature

equation of state nF (µF , aF ) [80] to evaluate the fermionic density at the local chemical

potential µF (r⃗) = µ0
F − VT,F (r⃗). Since the interspecies mean-field interactions are small

compared with the respective chemical potentials, we neglect the distortion of the Fermi

density distribution due to the presence of Yb. Then, we rewrite the second term as

gBF
∂2nF

∂y2
= gBF

(
∂nF

∂µF

∂2µF

∂y2
+
∂2nF

∂µ2
F

(
∂µF

∂y

)2
)
. (8.29)

As in section 3.4.3 we seek to write all relevant quantities in terms of δ = ~/(a
√
2mFµF )

and h(δ), where h(δ) = P (µF , aF )/(2P0(µF )) relates the pressure P at T = 0 of the two-

component, interacting gas to the single-component, non-interacting one P0. Within the

local density approximation, we have

δ(r⃗) =
~

a
√
2mFµF (r⃗)

=
δ0√

1− (δ0kFaF )2
(

x2

R2
0,x

+ y2

R2
0,y

+ z2

R2
0,z

) , (8.30)

where δ0 = ~/(aF
√
2mFµ0

F ) and R0,i = ~kF/(mFωi,F ) is the trapped, non-interacting Fermi

gas radius. One can then use the Gibbs-Duhem relation nF = ∂P/∂µF to evaluate the terms
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in equation (8.29) and rewrite (8.28) as

δωy,B

ωy,B

1

kFaBF

=− αF

αB

mF +mB

πmB

(δkFaF )
−1

[
h(δ)− 7δ

15
h′(δ) +

δ2

15
h′′(δ)

−
(
dy
R0,y

)2

(δkFaF )
2

(
h(δ)− δh′(δ) +

2δ2

5
h′′(δ)− δ3

15
h′′′(δ)

)]
, (8.31)

where δωy,B = ω′
y,B − ωy,B, αF and αB are the polarizabilities of the fermionic and bosonic

components, and all instances of δ are evaluated at the point d⃗ = (dx, dy, dz). For the unitary

Fermi gas with d⃗ = 0, we use that h(0) = ξ−3/2 and lim
δ→0

δkFaF = ξ−1/4 to reproduce the

result from [31],

δωy,B

ωy,B

1

kFaBF

= −αF

αB

mF +mB

πmBξ5/4
. (8.32)

Amazingly, if the clouds are perfectly overlapped (i.e. d⃗ = 0), the frequency shift only

depends on the value of 1/kFaF (recall from section 3.4.3 that we parametrize the function

δ in terms of 1/kFaF ). The predicted frequency shift as a function of 1/kFaF for perfectly

overlapped Bose-Fermi clouds is shown as the solid green line in figure 8.8. The shaded region

is the uncertainty in the prediction, coming entirely from the uncertainty in the measured

value15 of |aBF | = 15(2) a0 [54, 44]. For these calculations, we use the value from our

experiment of kFaBF = 0.006. The red points in figure 8.8 are the values measured in our

system at 780 G (1/kFaF = 0.39) and 720 G (1/kFaF = 1.2). While the 780 G measurement

is in agreement with the mean-field model, that at 720 G is far from it. As we will see in the

next section, this discrepancy results from a large offset of the Yb-Li cloud centers in the

horizontal plane.

Indeed, for finite d⃗, there is a non-trivial dependence on the various trap frequencies

through the radii R0,i. In figure 8.9, we show the dependence of the mean-field frequency

shift on horizontal displacement as predicted by equation (8.31). Without loss of generality,

we assume the displacement to be along the x direction. For arbitrary displacements, the

15For this prediction, we use a weighted mean of the measured values of |aBF | from our group [54] and
the Kyoto group [44].
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Fermi gas. (Right) BEC side of resonance. All curves are normalized to the frequency shift

value for perfectly-overlapped clouds. The point at which each curve terminates corresponds

to the Fermi radius for that value of 1/kFaF .

frequency shift contours lie on ellipses defined by ((dx/R0,x)
2 + (dz/R0,z)

2)
1/2

. The left panel

in figure 8.9 shows the behavior on the BCS side of resonance, while the right panel shows

that on the BEC side. As expected, the curves for the ideal and unitary Fermi gases are

scaled versions of each other. For the BEC curves, the qualitative behavior of the shift versus

displacement quickly changes and becomes non-monotonic. Likely, the behavior near the edge

of the cloud cannot be fully captured by this model since the local-density approximation

is often violated here. In the far-BEC limit, we know the density profile acquires the shape

nF ∝ µ0
F − VT,F (r⃗), and thus have constant curvature versus displacement (not shown in

figure 8.9).

From the behavior on the BEC side of resonance, we see how the horizontal cloud offset

can lead to a systematic error in the frequency measurement as observed at 720 G. In this

case, the most important effect is the shortening of the radius of the molecular BEC. As we
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will see in the next section, our observation of angular momentum transfer between the two

clouds reveals that there is a sizable horizontal offset in our system. Our model predicts a

large value of about 60% of R0,x. For the measurements with 1/kFaF = 1.2, this places most

of the Yb cloud outside of the Li cloud, and thus causes the “average” frequency shift seen

by the Yb cloud to be much less than the d⃗ = 0 value.

8.3 An unexpected twist: Scissors mode observation

In addition to observing elastic coupling between the superfluids via the mean-field shift of

the Yb dipole oscillation frequency, we observe a modulation of the Yb BEC tilt angle due to

interactions with the Li superfluid. By fitting the observed modulation with a sinusoid, we

extract a frequency which is consistent with the dipole oscillation frequency. We interpret

this modulation as the excitation of a scissors mode in Yb, driven by a combination of

the sinusoidal motion of the Yb center-of-mass and the interspecies mean-field interaction

with a horizontally-offset Li cloud. We develop an analytical model based on superfluid

hydrodynamics that captures the essential features of this excitation.

8.3.1 Scissors modes: What are they?

The scissors mode in ultracold atomic systems is a small amplitude angular excitation of a

superfluid (or any collsionally hydrodynamic fluid) about a symmetry axis of the ellipsoidal

trap. In early experiments with BECs in trapped gases, the scissors mode was used to

demonstrate and study superfluidity. By analyzing the different responses of a superfluid

and a thermal gas to a small diabatic rotation of the trap eigenaxes, it was first theorized [38],

and then shown experimentally [74], that the superfluid responds by performing an angular

oscillation at a single frequency, called the scissors frequency ωs, while the thermal cloud

exhibits a two-frequency oscillation. In the superfluid regime, the internal flow resulting

from the excitation obeys the constraint of irrotationality, ∇× v⃗ = 0, but has an associated

oscillating angular momentum with a mean of zero. For rotations of the trap axes about

the z axis, the resulting frequencies are ωs = (ω2
x + ω2

y)
1/2 for the BEC, and ωth = |ωx ± ωy|
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Figure 8.10: Characteristic angular oscillations of a pure superfluid (dashed blue line) and

purely thermal gas (solid orange line) following a sudden rotation of the trap eigenaxes. For

these curves, the trap axis rotation occurs about the z axis, and the relevant trap frequencies

are ωx = 2π × 700 Hz and ωy = 2π × 1000 Hz, resulting in angular oscillation frequencies of

ωs = 2π × 1221 Hz and ωth = 2π × 300 Hz and 2π × 1700 Hz.
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for the (collisionless) thermal cloud. Such characteristic oscillations are depicted in figure

8.10, where the beating of the two thermal cloud frequencies is clearly apparent. This clear

qualitative difference between the superfluid and thermal angular oscillation modes allowed

for one of the first measurements of superfluidity in trapped BECs [74].

8.3.2 Observation in 174Yb BEC caused by presence of 6Li superfluid

In order to detect modulation of the Yb BEC in-trap tilt angle, θB, we must infer such an

effect from the absorption images obtained at 30 ms ToF (i.e. the same data set used in

figure 8.7). In analogy with how the center-of-mass momentum maps linearly to position

for long ToF, we expect the time-derivative of the in-trap angle θ̇B(t) to map onto the tilt

angle in long ToF, θB,ToF(t). In fact, the expansion dynamics of a rotating BEC are rather

complicated [77], and display non-intuitive features due to the irrotational nature of the

flow field. However, in the long-ToF regime, the observed angular oscillation amplitude will

always be a factor of ≈ 2 greater than that in-trap, regardless of the aspect ratio, with

some non-trivial phase shift with respect to the in-trap oscillation [77]. This is schematically

shown in figure 8.11(a), where the principal axis about which the BEC performs an angular

oscillation rotates by π/2 between the in-trap and long-ToF situations.

While one can numerically compute the tilt of a principal axis in an image by computing

various central moments of the two-dimensional array, we find that simply fitting a two-

dimensional Gaussian function to the absorption image accurately extracts the BEC tilt

angle. To perform this fit, we use the following form for the density,

nB(x, y) = nB(0, 0) exp

(
−1

2(1− ρ2)

((
x− x0
σx

)2

+

(
y − y0
σy

)2

− 2ρ(x− x0)(y − y0)

σxσy

))
,

(8.33)

where ρ is the correlation between the x and y directions. To find the principal axes of the

density distribution, then, we simply rotate by the angle

θB,ToF =
1

2
tan−1

(
2ρσxσy
σ2
x − σ2

y

)
. (8.34)
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Figure 8.11: Observation of scissors mode excitation in Yb due to interactions with the Li

superfluid. (a) Schematic of offset Yb-Li clouds leading to the scissors mode excitation during

Yb dipole oscillations. In long ToF, the in-trap angular oscillation maps proportionally onto

an angular oscillation (with some phase shift) about the perpendicular axis due to superfluid

expansion dynamics. The red crosshairs are aligned to the imaged BEC principal axes,

and are 1.3 degrees rotated with respect to the unperturbed BEC orientation. (b) Yb tilt

angle dynamics in the absence of Li. A sinusoidal fit to the data is consistent with zero

modulation amplitude. (c)-(d) Observed scissors mode at 780 G (1/kFaF = 0.39) and 720 G

(1/kFaF = 1.2) due to interaction with Li. The frequency is consistent with the Yb dipole

frequency at that field.
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An absorption image (30 ms ToF) of a rotated Yb BEC is shown in figure 8.11(a), where the

red ellipse is a contour of constant density determined by fitting the image with equation

(8.33). The red crosshairs correspond to the principal axes of the imaged BEC, which are

rotated by 1.3 degrees with respect to the unperturbed BEC orientation (black crosshairs).

The observations of the bosonic scissors mode are shown in figure 8.11(b)-(d), where

we plot the tilt angle as a function of time for the first 12 ms of the Yb dipole oscillation.

For the data in the absence of the Li superfluid (figure 8.11(b)), a sinusoidal fit returns an

amplitude that is consistent with zero, whether or not we fix the frequency to be that of the

dipole oscillation, ωy,B. In contrast, for the measurements with Li at 780 G (1/kFaF = 0.39,

figure 8.11(c)), a sinusoidal fit to the data returns a modulation frequency that is in good

agreement with the dipole oscillation frequency, ωθ/ω
′
y,B = 1.02(3), and an amplitude of

1.3(3) degrees. Additionally, we observe the excitation of the Yb scissors mode at 720 G

(1/kFaF = 1.2, figure 8.11(d)), with ωθ/ω
′
y,B = 1.01(3) and an amplitude of 1.3(3) degrees.

For each field, we present the frequency measurement as a ratio with respect to the mean-field

shifted frequency ω′
y,B at that field. Because the ωθ measurement precision is comparable

with the frequency shift δωy,B, the result is consistent with both ωy,B and ω′
y,B.

As with the Yb vertical dipole oscillations, we do not observe back action onto the Li

cloud as a result of the angular motion of Yb, again due to the large mismatch in trap

frequencies between the two species. As a result, the angular momentum transferred from

Yb to Li during the scissors mode oscillation is adiabatically absorbed by the trap itself.

Associated with the tilt angle modulation θB(t) is an acquired angular momentum in the

condensate proportional to θ̇B(t). Thus, from the observations in figure 8.11, we can imme-

diately conclude that the Yb and Li cloud center positions must be offset in the horizontal

plane, since we must have a term in the Hamiltonian that breaks the reflection symmetry

about the vertical axis of the BEC. In the next section, we will explicitly calculate the time-

dependence of the angular momentum in terms of the interspecies interactions within the

framework of superfluid hydrodynamics for Yb.
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8.4 Analytical model for driven scissors mode

In order to model the observed scissors mode excitation driven by interspecies interactions,

we adopt the analysis from [38] based on superfluid hydrodynamics in the linear-response

regime for the Yb BEC, and extend it to include the interaction with the Li superfluid. In

our model, we assume that the Li density profile presents a static, mean-field potential for

Yb, and neglect back action onto the Li cloud. This is justified by our observation that

Li exhibits no angular oscillations during the Yb dipole oscillations, and by considering the

large detuning of the two scissors oscillators (factor of 8). This analytical model captures

the essential features of the observed scissors mode oscillation, and allows us to estimate the

magnitude of the horizontal offset between the Yb-Li cloud centers.

8.4.1 Reducing the equations of superfluid hydrodynamics

Starting from the time-dependent Gross-Pitaevskii equation for the condensate wave function

Φ(r⃗, t) =
√
n(r⃗, t) exp(iS(r⃗, t)), one can show for a zero-temperature Bose gas in the Thomas-

Fermi regime that [23]

∂n

∂t
+∇ · (nv⃗) = 0 (8.35)

m
∂v⃗

∂t
+∇

(
Veff(r⃗) + gn(r⃗) +

mv⃗2

2

)
= 0, (8.36)

where n(r⃗) is the Bose density distribution, v⃗ = (~/m)∇S is the Bose superfluid velocity,

g = 4π~2a/m is the Bose-Bose coupling constant, m is the Bose particle mass, and Veff(r⃗)

is the effective potential felt by the boson, consisting of both the effects of the trap and the

interspecies mean-field due to the presence of the fermion. Note that for simplicity of notation

we forgo the B subscripts for the bosonic parameters (e.g. n(r⃗) instead of nB(r⃗)), while

we will retain all F subscripts for fermionic parameters. We write the effective potential as

Veff(r⃗) = VT (r⃗+y0(t)ŷ)+gBFnF (r⃗+d⃗(t)), where we allow a vertical offset between the centers

of the BEC and the trap, and allow for vertical and horizontal offsets between the centers of
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the BEC and the Fermi gas, with d⃗(t) = (x0, y0(t), 0). Eventually, we will substitute in the

vertical motion corresponding to the dipole oscillation, y0(t) = y0 cos(ω
′
y,Bt). The trapping

potential is given by

VT (x, y + y0(t), z) =
m

2

(
ω2
xx

2 + ω2
y(y + y0(t))

2 + ω2
zz

2
)
, (8.37)

and the spatial dependence of the mean-field term gBFnF (r⃗ + d⃗(t)) is determined by the

zero-temperature equation of state nF (µF , aF ) in the local-density approximation (see section

3.4.3).

The scissors mode is a small amplitude excitation of one of the odd-parity quadrupole

modes (i.e. xy, yz, and zx). The excitation causes the superfluid to perform an angular

oscillation about a principal axis, but does not deform the density distribution. Anticipating

the excitation of such a mode rotating about the z axis, we reduce equations (8.35) and

(8.36) to extract the linear-response dynamics of ⟨xy⟩, where

⟨f(r⃗)⟩ = 1

N

∫
d3r⃗ f(r⃗)n(r⃗). (8.38)

For equation (8.35), we accomplish this by multiplying by xy and integrating over space,

giving

N
d⟨xy⟩
dt

= −
∫
d3r⃗ (∇ · (nv⃗))xy

= −
∫
d3r⃗

(
∂

∂x
(nvx) +

∂

∂y
(nvy) +

∂

∂z
(nvz)

)
xy (8.39)

For the first term in the integrand on the RHS, we integrate by parts as follows,∫ ∞

−∞
dx xy

∂

∂x
(nvx) = xynvx

∣∣∞
−∞ −

∫ ∞

−∞
dx yvxn, (8.40)

where the boundary term will vanish since n → 0 as x → ∞16. Evaluating the remaining

16In the Thomas-Fermi limit, we have n(r⃗) = Max(µ − VT (r⃗), 0)/g, for which the boundary term would
trivially vanish. However, the Thomas-Fermi approximation must break down near the Thomas-Fermi
radius, since at this point µ ≈ VT (r⃗). Nevertheless, in the limit x → ∞, the interaction term in the
Gross-Pitaevskii equation becomes negligible and we are left with the Schrödinger equation for a harmonic
oscillator, and thus n falls off as exp(−mωxx

2/~).
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terms in the same way, we find

d⟨xy⟩
dt

= ⟨xvy + yvx⟩. (8.41)

For equation (8.36), the procedure is slightly more involved. To being with, we multiply

the whole equation by n, take the divergence, multiply by xy, and then integrate over all of

space. For the first term on the RHS of equation (8.36) this gives

m

∫
d3r⃗ xy∇ ·

(
n
∂v⃗

∂t

)
= m

d

dt

∫
d3r⃗ xy∇ · (nv⃗)−m

∫
d3r⃗ xy∇ ·

(
v⃗
∂n

∂t

)
= mN

d

dt
⟨xvy + yvx⟩ −m

∫
d3r⃗ xy∇ ·

(
v⃗
∂n

∂t

)
, (8.42)

where we use equation (8.40) to simplify the first term on the RHS. Integrating by parts for

the second term and dropping the boundary term, we have∫
d3r⃗ xy∇ ·

(
v⃗
∂n

∂t

)
= −

∫
d3r⃗

∂n

∂t
(xvy + yvx)

= +

∫
d3r⃗ (∇ · (nv⃗))) (xvy + yvx)

= −
∫
d3r⃗ 2vxvyn. (8.43)

To get the above result we first use the continuity equation (8.35), then integrate by parts

once again and drop the boundary term. Since equation (8.43) is second order in the velocity,

we neglect it in linear response.

Lastly, manipulating the second term on the LHS of equation (8.36) in the same way as

the first, one can show that (dropping the term proportional to v⃗2) the full equation reduces

to

d⟨xvy + yvx⟩
dt

= − 1

m

⟨
x
∂Veff
∂y

+ y
∂Veff
∂x

⟩
. (8.44)

Thus we see that the variables xy and xvy + yvx have an analogous relationship to position

and momentum in this coupled first-order system of equations, (8.41) and (8.44). Reducing
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the system to a single second-order differential equation, we finally get

d2⟨xy⟩
dt2

= −(ω2
x + ω2

y)⟨xy⟩ − ω2
yy0(t)⟨x⟩ −

gBF

m

⟨
x
∂nF (r⃗ + d⃗(t))

∂y
+ y

∂nF (r⃗ + d⃗(t))

∂x

⟩
.

(8.45)

8.4.2 Solving for the driven-scissors dynamics

In order to solve equation (8.45), we take the following ansatz for the BEC density distribu-

tion,

n(r⃗, t) =
1

g
Max

(
µ− m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2 + (ω2
x + ω2

y)α(t)xy
)
, 0
)
, (8.46)

where we expect α(t) to be small due to the perturbative nature of the excitation. One can

show that if we define new coordinates (x′, y′, z′) = (x cos θ − y sin θ, x sin θ + y cos θ, z), or

in matrix notation r⃗ ′ = R(θ)r⃗, where

tan(2θ(t)) =
(ω2

x + ω2
y)α(t)

ω2
y − ω2

x

, (8.47)

the BEC density distribution can be written as

n(R−1r⃗ ′, t) =
1

g
Max

(
µ− m

2

(
ωx′(t)2x′2 + ωy′(t)

2y′2 + ω2
zz

′2) , 0) , (8.48)

for some new frequencies ωx′(t) and ωy′(t). The angle defined by equation (8.47) is the tilt

angle associated with the scissors mode oscillation. One can then show that for |α(t)| ≪

ϵ =
∣∣∣ω2

x−ω2
y

ω2
x+ω2

y

∣∣∣, ωx′(t)2 = ω2
x + O((α/ϵ)2) and ωy′(t)

2 = ω2
y + O((α/ϵ)2). As noted in the

previous section, the scissors mode requires a small enough excitation such that the BEC

shape is unaffected by the oscillation. Thus, our linear-response treatment is valid so long as

|α(t)| ≪ ϵ, or equivalently |θ(t)| ≪ 1, since the density distribution is unchanged in shape

to lowest order.
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For the first term on the RHS of equation (8.45), we find

⟨xy⟩ = 1

N

∫
d3r⃗ xy n(r⃗, t)

=
1

N

∫
d3r⃗ ′ (x′ cos θ + y′ sin θ)(−x′ sin θ + y′ cos θ)n(R−1r⃗ ′, t)

=
cos θ sin θ

N

∫
d3r⃗ ′ (y′2 − x′2)n(R−1r⃗ ′, t) +

cos2 θ − sin2 θ

N

∫
d3r⃗ ′ x′y′n(R−1r⃗ ′, t).

(8.49)

Since n(R−1r⃗ ′, t) is an even function of x′ and y′, the second term will vanish. Therefore,

using ωx′(t) ≈ ωx and ωy′(t) ≈ ωy, we get

⟨xy⟩ = sin(2θ)

m

(
1

ω2
y

⟨m
2
ω2
yy

′2
⟩
− 1

ω2
x

⟨m
2
ω2
xx

′2
⟩)

= −
(ω2

x + ω2
y)α(t)

3mω2
xω

2
y

⟨VT (r⃗)⟩0

= −
2(ω2

y − ω2
x)θ(t)

3mω2
xω

2
y

⟨VT (r⃗)⟩0 (8.50)

where we’ve used that
⟨
m
2
ω2
xx

′2⟩ =
⟨
m
2
ω2
yy

′2⟩ =
⟨
m
2
ω2
zz

′2⟩ = ⟨VT (r⃗)⟩0/3, and sin(2θ) ≈

tan(2θ) ≈ 2θ. Here, ⟨VT (r⃗)⟩0 = 3µ/7 is the trap-averaged potential energy of a BEC in the

ground state in the Thomas-Fermi regime. For the second term on the RHS of equation

(8.45), we recognize that the expectation value can be written ⟨x⟩ = (1/N)
∫
d3r⃗ ′ (x′ cos θ+

y′ sin θ)n(R−1r⃗ ′, t), which again vanishes due to the even nature of the function n(R−1r⃗ ′, t).

In order to compute the interspecies-interaction term in equation (8.45), we begin by

expanding the BEC density n(r⃗, t) ≡ n(r⃗, θ(t)) in the small angle θ(t),

n(r⃗, θ(t)) = n(r⃗, 0) + θ(t)
∂n

∂θ

∣∣∣∣
θ=0

+O(θ2), (8.51)

where

∂n

∂θ

∣∣∣∣
θ=0

=
m

g
(ω2

x − ω2
y)xyΘ

(
µ− m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
))
, (8.52)

and Θ is the Heaviside function. Therefore, the third term on the RHS of equation (8.45)
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becomes

gBF

m
⟨· · ·⟩ = gBFn0R̄

3

mN

∫
d3⃗̃rMax(1− x̃2 − ỹ2 − z̃2, 0)

(
βx̃

∂

∂ỹ
+
ỹ

β

∂

∂x̃

)
nF (r⃗ + d⃗(t))

+θ(t)
gBFn0R̄

3

mN

2(ω2
x − ω2

y)

ωxωy

∫
d3⃗̃r x̃ỹΘ(1− x̃2 − ỹ2 − z̃2)

(
βx̃

∂

∂ỹ
+
ỹ

β

∂

∂x̃

)
nF (r⃗ + d⃗(t)),

(8.53)

where n0 = µ/g = 15N/(8πR̄3), R̄3 = RxRyRz, Ri = (2µ/mω2
i )

1/2, β = Rx/Ry = ωy/ωx,

and we have nondimensionalized the integral by changing to the scaled variables x̃i = xi/Ri.

Finally, using the local-density approximation, the Gibbs-Duhem relation, and the T = 0

EoS to evaluate the derivatives of the Fermi density distribution (as in section 8.2.2), we get

gBF

m
⟨· · ·⟩ =45η2

8πm
gBFn0,F (0)

∫
d3⃗̃r (βx̃(ỹ + ỹ0(t)) +

ỹ

β
(x̃+ x̃0))H(δ(⃗̃r + ⃗̃d(t)))

×
[
Max(1− x̃2 − ỹ2 − z̃2, 0) +

2θ(t)(ω2
x − ω2

y)

ωxωy

x̃ỹΘ(1− x̃2 − ỹ2 − z̃2)

]
. (8.54)

Here η = R̄/R̄0,F , R0,i = (2EF/mFω
2
F,i)

1/2 is the Fermi radius for a two-component, ideal

Fermi gas, n0,F (0) = 8NF/(π
2R̄3

0,F ) is the peak density for the ideal Fermi gas, and

H(δ(⃗̃r + ⃗̃d(t))) = (δ̃kFaF )
−1

[
−h(δ̃) + 7δ̃

15
h′(δ̃)− δ̃2

15
h′′(δ̃)

]
, (8.55)

where δ̃ ≡ δ(⃗̃r+ ⃗̃d(t)) = δ0[1− η2(δ0kFaF )
2(x̃2 + ỹ2 + z̃2)]−1/2 and δ0 = ~/(aF

√
2mFµ0

F ) (see

sections 3.4.3 and 8.2.2).

For compactness, we rewrite equation (8.54) as

gBF

m
⟨· · ·⟩ = 45η2

8πm
gBFn0,F (0)

[
I1(x̃0, ỹ0(t)) + θ(t)

2(ω2
x − ω2

y)

ωxωy

I2(x̃0, ỹ0(t))

]
, (8.56)

and expand the two integrals in the small dipole oscillation amplitude ỹ0(t) = (y0/Ry) cos(ω
′
yt),

giving

I1(x̃0, ỹ0(t)) = I1(x̃, 0) +
y0
Ry

∂I1
∂ỹ0

∣∣∣∣
ỹ0=0

cos(ω′
yt) +O(ỹ20), (8.57)

and similarly for I2. Figure 8.12 shows a surface plot of the integral I1(x̃0, ỹ0) for the Yb

BEC in the presence of a unitary Fermi gas (δ0 = 0). Because of the symmetries of the
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Figure 8.12: Surface plot of the integral I1(x̃0, ỹ0) as a function of the horizontal (x̃0 =

x0/RB,x) and vertical (ỹ0 = y0/RB,y) Yb-Li cloud-center displacements in units of the BEC

cloud radii. Because of the symmetry of the integrand, I1(x0, 0) = I1(0, y0) = 0 always.
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integrands in I1 and I2, I1(x̃0, 0) = ∂I2(x̃0, 0)/∂ỹ0 = 0. It is important to note that this is

the only place in the scissors analysis where the vertical dipole oscillation frequency enters.

Finally, we can rewrite equation (8.45) in terms of the tilt angle, θ(t), giving

d2θ

dt2
= −(ω2

y + f(x0)ω
2
x)θ + g(x0, y0)ω

2
x cos(ω

′
yt), (8.58)

where

f(x0) = 1 +
315η2

8π

ωy

ωx

gBFn0,F (0)

µ
I2(x̃0, 0) (8.59)

and

g(x0, y0) =
315η2

16π

ω2
y

ω2
y − ω2

x

gBFn0,F (0)

µ

y0
Ry

∂I1
∂ỹ0

∣∣∣∣
ỹ0=0

. (8.60)

Thus, the dynamics of the scissors mode in the presence of the Li superfluid are identical to

those of a forced harmonic oscillator. From equation (8.58), we identify the natural frequency

of the scissors mode in this interacting Bose-Fermi system as ωs = (ω2
y + f(x0)ω

2
x)

1/2. As we

will see, the magnitude of the function f(x0) is always of order 1, and consequently ωs ≈ ωy.

Therefore, the forcing term in equation (8.58) presents a near-resonant drive of the scissors

oscillator, thanks to the large trap aspect ratio and therefore near degeneracy of the scissors

and dipole frequencies.

Figures 8.13(a)-(b) show the functions f and g for our experimentally relevant situation

at 780 G (1/kFaF = 0.39). For these, RB,y = 1.14 µm and R0,y = 4.2 µm, giving η = 0.27,

n0,F (0) = 1.5 × 1013 cm−3 and µ/kB = 81 nK, giving gBFn0,F (0)/µ = 0.08, y0 = 0.5 µm,

ωy = 2π×388 Hz, ω′
y = 2π×381 Hz, and ωx = 2π×59 Hz. Part (c) of the same figure shows

the integration of equation (8.58) for three different horizontal cloud displacement values:

0.3R0,x, 0.45R0,x, and 0.6R0,x.

8.4.3 Angular momentum in the scissors mode

In order to investigate the role of angular momentum in the scissors mode oscillation, we

evaluate the expectation value of the operator Lz = m(xvy − yvx). As we showed in section
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Figure 8.13: (a)-(b) Relevant functions g(x0, y0) and f(x0) for the analytical model of the

driven scissors mode during Yb dipole oscillations. Specific parameters used correspond to

those in the dipole oscillation experiments (see text). Note that the horizontal displacement

is expressed in units of the ideal Fermi gas radius. (c) Solutions to the tilt angle dynamics

(equation (8.58)) for three different displacements x0/R0,x = 0.3 (blue), 0.45 (orange), and

0.6 (green), as a function of time after the diabatic excitation of the Yb vertical dipole

oscillation.
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8.4.2, the density profile does not change in shape as a result of the scissors excitation.

Another way of saying this is that the material derivative of the density is zero, (∂/∂t+ v⃗ ·

∇)n = 0. Using the continuity equation (8.35), we then find that ∇ · v⃗ = 0 (incompressible

flow). In combination with the irrotationality constraint ∇ × v⃗ = 0, this implies that

v⃗ = γ(t)∇(xy), for some γ(t) [73]. Using equations (8.35), (8.46), and (8.51), one can show

that γ(t) = θ̇(t)(ω2
y − ω2

x)/(ω
2
y + ω2

x), and therefore

⟨Lz⟩ (t) =
m

N
θ̇(t)

ω2
y − ω2

x

ω2
y + ω2

x

∫
d3r⃗(x2 − y2)n(r⃗, t)

=
2

3

(ω2
y − ω2

x)
2

ω2
yω

2
x(ω

2
y + ω2

x)
⟨VT (r⃗)⟩0 θ̇(t) (8.61)

Thus, we see directly that a time-dependent in-trap angle necessitates the existence of angular

momentum in the condensate. Furthermore, this derivation only used the continuity equation

(8.35) and the fact that the superfluid flow is incompressible, and therefore applies to both

the interspecies-interaction-driven scissors mode in our experiment, as well as the “standard”

scissors excitation achieved by a diabatic rotation of the trap eigenaxes.

8.4.4 Comparison with observed scissors mode

Our theoretical model (equation (8.58)) captures the essential feature of this interspecies-

interaction-driven scissors oscillation; the modulation of the Yb vertical position during

dipole oscillations coupled with mean-field interactions with a horizontally-offset Li cloud

results in a near-resonant drive of the Yb scissors mode. However, our model qualitatively

differs from the observed tilt angle dynamics in figure 8.11(c)-(d) in that the observed am-

plitude of oscillation does not grow linearly with time. We take this to be indicative of a

sizable damping effect in the scissors mode. Thus, in order to quantitatively compare our

model to the measurements, we add a heuristic damping term to equation (8.58), giving

d2θ

dt2
= −ω2

sθ −
ωs

Qs

dθ

dt
+ g(x0, y0)ω

2
x cos(ω

′
yt). (8.62)
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Here Qs is the quality factor association with the scissors mode. The steady-state solution

to equation (8.62) is then θ(t) = A cos(ω′
yt+ ϕs), where

A =
g(x0, y0)ω

2
x√

(ω2
s − ω′2

y )
2 +

(
ωsω′

y

Qs

)2 , (8.63)

and ϕs is the phase of the response relative to the drive. Using ω′
y ≈ ωy ≈ ωs, we get

A ≈ Qsg(x0, y0)

(
ωx

ωy

)2

. (8.64)

Note that in the limit of low damping, the amplitude A responds very strongly to frequency

near resonance, and the approximation in equation (8.64) is not necessarily valid. How-

ever, since we are expecting considerable damping in this mode, we need not worry about

this. Indeed, using equation (8.64) we find that our observed scissors mode amplitude with

1/kFaF = 0.39 of 1.3(3) degrees is consistent with the model (8.62) for a displacement of

x0 = 0.6R0,x and quality factor of Qs = 4. For this estimate, we use the fact that the

measurements in figure 8.11(c) are in the long ToF regime, which results in a factor of 2

difference between the in-trap oscillations θ(t) and those following the superfluid expansion

θToF(t) [77].

An important question raised here is the origin of damping in the bosonic scissors mode.

One potential cause could be collisions between the BEC and some finite thermal component

of the Yb cloud. Another possible cause is severe anharmonicity in the horizontal trapping

directions, since we know from the dipole oscillation measurements that the quality factor

in the vertical direction is quite large (ω′
yτ ≈ 250). Further systematic investigation in the

Yb-Li dual superfluid system in conjunction with full numerical simulations of the coupled-

superfluid dynamics should shed light on the nature of damping in this driven-scissors mode,

as well as provide reliable quantification of the relative phase ϕs observed at long ToF.
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