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Abstract

Advancing Atom Interferometry with a Bloch-bands Approach

Katherine E. McAlpine

Chair of the Supervisory Committee:
Subhadeep Gupta

Department of Physics

This work presents experiments and theory on “magic depths” in Bloch oscillation accel-

eration pulses and the implications for advancing atom interferometry. For a particle in a

sinusoidal potential, we define the magic depth as the depth where there is a vanishing first

derivative of its average energy1, occurring only for excited bands. A Bloch-bands picture

demonstrates that this average area is proportional to the di↵raction phase shift experienced

by a particle undergoing Bloch oscillations. A vanishing first derivative permits the phase

to be significantly more stable against unavoidable light intensity fluctuations, creating new

opportunities for the use of Bloch oscillations within atom interferometers.

1Averaged over the first Brillouin zone.
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GLOSSARY

BEC: Bose-Einstein condensate

BO: Bloch oscillation

CI: Contrast interferometer

IFM: Interferometer

MOT: Magneto-optical trap

MZ: Mach-Zehnder

LZ: Landau-Zener

ODT: Optical dipole trap
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Chapter 1

INTRODUCTION

1.1 Standing Waves and Atom Interferometry

This work begins with discussing an essential piece of physics for atom interferometry: the

interaction of standing waves of light with matter. A standing wave of light is composed

of two counterpropagating waves. When these waves are added together, there exists nodes

which are equally spaced points in space where the wave sum is always zero. The relevant

property of standing waves for atom interferometery is that standing waves of light can

e�ciently reflect atoms. It would be strange if this were ordinary behavior. You might need

to avoid putting two lamps too close, otherwise some photons from the lamps could form a

standing wave that could give you a jolt when passing between them.

Here lies an important implication of “standing waves of light can reflect atoms.” If a

standing wave’s nodes are moving in your frame and it were reflecting an atom, you would

see the atom as accelerating. In such a way, could this utilization of standing waves become

a new form of transportation? Rather than boarding a train to move from point a to b,

could we merely step between two counterpropagating light sources composed of many laser

beams. Of course this would mandate careful tuning of the frequencies and intensities in

order to ensure one’s entire body is coherently accelerated. Such travel may be dangerous if

the “train” conductors do not get the resonance right.

I was quite surprised to hear that standing waves reflect atoms when my advisor Professor

Subhadeep Gupta provided a standard introduction to atom interferometery, something to

the e↵ect of:

A typical light interferometer includes splitting light into multiple paths, reflect-

ing the paths such that they recombine, and observing the interference. In this
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case, the light is the wave, and the matter plays the role of the momentum ma-

nipulator. In an atom interferometer, the roles are reversed. The light pulses

split the matterwaves, reflect the atoms such that they recombine, and read out

the final interference.

This was likely followed with a discussion on the merits of the particular interferometer

used in our group, such as the quadratic scaling with momentum or vibration sensitivity. I,

however, was distracted by formulating the many questions I had about this process.

I imagine that I wondered whether or not the fact that standing waves reflect atoms could

be predicted classically, i.e. by treating the atoms as particles? Perhaps atoms in a standing

wave can be imagined like small spherical beads in an egg carton. Imagine somehow one was

able to initialize all beads to be at the same speed. Would they all turn around, and then

would that be the way to predict reflection? I can certainly imagine beads sloshing around

in an egg carton, reflecting when they’ve turned their kinetic energy into potential energy.

In fact, this particle model does not predict that atoms can be reflected by standing

waves of light. For example, consider the situation where the potential energy created by

the standing wave was smaller than the kinetic energy of the atoms. In that case, the atoms

would not reflect but rather keep moving in the same direction and hop from site to site in

the egg carton. However, it is known that standing waves can reflect atoms whose kinetic

energies are larger than the maximum potential energy.

Another issue with the particle model is that the atom reflection process can be velocity-

sensitive in the case of Bragg reflection, as shall be detailed in Section 2.1. One takeaway

from that section is that for an atom to reflect from a standing wave, it needs to be at

a particular velocity. However, classical particles in a potential well can eventually reflect

given any initial velocity, assuming their kinetic energy is less than the potential depth.

The key to understanding that standing waves of light reflect atoms is seeing atoms as

waves and thus to even make correct qualitative predictions, a quantum model is absolutely

necessary. Once this conceptual leap is made, the reflection can be described using similar
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formalism to Bragg reflection of light o↵ of crystals. The reflection of atoms from standing

wave potentials can be seen as a probabilistic process; as a matterwave moves along a stand-

ing wave’s longitudinal direction, there is a periodic probability that the wave will reflect.

Eventually, the probability of reflection approaches unity. Of course since the reflection of

atoms from standing waves is not ordinary behavior, certain conditions must be met. These

conditions are detailed in Chapter 2 and 3.

1.2 Thesis Overview

The prior section introduced an essential piece of physics to atom interferometry: the reflec-

tion of atoms from standing waves. This section will provide a brief introduction of atom

interferometery and use it to explain the context of the bulk of what is presented in the

thesis.

In 2018, the Müller group at Berkeley obtained the current most precise measurement

of the fine-structure constant (↵) through a measurement of the recoil energy of cesium

(Cs) in their atom interferometer, obtaining an uncertainty of .2 parts-per-billion (ppb)[1].

The recoil energy is defined as the energy of a particle after absorbing one photon. The

fine-structure constant sets the electromagnetic coupling strength for matter.

Before this 2018 measurement, the most precise measurement of the fine-structure con-

stant came from entirely di↵erent measurement. The Gabrielse group at Harvard measured

the anomalous part of the g factor of the electron. QED tells us that the g factor is equal to a

power series expansion in ↵. The calculation that connects the g factor and ↵ is complicated,

evinced by the fact that the paper reporting the ↵ calculation[2] came two years after the g

factor measurement[3]. Through providing a theory-free measurement of the fine-structure

constant, atom interferometry is able to test the theory which connects these two quantities,

which includes QED and the standard model. More on this in Section 1.3.1.

Indeed atom interferometry is a burgeoning field in quantum metrology. Research groups

around the world with various interferometer geometries are developing atom interferom-

eters for purposes including measuring gravity and gravity gradients[4], measuring atomic
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polarizabilities[5] and performing rotational sensing[6]. Atom interferometry is a sensitive

way to measure matter’s properties.

A long-term goal in the group is performing a precision measurement of ↵ with our con-

trast interferometer, described in detail in Section 1.6. In 2014 the first Ytterbium (Yb)

atom interferometer was up and running in the UW physics building basement[7]. We con-

tinued to develop our contrast interferometer and in 2017 we demonstrated large momentum

separation in the arms of our interferometer[8]. Along the way, we needed to develop a better

understanding of a systematic e↵ect called di↵raction phases.

A di↵raction phase is a shift on our signal due to the light pulses used for accelerating the

atoms. This systematic a↵ects a variety of interferometers and it is important to be able to

intuit its behavior. Much of my work was related to developing a way to predict di↵raction

phases from the perspective of band structure. We were able to use those predictions to

discover a new way to minimize di↵raction phases through operating at so-called “magic

depths” which is the topic of Chapter 5. Note that in this thesis, I intend to use the term

“di↵raction phases” to refer to the phase shift a particle experiences in a di↵raction pulse.

The term “lattice-induced phase shift” means the same thing but is used when describing

the phase shift from Bloch oscillation pulses. The two terms are interchangable.

1.3 Recoil Measurements

The prior section motivated measuring the fine-structure constant through a recoil frequency

measurement in order to test QED. This section will provide more details on the fine-structure

constant, the g-2 measurement, and recoil measurements.

The fine-structure constant

One way to define the fine-structure constant in SI units is:

↵ =
1

4⇡✏0

e
2

~c, (1.1)
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where ✏0 is the permittivity of free space, e is the elementary charge, ~ is the reduced Planck’s

constant, and c is the speed of light.

A clear way to see it as the strength of electromagnetic interactions is its definition in

natural units, where ✏0 = c = ~ = 1:

↵ =
e
2

4⇡
. (1.2)

In these units, ↵ is related only to e, which quantifies the coupling strength between an

electromagnetic field and a charge.

One place of interest that the fine-structure constant appears is in corrections to the

Hamiltonian for hydrogen-like atoms. Specifically, the kinematic relativistic correction yields

a perturbation proportional to ↵2. The spin-orbit coupling energy shift, which comes from

the coupling between an electron’s spin and orbital momentum, shifts the Hamiltonian by a

term proportional to ↵4. The Lamb shift, proportional to ↵5, comes from the quantization of

the electric field.[9] The desire to understand the Lamb shift was an impetus for developing

QED and making the associated measurements to support the theory.

1.3.1 g-2 Measurement of the Electron

The most precise measurement of the fine-structure constant comes from the anomalous part

of the g factor of the electron. The g factor is a dimensionless quantity which is proportional

to the ratio of a particle or system’s magnetic moment to its angular momentum. For the

electron, it is the coe�cient in the equation for the magnetic moment of the electron, µe =

�gµB
~S/~, where ~S is the electron spin, and µB = e~/2me is the Bohr magneton. The Dirac

equation predicts that g = 2, but quantum electrodynamic (QED) corrections predict that it

deviates from 2 and measurements show that its magnitude is actually 2.00231930436182[2].

The Dirac equation treats the electron quantum mechanically and relativistically. QED

corrections come from quantizing the electric field.

Dirac theory also predicts that the change in energy �E for a spin flip in a certain

magnetic field ~B is equal to the cyclotron frequency fc = e| ~B|/(2⇡me) multiplied by h.
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The cyclotron frequency is the number of cycles per second that an electron completes

as it rotates in response to a magnetic field which is perpendicular to its velocity. This

experiment essentially measures the cyclotron frequency and spin flip energy and compare

these two values. The energy di↵erence is due only to the anomalous part of the electron’s

magnetic moment, and thus a calculation of g can be made[2].

QED tells us that the g factor is equal to an asymptotic expansion of ↵:

g

2
= 1 +

X

i=1

C2i

✓
↵

⇡

i
◆
+ ...+ aµ⌧ + ahadronic + aweak, (1.3)

where Ci are constants, aµ⌧ come from QED, and ahadronic and aweak are very small hadronic

and weak contributions[2]. Calculating ↵ from g involves inverting this relation. The cal-

culation is one of the most complex calculations undertaken in QED, using tenth order

perturbation theory. Comparing a more precise measurement of ↵ against that which was

calculated from QED will test the theory at an unprecedented level.

Testing whether or not QED holds true in this highly perturbation regime can test other

physics models. For example, the calculation of ↵ from g relies on hadronic and muon loops.

Unlike lower order terms, their contribution must be inferred from low energy electron to

hadron scattering data and quantum field theory rather than being calculated directly. This

is because quantum chromodynamics (QCD), unlike QED, is nonperturbative. Thus an

independent measurement of ↵ can test these theories.

1.3.2 Interferometry and ↵

Interferometry is a powerful experimental technique which examines the way that waves

interfere as a consequence of the di↵erential phase between the interfering waves. This phase

di↵erence can be mapped to a property of the wave trajectory. For a simple example, one

could direct laser light onto a strand of hair and look at the spacing of interference fringes.

The larger the spacing between the fringes, the smaller the hair diameter is, which can be

shown with Fraunhofer far-field di↵raction theory. In a much more complicated experiment,
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LIGO examined the change in interference of light due to gravitational waves, which is caused

by a change in path length on by an impressively small factor of 10�21.[10]

To understand how interferometry can be used to measure the fine-structure constant,

consider another way to formulate ↵:

↵
2 =

2R1

c

h

me

=
2R1

c

h

mX

mX

me

, (1.4)

where R1 = mee
4

8✏20h
3c

is the Rydberg constant with an infinitely massive nucleus, me is the

mass of an electron, and mX is some test mass. Since h/mX is the quantity which is known

least precisely, it is what these recoil measurements seek to measure.

1.4 Atomic/Molecular/Optical and Solid State Physics

Optical lattices can simulate the ionic cores of crystals and thus the models of solid-state

physics can be cleanly studied in atomic physics systems. A variety of potential landscapes

can be created with light by tuning parameters such as light intensity, frequency, and geom-

etry. The interactions of particles within these optical lattices can often be tuned through

magnetic or optical Feshbach resonances.

Of interest is gleaning the band structure associated with a potential (more on band

structure in Section 2.2). For example, a Landau-Zener-Stückelberg interferometer[11] can

be used to map the band structure of potentials by examining the phase shift of an atom when

it completes a Landau-Zener process (more on Landau-Zener processes in Section 2.3). To

understand the topology of graphene, an analog system involving graphene-type hexagonal

optical lattices is used to make an interferometric measurement of Berry flux in momentum

space.[12]

Of particular importance to this work is Bloch oscillations (BO), which describe the mo-

tion of particles both in a periodic potential and experiencing a constant force. It was first

predicted for electrons in a crystal lattice by Felix Bloch in 1928[13]. However, observing

Bloch oscillations proved di�cult because the coherence of Bloch states was generally de-

stroyed by scattering. It was not until 1993[14] that Bloch oscillations could be observed
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in a superlattice, which is a periodic structure of multiple materials. The coherence was

increased when a bias field led to enhanced coupling between wells and a delocalization of

the electron and hole wavefunctions.

Soon after, Bloch oscillations were observed for ultracold atoms in optical lattices [15, 16,

17] and they are now used for high e�ciency momentum transfer in atom interferometery.[18]

1.5 Bose-Einstein Condensates

We use a Bose-Einstein Condensate (BEC) atom source for our experiments so it is worth

explaining some of its physical properties. At low phase space density, particles have many

states available to occupy. They rarely occupy the same quantum state and thus behave

classically. From statistical mechanics, it is known that when a system of bosons reaches

a critically high phase space density, a phase transition occurs such that a non-negligible

percentage of the atoms occupy the ground state. When atoms are cooled to a high phase

space density, quantum statistics are needed to model their behavior. For bosons, this means

they avalanche into the ground state, forming a BEC.

Quantum e↵ects arise when the particle density (number per unit volume), n, reaches a

value

n =
2.6

�
3

dB

, (1.5)

where �dB is the thermal de Broglie wavelength

�dB =
h

p
2⇡MkBT

, (1.6)

where h is Planck’s constant, M is the mass of an atom in the gas, kB is Boltzmann’s

constant, and T is the temperature of the system.

Equation 1.5 shows that quantum e↵ects occur when the inverse density of one particle

becomes comparable to the volume associated with its de Broglie wavelength. The de Broglie

wavelength gives a length of space over which the particle will be delocalized. When this is

on the order of interparticle separation, the particles become less distinguishable.[9]
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Forming a BEC was theorized to happen by Albert Einstein and Satyendra Nath Bose in

the 1920’s. It was experimentally realized in 1995 with 87Rb atoms, for which Eric Cornell,

Wolfgang Ketterle and Carl Weiman were awarded the Nobel Prize in 2001.[19] To cool the

atoms to su�ciently low temperatures, laser cooling is used. Laser cooling is a technique

where an atom is slowed by absorbing photons from a laser beam traveling in the opposite

direction of the atom. After being laser cooled, the atoms were loaded into a magneto-optical

trap which uses magnets to ensure that atoms preferentially absorb light that sends them

back to the center of their trap. Then the atoms were transferred into a magnetic trap1

where they were evaporatively cooled to quantum degeneracy. More technical details on

some of the cooling techniques mentioned can be found in this thesis in Chapter 3.

A BEC is special because it a macroscopic, massive quantum object. Its coherence

properties and specifically its narrow momentum distribution, are of particular help to our

experiment because of the velocity selectivity of the Bragg process.

1.6 Contrast Interferometry

This section describes the contrast interferometer my group uses to perform a measure-

ment of the fine-structure constant. It is described in great detail in my former lab mate’s

theses[8],[20], Deep’s thesis[21], and in the papers published from my lab[7][8].

We use a 174Yb BEC atom source in our three-arm interferometer, shown in Figure 1.1.

A Kapitza-Dirac pulse separates an atom cloud into a superposition of three momentum

states, |±2~ki and |0i. This standing wave pulse is described with di↵erent physics than

a Bragg pulse or a Bloch oscillation pulse, as described in Chapter 2. This much shorter

pulse spatially modulates the phase of the wavefunction. This periodic modulation causes

interference between parts of the cloud with di↵erent phases. KD di↵raction is analogous

to the interference of light waves incident upon a multi-slit screen, which di↵racts the light,

producing a characteristic pattern in the far-field.

1Magnetic traps are not used in our lab. In our experiments, we instead use optical dipole traps (Section
3.3.3).
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After the atoms are split, the atoms can be accelerated to higher momentum states using

Bloch oscillations or Bragg pulses. In Plotkin-Swing et. al.[8], the arms of the interferometer

were accelerated with sequential Bragg pulses. A mirror pulse reverses the momenta of the

arms and the acceleration/deceleration sequence is repeated. Once the atoms are overlapped,

the phase of the grating they create can be measured.

The outer arms each interfere with the zero momentum arm to create two spatial gratings

with periodicity 2k. These spatial gratings move past one another at a speed ~k/m. For

a time when the gratings are aligned, they create a high contrast grating. For moments

when the gratings are out-of-phase, they form a low-contrast atom density. We measure how

this contrast rises and falls with time by measuring the intensity of a Bragg readout beam

reflecting o↵ of the grating using a photomultiplier tube (PMT). For a high contrast grating,

a Bragg beam will reflect, just as it would o↵ of a crystal in x-ray crystallography. When

contrast is low, the beam will not coherently reflect light. The intensity of the reflected beam

S(T, t) oscillates at a frequency 8!rec:

S(T, t) = C(T, t) sin2

✓
�1(t) + �3(t)

2
� �2

◆
= C(T, t) sin2 (8!recT + 4!rec(t� 2T ) + �off ) .

(1.7)

In Equation 1.7, t is time with t = 0 set as the time of the Kapitza-Dirac pulse, T is the

time that the interferometer arms are reversed, and C(T, t) is an envelope function centered

at t = 2T whose width is the coherence time of the BEC, 1

k�v
, with �v being the velocity

spread of the BEC. The phases of each arm of the interferometer are labeled �i: �1 is the

|�2~ki arm, �2 is the |0i arm, and �3 is the |2~ki arm. The term �off is a small overall

o↵set phase.

Though we measure the rise and fall of the signal over multiple periods, we are only

interested in one data point on that curve. We precisely measure the phase of the contrast

signal at a time 2T . The other points on the curve are used to precisely measure this

particular phase. We vary T and measure the phase �(T ) of S(T,t=2T). From Equation

1.7, �(T ) = 8!recT + �off , and thus a linear fit of �(T ) yields a measurement of !rec =
~k2
2m

,
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Figure 1.1 – Figure from [8]. Space time diagrams for a three-arm contrast interferometer

with the arms accelerated to a momentum separation of n=16 (a) and n = 100 (b) with T = 1

for both interferometers. The intensity profile of the pulses are shown in green below each space

time diagram. Pulses a↵ecting path 1 (2) are connected to the path via blue (orange) shading

and pulses a↵ecting the momentum of both paths are shaded in gray. Each arm is accelerated

sequentially. The readout light which is Bragg reflected from the final wavefunction is shown

in purple. The resulting reflections are shown in (c,d) (20 shot averages) and (e,f) (80 shot

averages) for di↵erent n.

where m is the mass of the atom.

We can increase the precision of our measurement by accelerating the moving arms of

our interferometer to a maximum momentum separation of |n~ki, where n is an integer. In

this case, �(T ) = 1

4
n
2
!recT + �off which increases the precision of our measurement by n

2

with all other uncertainties held constant.

My group first experimentally realized the interferometer described with n = 4 with

174Yb atoms in 2014.[7] They were able to demonstrate that this interferometer is insensitive

to certain e↵ects that could diminish the quality of our signal.

The first e↵ect is the vibrations of the mirrors involved in the light pulses. A measurement
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of the recoil frequency could be performed with a two-arm geometry by looking at the phase

of the interference between two arms as a function of T. However, this measurement would

be vulnerable to changes in the phase that are not caused by the quantum phase from the

atoms’ kinetic energy but rather from mirror vibrations.

Had we chosen another readout method, vibrations in mirrors reflecting that light onto

the atoms would also a↵ect the quality of our signal. In our current readout scheme, the two

interferometers comprising the three arm interferometer act as rulers for one another since

we are measuring the extent to which they are overlapped. If we had an external grating

that we used to measure the moving gratings against, our measurement would be a↵ected

by vibrations in the mirrors sending in this external grating.

This phase insensitivity was demonstrated in by replacing the Bragg readout beam with

the same Kapitza-Dirac pulse used in the beginning of the experimental sequence. As the

gratings move past one another, the population di↵racted into the higher momentum states

oscillates at a frequency 4!rec. The visibility of the signal from this alternative measurement

declined on the order of 1.5ms, whereas the visibility of the signal from the CI with the

Bragg readout beam was essentially unchanged over 20ms.[7]

The use of a BEC increases the strength of our signal. Both the signal amplitude and

coherence time increase with the use of a BEC atom source.[20]

1.7 Systematics

A systematic is an e↵ect which shifts the measured value of a quantity from its real value.

With higher precision measurements, there are more opportunities for physical e↵ects to

cause a systematic shift in that measurement. The design of our experiment was chosen to

be insensitive to certain e↵ects that could cause us to measure a value which is not ↵. The

symmetry of the interferometer means that our signal is insensitive to any field that causes

a constant shift or gradient in energy (see Equation 1.7) since this would not change with T

or shot-to-shot. Our isotope of Yb has a ground state which is insensitive to magnetic fields.

The overall e↵ect of fields can be reduced or measured to below the ppb level. Finally, the
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contrast interferometer can be made insensitive to mirror vibrations 2.

As mentioned earlier in the chapter, a systematic which my experiment seeks to control

is di↵raction phases. When the BEC is in the presence of light, its phase is not evolving

like a free particle. Rather, its phase is evolving at a rate corresponding to its true energy

eigenstate. In the presence of a standing wave of light, this is a Bloch state. The di↵raction

phase is then the phase di↵erence accrued due to the energy di↵erence between a free particle

and a band dispersion.

If this was a constant o↵set to all three arms of the interferometer, then our measurement

wouldn’t be sensitive to di↵raction phases. It would only cause a constant, T -independent

phase o↵set of our signal. However, from measurement to measurement, the intensity of the

light naturally varied. In particular, the relatively long mirror pulses had a non-negligible

e↵ect on the final phase. Therefore, this introduced a random phase that varied and con-

tributed to noise in the measured phase. When this variation was taken into account, the

final phase measurement had a smaller variance from shot to shot. This systematic becomes

more complicated in the case of accelerating arms, which is to be discussed in latter portions

of the thesis.

The other major systematic present in the interferometer is interactions. Unintentional

density di↵erentials in the three momentum states shift the phase evolution rate of each arm

of the interferometer. One way to mitigate this systematic is to reduce interactions such

that the shift is so small that it does not a↵ect the final measurement. My lab has developed

a technique to decrease the density of our BEC by “painting” our optical dipole trapping

beams.[22], as described in Section 3.3.3. We raster the beam at a frequency much higher

than the trap frequency such that the atoms “see” a time-averaged potential that spatially

wider than an unrastered beam. This increases the volume of the trap while keeping the

2With sequential Bragg pulses, our interferometer is no longer fully insensitive to vibrations. Any mirror
movement between two sequential pulses on the outer arms would show up as a phase shift. However,
there was no evidence to suggest that vibrations were a source of error for the interferometer in [8] because
the timing between sequential Bragg pulses a↵ecting the outer arms was small (' 130µs) compared to
vibration periods (on the order of seconds).
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number the same, hence decreasing density.

Another approach to taking care of this systematic is to model its e↵ect on the atoms

and subtract the e↵ect from the final phase.The e↵ect of interactions is modeled in [23] as

a↵ecting the signal in four ways:

• Interactions shifting the phase evolution, proportional to density.

• Interactions being enhanced when clouds from di↵erent interferometer arms interacting

• A phase shift from nonzero momentum arms accelerating away from the zero momentum

arm

• Accelerating branches means the interferometer might not close at the time of the

readout pulse. This e↵ect can be mitigated at the cost of amplifying other interaction

e↵ects.

With control of interactions and di↵raction phases, our goal is to measure ↵ at the 0.05

part per billion (ppb) level in precision. To measure ↵ beyond this precision, our limiting

quantity would no longer be h/mY b but rather the ratio of the mass of ytterbium to the mass

of the electron.

For a detailed analysis on systematics in our contrast interferometer relevant to measuring

the fine-structure constant, see [20].
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Chapter 2

BRAGG PULSES AND BLOCH OSCILLATIONS

2.1 Bragg Pulses

A traditional interferometer uses light waves that reflect o↵ of mirrors. A particularly useful

type of mirror, which is the kind used in our lab is a dielectric mirror. In a dielectric mirror,

the lightwaves reflect o↵ of layers of reflective surfaces, with separations chosen such that

the light reflected from each surface constructively interferes. The essential ingredients to

this process is a wave and a periodic potential. Since matter is also a wave and light can be

made into a periodic potential, reflection can occur.

Bragg di↵raction involves the stimulated absorption and emission of 2NB photons which

form a standing wave of light. The process is mediated through a virtual electronic ex-

cited state detuned in frequency from an electronic excited state |ei, whose population re-

mains small. In the subsequent paragraph a quantitative model for this process will be

presented.[24]

In the frame where the standing wave’s nodes are not moving, a particle is Bragg re-

flecting o↵ of the standing wave. To quantitatively predict this phenomenon, start with two

counterpropogating beams, each with electric field E0, traveling in the x-direction, polarized

along some vector ê:

~E = E0 (sin(kx� !t) + sin(kx+ !t)) ê

~E = 2E0 sin kx cos!tê.
(2.1)

An atom interacts with this light through a dipole interaction:

Hint = �~µ · ~E, (2.2)
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where ~µ = he|e~r|gi is the matrix element connecting the ground and excited state, e is the

charge of an electron, and ~r is a position vector for the electron relative to the atom’s nucleus.

Note that the second line of Equation 2.1 demonstrates that the light forms a standing wave.

To demonstrate that this standing wave can refect an atom, we formulate the atom’s

Hamiltonian as a matrix, write down an ansatz solution, and solve the Schrodinger equation

to obtain the time-dependent probabilities for occupying a particular momentum state.

Consider an atom moving with a momentum which is the same magnitude as a photon

with momentum magnitude p = ~k. Its energy is then E = p
2

2m
= (~k)2

2m
.

The free particle time-dependent Schrodinger equation reads

i~ @
@t

| (t)i = Ĥ| | (t)i , (2.3)

where in the position basis Ĥ = ~2
2m

r
2+V (~r, t). Since we seek free particle solutions, V = 0.

The solutions are then of the form

 (x, t) =  (x)e�iEt/~
. (2.4)

Since E/~ is the angular frequency of the dynamical phase evolution, it is helpful to define

E/~ = ~k2
2m

⌘ !rec. The time-independent Schrodinger equation is

�~2
2m

@
2
 (x)

@x2
= E (x). (2.5)

The solution to this di↵erential equation is a linear combination of planewaves with wavevec-

tor ±k:  (x) = Ae
ikx + Be

�ikx, where A and B are constants. The time-dependent eigen-

states are thus planewaves which can be written as:

 (x, t) = Ae
i(kx�!t) +Be

i(�kx�!t)
. (2.6)

Since we anticipate an atom absorbing photons and thus changing its momentum in units

of 2~k by momentum conservation, we can write the eigenbasis of the free particle as the

set of plane waves with wavector mk, where m is an integer. To formulate the Hamiltonian

matrix, we use the free particle eigenbasis states, |internal, externali, labeled by the internal
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state as either e or g for the electronic ground and excited state, respectively and the external

momentum state p = m~k.

To write down the matrix element between di↵erent momentum states consider the Hamil-

tonian from Equation 2.2 acting on a momentum state |g,mi. The electric field from the

standing wave in Equation 2.1 can be written as the real part of

~E = iE0

�
e
i(kx�!t) + e

i(kx+!t)
�
ê. (2.7)

Evaluating hm|Hint|m
0
i then involves evaluating e

i(kx±!t)
|g(e), ei(mkx)

i = |e(g), ei((m±1)kx)
i.

In this way, the electric field from the standing wave acts as a quantum mechanical operator,

raising and lowering the momentum of an atom and changing its internal state. Now consider

an atom with momentum ~k in the state |g, 1i in the presence of a standing wave of light

undergoing a single two-photon process, as shown in Figure 2.1. The interaction Hamiltonian

connects adjacent states in momentum space, so we consider the final state |e, 0i and |g,�1i.

The interaction Hamiltonian can then be written as

Hint = �ie
�i!t~⌦R (|e, 0i hg,�1|� |e, 0i hg,+1|) + h.c. (2.8)

where

⌦R =
µE0

~ (2.9)

is the single photon Rabi frequency. The terms in the Hamiltonian listed are responsible

for absorption whereas the Hermitian conjugate (h.c.) terms are responsible for stimulated

emission. The full Hamiltonian in the {|g, 1i , |e, 0i , |�1, 0i} basis, including diagonal terms,

can be written as

H =

8
>>><

>>>:

~!rec ie
�i!t ~⌦R

2
0

�ie
i!t ~⌦R

2
~!0 �ie

�i!t ~⌦R

2

0 ie
i!t ~⌦R

2
~!rec

9
>>>=

>>>;

Let the ansatz solution be

| (t)i = c�1(t)e
�i!rect |g,�1i+ c0(t)e

�i!0t + c+1e
�i!rect |g,+1i . (2.10)
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p (ħk) 

E

ω
rec

ω

|e>

|g>

Δ=ω−ω
0
+ω

rec

ω
0

-1 -1

Figure 2.1 – Energy vs particle momentum diagram for the ground (|gi, red) and excited state

(|ei, red) for a two-photon Bragg process connecting the |g,+1i and |g,�1i states, shown at

q = ±1 at the purple bar. The virtual state is shown as a partially-transparent state at q = 0

at an energy spearation of � = ! � !0 + !rec from the excited state dispersion.



19

Plugging in H and the ansatz yields first-order coupled di↵erential equations which can

be solved to yield

c�1(t) = e
� i

2⌦
(2)
R

t cos

 
⌦(2)

R
t

2

!

c0(t) = �i
⌦R

2�
e
�i�t

e
�i⌦

(2)
R

t

c+1(t) = ie
� i

2⌦
(2)
R

t sin

 
⌦(2)

R
t

2

!
,

(2.11)

where � = ! � !0 + !rec
1 , ~!0 is the energy separation between the electronic ground and

excited state,

⌦(2)

R
=
⌦2

R

2�
=

⌦2

R

2(! � !0)
, (2.12)

and the equations are solved in the limit that |! � !0| � !rec.

The solution demonstrates that after some time t, nearly all atoms can be transferred

from one momentum state to the other. Since |c0|
2 =

⌦
2
R

4�2 6= 0, there is still a population in

the excited state which can be suppressed by choosing large �.

Higher order Bragg pulses can be used for NB-order processes. The generalized Rabi

frequency is given by

⌦(2NB)

R
=

[!R]
2NB

24NB�3 [(NB � 1)!]2�NB!
NB�1
rec

. (2.13)

In this derivation it was assumed that the atoms were moving at |p| = ~k. To accelerate

atoms of any speed, in the frame of the lattice, the atoms must be at a momentum of

±m~k, where m is an integer. The standing wave’s velocity can be controlled by controlling

the detuning between the beams and thus the detuning can be tuned to meet the Bragg

condition. For atoms at rest in the lab frame, this Bragg condition reads

� = 4NB!rec. (2.14)

In general, the detuning needs to chosen be such that the atoms are reflecting in the frame

1Our work in [25] demonstrates that corrections are needed for this formula due to excluding higher
energy states
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of the standing wave and thus the lattice momentum should be half way between the initial

and desired final momentum state.

2.2 Band Structure

The first graduate student of Werner Heisenberg, Felix Bloch, pioneered fruitful models on

the behavior of electrons in solids. He is responsible for the eponymous “Bloch’s Theorem”

on the wavefunctions of particles in periodic potentials. On developing the model described

in this section, he writes[26]

“When I started to think about it, I felt that the main problem was to explain

how the electrons could sneak by all the ions in a metal to avoid a mean free

path of the order of atomic distances. Such a distance was much too short to

explain the observed resistances, which even demanded that the mean free path

become longer and longer with decreasing temperature. But Heitler and London

had already shown how electrons could jump between two atoms in a molecule to

form a covalent bond, and the main di↵erence between a molecule and a crystal

was only that there were many more atoms in a periodic arrangement. To make

my life easy, I began by considering wave functions in a one-dimensional periodic

potential. By straight Fourier analysis, I found to my delight that the wave

di↵ered from a plane wave of free electron only by a periodic modulation. This

was so simple that I didn’t think it could be much of a discovery, but when I

showed it to Heisenberg he said right away, ”That’s it.” Well, that wasn’t quite

it yet, and my calculations were only completed in the summer when I wrote my

thesis on ”The Quantum Mechanics of Electrons in Crystal Lattices.”

One could see the behavior of atoms in the presence of an optical lattice as similar to the

behavior of electrons in the presence of a lattice of ion cores. As was developed by Bloch,

the behavior of these electron has been traditionally understood through the lens of band

structure and the same models can be applied to atoms in an optical lattice.
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Examining the band structure of an atom is a tool to build language to model the behavior

of particles in periodic potentials in a clear way. Mapping the band structure for a potential

involves graphing the dispersion relation for a particle which is the energy as a function of

momentum. It can be seen as an organized list of eigenvalues for a particular potential. For

the simplest potential, U0 = 0, the eigenvalues are a continuous set of numbers with the

energy-momentum relationship: E = p
2

2m
. The band picture is simply a parabola.

For the case of a periodic potential, Bloch’s theorem dictates that the eigenfunctions are

also periodic with the same spatial periodicity as the potential, a. The wave functions can

all be written as  = e
ikr

⇥ u(r), where u(r) has the same periodicity as the Hamiltonian

and k = 2⇡/a, where a is the spatial period of the potential. In the case of a potential of

periodicity a 6= 0, it is helpful to define a Brillouin zone for k: |k| < 2⇡

a
, from which to choose

k. Choosing a k outside this range is allowed, however, one is not choosing a state that isn’t

already represented with a k within the Brillouin zone. In the band picture, each eigenstate

and eigenvalue can be indexed by k and band number, b.

2.3 Bloch Oscillations

Bloch oscillations generally refer to the behavior of a particle in a periodic potential expe-

riencing a force. In our case, the periodicity and force is due to a walking optical lattice.

Consider an atom in an eigenstate of a lattice potential at quasimomentum q and band b,

|b, qi. The quasimomentum of an atom is a function of the detuning � between the beams

composing the optical lattice. As the detuning is swept adiabatically, the atom will stay

in an eigenstate of the Hamiltonian. When the quasimomentum is swept across the edge

of the Brillouin zone and meets the adiabaticity criterion, it will stay in band b and its

quasimomentum will map back into the Brillouin zone. The adiabaticity criterion reads

| hub,q|
d

dt
|ub0,qi | ⌧

Eb(q)� Eb0(q)

~ , b 6= b
0
, (2.15)

where b0 indexes some band other than b, E(q)b is the energy of a band b. If an atom avoids

interband transitions and thus stays in a single band as its quasimomentum changes then it
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performs Bloch oscillations. From the frame of the lattice, the energy of the particle hasn’t

changed. However, since the nodes of the lattice are increasing its speed relative to the lab

frame, staying in a particular band means a particle is also accelerating with respect to the

lab frame, which is how Bloch oscillations are used to accelerate atoms.
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Chapter 3

OUR APPARATUS AND BEC CREATION

This chapter describes the machine we use to create the ytterbium (Yb) BEC we perform

our experiments on. The machine is described in detail in Ben’s thesis[27] so only an overview

will be given.

3.1 Ytterbium

We use 174Yb for the experiments described in this thesis. It is a lanthanide element with

properties similar to group II alkaline earth atoms. Its electronic structure is similar to

helium which can be used to intuit its electronic behavior.

it is useful to us for a variety of reasons.

• Magnetic Insensitivity. Its magnetically insensitive 1
S0 ground state has no nuclear

spin and the electronic wavefunction has a total angular momentum of zero (J = 0).

Thus, 174Yb it is e↵ectively insensitive to magnetic fields.

• Transitions. Its electronic transitions allow us to cool and di↵ract it with commer-

cially available lasers.

• Blue readout. We can Bragg reflect 399 nm light o↵ of a grating created with our

556 nm light at a geometrically convenient angle (see Chapter 7).

• Isotopes. There are a variety of accessible isotopes (see Figure 3.1) which could be

used to control for isotope-specific systematics for future experiments.

• BECs Yb can be cooled to quantum degenerate states.
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Figure 3.1 – Figure from [27]. On the left is a list of isotopes of Yb with the fermionic ones

highlighted in blue. On the right is an energy diagram which includes the relevant transitions.

In these experiments we use two transitions, as shown in Figure 3.1. The first is a broad

399 nm dipole transition from the 1
S0 ground state to the 1

P1 state. This transition is used

for cooling the atoms starting from 100’s of Kelvins as well as imaging.

The second transition is from the ground to the 3
P1 state. This intercombination tran-

sition is narrow and we use it for second-stage cooling at lower temperatures, as detailed in

Section 3.3 as well as di↵raction.

3.2 Apparatus

We perform our experiments in an ultrahigh vacuum chamber that fits on one 5 ⇥ 10 foot

optics table with a spectroscopy set-up taking up a portion of another optics table. Figure

3.2 shows a schematic and for more details, see [27]. The machine can be organized into four

sections: vacuum chamber, lasers, optics, electronics.

3.2.1 Vacuum Chamber

The chamber is maintained at pressures in the / 10�10 Torr and maintained with an ion

pump and a titanium sublimation pump. The main components of the vacuum are an oven

which contains hot Yb, a Zeeman slower, and a science chamber with 8 viewports for optical
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Figure 3.2 – A schematic for our optics table and lasers. The di↵raction optics are highlighted

in a salmon color. The di↵raction light is split into two paths each going through two separate

acousto-optical modulators (AOMs) in a single-pass configuration. We control the frequency

shift of each AOM with a direct digital synthesizer (DDS). The light is sent through a pm fiber

up to the science chamber. A polarizing beamsplitting cube follows the output of the fiber. A

pick-o↵ is obtained for intensity feedback. Figure adapted from Figure 2.8 in [27].



26

access.

3.2.2 Lasers

We have a total of five light sources: two diode lasers, two free-running diodes, and a diode-

pumped laser.

• 399 nm laser We use a Toptica DL Pro module which is an external cavity diode laser

(ECDL).

• 556 nm light We use the Toptica TA/SHA Pro laser system. It consists of a DL

Pro (diode laser) which outputs IR light of about 35mW at 1112 nm. The IR light is

amplified with a tapered amplifier (TA) to about 900mW. A second harmonic gener-

ation (SHG) cavity doubles the frequency to 556 nm. The cavity mirrors are locked to

maximize output using a Pound-Drever-Hall technique.

• Free-running Diodes The 399 nm laser doesn’t output enough power to operate our

experiment so we supplement by injection locking two free-running diodes to our main

399 nm laser. Injection locking includes directing narrow-frequency 399 nm light into

the relatively broadband free-running diodes. It serves the purpose of narrowing their

frequency bandwidth for use in our Zeeman slower (Section 3.3.1) and cross-beam,

which will not be described in this section (details can be found in [27]). Here is a

technical note on the behavior of these diodes. The slower diode tends to become

misaligned with the isolator in the optical path whereas the cross-beam diode does

not. I have tried to tighten the diode chip within the case which didn’t seem to help.

it is not yet clear what is causing this long-term drift. It seems to get worse with use

of the machine.

• 532 nm laser We use a Coherent Verdi V18 which outputs 18W at 532 nm. One

technical note for interferometeers: if you notice the power decreasing, check for damage
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optics. The 532 nm light has been found to damage the optics on the timescale of

months, evinced by beam-sized cloudy spots on the beam path.

3.2.3 Optics

Each laser is split into multiple paths whose frequency is finely controlled for various purposes

using acousto-optical modulators. Acousto-optic modulators (AOMs) work by deflecting

light and shifting its frequency through a Bragg process. The AOM deflects light because

a piezoelectric transducer vibrates the AOM crystal to create sound waves. In the frame

of the nodes of the waves, the light is Bragg-reflecting and in the lab frame the light gets

frequency-shifted and deflected.

3.2.4 Electronics

We use a computer program called Cicero for our experimental sequences which is commonly

used by many ultracold atom and BEC experiments.. Through this interface we control

digital and analog outputs. We use National Instruments (NI) PCIe 6535B and PCI 6713

cards to control the digital and analog signals, respectively. The digital channels go through

isolator boxes and the analog channels go through an NI BNC 2110 breakout box.

3.3 Cooling

We cool our atoms from thermal atoms (⇡ 650K) to quantum degeneracy (⇡ 10�8K) through

the cooling methods detailed in this section. The purpose of cooling to quantum degeneracy

is to minimize the velocity width of the atom cloud to much less than a recoil velocity

vr = ~k/m.

3.3.1 Zeeman Slower

We start with Yb atoms in an oven whose nozzle is at 450� C. They exit the oven through a set

of apertures which causes the atoms to form an atomic beam. The beam of atoms is slowed
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with a Zeeman slower with 399 nm light. A Zeeman slower uses light which propagates in

the opposite direction of the atomic beam to slow the atoms down. It also contains a coil to

Zeeman shift the excited state to keep the atoms in resonance with the slower beam. Without

the magnetic coils, the slowing of the atoms would Doppler shift them out of resonance with

the light. Currently our slower light is at a detuning of �807MHz. An additional stage of

laser cooling with 399 nm light is performed in our “crossed-beam slower.” A full-description

is omitted and details can be found in Section 3.1.4 in [27].

3.3.2 Magneto-Optical Trap

We use a magneto-optical trap (MOT) which uses 6 circularly-polarized beams and current-

carrying coils of wire which create magnetic fields to trap and further cool our atoms. Our

MOT beams start out at a �13 MHz detuning from the 556 nm transition. Once we have

su�ciently loaded the MOT, we compress it by increasing the magnetic field gradient, bring-

ing the frequency of the light closer to resonance, and turning down the intensity of the light.

The CMOT generally reaches temperatures on the order of 100s of µK

3.3.3 Optical Dipole Trap

An optical dipole trap (ODT) is used for our final stage of cooling from thermal atoms to a

Bose-Einstein Condensate (BEC). Our lab’s ODT consists of two beams propagating nearly

orthogonally with one vertically-oriented and one horizontally-oriented. They are sourced

from our 532 nm laser. The depth of the potential due to an ODT is given by1

U0 ⇡
~⌦2

R

4�
=

~�2
I

8�Isat
, (3.1)

where ⌦R is the Rabi frequency defined in Equation 2.9, � is the detuning of the light from

a particular transition, � is a linewidth of the transition in units of angular frequency, I is

the intensity of the light, and Isat is the saturation intensity of the transition.

1In the limit that |�| � ⌦ and |�| � �
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In our ODT, both the 556 nm and 399 nm transitions contribute to the total potential

from the ODT light. Owing to the ratio of �2
/� for each transition, the magnitude of

the potential from the 556 nm transition is about 10% of the contribution from the 399 nm

transition. The potential due to the 399 nm transition is negative (! � !0 < 0) and is

responsible for trapping the atoms. On the other hand, the potential due to the 556 nm

transition is positive and therefore decreases the depth of the trap for a given power.

3.3.4 Classical Derivation of Optical Dipole Behavior

The qualitative behavior of an optical dipole trap can be predicted by considering the atom

as a polarizable object in an electric field.

The interaction energy of a dipole with an applied field is given by

U = �
1

2
✏0�aE

2 =
1

2
er · E, (3.2)

where ✏0�a is the scalar polarizability, ~E is the electric field, e~r is the induced dipole moment.

Let an electric field ~E = E0 cos(!t�kz)bex due to the ODT light be applied to the dipole.

The force in the z-direction is given by

Fz = �ex

⇢
@E0

@z
cos(!t� kz) + kE0 sin(!t� kz)

�
. (3.3)

Modeling the electron as a harmonic oscillator, we can write its position x as x = U cos(!t�

kz) � V sin(!t � kz), where U and V represent the in phase and quadrature to the applied

field, respectively. The force then becomes

Fz = �e{U cos(!t� kz)� V sin(!t� kz)}

⇥

⇢
@E0

@z
cos(!t� kz) + E0k sin(!t� kz)

�
.

(3.4)

To solve for U and V , one can solve the damped harmonic oscillator equation of motion

ẍ+ �ẋ+ !
2

0
x =

F (t)

m
cos!t, (3.5)
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where � is a friction coe�cient defined by Ffriction = m�ẋ, and !0 is the natural frequency of

oscillation for the electron. Under the assumption that U and V change slowly with respect

to ! (the slowly-varying envelope approximation), the final form of U and V is

U =
!0 � !

(! � !0)
2 + (�/2)2

F

2m!

V =
��/2

(! � !0)
2 + (�/2)2

F

2m!

. (3.6)

After time-averaging over many oscillation cycles, using I = 1

2
✏0cE

2

0
, repeating the derivation

in the x- and y-direction, and plugging in Equations 3.6 into Equation 3.4, the final average

radiation force, as predicted classically, can be written as

F =
e
2

2✏0mc

⇢
� (! � !0)

(! � !0)
2 + (�/2)2

rI

!
+

�/2

(! � !0)
2 + (�/2)2

I

c

k

|k|

�
(3.7)

. The first term in Equation 3.3.4 shows that the force is proportional to the gradient of the

intensity rI and the force is attractive in the direction of higher intensity in the case of red

detuning (! < !0). In the limit of � >> �(�), the denominator of the first term results

in the 1/� factor found in Equation 3.1. The second term which arises from absorption is

proportional to the intensity and is in the direction of k.

3.3.5 Evaporation

To evaporatively cool the atoms, the ODT depth is lowered such that the hottest atoms

preferentially evaporate. The trap depth is lowered by decreasing the power in the ODT

beams. Important to creating large BEC’s, we “paint” our horizontal ODT beam[22] such

that its center’s position oscillates quickly in space at some frequency fpaint as seen in Figure

3.3. By controlling the relationship between position and time, we can paint potential

landscapes. This relies on the fact that if we paint fast enough, particularly much faster

than trap frequency ftrap (fpaint � ftrap), the atom “sees” a time-averaged potential.

In the evaporation sequence, we use painting in the beginning when it is loaded from the

compressed MOT to create a large volume trap. We employ it again at the end of evaporation
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Position

D
e
p
th

Figure 3.3 – Schematic for painting. The upper figure shows spatial profiles at equal time

intervals as it is rasterized. The time-averaged potential is shown in the bottom graph. Because

the beam spends more time in the center, the time-averaged potential is larger there.
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to again increase the size of the ODT to reduce interactions. As repulsive interactions lead

to an increased velocity width, reducing the density and thus interactions is important for

phase coherence across the cloud. Phase space density is given by

⇢ = n�
3

dB
, (3.8)

where n is the number density and �dB = h/p, where p is the momentum of an atom and h

is Planck’s constant. When ⇢ ⇡ 2.6, the transition to BEC occurs.

Through our cooling sequence, we generally end with ' 105 condensed atoms.

3.4 Di↵raction Beams

This section will describe the di↵raction beam experimental details for the experiments

described in subsequent chapters unless noted otherwise. Our difraction beams are sourced

from the same laser that generates our MOT light. The optics set-up is shown in Figure 3.2.

In general the spatially dependent depth of an optical lattice is given by

U0 =
~⌦2

R

�
cos2 (kx) , (3.9)

where ⌦R is the single-beam Rabi frequency. Note that the peak depth is larger than the

depth of an ODT (Equation 3.1) by a factor of 4. This is because the maximum intensity of

a standing wave made with two beams is 4 times greater than the maximum intensity of a

single beam (see Section 5.6.1).

Two di↵erent detunings from resonance with the 1
S0 !

3
P1 are used: � = 3500� and

� = 1300�, where � = 2⇡ ⇥ 182 kHz. The lower detuning is used to increase the depth of

our optical lattices given a fixed amount of power in our di↵raction beams. From Equation

3.9, it is evident that the depth can be increased by decreasing �.

The waist of the beams is 1.8mm, set by the collimating optics on the fiber output. The

pulses used are characterized by rise and fall 1/e times of ' 30µs.[25].
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Chapter 4

BLOCH-BAND PICTURE FOR ATOM OPTICS

4.1 Motivation

To summarize earlier chapters, in atom interferometry we manipulate the momentum of our

atoms with walking standing waves of light whose nodes are either moving at a constant

velocity (Bragg pulses) or a changing velocity (Bloch oscillation pulses). Often in atom

interferometry, we are motivated to increase the energy of the atoms in order to increase the

phase accumulation rate, allowing for more overall phase � to accumulate. The more phase

accumulated, the lower the uncertainty ��/� for a constant uncertainty in the measured

CI signal phase ��. In addition to increasing the momentum of the atoms in even units of

~k, the light changes the internal energy of the atoms during the pulse due to the dipole

interaction energy. Such altered energy means that the atoms are accumulating phase at a

slightly di↵erent rate while in the presence of light. This phase shift is called a di↵raction

phase.

Many atom interferometry research groups contend with di↵raction phases and they can

constitute a technical challenge for observing a stable phase in an interferometer. In our lab,

di↵raction beam intensity fluctuations, even at the single digit percent level, can make the

interferometer phase significantly fluctuate from shot to shot, thus precluding a repeatable

experiment for certain pulses.

The band picture provides a simple and intuitive way to calculate di↵raction phases and

is widely applicable to most atom interferometry schemes. Using the band picture to predict

these phase shifts opened our eyes to the benefits of excited-band Bloch oscillations, which

is detailed in Chapter 5. Note that that all the physics detailed in the following chapters is

single-particle physics.
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4.2 Atom Optics through the Lens of Band Structure

To understand the behavior of a particle in a periodic potential of depth U0 through the lens

of band structure, as described above, we first numerically solve the Shrodinger equation to

obtain the potential’s eigenvalues, enabling us to map the band structure. Once this picture

is obtained, the energy and thus phase properties of our atomic wavefunction in the presence

of standing waves of light can be determined.

The potential energy created by a standing wave of light takes the form U(x) = U0 cos2(kx).

To write the Hamiltonian’s matrix, let the basis be the eigenbasis of the free particle,

planewave momentum states with wave number mk for planewaves of momenta m~k, where

m is an integer. Let each free state basis state be denoted |mi. As argued in [28], the

Hamiltonian matrix has the diagonal elements given by hm|H|mi = (q � 2m)2 + U0/2 and

o↵-diagonal elements are given by hm|H|m±1i = U0/4. The set of eigenstates is infinite but

can be truncated to include only states such that |m| < N . For N = 2, the corresponding

Hamiltonian matrix is:

H =

2

6666666664

(q + 4)2 + U0/2 U0/4 0 0 0

U0/4 (q + 2)2 + U0/2 U0/4 0 0

0 U0/4 (q)2 + U0/2 U0/4 0

0 0 U0/4 (q � 2)2 + U0/2 U0/4

0 0 0 U0/4 (q � 4)2 + U0/2

3

7777777775

Band structure can be found numerically by diagonalizing H. A computer program, such

as IGOR or Mathematica, can take this matrix and return eigenvalues and eigenvectors to

make graphs like those in Figure 4.1.

The following subsections detail how the band picture can be used to make predictions

for Bragg and Bloch oscillation pulses. For more details, I direct the reader to Gochnauer et

al.[25].
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Figure 4.1 – (a) The band structure for the ground band (red), first excited band (blue),

second excited band (orange) at a lattice depth of U0 = 10Er. The bands were calculated with

51 states from |� 50~ki to |50~ki in steps of 2~k. The free space parabolic band structure for

each band is shown as dotted lines. (b) A close-up graph of the band gap between the ground

and first excited band. The Rabi frequency ⌦R for a first-order Bragg process is shown and

the di↵raction frequency of phase evolution ⌦D are labeled. The graph in (c) is the same as

(b) but illustrating the first and second excited band and for a second-order Bragg pulse.
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4.2.1 Bragg di↵raction

In Chapter 1, Bragg pulses were described as a 2NB-photon process where a particle coher-

ently reflects o↵ a standing wave of light. In the band picture, this process is described with

di↵erent language. When applying a Bragg pulse, a particle is loaded into the lattice at a

degeneracy for a free particle, either at the band center (q = 0) or band edge (q = ±1~k)

for the two originally-degenerate bands, NB and (NB � 1). As the lattice is adiabatically1

turned on, the degeneracy is broken and second-order perturbation theory dictates that the

two levels will repel one another, such that the particle is in an equal superposition state of

the NB and (NB � 1) bands. Because the atom is in a superposition of multiple eigenstates,

it oscillates between the two bands at a Rabi frequency ⌦(2NB)

R
, which is the energy sepa-

ration between the two states divided by ~. Reflection will occur when
R
⌦(2NB)

R
(t)dt = ⇡,

corresponding to when the wavefunction is in the opposite symmetry eigenstate.

The band picture can determine the di↵raction phase due to this Bragg pulse. The

di↵erence between the midpoint of the repelling bands and the non-peterturbed crossing, as

shown in Figure 4.1 gives the di↵raction energy ⌦(2NB)

D
. The total resulting phase shift can

then be found by simply evaluating
R
⌦(2NB)

D
(t)dt over the duration of the pulse. To intuit

this phase shift, consider that an atom spends an equal amount of time in each band2, and so

its average energy is the average of the two band states. The average of the two band states

has an energy separation of ~⌦D from the crossing of the unperturbed sates. A di↵raction

phase di↵erence between momentum states in an interferometer can cause a phase di↵erence

between them to accumulate which can a↵ect the interferometer signal.

For example, consider first-order Bragg di↵raction (NB = 1) for an atom at rest in the

lab frame, as portrayed in Figure 4.1(b). Let the detuning of the beams be set to � = 4!rec

to meet the Bragg condition (Equation 2.14) such that the atoms are at a momentum of

q = 1~k. The lattice is then adiabatically ramped on which puts the atom in an equal

1Adiabatically with respect to the states not involved in the Rabi oscillation.

2This is true for a resonant Bragg pulse, i.e. when the atom is loaded at q = 0,±1 where there initially
is a degeneracy.
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superposition of the ground and first excited band at q = 1~k. Using the notation of the

lattice eigenstates as |q, bandi, and the wavefunction as | (t)i = 1p
2
(|1, 0i � e

�i⌦
(2)
R

(t)t
|1, 1i),

reflection will occur when it has the wavefunction has evolved such that
R
⌦(2)

R
(t)dt = ⇡ to

the opposite parity eigenstate: | i = 1p
2
(|1, 0i+ |1, 1i).

The di↵raction phase is found by integrating the time-dependent energy separation be-

tween the average of the two bands from the energy degeneracy, �D =
R
pulse

⌦Ddt, as seen in

Figure 4.1.

4.2.2 Bloch Oscillations

Chapter 1 described Bloch oscillations as the coherent reflection o↵ of a lattice moving at

a changing velocity. In this section, we will describe Bloch oscillations in the band picture.

First, the atom is loaded at some quasimomentum away from band gaps such that when the

lattice reaches its peak depth, the particle is in an eigenstate of the lattice potential. As the

lattice is accelerated, in the atom’s frame, this corresponds to the quasimomentum sweeping

across the Brillouin zone.

Once the quasimomentum reaches an anti-crossing, the atom has the opportunity to

either tunnel to a di↵erent band or stay in the same band. The probability of tunneling to

a higher band given in the Landau-Zener model is[29][30]

PLZ = exp

✓
�⇡
⌦2

BG

4bka

◆
, (4.1)

where ⌦BG is the band gap at an avoided crossing, a = �̇/2k is the atom’s acceleration in the

lab frame, b is the larger band number of the two bands involved in the tunneling process.

For example, for an atom traveling in the first excited band traversing the q = 0 avoided

crossing, to determine the probability of Landau-Zener tunneling, b = 2 should be used in

Equation 4.1. When the atom crosses the avoided crossing at q = ±1~k with the ground

band, b = 1 should be used. PLZ increases both when other bands are at nearby energies or

the quasimomentum is swept quickly. In order to accelerate the atoms e�ciently, PLZ must

be small.
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To keep the e�ciency high and the time a wavefunction takes to traverse one Brillouin

zone, TBO small, a common strategy is to use a high depth lattice. However, with a high

depth lattice generally comes large lattice-induced phase fluctuations that can preclude a

phase-stable interferometer.

The lattice-induced phase shift is the area between the lattice energy EL(q(t)) and the

free space energy EFS(q(t)). It is found by integrating the lattice-induced phase shift with

respect to time:

� =

Z
EL(q(t))� EFS(q(t))

~ dt =

Z
ED(t)

~ dt. (4.2)

For a linear ramp, which is typically used, this amounts to finding the area between

the lattice energy band and the free space energy dispersion, as shown in Figure 4.2 and

multiplying by the inverse ramp rate,
�
dq

dt

��1

.

The di↵raction phase can be written in terms of an atom’s energy in a lattice averaged

over one Brillouin zone, hE(q(t))i:

hED(q(t))i =
1

TBO

Z
ED(q(t))

~ dt. (4.3)

Thus,

�D = hED(q(t))iTBO. (4.4)

4.3 Bragg vs Bloch

Atoms can be accelerated with either a constant velocity (Bragg) or accelerating (BO) lattice.

Both methods o↵er benefits but each have drawbacks. Bragg di↵raction involves accelerating

atoms with a constant velocity walking wave. The walking wave must be at the proper speed

in the frame of the atoms to meet the Bragg reflection condition. This restriction brings us

to our first drawback for Bragg pulses: you can never approach reflecting 100% of the atoms

by tuning pulse parameters. This is because the atomic cloud, though at a temperature

typically around 10s of nanoKelvins, has some finite velocity distribution. Even though

we are able to reflect at the seemingly-high e�ciency of 98.45 % per ~k with third order
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Figure 4.2 – Band dispersion (solid lines) for a lattice with U0 = 8Er. The free space energies

are shown as dotted lines. The shaded area is proportional to the lattice-induced phase shift

due to one BO performed in the first excited band. The bands were calculated with 51 states

from |� 50~ki to |50~ki in steps of 2~k.
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pulses[8], enough of these pulses will drive the overall e�ciency down and this ultimately

limits the number of atoms surviving this process.

The velocity selectivity of the pulse is a function of the pulse timing. The frequency

width �f of light is inversely proportional to the pulse length �t. To allow for a larger

range of velocities, the pulse length could be shortened. However, shorter pulses can violate

the Bragg adiabaticity criterion (�t �
1

4NB!rec
) and cause undesired momentum states to

have a significant population.

To overcome this finite-e�ciency challenge, one can use an accelerating lattice. In prin-

ciple, one can make this acceleration process arbitrarily e�cient. By sweeping over di↵erent

velocities, the lattice is able to reflect each momentum group. It seems then that Bloch oscil-

lations are the way to go. If so, why did we and so many other groups use Bragg di↵raction

in their interferometers? The issue with Bloch oscillations is that they often su↵er more from

lattice-induced phase shift fluctuations.

Next we will demonstrate that an interferometer which uses ground-band Bloch oscil-

lations is more sensitive to lattice-induced phase shifts than one which uses Bragg pulses.

To characterize the first-order e↵ects of di↵raction phase fluctuations, the expected phase

fluctuation can be calculated as �� /
d�D

dU0
U0. We can calculate d�D

dU0
U0 for our third-order

Bragg pulses with band structure as described in Section 4.2.1. As a function of pulse timing

for a ⇡-pulse, the relationship plotted in Figure 4.3 is obtained for various pulses connecting

di↵erent momentum states.

To estimate the phase fluctuation, assume depth fluctuations are some fraction � of the

depth, U0: �U = U0�. The phase fluctuation is then approximated by

�� =
@�D,Bragg

@U0

U0(�). (4.5)

Similarly, using also Equation 4.4, the phase fluctuation for a BO can be approximated:

�� =
d�D,BO

dU0

U0(.02) =
hED(q(t))iTBO

dU0

U0(�). (4.6)

For Bragg pulses, the di↵raction phase first derivative approaches zero for high pulse
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Figure 4.3 – The phase fluctuation range can be estimated using U0 ⇤
@�

@U0
, plotted in (a) for

various Bragg mirror pulses with Bloch-bands calculation in solid lines. (a) is taken from [25].

The initial and final values of n indicate the momentum separation before and after the pulse

in units of ~k. In (b) the band gap between the first excited and bottom band is plotted as a

function of U0 (blue). A best fit power law function (red) returns that ⌦ / U
0.5
0

.

depths, but for increasing pulse depths, the adiabaticity requirement becomes more and

more di�cult to maintain. For increasingly short pulses, undesired momentum states become

populated. Using the data point with a minimal d�D

dU0
⇥U0 (third order, U0 = 26.6Er) and an

estimate of a depth fluctuations as � = 2% of U0, the phase fluctuations can be approximated

to first-order as 4mrad.

Compare the behavior of Bragg pulses to a ground-band Bloch oscillation. When we

initially tested BOs, we used U0 = 45~!rec and TBO = 8µs. For these parameters and

assuming � = .02, �� ⇡ 71mrad for one BO, an increase by more than a factor of 10.

One can ask if there is another set of parameters which would produce a smaller phase

fluctuation. For a smaller depth, for example, TBO would have to be longer if the e�ciency

is to be kept the same, as determined by Equation 4.1 where exponential argument �⇡ ⌦
2

4bka

should thus not change. The band gap ⌦ is a square root function with respect to U0, as

shown in Figure 4.3(b). Thus, if U0 were decreased by a factor of ↵, TBO would need to be

increased by a factor of ↵. Using Equation 4.4, this would keep �� constant and thus using
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lower depths and larger TBO would not yield a smaller phase range.3

4.4 Excited State Bloch Oscillations

One might ask, is this phase unstable behavior true for bands other than the ground band?

It turns out that the ground band exhibits unique behavior and there’s more to be explored

with the higher bands. We will first explore these di↵erences.

At first glance, excited band BOs could be considered unattractive. In an excited band

BO, as the quasimomentum is swept, the particle must traverse not one but two band gaps,

meaning there are two chances for Landau-Zener tunneling. Moreover, these band gaps are

always smaller for increasing band number for a fixed depth, meaning that it could be more

challenging to keep the atom in the same band and thus e�ciently and quickly accelerate.

4Recall that changing band number through Landau-Zener tunneling means not accelerating

in the lab frame.

Despite these disadvantages from the band gaps, we looked more closely at them because

in the process of exploring our Bloch-bands di↵raction phase calculations, we found a peculiar

feature unique to excited bands. Recall that the area between a lattice band and free space

band is proportional to the phase accrued during a Bloch oscillation. Consider the behavior

of the area when the depth is swept from 8ER to 10ER, as shown in Figure 4.4.

The area changes shape, but the actual area remains the same. This means that it is

first-order insensitive to phase fluctuations, evading the kryptonite of Bloch oscillations. We

call these depths “magic depths”, which is the topic of the next chapter. Indeed, this feature

is unique to excited band Bloch oscillations, as seen by plotting the average energy hEi as a

function of the lattice depth U0, shown in Figure 4.5(b).

Before diving into our magic depth studies, we will first compare and contrast the behavior

of atoms undergoing Bloch oscillations in ground and excited band BOs. We apply BO by

3This assumes that for the ground band, |hEDi| / U0 which is approximately the case (See Figure 4.5).

4To possibly avoid confusion here is a spoiler: the band gap at the magic depth actually increases, as
seen in Figure 5.6.
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Figure 4.4 – Band structure for (a) U0 = 8Er, (b) U0 = 9Er, and (c) U0 = 10Er with all

three shown in a close-up on (d). The phase accrued during a Bloch oscillation is proportional

to the shaded region. The first derivative of the area between the lattice band and free space

band (shaded) vanishes as the band “flops”.
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Figure 4.5 – (a) Band structue for a representative depth of U0 = 10Er. (b) The average

energy for the ground band and first excited band (b=0, 1, 2) as a funtion of the lattice depth

U0. The ground band exhibits only monotonic behavior in hEi while the excited bands have

local maxima.
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loading atoms adiabatically into a particular band and quasimomentum of our optical lattice.

We then sweep the relative frequency detuning � between our di↵raction beams which creates

an accelerating lattice in the lab frame. In the band picture, the atom is sweeping through

di↵erent quasimomentum values, as seen in Figure 4.6(a).

When a particle traverses a band gap (see Figure 4.7), @E

@q
changes sign and the particle

changes its momentum by 2b~k, where b is the greater of the two bands involved in the band

gap. A particle increases (decreases) its momenum when it starts from a q with a negative

(positive) slope and ends at a q with a positive (negative) slope.

Given that to successfully perform BOs, the goal is to maximize the momentum change,

one disappointing feature is that the total change inthe lab-frame momentum’s magnitude

is 2(b+ 1)~k� 2b~k = 2~k for one BO period- constant for all b. The change in momentum

increases with band number so it is possible that one could load to a higher band and sweep

over a band gap without traversing the entire Brillouin zone. However, the lattice would still

need to be loaded and unloaded in that case, which would present a challenge to maximizing

momentum change in the least amount of time.

To test these ideas for the ground and first excited band experimentally, we performed

Bloch oscillations while stopping at various quasimomenta corresponding to di↵erent BO

times (t) and measured the free space momentum.

The atoms were adiabatically loaded into the ground band of the lattice by linearly

increasing the depth from U0 = 0 to U0 = 13.6Er for 600µs for the ground band and

300µs for the first excited band. We loaded them at a quasimomentum of q = 0.5~k with a

corresponding initial detuning of the beams of � = 2!rec. We chose this quasimomentum in

order to be away from band gaps to minimize the opportunities for tunneling to higher bands

during the lattice loading. The relative detuning of the di↵raction beams was increased at a

rate of �̇ = 2⇡⇥83 kHz/msec for a varying duration corresponding to di↵erent quasimomenta.

The atoms were then adiabatically unloaded for the same time at which they were loaded.

The final momentum population was measured using our usual time-of-flight absorption

imaging and the average momentum was computed and is shown in Figure 4.6.
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Figure 4.6 – (a) The trajectories for a particle undergoing BO in the ground (red) and first

excited band (blue) for a sinusoidal potential with a depth of U0 = 13.6Er. In each case, the

atom is loaded into each band at q = 0.5~k (away from band gaps) and the detuning between

the two beams is increased. For the ground band it is loaded at (1), and it first traverses an

avoided acrossing at q = 1~k, where its momentum increases by 2~k. It then continues traveling

in the ground band, keeping a constant momentum through (2) and (3). In the first excited

band, the particle is loaded at (4) and first traverses the band gap with the second excited band

at q = 0, gaining 4~k in momentum (5). As the di↵raction beam detuning is further increased,

it traverses the band gap at q = �1~k and loses 2~k in momentum, leaving it with a net increase

of 2~k in momentum at (6). The band gap for the two avoided crossings are labeled:(~⌦)b=0

and (~⌦)b=1 . (b) The average lab frame momentum of the atom after it is unloaded as a

function of time in units of the Bloch period TBO. Absorption images corresponding to points

1-6 on (a). For this experiment, �/�=3500 and �̇ = 2⇡ ⇥ 83kHz/msec. The intensity ramp

times are 300µs and 600µs for (b) and (c), respectively.
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Figure 4.7 – The relevant free space momentum states used to determine the momentum

change a particle undergoes when traversing a band gap. Solid lines are the band energies

and dotted lines are the free particle energy states. The top graph demonstrates a momentum

change of magnitude �p = 2~k � (�2~k) = 4~k across the band gap between the first and

second excited band. The bottom demonstrates a momentum change of�p = ~k�(�~k) = 2~k
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Chapter 5

MAGIC DEPTHS

This chapter will discuss the experiments we performed to observe the magic depth

property in excited-band Bloch oscillations.

5.1 Depth Calibration

This section will describe how we relate the power of the di↵raction beams, P , to the depth

experienced by the atom, U0. A particular power produces a Rabi frequency ⌦R and U0 and

⌦R are related by Equation 3.9. However we perform a calibration measurement because

it is unknown exactly where in the beam the atoms are. There are two methods that we

have used to calibrate the beam: the Kapitza-Dirac and the Rabi method. For the Kapitza-

Dirac method we split the atomic wavefunction with a Kapitza-Dirac pulse and measure the

di↵racted population as a function of the power. For the Rabi method we measure the Rabi

frequency of population oscillation due to a Bragg pulse.

5.1.1 Kapitza-Dirac Method

A Kapitza-Dirac (KD) pulse is a short pulse characterized by a duration ⌧ such that ⌧ ⌧

1/!rec. The pulse spatially modulates the phase and results in a momentum distribution

which is a function of the N
th Bessel function JN of the first kind:

PN = J
2

N
(✓), N = 0,±1,±2, . . . , where

✓ =

Z

Pulse

⌦2

R
(t)

2(! � !0)
dt

(5.1)

is the pulse area.[31][21] I recommend [24] for more details. We can write ✓ in terms of
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U0 through Equation 3.9:
U0

!rec

=
⌦2

R

(! � !0)!rec

. (5.2)

In our experiments, ⌧ ⇡ 10µ s.

We generally apply a KD pulse to our BEC after a couple of milliseconds of expansion

time to minimize interaction e↵ects. We record the population di↵racted into the |±2~ki

states and the pulse intensity profile from a di↵raction beam pick-o↵ with a photodiode

(PD). Through a calibration which relates PD voltage to power, we obtain the power intensity

profile. Because1 ⌦R(t)2 / E
2

0
/ Intensity / P (t), the pulse intensity profile is proportional

to ✓ by some proportionality constant a:

✓ = a

Z
P (t)dt. (5.3)

Combining Equations 5.1.1, 5.2, and 5.3, we obtain

Pmax =
U0,max

~2a . (5.4)

The final step to obtaining the conversion is to find a. Consider the “1-1-1” point, defined

as the ✓ where the populations in the |±2~ki are equal, which we call ✓1. To find ✓1, solve

J
2

0
(✓) = J

2

1
(✓) to obtain ✓1 = 1.43 radians. We find experimentally which P (t) produces ✓1

and obtain that

a =
✓1R

P (t)dt
. (5.5)

Combining Equation 5.4 and 5.5, we obtain

U0,max

~ =
2✓1R
P (t)dt

Pmax. (5.6)

The factor 1

!rec

2✓1R
P (t)dt)

in Equation 5.6 is thus the conversion factor between optical power

and depth.

Here are a few items to keep in mind about the calibration. Our feedback system does

not work fast enough to control the intensity of the KD pulses so it is important to use the

1See Chapter 2 and 7.
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beam intensity trace to obtain the pulse area, as opposed to using an analytical form of the

intensity. Using this calibration method, we had obtained values that were inconsistent with

calculations and earlier calibration measurements. We realized the issue was that we were

not satisfying ⌧ ⌧ 1/!rec and thus we were not truly in the KD regime. Using shorter pulses

pushed the calibration closer to what we expected.

There is some uncertainty in finding the “1-1-1” point. We had found it through a

linear fit in di↵racted population percent versus pulse area about the experimentally-found

“1-1-1” point. However, the function does have some curvature which was neglected in

this determination. This calibration was found to be di↵erent than one obtained in the

Rabi method to be described in the subsequent section. The Rabi method produced a

calibration constant which produced better agreement between theory and experiment in

the experiments described in Chapter 5.

5.1.2 Rabi Method

For the Rabi method we apply a Bragg pulse and measure the di↵racted fraction as a function

of the pulse time. We obtain a Rabi frequency and use the calculations from the Bloch-bands

calculation from Figure 2 in [25] to relate the measured Rabi frequency to the depth. To

minimize changes in depth over the course of the measurement, we use with a first-order

Bragg pulse, which has the shortest Rabi period for a given power.

We used a trapezoidal intensity profile with a flat intensity section inserted in the middle.

We controlled time by changing the length of the constant-intensity portion. This method

meant the pulse area was simply proportional to the time, allowing us to easily increase

the pulse area in equal increments. Figure 5.1 shows a sample Rabi oscillation curve whose

frequency was used for a depth calibration.

5.2 Mach-Zehnder Interferometry

We performed our experiments in Mach-Zehnder (MZ) interferometer configuration which

at its simplest consists of a splitting, mirror and recombination pulse. We use this simpler
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Figure 5.1 – A representative Rabi calibration curve. The fraction in the 2~k state is shown

as a function of the the constant-intensity time of the Rabi pulse.
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Figure 5.2 – Space-time diagram for a Mach Zehnder IFM with arm momentum separation

in units of ~k n = 2NB. Each standing wave pulse is represented as a dashed line, with arrows

indicating the direction of the velocity of the nodes of the standing wave. The darker ⇡-pulse

indicates it is of a higher average intensity, necessary to fully reflect each arm if the pulse times

are the same.

2-path geometry for demonstration purposes and we plan on using the magic depth property

in our contrast interferometer for future ↵ measurements.

We will quantitatively demonstrate how a Mach-Zehnder interferometer (IFM)[32] can

be used to measure the lattice-induced phase shift, schematically shown in Figure 5.2. Let

the free particle eigenstate basis be labeled as |mi, where m is some integer corresponding to

a momentum state of m~k. Let the standing waves used in the ⇡/2 splitting pulse, ⇡ mirror

pulse and ⇡/2 recombination pulse have the phases �1, �2, and �3 respectively relative to

some fixed position in the standing wave frame. This is a two-state problem involving only

the |0i and |2NBi momentum states.

In a matterwave MZ interferometer, a ⇡/2-pulse of order NB first puts the atomic wave-

function | i in a superposition of the |0i and |2NBi state at t = 0. The wavefunction evolves
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for some time T and then can be written as

| i =
1
p
2

�
|0i � ie

i(�1�ET/~)
|2NBi

�
, (5.7)

where E = (2NB~k)2
2m

= 4NBEr is the energy of a particle with momentum p = 1NB~k. When

t = T , an NB order ⇡-pulse is applied which imparts 2NB photon momenta onto either arm,

accelerating them toward each other. The order of the ⇡ pulse equals the order of the ⇡/2

pulse. The wavefunction will then have the form

| i =
1
p
2

�
�ie

i�2 |2NBi+ e
i(�1��2�ET/~)

|0i
�
. (5.8)

After evolving for an additional time T , the wavefunction is

| i =
1
p
2

�
�ie

i(�2�ET/~)|2NBi + e
i(�1��2�ET/~)

|0i
�
. (5.9)

At this point the IFM arms are ideally overlapped.2 An NB order ⇡/2-pulse is applied and

puts the wavefunction in the state

| i =
1

2

�
�e

i(�1��2�ET/~)
� e

i(�1��3�ET/~)�
|0i+

1

2

�
ie

i(�1��2+�3�ET/~)
� ie

i(�2�ET/~)�
|2NBi .

(5.10)

The expected population fraction in the |0i and |2NBi state is

P0 = |
1

2

�
e
i(�1��2�ET/~) + e

i(�2��3�ET/~)�
|
2 =

1

2
(1 + cos(�1 + �3 � 2�2))

P2NB
= |

1

2

�
e
i(�1��2+�3�ET/~)

� e
i(�2�ET/~)�

|
2 =

1

2
(1� cos(�1 + �3 � 2�2)) .

(5.11)

In a typical MZ interferometer, the phase of the final ⇡/2 pulse is varied. From Equation

5.11, it is evident that changing �i will change the populations P0 and P2NB
. The interference

signal is then the final population in either state as a function of �3.

Vibrations at frequencies faster than 1/T will change the �i’s which can limit the use of

an MZ geometry for interferometry measurements. Note that this calculation neglects the

di↵raction phases on each arm due to the Bragg pulses.

2Repulsive interaction e↵ects are neglected here but they can cause the inteferometer to close at times
near but di↵erent than 2T. See [20].[33]
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Acceleration pulses on one arm can be inserted between the ⇡/2-pulse and ⇡-pulse on

either half of the interferometer to bring the arms further apart both in momentum and real

space. A schematic for this is shown in Figure 5.3(a).

Acceleration pulses can cause a lattice-induced phase shift on the interferometer signal.

Consider applying a BO pulse to the upper state which causes some phase shift �BO on the

arm. Mathematically this looks like modifying Equation 5.7 by shifting the phase on the

upper arm:

| (t)i =
1

2

�
|0i+ e

i(�1�ET )/~
|2NBi !

�
| (t)i =

1

2

�
|0i+ e

i(�BO+�1�ET )/~
|2NBi

�
. (5.12)

Carrying this modification through the rest of the calculation is mathematically equiv-

alent to replacing �1 with �1 + �BO. Because the fringe phase is sensitive to �1, as seen in

Equation 5.11, a lattice-induced phase shift is predicted to show up as a phase shift of the

MZ fringe.

5.3 Mach-Zehnder Excited Band BO Experiments

The last section mathematically demonstrated that the MZ interferometer is predicted to

be sensitive to the phase shift from BOs applied on one arm. This sensitivity allows us to

study the magic depth property.

The MZ interferometer used in our lab will first be described. Let the momentum states

now be denoted |m~ki. The BO pulses are applied on one arm (upper arm in Figure 5.3(a))

during the first half of the interferometer, in between the beamsplitter and mirror pulses.

The ⇡/2 splitting and recombination pulses and ⇡ mirror-pulses that compose the MZ inter-

ferometer are third-order Bragg pulses (NB = 3) connecting states |0i and |6~ki. Between

the first ⇡/2 and ⇡ pulses, the |6~ki (upper) arm is accelerated to a higher momentum

|(n+ 6)~ki with a trapezoidal pulse applying n/2 BOs in the selected band. The amplitude

of the wavefunction in the upper arm are then decelerated to a momentum of 6~k with a

Bragg ⇡-pulse of order n/2. After the mirror pulse, the lower arm which is in a momentum
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state of |6~ki is accelerated to |(n+6)~ki using a ⇡-pulse, it evolves for some time T, and is

then decelerated to |6~ki with a ⇡-pulse. When the two arms are recombined and spatially

overlapped, a final ⇡/2 recombination pulse is applied. Up until this point the atoms are in

a superposition state. The population in each momentum state is measured using time-of-

flight absorption imaging, which projects each atom probabilistically into either the |0i or

|6~ki momentum state.

Each interferometer was operated at a minimal time to minimize the possible e↵ects from

vibration. To ensure the interferometer closed, the second free-evolution time was varied,

increasing with increasing momentum separation. 3

3The first free evolution time between the BO acceleration pulse and deceleration pulse was kept at a
small 10µs, to give enough time for digital operations.
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Figure 5.3 (previous page) – (a) Space-time diagram for a Mach-Zehnder interferometer

with 1 BO applied to the upper path. The blue arm is the one which has been accelerated by

Bloch oscillations of varying depths. Pulses a↵ecting the upper (lower) arm only are highlighted

in purple (pink). Pulse a↵ecting both arms are highlighted in gray. Intensity profiles of the

pulses are shown below in green. The representative interferometer shown has free evolution

times of 10µs and 630µs for the first and second halves of the interferometer, respectively. The

fractional population in the |6~ki path as a function of the phase of the final recombination

pulse with each point being the average of three measurements is shown in (b) and (c). For (b),

one BO is performed in the first excited band (b = 1) near the magic depth at U0 = 11.2Er. For

(c) the BO is instead performed in the ground band (b = 0) at a depth near the first excited

band’s magic depth (9.7Er). The best fit sinusoids are shown. The phase of the fringe as

extracted from a sinusoidal fit is plotted as a function of the depth of the BO in (d). The phase

measurements are in good agreement with the phase calculated by our Bloch-bands model.

The ground band is shown in red and the first excited band shown in blue. The first excited

band exhibits a local maximum and thus the magic depth feature whereas the ground band

does not exhibit any local extrema. In (e) the visibility of the fringe fits as a function of depth

for the data collected in (c). For the first excited band, �/� = +3500 and for the ground band

�/� = +1300. For both bands, �̇ = 2⇡ ⇥ 83 kHz/msec

We vary the phase of the recombination pulse, and build an interference signal as we

record the sinisoidally-oscillating population in the |6~ki state, as seen in Figure 5.3(b) and

5.3(c). We measure the phase of this fringe as a function of the depth of the BO pulse for

ground and excited bands.

The fringe phase versus depth for one BO in the ground and excited band is shown in

Figure 5.3(d). The first excited band exhibits a local maximum while the ground band a

monotonically decreasing phase with lattice depth. Figure 5.3(e) shows the visibility of the

sinusoidal fits. Visibility is defined as Vis = Max�Min

Max+Min
⇥ 100% and Max and Min refer to the
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maximum and minimum of a fitted sinusoid. For a fixed number of fringes measures, the

higher the visibility, the more repeatable the experiment is, corresponding to a lower phase

fluctuation. More details on this relationship will be presented in Section 5.8.

5.4 Bloch-bands Magic Depth Calculations

The accumulated phase di↵erence between the two interferometer arms due to BO then ap-

pears as a phase shift in the interferometer signal. We model this phase shift with simple

calculations from our Bloch-bands model which also have a straightforward graphical inter-

pretation. As the depth U0 is varied, the energy of either arm of the interferometer changes,

which results in a phase shift on each interferometer arm given by

1

~

Z

pulse

(E(q, U0(t))� Ef (q(t)))dt (5.13)

, which is the di↵erence between the band energy E(q(t), U0(t)) and free-space energy

Ef (q(t)), where U0(t) and q(t) depend on the BO pulse parameters. During the BO pulses,

each arm, labeled 1 and 2, experiences a lattice-induced phase shift from both the inensity

and frequency ramps. Since the final fringe phase depends on the di↵erence between phase

accrued by each arm, the interferometer phase shift due to BO can be written as:

�BO = �1,I + �1,f � �2,I � �2,f , (5.14)

where �i,I is the phase acrrued by path i during the intensity ramp and �i,f is the phase

accrued by path i during the frequency ramp. Each of these phase shifts is calculated using

Expression 5.13. Note that when a pulse is on and one arm is accelerated, the non-accelerated

arm also experiences a smaller phase shift because it is loaded ito a higher band. It performs

Landau-Zener tunneling across the narrow band gaps, which corresponds to the atom not

accelerating in the lab frame. This is consistent with the fact that its momentum relative to

the nodes of the lattice is increasing.

While the magic depth UMD for a particular band is independent of experimental param-

eters, in actual experiments, the necessary intensity ramps increase the magic depth value.
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The phase shift due to an intensity ramp is given by Equation 5.13 where E(q, U0(t)) is

time-dependent because the lattice changes its depth. E(q, U0(t)) is evaluated at the loading

and unloading q.

Figure 5.3(d) demonstrates that in the first excited band, there is a magic depth at

U0 ⇡ 10~!rec, whereas for the ground band, only at a U0 = 0 is the derivative zero.

Note that a reason we only apply a BO to one arm is because a symmetric MZ IFM is

sensitive to di↵raction phases. If an acceleration pulse were applied to both arms and they

experienced the same phase shift, one can verify that the total phase shift on the fringe from

both BO pulses would be zero. We verified that that was the case and demonstrated a fringe

phase versus depth relationship is consistent with a zero-sloped line, as expected.

5.5 More Magic Depth Experiments

We studied the phase of the interference signal for multiple Bloch oscillations in the first

excited band and 1 BO in the second and third excited bands and found that we could

successfully model the phase behavior of the fringes with our Bloch-bands model. Figure 5.4

shows the phase versus depth measured for these experiments.
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Figure 5.4 – Di↵raction phase versus lattice depth U0 for various band numbers and number

of Bloch oscillations with a theory curve from a Bloch-bands calculation. (a) shows b=1 with

0, 1, 2, 3 Bloch oscillations shown in purple (triangles), blue (circles), and green (squares),

respectively. The location of the magic depth as defined as @hEi
@U0

= 0. In (b), BO with b = 2

(orange, circle) and b = 3 (black, triangles) are shown. Note that in (a) the “1 BO” data is also

shown in Figure5.3(d). For all data shown �/� = +1300, �̇ = 2⇡⇥ 83 kHz/msec, and intensity

ramp times are 300µs.
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5.6 E�ciency of Excited Band BOs

An important question arises: can we use excited band BOs at the magic depth to build

high momentum-separation and large-area interferometers. If so, how does one choose which

band is to be used. Before addressing these questions directly, this section will describe the

models used to predict the e�ciency of BOs in excited bands.

We model the e�ciency as being reduced both by Landau-Zener losses and from sponta-

neous scattering. The probability of loss from Landau-Zener tunneling to a higher band is

modeled with Equation 4.1. The loss at short TBO is primarily dominated by Landau-Zener

tunneling and for long TBO by spontaneous scattering. The probability of loss due to spon-

taneous scattering can be calculated with two di↵erent methods. First a brief introduction

to spontaneous scattering will be presented followed by a description of the two methods.

Spontaneous scattering by light is well-described by[9]. The scattering rate from one

beam is given by the following equation:

Rscat =
�

2

s

1 + s+ 4�2/�2
, (5.15)

, where � is the transition linewidth, s = I/Isat, I is the intensity of the light, Isat =
⇡

3

hc�

�3 is

the saturation intensity, and � is the detuning of the light from a transition. The dominant

� contribution to the scattering rate is from the green intercombination transition, for which

Isat = 1.4W/m2, � = 555.8 nm, � = 2⇡ ⇥ 180 kHz.

Two di↵erent ways to obtain a value for the scattering rate will be outlined. For the first

method (Section 5.6.1), we calculate the intensity of the standing wave averaged over one

spatial period and use that for I in Equation 5.15.

Method 1 approximates that the atoms evenly sampling all parts of the beam. However,

atoms are not actually spatially homogeous; from computing the actual wavefunction of

a particle in a blue-detuned sinusoidal optical potential, one finds that there is a higher

probability for a particle to be found in the nodes. A particle is more likely to be found at

the nodes and not the anti-nodes because the sign of the potential energy depends on the



62

sign of the detuning (Equation 3.9). Since we use positively detuned beams (� > 0), the

potential is greater for higher intensities.

5.6.1 Method 1

For the first method, an average scattering rate assuming a homogenous density distribution

is obtained and used to calculate the loss rate. For a single beam, the electric field magnitude

is E = E0 sin(kx� !t). The time and spatially averaged intensity is given by

I =
c✏0

2
E

2

0
. (5.16)

For a standing wave of light, there is scattering from two beams. For two sinusoidal beams

with the same electric field E0 propagating in the x-direction with wave number, k and ! =

kc, the total electric field ETotal = E0 (sin(kx� !t) + E0 sin(kx+ !t)) = 2E0 sin(kx) cos!t.

Since I = c✏0hE
2

Total
ispace,time,[34]

I = c✏04E
2

0
hsin2

kx cos2 !ti. (5.17)

Averaging over sin2
kx cos2 !t, one obtains I = c✏0E

2

0
, the average intensity is a factor of

2 greater than the average intensity for one beam. Since scattering rate is proportional

to the intensity in the limit that 4�
2
/�

2

s
� 1 and �

�
� 1, the average scattering rate for a

standing wave is double the scattering rate of one beam in this limit. For our lowest detuning

(� = 1300�) with a typical beam power of 20mW and waist of 1.8mm, 4�
2
/�

2

s
= 1700 � 1.

5.6.2 Method 2

The scattering rate can be more precisely obtained by finding the expectation value of the

scattering rate given the wavefunction shape. This accounts for the fact that there is a higher

probability for a particle to be located at a node where the intensity is lower. In Equation

5.17, if one only averages over time, one obtains

I = c✏02E
2

0
sin2

kx. (5.18)
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The peak intensity4 of a single Gaussian beam is Ibeam = 2P

⇡w2
0
, where P is the power in the

beam and w0 is the waist. Setting this equal to Equation 5.16, solving for E0, and plugging

that into Equation 5.18, we obtain

I =
8P

⇡w
2

0

sin2 (kx) . (5.19)

The results of the calculations with w0 = 1.8mm and P = 22mW (U0 = 27ER) for both

methods for the second excited band (b=2) is shown in Figure 5.5(a). Calculations were

performed with Mathematica and Igor Wavemetrics. The second band was chosen to perform

experiments with a high number of Bloch oscillations because it was found experimentally

to have a higher peak e�ciency out of the first, second, and third excited band.5

Absorption images corresponding to three di↵erent TBO are shown in Figure 5.5(b). The

first shows the absorption image taken for a shorter-than-optimal TBO where it can be seen

that Landau-Zener tunneling leads to atoms being “left behind” by the BO process. The

middle image shows a TBO which is nearly optimal. The final image shows atoms with a

longer-than-ideal TBO where spontaneous scattering limits the e�ciency. In the image, there

is an additional cloud with a higher momentum than the desired momentum state. We were

initially puzzled by this, but it can be explained by the fact that spontaneously scattered

atoms are still accelerated with the BO pulses. Specifically, the atoms which are moved to

a lower band when scattering can still avoid Landau-Zener tunneling when traversing the

band gaps because there are larger band gaps for lower bands. Preferentially accelerating

the atoms scattered in the opposite direction of the lattice nodes’ velocity is a unique feature

of excited band BOs.

4Averaged over a spatial and temporal period, peak with respect to the longitudinal and transverse
distance, i.e. spatial peak.

5As shall be detailed in Section 5.7, the third band is predicted to have the peak e�ciency. However,
for the third band, the magic depth is higher, which meant that given our di↵raction beam optical power
budget, we needed to use a lower detuning to reach it. A lower detuning caused more spontaneous
scattering, which resulted in a lower overall e�ciency.
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Figure 5.5 – (a) The measured e�ciency versus TBO for BOs performed in the second excited

band (b=2) at U0 = 27.5Er, near the magic depth. The theoretically-expected e�ciency based

on Landau-Zener losses and a spontaneous scattering rate determined by method 1 (2) in section

5.6.1 (5.6.2) is shown in the thick (thin) orange line. The peak e�ciency per ~k of momentum

gain was found to be 99.4%. (b) shows the absorption images corresponding to the e�ciencies

for three times in units of 2⇡/!rec. (c) Shows the fringe from a Mach Zehnder interferometer

with 20 BOs in the second excited band with data and a sinusoidal fit with U0 = 27, 5Er and

TBO = 120µ s. The visibility from the sinusoidal fit is 13%. �/� = +3500 and the intensity

ramp time was 300µs for all data in the figure.

5.7 Higher Band Bloch Oscillations

We test the application of magic depth BOs toward large momentum separation in our Mach-

Zehnder interferometer by implementing 20 BOs in the second excited band, b=2. At the

magic depth in the second excited band we obtain a signal with visibility of 13%, as seen in

Figure 5.5(c). 6

6This experiment was performed with a decelerating BO replacing the first Bragg deceleration pulse.
This allowed more BO pulses to be applied for the same amount of time, before vibrations become a
problem.
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How does this compare to the ground band? Our system’s intensity fluctuations are at

the 2% level[8], which is enough to give a 12 rad uncertainty in the phase for a ground band

BO, much too high to obtain a visible signal.

The limit to our visibility was likely due to vibrations. To demonstrate, consider that a

simple Monte-Carlo simulation (described in Section 5.8) of our fringe measurement returns

the result that a 13% visibility is consistent with Gaussian-distributed phase fluctuations with

a 1/e radius of 2.9 rad. Our AMZ is also sensitive to the di↵raction beams’ mirror positions,

and thus it is possible for mirror vibrations to be an additional source of phase fluctuations.

Indeed, we estimate the contribution to the phase uncertainty from di↵raction phases to

be at ⇡ 40mrad, given that we estimate our intensity fluctuations to be apprxomiately

2% of the light intensity. This calculation supports the hypothesis that mirror vibrations

primarily contributed to visibility reduction. Other groups have also only observed visible

interferometer signals for interferometer times less than a few milliseconds.[35]

Even though excited band BOs at the magic depth allowed for achieving a 20 BOs

and large momentum separation, its full utility will be realized in a vibration-insensitive

interferometer. We plan to implement excited-band BOs in our next ↵ measurement in the

contrast interferometer, as described in Chapter 8. Another interferometer geometry which

is insensitive to mirror vibrations is the simultaneous conjugate interferometer used by the

Muller group.

We will now revisit the question of whether higher or lower bands are better for phase-

stable interferometry. To explore theoretically, we used the Bloch-bands model to make pre-

dictions for excited band BOs. The value of the magic depth scales approximately quadrati-

cally with band number, as seen in Figure 5.6(a). The band gap energy ~⌦BG corresponding

to the lower value for excited bands is plotted in Figure 5.6(b). The band gap energy and

spontaneous scattering (which depends on detuning) together determine the lowest Bloch

period TBO,Opt. This scales favorably with band number, meaning BOs can be performed

more quickly in higher bands. The quantity 1

2

@
2hEi
@U2

0
|UMD

U
2

MD
is evaluated for each band and

plotted in Figure 5.6(c), which is useful for calculating the experimentally relevant phase
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fluctuations from a BO performed at the magic depth. UMD, ~⌦BG, and
1

2

@
2hEi
@U2

0
|UMD

U
2

MD
are

all independent of the particular atom and only depend on a sinusoidal potential energy.

The next graphs in the figure depend on experimental inputs and are thus not purely

related to a sinusoidal optical potential. In our case of using 174Yb with 556 nm di↵raction

beams, !rec = 2⇡ ⇥ 3.7 kHz. Additionally we choose a reasonable representative detuning of

� = 104�. The optimal Bloch period TBO,Opt where the e�ciency is maximal is calculated

and plotted in Figure 5.6(d) given losses due to Landau-Zener tunneling and spontaneous

scattering. This demonstrates that BOs can be performed more quickly with increasing band

number. The peak e�ciencies per ~k is plotted in Figure 5.6(e). There is a local maximum

at b = 3 which depends on the chosen parameters. Even though there is a peak e�ciency,

the predicted e�ciency as a function of band varies weakly.

Some e↵ects scale favorably with higher bands- namely, the band gap energy and the

optimal Bloch period. On the other hand, for higher bands, the magic depth becomes higher

which means more spontaneous scattering. The peak e�ciency also decreases for higher

depths for the representative detuning we chose, though this is detuning-dependent. The

total e↵ect on the phase fluctuations is captured in Figure 5.6(f). Assuming a 1% intensity

fluctuation, the uncertainty in phase per BO is obtained by multiplying the data in Figure

5.6c by TBO,Opt ⇥ (.01)2, where the TBO,Opt values come from Figure 5.6(d). The increasing

�� indicates that lower excited bands might be a better choice for an overall more stable

phase, though the �� is only weakly increasing, so it is likely that the decreasing TBO,Opt

will play a larger role in choosing a band. The overall best choice for an interferometer would

need to also take into account TBO,Opt. More on this can be found in Chapter 8.

5.8 Visibility Simulations

Atom interferometry experiments often require the relative phases between optical lattices

to not change from shot-to-shot. Mirror vibrations cause the mirrors to shift in space and

constitute a serious systematic for many atom interferometry experiments and can spoil the

results of the interferometer. The contrast interferometer is insensitive to vibrations, but the
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Figure 5.6 – Calculations for excited band BOs. (a) The magic depth UMD as a function

of band number. (b) The smallest band gap as a function of band. (c) Toward calculating

the expected phase fluctuation, the quantity 1

2

@
2hEi
@U2

0
|UMD

U
2

MD
is evaluated. (d) The calculated

optimal BO period, TB,Opt. (e) The calculated peak e�ciency per ~k for TBO,Opt considering

loses form Landau-Zener tunneling and spontaneous scattering (calculated using Method 1 in

the text). (f) The calculated phase uncertainty for a single BO assuming a 1% light intensity

fluctuation. For (d), (e), and (f), �/� = 104 is used.
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Figure 5.7 – A simulation of visibility of sinusoidal functions as a function of a random phase

chosen from a Gaussian distribution with a 1/
p
e radius of ��.

Mach-Zehnder interferometer used for the magic depth experiments is not. The vibrations

cause the nodes to shift and constitute a phase shift on the fringe which varies shot-to-shot

and reduces the visibility of the fringe.

To determine a relationship between visibility and the phase uncertainty, I created a

Monte-Carlo simulation. To simulate a vibration, the function randomly picks a phase from

a Gaussian distribution centered about 0 radians with a 1/
p
e radius of ��. The code then

varies �� and creates a variable amount of fringes and fits them with a sinusoidal fitter. The

sinusoidal fitter returns a visibility. The results are shown in Figure 5.7.

In each case, the fringe is sampled at 5 di↵erent points, regardless of the total amount

sampled. Each fringe had an amplitude and o↵set of 50. To generate the random phases, I

used the “gnoise” command in IGOR. The command refers to the 1/
p
e radius as I verified
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by creating a histogram of the random phases and fitting it to a Gaussian curve with a known

functional form.

For 30 experiments, there is still a sizable spread of obtained visibilities for a particular

��, so if visibility is used to test the ��, this simulation suggests more than 30 experimental

points should be obtained for visibilities less than ⇡ 50%.
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Chapter 6

BEAMLINE LASER LOCK

6.1 Introduction

We can measure !rec and then calculate ~/mY b through the relationship !rec = ~k2
2mY b

. To

obtain ~/mY b from !rec, one also needs to precisely know k, the wavenumber of the light

used to impart the momentum. This amounts to ensuring that the laser frequency of the

di↵raction beams is precisely known and carefully controlled.

The question then arises, how good does a lock need to be to not limit us in achieving

our goal of a .1 ppb measurement of !rec? To investigate, we will address the question

of what uncertainty in the laser frequency �⌫ is needed if the fractional uncertainty in k,

�k/k = .1 ppb. Since ⌫ = ck

2⇡
, where c is the speed of light, then �⌫ = c�k

2⇡
. For 556 nm light,

this amounts to �⌫ = 50 kHz.

A simple laser lock could involve directing laser light onto a vapor of atoms, scanning the

laser frequency near the atomic resonance, and observing the fluorescence produced by the

atoms as they decay from the excited state. The lock would electronically feed back to the

laser to keep it at the frequency that produces the most fluorescence.

This method would produce a peak in fluorescence intensity versus frequency, but it

would be significantly widened by Doppler broadening. Atoms moving at non-zero velocities

could absorb at a shifted frequency. To estimate the width of this lock, consider that the

atoms would have a speed distribution, f(v), given by a Maxwell-Boltzmann distirbution for

a three-dimensional gas:

f(v) =
4⇡v2

(2⇡kBT/m)3/2
e
� 1

2mv
2
/kBT

. (6.1)
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The most probable speed is v =
q

2kbT

m
. Given that the Doppler-shifted resonance is

now at !, the Doppler shift from the resonance frequency for zero-velocity atom of !0 is

given by the formula � = ! � !0 = kc. The most probable Doppler shift � is thus � = kv =

k

q
2kbT

m
. For a gas at a typical oven temperature of 500�C, this gives a shift of approximately

2⇡⇥500MHz, much larger than the 50 kHz required. For a narrow lock, atoms should absorb

light only within a small frequency band.

An improvement from a vapor cell would be using a beam. Traditionally, an oven nozzle

is created by making an aperture in an oven with hot atoms and then making a second barrier

with another aperture whose axes coincide with the first aperture which collimates the atoms

into a beam. This is how our current atomic beam is created[27]. This set of apertures would

filter out atoms whose velocity was not nearly parallel to the axis connecting the centers of the

apertures(the atomic beam’s longitudinal axis). Light could then be directed perpendicular

to this longitudinal axis to preferably address atoms with minimal momentum perpendicular

to the longitudinal axis (~k · ~v ' 0).

In this set-up, making the transverse momentum width narrow requires making the aper-

ture smaller. However, a narrower aperture means fewer atoms. Atomic flux and momentum

width are thus complementary variables; the more atomic flux demanded, the more is sacri-

ficed in the lock linewidth. The purpose of a microcapillary nozzle, which is described below,

is to create an atomic beam that has the best of both worlds: it is well collimated and can

still have high atomic flux.

The key to a beamline nozzle is that in tbe opening of the oven, a nozzle is installed which

consists of hundreds of stainless steel needle-like objects called microcapillaries, as shown in

Figure 6.1. An atom which is exiting the oven along the desired axis of the beam will ideally

travel through a microcapillary unobstructed. The atomic flux can be kept high by stacking

these microcapillaries. This strategy was pioneered by the Weld group for 7Li[36]. The major

way that we modified their design is that we lengthened the microcapillaries. We increased

the length because we did not plan on using the atoms for any purpose other than creating

a low-divergence beamline. We thus did not demand as high of number flux and we could
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Figure 6.1 – On the left is a picture of the blank with the microcapillaries and screw plug.

The right image is from the microscope in the physics machine shop of the nozzle after nearly

all the microcapillaries were placed inside. One challenge to placing the microcapillaries in the

nozzle is that spurious pyramids would form that made it challenging to fully fill the nozzle.

For details, see Section 6.4..
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then a↵ord to lengthen the microcapillaries and further reduce the beam divergence.

In Section 6.2, the calculations which ultimately predict the expected Doppler width

of our signal will be detailed. In Sections 6.3 and 6.4, the design and construction of the

beamline chamber and nozzle, respectively will be described. Finally, the performance of the

lock and the outlook for its use in Sections 6.5 and 6.6 will be described.

6.2 Predictions

For a laser lock we can examine the fluorescence of light produced from a laser beam directed

perpendicular to the atomic beam’s longitudinal axis. The fluorescence curve’s width is pri-

marily still widened by Doppler broadening due to the Doppler shift in absorption frequency:

� = ~k ·~v. The Doppler width of the fluorescence curve is set by the component of the velocity

that is parallel to the fluorescence beam, vk. The velocity of the exiting atoms is given by

the temperature of the nozzle. The most probable speed of the atoms in an e↵usive beam is

u =
q

3TkB

mY b

[9]. The expected component of this velocity that is parallel to the laser light is

given by the dimensions of the microcapillaries. Consider only the atoms that exit the mi-

crocapillary without any collisions with the microcapillary walls. The maximum angle with

respect to the axis of the nozzle is given by the aspect ratio (AR) of the microcapillaries:

AR = arctan(
ID

L
) ⇡

ID

L
, (6.2)

where ID is the inner diameter of a microcapillary and L is the length of a microcapillary (see

Figure 6.2). Given the aspect ratio and average speed, the expected width of in frequency

of the fluorescence signal is given by,

� = 2kuAR, (6.3)

where the factor of two comes from the fact that atoms can exit above or below the micro-

capillary axis.

We used a nozzle temperature of about 500� C. The microcapillaries had an ID of 4⇥10�3

inches, and the length is 0.8 inches. This gives � = 2⇡ ⇥ 6MHz.
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ID

L

Figure 6.2 – A schematic for a microcapillary showing the inner diameter (ID) and the length

(L). The diagonal represents an atom moving at a maximal divergent angle.

6.3 Beamline Chamber

The beamline chamber is under vacuum and we used mostly MDC vacuum parts to construct

it. An autocad schematic can be seen in Figure 6.3. Its constituents include:1

• An oven which is heated with bandheaters.

• The beamline nozzle.

• A 6-way cross and Kimball cube for optical access.

• Ion pump for creating low pressures and an ion gauge for monitoring the pressure.

• Viewports. All were glass (7056 glass from Duniway) except for the viewport at the

end of the beamline which was made of sapphire. Sapphire was chosen because it could

withstand the heating we did to it to prevent Yb from caking on its surface.

We were able to reach pressures into the 10�10 Torr when the oven is o↵.

1Details on these parts can be accessed by group members on the lab Googledrive.
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Oven

Nozzle

Ion Pump

Ion gauge

6-way cross with viewports

Kimball Cube

k

v

Sapphire viewport

B

Figure 6.3 – CAD drawing from Autodesk for the beamline chamber. Atoms represented

by green circles with arrows through them representing their trajectory. Ideally if an atom

traverses the nozzle with microcapillaries, its velocity is nearly parallel to the beamline axis.

The oven, nozzle, 6-way cross, Kimball cube, ion pump, ion gauge, and sapphire viewport are

labeled.
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We built magnetic coils around the beamline chamber to create a field large enough to

separate the magnetic sub-levels of the 3
P1 excited state (mj = 0,±1). Each sublevel absorbs

at slightly di↵erent frequencies so since there are small ambient magnetic field (for example,

from Earth and the ion pump which contains a magnet), this will simply have a broadening

e↵ect on the excitation curve. To create a narrower spectrum, the magnetic field should be

large enough such that the absorption frequency of the magnetic sub-levels are separated.

We added three sets of coils: one to create a large magnetic field and two others to zero the

field in the other directions. The main design considerations for building the magnetic field

coils around the beamline chamber are:

• One major constraint to consider is size. The other components of the chamber and

the fact that the coil rings in each dimension must properly fit with one another limits

how large the rings can be.

• Given the size constraint, one could simply seek out the smallest wire. However, for a

given current and number of turns, The coils should not overheat so the wires cannot

be made arbitrarily small.

The magnetically insensitive excited level (mj = 0) is the peak we locked to and thus for

the beamline purpose, a field large enough to separate the three sub-level peaks is needed.

Additional coils were added for future purposes which might demand zero-field in the other

directions.

The coils have an average diameter of 3 inches. There are 200 turns on the coil that can

create the largest magnetic field and 12 turns on the other dimensions.

The coils are wound in the same direction such that they produce a non-zero field in

the center of the chamber. If the coils have a current I of average radius R separated by a

distance d with N turns each, the magnetic field on the coil axis in the center of the chamber

in between the coils is given by:

B = µ0NI
R

2

2

 
1

�
R2 � (d

2
)2
�3/2 +

1
�
R2 + (d

2
)2
�3/2

!
. (6.4)
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For a coil with R = 3 inches and d = 3 inches, and N = 200, the magnetic field to current

ratio is 23Gauss/Amp.

6.4 Nozzle Construction

To design the nozzle, I used both Autodesk and then later OnShape for CAD programs. I

highly recommend OnShape. The program is relatively intuitive to use, and nearly every

question I had was more “Google-able” than was the case with Autodesk. I also recom-

mend using a CAD program for any machine shop work more complicated than cutting a

rectangular shape.

The nozzle is filled with grade 304 stainless steel microcapillaries bought fromMicrogroup.

They are 0.0083” OD and 0.0043” ID with a length of 0.8” and their gauge is 33RW.

The microcapillaries were placed in a pyramid formation inside an MDC blank. A hole

for the microcapillaries was made by the physics machine shop. The microcapillaries were

held in place with two stainless steel screw plugs also made by the machine shop (see Figure

6.1). CAD drawings can be seen in Figure 6.3. The screwplugs were cut an additional

time to fit more snugly, possibly because we ended up using less microcapillaries than we

originally planned. When we suspected that atoms may be exiting the microcapillaries

through unwanted channels, i.e. anywhere not through the microcapillaries, we added a

copper gasket with a triangular hole machined into it for the purpose of ensuring we were

blocking all the other oven exit points.

Stacking the microcapllaries was tedious. The microcapillaries bent easily and were easy

to lose. Stacking imperfections in the form of spurious pyramids would crop up (see Figure

6.1). To tease out the imperfections, I “combed” the microcapillaries by running a tweezer

across the microcapllaries, perpendicular to their long axis until they fell into place. I imagine

if they were much longer then they could possibly be prohibitively more di�cult to stack.
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(a)

(b)

Figure 6.4 – CAD drawings for beamline blank. Both are from the Weld group. The dimen-

sions of the screw plug were updated. All dimensions in inches.
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6.5 Evaluating the Beamline

We can lock to the peak using a lock-in technique. In our lock-in scheme, the laser scans its

frequency across a fluorescence peak as the frequency of the fluoresence light is modulated

at at a high frequency relative to the scan rate. The modulated lineshape is fed into a device

called a lock-in amplifier, which amplifies and filters for the component of the signal which

is at the frequency of modulation. It produces a signal proportional to the derivative of the

signal called the error signal. For more information on this technique, I recommend Martin

Zwierlein’s diploma thesis[37].

We werre sucessfully able to observe three fluorescence peaks corresponding to the three

Zeeman-separated mj numbers (see Figure 6.5(a)). The central, magnetically insensitive

peak is shown in Figure 6.5(b). In (c) the error signal is shown. We used powers around

10mW.

Using the lock-in technique, we generate an error signal from the modulation of the

beamline light, as seen in Figure 6.5(c). We lock the laser to the frequency where the error

signal is zero, corresponding to where the fluorescence is maximal. We lock using PID control

on Digilock.

We can estimate the frequency uncertainty of the beam by looking at the error signal

with a frequency (fLaser) dependent strength, Serr, and the error signal noise level during the

lock, �Serr. The noise level is given by Digilock in units of Serr in arbitrary units. To convert

this noise in error signal strength to noise in frequency, we evaluate dflaser

dSerr
�Serr|Serr=0. To

obtain dflaser

dSerr
|Serr=0, the peak-to-peak value for Serr of the signal can be divided by frequency

separation of the minimum and maximum of Serr. Thus, the uncertainty of the laser fre-

quency is frequency width divided by the signal to noise ratio (SNR). An evaluation of the

error signal produced a width of 7MHz and a SNR of 10, giving an estimate of the frequency

range of 700 kHz.

To further test the lock, we used green absorption imaging using MOT light. We examined

the number of atoms counted as a function of the MOT AOM frequency and obtained the
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Figure 6.5 – (a) Fluorescence peaks for the three sublevels of the 3
P1 manifold. (b) Magnet-

ically insensitive mj = 0 state. (c) Error signal generated from modulating the fluorescence

light for the mj = 0 peak. (d) Atom number in absorption image as a function of MOT AOM

frequency with a FWHM of 430 kHz returned from a Voigt fit.

signal in Figure 6.5(d). The measured FWHM of the signal is 430 kHz. With a SNR of

approximately 10, this puts our uncertainty in the frequency at 43 kHz. This uncertainty

is low enough that we predict that the uncertainty in k would not limit a measurement of

!rec. It is possible that the standard deviation for each point was increased due to technical

imperfections in light intensity feedback, i.e. the light intensity may have not been the same

for every shot, compromising the number measurement.

Is this lock good enough for our goal of a .1 ppb measurement of !rec? As stated earlier

in the chapter, we will investigate the question of what uncertainty in the laser frequency

�⌫ is needed if the fractional uncertainty in k, �k/k = .1 ppb. Since ⌫ = ck

2⇡
, where c is the

speed of light, then �⌫ = c�k

2⇡
. For 556 nm light, this amounts to �⌫ = 54 kHz. Comparing

this calculation to our observed lock width of 43 kHz indicates that the lock would not limit

an ↵ measurement at the 0.1ppb level.
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6.6 Outlook

Although we were able to obtain an error signal, it did not seem to produce a stable lock.

We observed unstable BEC numbers and could not achieve CMOT temperatures of less than

approximately 40 µK whereas in the past we could get it to 20 µK. The temperature of the

CMOT is an indicator of the lock health because the closer one can get to resonance without

going over, the colder a CMOT can be. Thus, we suspsected the lock’s narrowness was a

limiting factor.

One other potential fault we found with the beamline set-up was that the Thorlabs PMT

(PMM02) we had in use had a maximum bandwidth of 20 kHz, which limited how fast we

could modulate the intensity of light. Deep’s mixture group uses modulation frequencies of

450 kHz2 so it seemed concerning that we could not reach that level of modulation with our

PMT.

Because we suspected that the lock was the issue, we went back to our beat note lock,

using the mixture lab’s lock as a reference (see [27] for more information on this lock).

Upon examining the beamline facts, I have come to the conclusion that it is possible that

the beamline could produce a reliable lock. First, after switching back to the beatnote lock,

we still experienced issues with stability in the BEC number. Only after tuning evaporation

parameters did we observe stable BEC numbers. Upon changing the lock we did not im-

mediately observe a lower CMOT frequency. Second, the Cornish group does in fact use a

3 kHz modulation for their Yb MOT[38].

We had hoped to go the route of narrowing the fluorescence signal to observe a more stable

green frequency. We reasoned that atoms with too large of a transverse velocity were being

detected for our fluorescence signal. Thus, we wanted to preferentially collect fluorescence

from atoms with a low transverse velocity. We reasoned that those atoms would be those

closest to the center of the atomic beam, because atoms with larger transverse velocities

would be displaced more in the transverse dimension. The way we planned to do this was

2The current green modulation frequency is 111 kHz for our saturated spectroscopy lock.
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to control which light reached our detector through a telescope consisting first of a lens, and

then of a slit, as shown in Figure 6.6. With this model, we would be able to control which

atoms reach the detector by changing the width of the slit.

However, this slit telescope never appeared to narrow the fluorescence signal. One reason

could be related to depth of field. The atoms have a finite width along the z-axis of the

telescope, so it is only possible to perfectly image one point in one plane with a particular

telescope (see Figure 6.6).
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(a)

(b)

PMT

PMT

(c)
PMT

Slit

Slit

Slit

z

x

Figure 6.6 – Selectively blocking the fluorescence from atoms with a larger transverse velocity

as viewed in the plane perpendicular to the atom beam propagation direction. The atom beam

is represented by the light green ellipsoid and a projection of the nozzle is represented by the

gray triangle. The goal is to only image atoms within the gray triangle. In (a), fluorescence

from atoms in the center of the beam is focused onto the opening of a slit such that it passes

to be counted by a PMT. (b) demonstrates that atoms above or below the center of the beam

can be blocked with the slit. In (c), it is seen that the slit could also have the undesired e↵ect

of excluding atoms o↵-center along the z � axis.
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Chapter 7

READOUT SIGNAL IN A CONTRAST INTERFEROMETER

Recall that as detailed in Section 1.6, the contrast interferometer creates an atom grating

with a time-dependent contrast, oscillating between homogeneous cloud and periodic planes

of atoms. Obtaining a signal involves reading the phase of traveling light that is Bragg-

reflected from the matter-wave. Because the amplitude of the matterwave is time-dependent,

so is the reflected signal, reflecting the most light when the matter-wave grating has the

highest contrast, as seen in Figure 1.1.

In this section a model for the readout signal as a function of the various experimental

parameters will be presented. For more details on the readout signal I direct the reader to

either Ben[27], Alan[20], or Deep’s[21] thesis.

The first contrast interferometer readout signal at UW was obtained in the physics build-

ing basement in the B063 lab space. It was a green readout signal which involved Bragg

reflecting traveling di↵raction beam light along kgreen (see Fig 7.1(a)). During times of high

contrast, the atoms reflected the light back along that same axis. By symmetry with respect

to rotations about kgreen, this reflection cannot be polarization-dependent.

The next iteration in the new B055 labspace involved blue readout which used our blue

laser light instead of green. Since the readout light still needs to meet the Bragg condition, it

must be directed at approximately a 45 � angle with respect to the axis connecting the planes.

This is precisely the reason that blue readout was used: it was not along the di↵raction axis

so there was less opportunity for back-reflected light from other optics and viewports to

contribute to the noise.

When this was set up, a readout signal was successfully observed. However, after some re-

configuring of the machine, the readout signal went mysteriously missing. We would attempt
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to reflect light at the end of an interferometer sequence but we could only observe noise. We

troubleshot by checking for things including a broken photomultiplier tube (PMT), changing

the readout beam size, cleaning up the mode of the readout light with a pinhole, all to no

avail.

Indeed, the readout light simply needed to be the correct polarization to produce a

reflecting signal along the path of the PMT, something we had not yet realized . When

the blue readout light was originally set up, the polarization was luckily or unluckily at the

correct polarization. Once the polarization was optimized, we nearly immediately observed

strong signals, as seen in Figure 7.1. Next a model for predicting the amplitude of the

readout signal will be presented where we show that the amplitude depends on the light

polarization.

7.1 Classical Readout Signal Derivation

Each atom in the matter-wave formed at the closing of the interferometer can be considered

as a polarizable object with polarizability ↵1. The polarizability depends on the detuning of

the readout light from the 1
S0 !

1
P1 transition, �b, the linewidth of the transition, �b, the

expectation value of the dipole moment, µ, and the permittivity of free space, ✏0.

When each atom interacts with the readout light, a dipole moment is induced. As the

dipole oscillates in the presence of the incident field, it reradiates the light in a spherical

wave in the classical dipole radiation pattern. For classical dipole radiation, the radiation

amplitude is maximal along the plane which perpendicular to the induced dipole moment.

The induced dipole moment is along the same axis as the incident electric field, which

by definition is the direction of polarization of the incident electric field. The radiation

monotonically decreases to zero along the polarization axis.

Bragg reflection relies on coherence between the oscillators. For solid state crystals,

that is the electrons in a lattice of ions. In our experiment, there are atoms making up the

1Not to be confused with the fine-structure constant.
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matterwave which are the oscillators. The radiation from each atom in the matter-wave must

add constructively in order to observe a reflection signal from the atoms. If the polarization is

set to be along the axis along a plane then the radiation will add coherently and the intensity

of the reflected light will be maximal along a path shown in Figure 7.1(b), as desired.

Consider a polarizable object in the presence of a sinusoidal electric field with wave

vector k and wavelength �. When observing at large distances r from the dipole of size d

(r � �� d), the electric field, ~E, and magnetic field, ~H take on form

~H =
ck

2

4⇡
(r̂ ⇥ ~p)

e
ikr

r
(7.1)

~E = Z0
~H ⇥ r̂ (7.2)

where c is the speed of light, ~p is the dipole moment, ~r is a unit vector in the direction of

observation, and Z0 =
q

µ0

✏0
. Combining these two equations to solve for the electric field

yields

~E =
ck

2

4⇡

e
ikr

r
Z0 (~p� (~p · r̂) r̂) (7.3)

For the case of an object with a polarizability ↵, ~p = ↵~Einc, where ~Einc is the incident

electric field which causes the object to get polarized. This formula predicts that ~E will be

zero along the axis parallel to ~E and maximal in the plane where ~p is perpendicular to r̂.

We now turn towards applying this model to predicting the maximal radiated electric

field from 174Yb in the electronic ground state. The atom can be modeled as a polarizable

object[39] with

↵ = �
µ
2

✏0~
1

�
2

b
+ �2

b
/4

(�b � i�b/2) . (7.4)

In this equation, µ is the electric dipole matrix element connecting the ground and 1
P1

excited state and �b = !light�!0 where ~!0 is the energy di↵erence between the ground and

excited state and !light is the angular frequency of the incident light.

Consider the case where light is incident upon the atoms at the proper angle such that

it satisfies the Bragg condition. The Bragg condition requires that 2d cos ✓ = m�light, where
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Figure 7.1 – The top figure (a) demonstrates green readout for our contrast interferometer for

a time of maximum grating contrast. The green ellipsoids represents the planes of atoms which

Bragg reflect the traveling waves of light. The bottom figure (b) demonstrates blue readout

schematically for a polarization pBragg where reflection is maximal. Figure (c) shows a view of

(b) rotated around the x�axis to demonstrate �p. Figures not to scale.
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d is the spacing between lattice sites, ✓ is the angle of incidence (see Figure 7.1), and � is

the wavelenght of the incident light and m is an integer. For the case of our matterwave,

when contrast is maximal, there is a grating with a spatial periodicity of d = �g/2. Given

that we are using blue readout light (�light = 399 nm) and �g = 556 nm, to satisfy the Bragg

condition, the incident angle should be 44 �. Define the n̂ axis where we expect maximal

reflection at 44 � clockwise from the y-axis.

As reasoned earlier in the section, to cause the atoms to radiate such that their wavefronts

add constructively, the polarization of the incident light must be parallel to the planes of

atoms in the matterwave. In the coordinate system shown in Figure 7.1, this is in the

z-direction. Since ~p = ↵~E, ~p then points in the ẑ direction.

Taking into account that ~p = ↵Eincẑ, letting ~n pointing 44 � clockwise from the y-axis

and in particular perpendicular to ~p, and the form of ↵ found in Equation 7.4, Equation 7.3

simplifies to

~E = �
ck

2

4⇡

e
ikr

r
Z0

✓
Einc

µ
2

✏0~
1

�
2

b
+ �2

b
/4

(�b � i�b/2)

◆
ẑ (7.5)

This is the electric field due to one oscillator radiating along n̂. Of course it is key to the

reflection that many atoms are oscillating such that their radiation constructively interferes.

In the case of perfect interference, the electric field is multiplied by a factor of N , the

number of atoms contributing to the signal. Finally, to compute the expected intensity we

use I = h ~E ⇥ ~Hi and Equation 7.2 to obtain

I = N
2

✓
ck

2

4⇡2r

◆2

Z0

✓
µ
2

✏0~
1

�
2

b
+ �2

b
/4

◆2 �
�
2

b
� �2

b
/4
�
E

2

inc
. (7.6)

To compute the intensity as a function of the incident light’s polarization angle, consider the

case of light polarized in the x-y plane and perpendicular to the incident light’s k-vector. The

radiation from each atom would no longer add constructively and one would expect no Bragg

scattering from the readout light. The general incident light polarization can be decomposed

into this polarization which produces no radiation and the polarization in the z-dimension.

Thus, the electric field and radiated intensity can be modified with a multiplicative factor of
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Figure 7.2 – The maximum signal amplitude as a function of half-wave plate angle. Note

that when a half-wave plate is rotated by some angle ✓, the polarization rotates by 2✓, so the

periodicity of the polarization has the expected 180� period. A fit of a cos2 ✓ function is shown

which returned the expected period of 90�.

cos�p and cos2 phip, respectively, where �p is the polarization angle with respect to rotations

about ~k where �p = 0 means the polarization is along the positive z-dimension.

The signal amplitude experimentally demonstrates this dependence on readout light po-

larization angle. As a function of the waveplate angle, the signal strength oscillates sinu-

soidally, as seen in Figure 7.2.
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7.2 Readout Detuning

A question arises: what is the optimal detuning for the readout beam (�b)? A detuning

too far from resonance will not su�ciently excite the dipole radiation from the atoms. A

detuning too close to resonance can cause spontaneous scattering and also a↵ect the index

of refraction. This section will sketch out some of the ideas which can be used to model the

reflection amplitude as a function of the detuning.

In the limit of �b � �b, Equation 7.6 tells us that the readout intensity, I, is proportional

to 1/�.

The spontaneous scattering rate is given by Equation 5.15. In the limit of 1 + s ⌧ 1,

Rscat /
1

�
. Thus, the detuning should be chosen under the constraint that Rscattcoherence is

kept small, where tcoherence characterizes the time width of the reflected signal.

A final e↵ect which we consider is the index of refraction shift across the cloud (in the

x�dimension as represented in Figure 7.1). If the shift is too large, the reflections from each

Bragg plane would no longer be coherent due to the wavelength of light traveling in the cloud

with a shifted wavelength: �!
�

nr
, where nr is the real part of the index of refraction. Thus,

the constrant that the change in phase shift across the cloud of size �x for nr = 1 ! n 6= 1

should be small:

��x ⌘ kb�x� nrkb�x ⌧ 2⇡. (7.7)

To write this constraint in terms of detuning, one can obtain the index of refraction from

Equation 7.4, which gives the polarizability ↵ in terms of �b. The index of refraction n is

given by

n =

r
✏

✏0
=
p

1 + ⇢↵, (7.8)

where ⇢ is the atomic density. Approximating that ↵ ⌧ 1, nr � 1 /
1

�b/�b

, Equation 7.7

becomes
kb�x

�b/�b

⌧ 2⇡. (7.9)
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Chapter 8

OUTLOOK

8.1 Sensitivity

In our next iteration of the contrast interferometer we plan to use a vertical di↵raction beam

geometry, as detailed in [27]. We also plan to incorporate Bloch oscillations at the magic

depth. This chapter will describe how we can use these changes to increase our measurement

precision. In all derivations, we assume the use of simultaneous Bloch oscillations, as opposed

to sequentially addressing each arm.

As explained in Chapter 1, in our contrast interferometer, we measure the phase � of the

contrast signal at t = 2T which is given by

�(2T ) =
1

2
n
2
!rec�T + �o↵set, (8.1)

where n is the maximum momentum separation between the outer arms of the interferom-

eter in units of ~k, �T is the range free evolution times during one half (in time) of the

interferometer, and �o↵set is the phase o↵set, independent of T . From our measurement of

�(2T ), we measure !rec. The part of the overall uncertainty in �!rec
!rec

which comes from the

uncertainty in the phase is given by

�� (NBO)

�(2T )
=

��(NBO)
1

2
n2!rec�T

p
M

, (8.2)

where ��(NBO) is a statistical uncertainty in the phase of the contrast readout signal, M

is the number of experimental shots, and NBO is the total number of BO applied to both

arms. There is an implicit dependence of n on NBO.

To be clear on the definition of NBO, an example is given. To accelerate the outer arms
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of the interferometer from |±2~ki to |±4~ki (�n = 4), 8 pulses are applied: two acceleration

and deceleration for either arm for each half in time of the interferometer. Thus NBO = 8 in

this case. Generalizing from this example,

NBO = 2�n. (8.3)

Neglecting the momentum separation due to the KD pulse and any other sources of

momentum separation, we can write

NBO = 2n. (8.4)

We consider two ways that increasing the number of BOs can increase the uncertainty

in ��/�(2T ): first, by changing the total atom number, and second, by changing the phase

fluctuation range from lattice-induced phase shifts.

8.2 Phase uncertainty

8.2.1 Lattice-Induced Phase Shift Phase Uncertainty

The phase uncertainty due to a second-order contribution from lattice-induced phase shifts

��LI is estimated by calculating

��LI = NBO

1

2

����
@
2
hEi

@U
2

0

����
UMD

�U
2

MD
TBO,opt. (8.5)

To evaluate ��LI , I used the values obtained from Fig. 5.6(c) and (d) for 1

2

���@
2hEi
@U2

0

���
UMD

U
2

MD

and TBO,opt. We also use �U
2

MD
= (UMD ·�)2 where �⇥100 is the percent fluctuation range

of U0. Numerically for the third band, this equation is

��LI = NBO(3.8)(.01
2)(0.45)2⇡, (8.6)

where we estimate that the depth fluctuation range is 1% of the depth, using f = 0.01.
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Figure 8.1 – The uncertainty in the phase of our readout signal as a function of the momentum

separation in the 2018 iteration of the contrast interferometer. Plot taken from Figure 2 of [8].

8.2.2 Atom-loss Related Uncertainty

The number loss from finite BO e�ciencies can also increase the uncertainty of the measure-

ment. The relationship between NBO and the phase uncertainty due the final atom number

dependence on the pulse e�ciency ��eff can be calculated by examining Figure 8.1.

In this figure ��eff is shown to depend on the maximum momentum separation of the

arms in units of ~k, n, because as n increases, the atom number decreases. Thus, the hori-

zontal axis could be converted to atom number. Atom number is also related to NBO due to

the e�ciency of Bloch oscillations, as seen in Fig. 5.6(e). Through this relationship, there

exists a linear conversion between n for the experiments in [8] and NBO which produce the

same overall e�ciency, e↵0. To prove this linear relationship, let the e�ciency for simulta-

neous BOs per ~k be e↵BO and the per ~k e�ciency for a third-order Bragg pulses used in

[8] be e↵Bragg.

e↵0 = e↵2NBO

BO
= e↵

6NBragg

Bragg
. (8.7)

where NBragg is the number of Bragg pulses and the exponent of e↵BO is 2NBO because each

BO imparts a momentum of 2~k and the exponent of e↵Bragg is 6NBragg because each Bragg

pulse produces a momentum change of 6~k.

Taking a logarithm of both sides and solving for NBO shows that NBO and NBragg have
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a linear relationship:

NBO = 3NBragg

log(e↵Bragg)

log(e↵BO)
. (8.8)

For our estimations, we approximate the relationship between NBragg and ��eff as linear

(Figure 8.1), we then conclude that the relationship between ��eff and NBO is also linear.

To determine the relationship between ��eff and NBO, we start by solving for the overall

e�ciency for two di↵erent NBragg using e↵Bragg = 0.984[8] and e↵BO = 0.996 (Figure 5.6).

We will then solve for the number of Bloch oscillations which produces either overall e�ciency

to obtain the desired relationship between ��eff and NBO.

From the graph on Figure 8.1, n2018 = 88 and n2018 = 52 were evaluated.1 For either n2018,

the number of third-order pulses (NBragg) is to be determined. In our contrast interferometer,

we increased n2018 by 4~k from the Kapitza-Dirac splitting pulse. Second, each set of two

Bragg pulses applied to the outer arms increased n2018 by 12~k. Third, each set of pulses

needs to be applied 4 times (acceleration and deceleration in either half of the interferometer).

There is also a first-order mirror pulse that we approximate has the same per-~k e�ciency as

the third-order pulses. Thus, for n2018 = 88, (88� 4)/12 · 4 · 2 + 1 = 57 (NBragg = 57)pulses

were used and for n2018 = 52, (52 � 4)/12 · 4 · 2 + 1 = 33 (NBragg = 33) pulses were used.

We neglect the atom loss due to a finite e�ciency of the KD pulse. Using Equation 8.8, We

obtain that for NBragg = 57, NBO = 670 and for NBragg = 33, NBO = 388. From Figure 8.1,

We estimate the di↵erence in ��eff between n2018 = 88 and n2018 = 52 to be ' 0.25 radians.

Thus, for an increase in the number of Bloch oscillations by �NBO = 670� 388 = 282, the

phase uncertainty increases by ' 0.25 radians. Finally we can use Equation 8.1 to obtain

that for the third band,

��eff =
.25rad

282
NBO =

.25rad

282
2n. (8.9)

Similar calculations can be performed for other bands. To summarize this subsection, the

goal was to find the uncertainty in the phase due to the finite-e�ciency of the pulses because

their finite e�ciency means that less atoms are participating in the signal with increasing

1I am using n2018 to specify that the momentum separation for the interferometer in [8].
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momentum separation. The relationship between ��eff and momentum separation n was

found for the interferometer reported on in [8] and is seen in Figure 8.1. Because we predict

we can use higher-e�ciency BO pulses, the x-axis of Figure 8.1 is to be scaled to find the

predicted relationship between ��eff and n for the future interferometer. For a BO with

per ~k e�ciency of 0.996, the relationship between ��eff and n is obtained.

8.3 Total Uncertainty

To obtain the total phase as a function of the number of BOs, we evaluate

�(2T ) =
1

2
n
2
!rec�T. (8.10)

Let the maximimum total interferometer time be Tmax and assume BOs are performed

at the optimal period, TBO,Opt (see Figure 5.6.) Given that half of the total number of

BOs are performed in either half of the interferometer, the maximum time for �T is thus

Tmax/2� (NBO/2)TBO,Opt and thus the total phase can be written as

�(2T ) =
1

2
n
2
!rec

✓
Tmax

2
�

NBO

2
TBO,Opt

◆
. (8.11)

Combining Equation 8.11 with the quadrature sum of the uncertainty from Equations

8.9, and 8.6 and using Equation 8.1, we obtain the following form of the uncertainty:

��

�
=

q
��2

eff
+��2

LI

1

2
n2!rec

1

2
(Tmax � 2nTBO,Opt)

p
M

, (8.12)

where ��eff is given by Equation 8.9 and ��LI is given by Equation 8.6.

Using a 3 second cycle time and letting the data set be taken over 10 hours, we obtain

M = 12000. For the new vertical geometry, from estimates made in [27], the total interfer-

ometer time is about 200ms or 100ms for each half of the interferometer. As a function of

n, in band 3, ��

�
has the behavior shown in Figure 8.2. The minimum uncertainty is about

0.005 ppb for n = 412.

Similar calculations can be performed for the other bands. The results are printed in

Figure 8.2.
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Figure 8.2 – The phase uncertainty ��

�
, as a function of the maximum momentum separation

(n) for bands 2, 3, and 4.

The minimum uncertainty decreases with band number because for increasing band, the

BOs can be performed more e�ciently.



97

BIBLIOGRAPHY

[1] Parker, R. H., Yu, C., Estey, B., Zhong, W. and Muller, H. “Measurement of the

fine-structure constant as a test of the Standard Model.” Science, 360, 191 (2018).

[2] Hanneke, D., Fogwell, S. and Gabrielse, G. “New Measurement of the Electron Magnetic

Moment and the Fine Structure Constant.” Phys. Rev. Lett., 100, 120801 (2008).

[3] Odom, B., Hanneke, D., D’Urso, B. and Gabrielse, G. “New Measurement of the

Electron Magnetic Moment Using a One-Electron Quantum Cyclotron.” Phys. Rev.

Lett., 97, 030801 (2006).

[4] Sorrentino, F., Bertoldi, A., Bodart, Q., Cacciapuoti, L., Angelis, M. D., Lien, Y.-

H., Prevedelli, M., Rosi, G. and Tino, G. M. “Simultaneous measurement of gravity

acceleration and gravity gradient with an atom interferometer.” Applied Physics Letters,

101, 11, 114106 (2012).

[5] Holmgren, W., Revelle, M., Lonij, V. and Cronin, A. “Absolute and ratio measurements

of the polarizability of Na, K, and Rb with an atom interferometer.” Physical Review

A, 81, 5 (2010).

[6] Durfee, D., Shaham, Y. and Kasevich, M. “.” Phys. Rev. Lett., 97, 240801 (2006).

[7] Jamison, A. O., Plotkin-Swing, B. and Gupta, S. “Advances in Precision Contrast

Interferometry with Yb Bose-Einstein condensates.” Phys. Rev. A, 90, 063606 (2014).

[8] Plotkin-Swing, B., Gochnauer, D., McAlpine, K., Cooper, E., Jamison, A. and Gupta,

S. “Three-Path Atom Interferometry with Large Momentum Separation.” Phys. Rev.

Lett., 121, 133201 (2018).



98

[9] Foot, C. J. Atomic physics. Oxford master series in atomic, optical and laser physics.

Oxford University Press, Oxford (2007).

[10] Abbott, B. P. and et. al. “Observation of Gravitational Waves from a Binary Black

Hole Merger.” Phys. Rev. Lett., 116, 061102 (2016).

[11] Shevchenko, S., Ashhab, S. and Nori, F. “Landau–Zener–Stückelberg interferometry.”

Physics Reports (2010).

[12] Duca, L., Li, T., Reitter, M., Bloch, I., Schleier-Smith, M. and Schneider, U. “An

Aharonov-Bohm interferometer for determining Bloch band topology.” Science, 347,

6219, 288 (2015).
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