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This dissertation reports on the experimental observation of interaction-driven dynamical

delocalization in a kicked one-dimensional ultracold gas. In the absence of interactions, par-

ticles in a one-dimensional disordered medium are localized due to quantum interference as

predicted by the Anderson model. The evolution of this well-known localization phenomenon

in the presence of interactions has been the subject of intense scrutiny in the past decades,

including conflicting theoretical predictions in some cases. Using the quantum kicked rotor

(QKR), we engineered the Anderson model in the synthetic momentum space where the

equivalent localization phenomenon is termed dynamical localization. However, interaction

effects had not been observed in earlier experimental observations of dynamical localization.

We detail the implementation of a three-dimensional optical lattice that is used to control

the interactions in the system and to realize the QKR Hamiltonian. Using ultracold gases

in 1D tubes, we perform a quantum simulation of the QKR Hamiltonian in the presence of

interactions and find that interactions destroy the localization and lead to slower-than-linear

energy growth or sub-diffusive dynamics. The measured sub-diffusive exponents are not

universal or monotonically varying with the various experimental parameters. However, we

find that the onset time of delocalization is always shorter with stronger interaction or kick

strengths. By temporally modulating the kick strength with incommensurate frequencies,

we also engineered higher dimensional Anderson models and observed similar interaction-



driven delocalization phenomena. The metal-insulator Anderson transition in the presence

of interactions is also studied in the 3D case with varying kick strength. Our results shed

light on interaction-driven transport, in a regime where theoretical approaches are extremely

challenging and predict drastically different dynamics.
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Chapter 1

INTRODUCTION

Ultracold atoms provide an excellent platform to study many interesting and scientifically

important phenomena in a near-ideal environment. The ultralow temperature suppresses

the noise and decoherence of the system, allowing us to probe delicate effects that are

otherwise too challenging to observe in other experimental settings. The pure systems

prepared using the highly-selective optical transition (internal state preparation) and atom

trapping (external state preparation) also enhance the signal-to-noise ratio of the measure-

ment. Furthermore, the efficient production of quantum degenerate gases enables a wide

range of studies that require certain macroscopic phase coherence and quantum statistics.

The ability to tune the interactions between atoms using Feshbach resonance also facilitates

the study of many-body systems. All of these crucial tools and techniques in ultracold atoms

empower a plethora of research from the collective dynamics of an ensemble of quantum gases

to the motion of a single atom.

With the precise controllability and manipulation of atoms achieved over the past few

decades, atomic physicists can now tackle new problems using a bottom-up approach by

assembling atoms together either in the form of a molecule or in a crystalline structure.

Ultracold molecules can be prepared coherently by sweeping light or magnetic fields in a

certain way, and they have rich applications in quantum chemistry, quantum information,

and precision measurement. Trapping atoms in a periodic structure using optical lattices

enables quantum simulation of condensed-matter many-body systems. This analog quantum

simulation of a physical system is extremely useful for problems that are too challenging to

be solved numerically using a classical computer. It works by mapping the Hamiltonian of
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one complex quantum system to the other Hamiltonian that we can control with the atom

assembly.

In this thesis, we will look at a particular kind of quantum simulation where the Anderson

Hamiltonian in position space is engineered in the synthetic momentum space to investigate

the dynamics in a disordered medium. We achieve this using the quantum kicked rotor tech-

nique by loading the ultracold atoms in a periodically-pulsed optical lattice. The flexibility

of this method enables us to scale up to higher dimensions easily, instead of adding more

optical lattices if the simulation is done in the position space. We will examine an interesting

effect called dynamical localization where a system stops absorbing energy after some time

even if we keep injecting energy into the system. This is in contrast to the classical case in

which we would expect the system to heat up indefinitely. This dynamical localization is

simply the Anderson localization in the momentum space, and it arises due to the quantum

interference of wave functions in a disordered medium. Anderson physics is extremely rich

and has deep connections to different areas of mathematics including random walk, chaos,

and fractals. The famous saying in the study of random walk "A drunk man will find his

way home, but a drunk bird may get lost forever" echoes with the existence of an Anderson

metal-insulator transition in three-dimensional space.

The work presented in this thesis investigates the effect of interaction on dynamical

localization in different dimensions, a problem that has so far remained unexplored exper-

imentally despite extensively studied theoretically. The first chapter of this thesis gives an

overview of the Anderson model and explains the dynamics of a wave packet in different

dimensions of a disordered medium. We will show how the quantum kicked rotor can be

used to engineer the Anderson Hamiltonian in the synthetic momentum space. We will

also give an overview of the different theoretical predictions on the Anderson model with

interactions. Chapter 2 describes the basics of optical lattices and Kapitza-Dirac diffraction,

which are fundamental to the quantum kicked rotor. Chapter 3 discusses the experimental

setup and the implementation of the optical lattices. We will address the design problems

and implementation challenges faced while constructing the lattices. After presenting the
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optical lattice calibration technique using Kapitza-Dirac diffraction, we show our observation

of the superfluid-to-Mott insulator transition in a three-dimensional lattice.

In Chapters 4 and 5, we report on the observation of interaction-driven dynamical

delocalization in d = 1 and d = 3 Anderson models, respectively. We first discuss the details

of our system and then present the observation of quantum resonance and anti-resonance of a

non-interacting QKR. We then present our observation of interaction-driven delocalization,

demonstrating that interactions do indeed destroy dynamical localization. We study the

sub-diffusive delocalization dynamics with different experimental parameters. We describe

how the amplitude-modulated kick pulses can be used to engineer the Anderson models with

arbitrary dimension d. We observe similar delocalization up to d = 4 and show how the

Anderson transition is affected by the interactions.

The work presented in this thesis sheds light on interaction-driven transport in a dis-

ordered medium. We hope that the results shown will motivate other theoretical and

experimental studies on this challenging problem. Future detailed studies on the sub-

diffusive exponent and the dynamics around the localized-delocalized transition with a larger

parameter space would be exciting.
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Chapter 2

ANDERSON MODEL AND QUANTUM KICKED ROTOR

In this chapter, we will first present an overall introduction to the Anderson model.

We will discuss the relevant condensed matter system and the phenomenon of Anderson

localization. We will then introduce the idea of scaling theory to explain how the dynamics

of a system differ across dimensions. Particularly, we will see that there exists a metal-

insulator transition in a 3D disordered medium. Next, we will briefly discuss the classical

kicked rotor and chaos, which will help us understand better the quantum kicked rotor (QKR)

presented subsequently. In the section on the quantum kicked rotor, we will introduce

several important parameters that will be tuned experimentally later. We will also show

how the quantum kicked rotor can be used to engineer the Anderson model by deriving the

mapping between the QKR Hamiltonian and the Anderson tight-binding model. The QKR

can exhibit dynamical localization, which is simply the Anderson localization in momentum

space. Finally, we ask the big question that this work tries to answer: What effect does

interaction have on the Anderson model? Specifically, how does interaction affect Anderson

localization?

2.1 Anderson Model

Bloch theory predicts that the wavefunction of an electron in a periodic crystal is fully

delocalized, i.e., the electron can propagate freely through the crystal [1]. However, it’s also

known that this theory fails when we consider an imperfect crystal in which the discrete

translation symmetry is broken by the disorder arising from impurities or defects. Such

an imperfect crystal has a lower electrical conductivity because the electron mobility is

restricted. In 1958, Philip W. Anderson explained the dynamics of an electron in an imperfect
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crystal by postulating that the energy of each lattice site is altered randomly by the disorder

[2]. He approached the problem using the tight-binding approximation with random onsite

energy, and this formulation of the problem is what’s now called the Anderson model.

The Anderson model has been an important model for describing the physics of a particle

in a disordered medium since its formulation decades ago. Anderson’s conjecture also predicts

the localization of the wavefunction in a disordered medium by considering the scattering of

the particle off the random potentials and its interference effects. This treatment also makes

the Anderson model one of the physics models that distinguishes quantum mechanics from

everyday classical mechanics by considering the electron as a wave. Let us first consider a

classical particle scattering off a potential V (z). We know that if the particle’s kinetic energy

is larger than the potential height, the particle will simply fly over the potential unaffected;

otherwise, if its kinetic energy is lower than the potential height, it will simply be reflected

off by the potential. Quantum mechanically, however, the particle is treated as a wave, and

there is a probability for a particle to tunnel out of the potential. We will then have to

consider the transmission and reflection parts of the wavefunction. In a disordered medium,

the scattered waves interfere destructively in the forward direction and the amplitude of the

total wavefunction decays exponentially, and thus the particle wave is localized [3]. Anderson

localization is fundamentally a wave phenomenon and it has been observed with other kinds

of waves including light [4–6] and acoustic waves [7].

Next, we will follow the treatment in Ref. [8, 9] to discuss the Anderson localization in

systems of different strengths of disorder and different dimensions. The Anderson Hamilto-

nian is given by

H =
∑
n

ϵnĉ
†
nĉn + t

∑
<n,m>

(
ĉ†nĉm + h.c.

)
(2.1)

where the onsite energy is ϵn ∈ [−W/2,W/2] with the disorder parameter W , and t is the

tunneling energy. An electron can still hop from site to site even with the disorder, but

it needs to overcome the energy difference between different sites. A site with a smaller

energy defect ∆E due to the energy shift by the disorder is always more favorable because
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the electron can only stay at a site for a time τ ∼ ℏ/∆E ∼ ℏ/W , while the timescale for

hopping to a neighbor is ℏ/t. Thus, for the case of strong disorder t ≪ W , the electron

can’t travel far away from its initial site. The wavefunction will be exponentially localized

ψ ∼ e−x/ξ where ξ is the localization length.

The case of weak disorder t≫ W is more counter-intuitive because one would think that

the electron can now propagate more freely and the dynamics will be more diffusive instead of

localized. However, the "Gang of four" − Abrahams, Anderson, Licciardello, Ramakrishnan

− later found using the renormalization group arguments that localization can still occur

depending on the dimension of the system [10]. Their scaling theory of localization shows

that localization always occurs in 1D and 2D systems regardless of the disorder W . For a

3D system, however, localization only occurs above a critical disorder. This separation of

localized and delocalized phases allows for the Anderson metal-insulator transition (MIT).

Here we will only give an intuitive explanation of the scaling arguments. Consider a

material with length L and cross-section area Ld−1, where d is the dimension of the material.

Define g as the dimensionless conductance of a material with transmission T ,

g =
T (L)

1− T (L)
(2.2)

The scaling theory examines how the conductance g changes with the size L using the

parameter β = d ln(g)
d ln(L)

. We will first consider the limiting behavior when g is extremely large

(g → ∞), i.e. when the disorder is weak and the material is a good conductor. According

to Ohm’s law, the resistance R of a material with resistivity ρ is

R = ρ
L

A
= ρ

L

Ld−1
(2.3)

and thus

g ∼ bLd−2 (2.4)

where b is some constant. We then have

lim
g→∞

β(g) = lim
g→∞

d ln(g)

d ln(L)
= d− 2 (2.5)
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In the opposite limit when g is vanishing (g → 0), i.e. with a strong disorder, the wavefunc-

tion will be exponentially localized and thus

g(L) ∼ e−L/ξ (2.6)

and
d ln(g)

d ln(L)
= ln(g) = −L

ξ
(2.7)

which gives

lim
g→0

β(g) = ln(g). (2.8)

Figure 2.1 shows the plots of β(g) for different dimensions. The equation used for the plot

is β(g) = (d− 1)− (1 + g) ln(1 + g−1) [9]. Note that this equation and the plots show only

the approximation of the conductance of the material, particularly they are most accurate

around the two limiting cases we considered above. To obtain the exact conductance of the

material, one will have to solve for the wavefunction independently for different dimensions

[10].

We can thus see from Fig. 2.1 that β < 0 for all g for 1D and 2D systems. This

means that as the size of the system increases, the conductance will decrease, and thus the

system will be an insulator (localized wavefunction) regardless of the disorder. For a 3D

system, however, there is a critical point such that β(gc) = 0, above which the conductance

will increase with the system size, and thus the system becomes a conductor (delocalized

wavefunction). This critical point separates the system into metal and insulator states, and

therefore there exists a transition between localized and diffusive states for a 3D system −

the Anderson metal-insulator transition.

It is challenging to study the Anderson model in condensed matter because one has no

direct access to the electronic wavefunction in a crystal, and thus can’t directly observe

Anderson localization. Also, the material will have to be kept at a very low temperature

to suppress decoherence. Therefore, the Anderson model is often studied by engineering

and simulating the similar Hamiltonian using another more controllable system. Ultracold
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Figure 2.1: Scaling function β for 1-3 dimensions. For 1D and 2D systems, the scaling

function is always negative, i.e. β < 0 for all g. This means that the system would be an

insulator since the conductance would decrease as L → ∞. For 3D and higher dimensional

systems, however, there is a critical point such that β(gc) = 0 marks a metal-insulator phase

transition.

atom systems are excellent platforms for quantum simulations for condensed matter systems

[11, 12]. For the case of the Anderson model, Anderson localization had been observed

experimentally in 1D to 3D systems by observing the spread of an atom cloud in a speckle

potential which simulates the disordered medium [13–15]. Such a method allows one to

examine directly the wavefunction in real space, but the implementation becomes more and

more difficult for higher dimensional systems. The work presented in this thesis uses another

approach for studying the same physics in the synthetic dimension of momentum space

by using a system called the quantum kicked rotor (QKR). It provides more flexibility in

simulating higher dimensional disordered systems and allows direct access to the momentum

wavefunction. This method also allows the observation of dynamical localization − the
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equivalent of Anderson localization in momentum space.

2.2 Classical Kicked Rotor

Figure 2.2: Classical swinging pendulum. A swinging pendulum is the classical analog of the

quantum kicked rotor if the gravitational potential is pulsing on and off.

Before we discuss the details of the quantum kicked rotor, let us first take a look at its

classical analog − a kicked swinging pendulum, as shown in Fig 2.2. If we ignore the kicking

part and consider just a classical swinging pendulum for now, we can write the Hamiltonian

of the system as

H =
P 2
θ

2ml2
−mgl cos θ (2.9)

where Pθ is the angular momentum. The first term is the kinetic energy of a general rotor,

and hence the name "kicked rotor". We can express it in terms of the moment of inertia

I = ml2. The second term is the potential energy term due to the gravitational potential.

If we now consider the gravity pulsing off and on at some period T , we then have a classical

kicked rotor Hamiltonian

H =
P 2
θ

2I
− V0 cos θ

∑
n=1

δ(t− nT ) (2.10)

where V0 = mgl and n is the number of pulses. Multiplying through by T 2/I, we have the

dimensionless Hamiltonian

H =
ρ2

2
− κ cos θ

∑
n=1

δ(τ − n) (2.11)
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where κ = V0T
2/I is the stochasticity parameter and ρ = PθT/I is the dimensionless

momentum [16]. The classical kicked rotor is a system that has been extensively used in

the study of classical chaos. To understand the dynamics of the system, one can simplify

the equations of motion of the system to a Chirikov’s standard map given by

θn = θn−1 + ρn (mod 2π)

ρn = ρn−1 − κ sin θn−1 (mod 2π)
(2.12)

Because of the periodicity of sin θ, we consider only the [0,2π] range for θ and ρ, and the

dynamics can be considered on a torus. When the stochasticity parameter κ is large enough,

the outcome of the term with sin θn−1 essentially becomes random for successive n values

and results in random dynamics. We can see from the phase space plots (Fig. 2.3) that for

small κ the dynamics retain some of the oscillatory behavior as shown by islands of stability.

These islands of stability gradually shrink as κ grows, and eventually the dynamics become

completely chaotic for κ > 5.

Note that it is easy for one to think that chaotic dynamics are completely random, but

when we talk of chaos, we have to distinguish between "predictability" and "determinism"

[16]. Chaos often refers to some dynamics that have "deterministic randomness" [17]. The

dynamics are unpredictable because they are highly sensitive to the initial conditions. This

can be seen by simulating the dynamics on different computers. Because of the different

numerical rounding and storing methods of double precision numbers of different computer

processors, the results can differ vastly after some large number of iterations. This is similar

to how Lorentz discovered the butterfly effect (a more poetic term for chaos) when he changed

the initial conditions for his weather simulation slightly [18]. However, once the initial

conditions are known, the dynamics are completely determined by the standard map (Eq.

2.12).
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(a) κ = 0.5 (b) κ = 1

(c) κ = 3 (d) κ = 4

(e) κ = 5 (f) κ = 6

Figure 2.3: Dynamics of the classical kicked rotor in phase space for various κ.
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2.3 Quantum Kicked Rotor (QKR)

Let us now turn to the quantum version of the kicked rotor. The quantum kicked rotor has

been extensively studied with ultracold neutral atoms and dynamical localization has been

observed [8, 19–30]. A quantum kicked rotor is realized with an atom cloud loaded into a

periodically pulsing optical lattice. Such a setup is common and easily implemented in any

cold atom lab. The quantum kicked rotor has been a paradigmatic system to simulate the

Anderson model because of its flexibility and simplicity. The QKR allows one to control

the different parameters such as the tunneling rate and disorder of the Anderson model by

controlling the kick strength and kick period. More interestingly, because the Anderson

model is engineered in the synthetic momentum dimension, it also allows experimental

simulation of the Anderson model in arbitrary dimension by simply modulating the amplitude

of the pulses. Due to the low temperature of ultracold atoms, the QKR also has the advantage

that the decoherence is low and the different momenta after the kicks are better resolved.

The Hamiltonian of a non-interacting BEC in a pulsed standing wave can be written as

H =
P 2

2m
− Vlat cos

2 kLz

N∑
np=1

δtp(t− npT )

=
P 2

2m
− Vlat

2
cos 2kLz

N∑
np=1

δtp(t− npT )

(2.13)

where Vlat = 4Vdip is the lattice depth, T is the kicked period, and tp is the pulse length.

The difference between this Hamiltonian compared with the classical one is that the position

and momentum variables are now quantum operators. The pulse function δtp(τ) = 1/tp if

|τ | ≤ tp/2 and zero otherwise, and tends to the Dirac δ function as tp → 0. We will use the

following dimensionless parameters to rescale the Hamiltonian
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θ = 2kLz (2.14)

τ = t/T (2.15)

p =
k̄

2ℏkL
P (2.16)

k̄ = 8ωrecT (2.17)

where ωrec = ℏk2L/2m is the recoil frequency. The dimensionless reduced Planck constant k̄

also satisfies the commutation relation [θ, p] = ik̄. Eq. 2.13 then becomes

H =

(
2ℏkL
k̄

)2
p2

2m
− Vlat

2
cos θ

N∑
np=1

δ(τ − np)

Multiply through by k̄T/ℏ, we then get the dimensionless QKR Hamiltonian

H =
p2

2
−K cos θ

N∑
np=1

δ(τ − np) (2.18)

where

K = k̄ϕkick (2.19)

ϕkick =
Vlattp
2ℏ

(2.20)

are the kick strength and the pulse area, respectively, and np is the pulse number. Note that

due to the finite and short (tp ≪ T ) pulses, the kick strength K had absorbed an additional

factor of tp/T from the dimensionless transformation of the delta function.

Next, we will show how the quantum kicked rotor can be used to engineer the Anderson

model by showing the mapping of the QKR hamiltonian to the Anderson tight-binding model

following the treatment in [29, 31]. From Eq. 2.18, we can see that the unitary evolution

from one kick to the next is

U = e−iK cos θ/k̄e−ip2/2k̄. (2.21)

The eigenstates of this evolution operator are Floquet states |ϕ⟩ with quasienergy ω, defined

modulo 2π

U |ϕω⟩ = e−iω|ϕω⟩ (2.22)
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Now, we rewrite the kick operator as

e−iK cos θ/k̄ =
1 + iW (θ)

1− iW (θ)
(2.23)

with

W (θ) = − tan (K cos θ/2k̄) (2.24)

Since the function W (θ) is periodic, it can be expressed as the Fourier series

W (θ) =
∑
r

Wre
irθ (2.25)

Similarly, the kinetic part can be written as

e−i(p2/2k̄−ω) =
1 + iV

1− iV
(2.26)

where V is diagonal in the momentum eigenbasis |m⟩ = |p = mk̄⟩. Next, we make the

following expansion in the momentum eigenbasis

1

1− iW (θ)
|ϕω⟩ =

∑
m

Φm|m⟩ (2.27)

The eigenequation for the Floquet state can then be written as

ϵmΦm +
∑
r ̸=0

WrΦm−r = −W0Φm (2.28)

with ϵm = tan
[
1
2
(ω −m2k̄/2)

]
. Equation (2.28) is now in the form of a tight-binding model

with onsite energy ϵm, hopping element Wr, and eigenenergy W0. As an intuitive explanation

of the mapping between the kicked rotor and the Anderson tight-binding model, we can see

that for a fixed k̄, the kick strength K corresponds to the tunneling energy between sites

given by Eq. 2.24, while the phase accumulated by atoms of different momenta corresponds

to the disorder in each site, as illustrated in Fig. 2.4. Because of the tangent function in the

onsite energy term ϵm, the resulting distribution of the onsite energies for a range of m values

is pseudorandom, which has been shown to be enough to mimic the disorder in Anderson

model [32]. However, we note that for the case when k̄ is a rational multiple of 2π, the ϵm

will be periodic in m and thus is no longer pseudorandom. These special cases are known as

the quantum resonances of the kicked rotor, where the states are delocalized.
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Figure 2.4: Correspondence of the quantum kicked rotor (QKR) and Anderson tight-binding

model. (a) In the Anderson tight-binding model, the disorder in each lattice site in position

space leads to different onsite energies ϵn. A particle can hop between different sites with

tunneling rate t. (b) An absorption image of a quantum kicked rotor (QKR) showing the

diffraction pattern of the BEC after some kicks. The population in each order of diffraction

depends on the kick strength K, and each momentum space lattice site will accumulate a

phase that is a function of its momentum during the free evolution time in between kicks.
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2.4 Effect of Interactions on the Anderson Model

The Anderson model has been studied heavily both theoretically and experimentally over

the past few decades. Experimentally, both Anderson localization in position space and

dynamical localization in momentum space [19–24] have been observed. The different factors

of parameters affecting the dynamical localization has also been investigated using the

quantum kicked rotor [24, 26, 33, 34]. Besides, the Anderson metal-insulator transition has

also been observed recently [27, 29, 30]. Despite the extensive study on the Anderson model,

the effect of interaction on the dynamical localization remains unexplored experimentally.

Although many different theoretical studies have been carried out, the different approxima-

tions, models, and numerical methods applied led to vastly different results. Most theories

predict that the interactions would destroy dynamical localization, while some predicts that

localization should persist if the atoms are in a ring trap [35] or in the regime of few body

limit [36].

The delocalization dynamics are predicted to take the power-law form E ∼ tα. For

the theories that predict delocalization, the predicted subdiffusion exponent α also differs

significantly. Using the mean-field theory and argument based on the Chirikov resonance

overlapping criterion, Ref. [37] showed that the subdiffusion exponent is universally 0.4.

On the other hand, Ref. [38] used mean field theory and techniques of averaging and local

derivatives on logarithmic scales to show that the subdiffusion exponent is 1/3 for weak chaos

regime but 1/2 for the intermediate strong-chaos regime. Ref. [39] approached the problem

starting from coupled quantum kicked rotors, and then by mapping the infinite range coupled

QKR over an infinite range coupled interacting bosonic particles, they found the subdiffusion

exponent to be 0.6. Ref. [40] compared the results obtained from exact mean-field theory,

local momentum approximation (LMA), and phase averaging approximation (PAA), and

found that not only is the subdiffusion exponent not universal, but it can span over the

range of 0.25 − 1.0. For the interaction effect on Anderson transition, Ref. [41] predicts

that with the presence of interaction, the initially localized regime will be delocalized with
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a subdiffusion exponent of 0.4, while the initially delocalized regime will remain unaffected

[42].

Our work presented here shows the first experimental study of the interaction effect

on dynamical localization and Anderson transition. We found that interaction indeed de-

stroys dynamical localization. We probe the subdiffusion exponent for different interaction

strengths, kick strengths, and modulation strengths. Our results show that the delocalization

dynamics have exponent ranges over 0.3 − 1.0 with no obvious dependence on the different

experimental parameters. Our work will illuminate further detailed studies, both theoretical

and experimental, on the effect of interactions on the Anderson model.
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Chapter 3

OPTICAL LATTICE

Harmonic optical dipole traps (ODT) and sinusoidal optical lattices are the primary

optical potentials we use throughout the experiments described in this thesis. In this chapter,

we will discuss in detail the optical potential of these traps and the behavior of atoms confined

in them. We will first review the light shift of a 2-level atom in a far-detuned laser field and

the basics of the optical dipole trap that can be produced at the focus of such a laser field. We

will derive its optical potential and trapping frequencies. We then apply a similar derivation

for one and two-dimensional optical lattices and describe the behavior of ultracold atoms

confined therein. We will look particularly at the band structure of atoms in a periodic

potential and the strongly-interacting 1D gas, which is also known as the Tonks-Girardeau

gas. We will then examine the theory of Kapitza-Dirac (KD) diffraction of atoms in a pulsed

1D optical lattice to understand the transfer of amplitudes between different momentum

states during each kick of the quantum kick rotor.

3.1 AC Stark Shift

Atom trapping in optical dipole potentials requires far-detuned light. In this section, we will

review the principles of the AC Stark shift to lay the foundation for discussing such traps.

Here we will consider the atom-light interaction when atoms are placed in a light field with a

frequency far-detuned from resonance. The electric field of the light will induce an oscillating

electric dipole moment in the atoms, and the interaction between this dipole moment with

the electric field will shift the energy levels of the atoms.

Consider a 2-level atom placed in a far-detuned light field as illustrated in Fig. 3.1. States

|1⟩ and |2⟩ are separated by a frequency ω0, and the light field has frequency ω and detuning
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∆ = ω − ω0.

The interaction between the light field E0 cosωt and the induced dipole can be written

as

Hint = −exE0 cosωt = −exE0

2

(
eiωt + e−iωt

)
. (3.1)

The overall Hamiltonian H = H0 + Hint of the system in the semi-classical dressed-state

picture is then [43]

H = ℏ

 0 Ω/2

Ω/2 ∆

 (3.2)

where we have defined the Rabi frequency Ω as ℏΩ = −e⟨1|x|2⟩E0. Solving the Hamiltonian

we get eigenenergies ϵ± and eigenstates Φ±

ϵ± =
ℏ
2

(
∆±

√
∆2 + Ω2

)
(3.3)

Φ+ = sin θ|1⟩+ cos θ|2⟩ (3.4)

Φ− = cos θ|1⟩ − sin θ|2⟩ . (3.5)

where

sin 2θ =
Ω√

Ω2 +∆2
, cos 2θ =

∆√
Ω2 +∆2

. (3.6)

In the limit of large detuning (∆ ≫ Ω), we can simplify Eq. 3.3 and see that the light shift

experienced by each unperturbed state is

ℏδlight ≃
ℏΩ2

4∆
. (3.7)

Equation. 3.7 is also the dipole potential felt by the atoms in the light field. When expressed

in terms of intensity, Eq. 3.7 provides a quick estimate of the potential depth because we

can directly measure the optical power of a light beam in the lab.
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Figure 3.1: Two-level atom interacting with a light field. A two-level atom consists of state

|1⟩ and |2⟩ with resonance frequency ω0. The far-detuned light field has frequency ω and

detuning ∆ = ω − ω0.
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3.2 One-Dimensional Optical Dipole Trap

An optical dipole trap (ODT) is an essential tool in many AMO experiments. In essentially

all experiments, atoms are not cold enough to reach quantum degeneracy after the usual laser

cooling process in the magneto-optical trap (MOT). In this case, atoms are often transferred

into an ODT for evaporative cooling. An ODT can be simply set up by focusing a laser beam

onto the atoms. As mentioned before, the electric field will polarize the atoms and induce

an electric dipole moment in the atoms; these dipole moments in turn will get attracted by

the electric field and thus the atoms are trapped at the focus of the light beam.

We now derive the potential of an ODT and its trapping frequencies, and this will serve

as the basis of a similar derivation for optical lattices.

Figure 3.2: Gaussian beam. A Gaussian beam with beam waist w0 has a beam size of
√
2w0

at the Rayleigh range zR.

Consider a circular Gaussian beam (Fig. 3.2) with power P and intensity

I(x, y, z) =
2P

πw(z)2
e
− 2(x2+y2)

w(z)2 (3.8)

where the beam waist is w(z) = w0

√
1 + z2/z2R with value w0 at the origin and Rayleigh

range zR = πw2
0/λ. The dipole potential can be expressed as

V 1D
dip (x, y, z) = −α(λ)

2ϵ0c
I(x, y, z) = −α(λ)

2ϵ0c

2P

πw(z)2
e
− 2(x2+y2)

w(z)2 (3.9)

=
Vdip

1 + z2/z2R
e
− 2(x2+y2)

w(z)2 (3.10)
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where the potential depth is

Vdip = −α(λ)
2ϵ0c

2P

πw2
0

(3.11)

with polarizability α, laser wavelength λ, speed of light c, and vacuum permittivity ϵ0. The

polarizability of Yb in a 1064 nm laser, which is our ODT laser wavelength, is 3.7×10−37 m2s.

Writing the potential in a Taylor series under the conditions z ≪ zR and r2 = x2+ y2 ≪ w2
0,

we have

V 1D
dip (x, y, z) ≈ Vdip

[
1− 2r2

w2
0

−
(
z

zR

)2
]

(3.12)

Comparing this to a harmonic oscillator potential, we obtain the radial/transverse and axial

trap frequencies respectively as

ωr =

√
4Vdip
mw2

0

, ωz =

√
2Vdip
mz2R

(3.13)

Note that in the limit of large detuning, Eq. 3.11 can also be written as ℏΩ2/4∆ (Eq. 3.7),

which is the light shift experienced by the atoms.

When deciding on a laser wavelength for an ODT, one also has to consider the spontaneous

scattering rate of the atoms in the laser field, given by [43]

Rscatt =
Γ

2

s

1 + s+ (2∆/Γ)2)
≃ Γ

8

Γ2

∆2

I

Isat
(3.14)

where Γ is the linewidth of the transition, I is the intensity of the light field, Isat = ℏω3Γ
12πc2

is

the saturation intensity, and s = I/Isat. The last term is obtained using the large detuning

approximation. Combining Eq. 3.14 and Eq. 3.7, we get

Rscatt

Vdip/ℏ
=

Γ

∆
. (3.15)

From this, we can see that it is important to have a large detuning to reduce the spontaneous

scattering rate, but the laser intensity needs to be increased to compensate for the change in

the trap depth. From Eq. 3.13, it can also be shown that the aspect ratio of a single-beam

optical dipole trap is
ωr

ωz

=

√
2zR
w0

=

√
2πw0

λ
. (3.16)
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For our ODT, this is estimated to be 125 with w0 = 30 µm and λ = 1064 nm, which is

highly anisotropic. To have better control of the evaporative cooling at low trap depth, we

use a crossed-beam configuration for our ODT setup. We intersect the first ODT beam with

a second beam at some angle to provide additional confinement along the axial direction.

The readers are encouraged to refer to Richard Roy’s works [44, 45] for more details on the

ODT setup for our experiment.

3.3 One-Dimensional Optical Lattice

An optical lattice is a standing light wave that forms a periodic potential, and atoms can

be trapped at the antinodes of the standing wave for a red-detuned lattice. It can be set

up by interfering two counter-propagating lasers of the same polarization. Optical lattices

have been an excellent platform for simulating condensed matter physics because atoms can

be trapped in a crystalline structure and the systems are highly controllable. Compared

to a typical solid-state crystal, optical lattices allow experimentalists to study condensed

matter physics in an ultracold and defect-free environment. Tunneling and interactions can

also be controlled through different lattice parameters, and by using a different number of

laser beams in different configurations, one can construct different types of optical lattices

such as square lattices, triangular lattices, and hexagonal lattices of different dimensions.

In this section, we will consider a one-dimensional optical lattice that forms an array of 2D

pancake-like traps as illustrated in Fig. 3.3.

Consider two counter-propagating beams of linearly-polarized light with wavenumber kL

producing a standing wave with an electric field

E = E0 [cos(ωt− kLz) + cos(ωt+ kLz)] (3.17)

= 2E0 cos(kLz) cos(ωt) (3.18)

This means that the peak intensity of two counter-propagating beams forming an optical

lattice is four times that of a single beam. Specifically,

I1Dlat =
8P

πw(z)2
e
− 2r2

w(z)2 cos2 kLz = 4I1Ddip cos
2 kLz (3.19)
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Figure 3.3: One-dimensional optical lattice. A one-dimensional optical lattice is formed

by overlapping two linearly-polarized laser beams propagating in opposite directions. The

resulting optical potential is a stack of 2D pancake-like traps.

where Idip is the intensity of a single Gaussian beam, which is simply Eq. 3.8. The dipole

potential of the optical lattice is then

V 1D
lat (x, y, z) = −α(λ)

2ϵ0c
I(x, y, z) = −α(λ)

2ϵ0c

8P

πw(z)2
e
− 2r2

w(z)2 cos2 kLz

=
4Vdip

1 + z2/z2R
e
− 2r2

w(z)2 cos2 kLz

=
Vlat

1 + z2/z2R
e
− 2r2

w(z)2 cos2 kLz

(3.20)

where Vlat = 4Vdip. The peak lattice potential is four times that of the single-beam optical

dipole trap. After Taylor expanding the potential under the conditions z ≪ zR and r2 ≪ w2
0,

we get

V 1D
lat ≈ Vlat

[
1− 2r2

w2
0

−
(
z

zR

)2
] [

1− (kLz)
2
]

≈ Vlat

[
1− 2r2

w2
0

−
(

1

z2R
+ k2L

)
z2
]
,

and comparing this to a harmonic oscillator potential we get the trap frequencies to be

ωz =

√
2Vlat
m

(
1

z2R
+ k2L

)
≈
√

2Vlatk2L
m

, ωr =

√
4Vlat
mw2

0

. (3.21)

It is conventional to define the dimensionless lattice depth parameter s = Vlat/Erec where

Erec = ℏωrec =
ℏ2k2L
2m

is the recoil energy. The transverse and radial trap frequencies can then
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be expressed as

ωz = 2ωrec

√
s , ωr =

√
2λ

πw0

ωrec

√
s . (3.22)

3.3.1 Band structure

As in any periodic potential, the dispersion relation of atoms in an optical lattice is also

modified depending on the lattice depth. To understand the band structure of a periodic

potential, we have to solve the following Schrodinger equation [46]

− ℏ2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (3.23)

where V (x) = Vlat cos
2 kx. According to Bloch’s theorem,

ψ(n)
q (x) = eiqx/ℏu(n)q (x) (3.24)

u(n)q (x+ a) = u(n)q (x) (3.25)

where a = π/k = λ/2. Here we will refer to the new quantum number q as the quasi-

momentum and n as the band index. Plugging Eq. 3.25 into Eq. 3.23, the problem reduces

to solving the Hamiltonian [46][
(p+ q)2

2m
+ V (x)

]
u(n)q (x) = E(n)

q u(n)q (x). (3.26)

Because both the potential V (x) and functions u(n)q (x) are periodic with the same peri-

odicity a, we can write them in the form of Fourier sums

V (x) =
∑
r

Vre
i2rkx (3.27)

u(n)q (x) =
∑
l

c
(n,q)
l ei2lkx (3.28)

with some integers l and r. The kinetic and potential energy terms can then be written as

V (x)u(n)q (x) =
∑
l

∑
r

Vre
i2(r+l)kxc

(n,q)
l (3.29)

(p+ q)2

2m
u(n)q (x) =

∑
l

(2ℏkl + q)2

2m
c
(n,q)
l ei2lkx (3.30)



26

The optical lattice potential can also be written in terms of exponentials (for two counter-

propagating plane waves)

V (x) = Vlat cos
2 kx =

1

4
Vlat

(
e2ikx + e−2ikx + 2

)
. (3.31)

Putting all these together and comparing the same e2iklx terms, we can simplify the Hamil-

tonian further and see that only the diagonal and the first off-diagonal elements are nonzero∑
l

Hl,l′c
(n,q)
l = E(n)

q c
(n,q)
l (3.32)

Hl,l′ =


(2l + q/ℏk)2Er if l = l′

−Vlat/4 if |l − l′| = 1

0 otherwise.

(3.33)

We can solve this simplified Hamiltonian numerically and obtain its eigenfunctions and

eigenenergies. Fig. 3.4 shows the eigenenergies of the Hamiltonian for lattice depths solved

using Mathematica. The plot shows the band structure in the first Brillouin zone, and for

each q, there are infinitely many solutions with different discrete values n. This is the reason

the label n is called the band index and the entire spectrum of solutions is the band structure

of the system. As the lattice depth is increased, the different bands repel each other and

bandgaps are opened up. We can see from the plot that as the lattice depth is increased,

the bandgap increases while the bandwidth decreases.
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Figure 3.4: Band structure of atoms in a periodic potential plotted in the first Brillouin zone.

As the lattice depth is increased, the bandgap increases and the bandwidth decreases.
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3.4 Two-dimensional Optical Lattice

Figure 3.5: Two-dimensional lattice. A two-dimensional lattice is formed by two counter-

propagating light waves along two orthogonal directions. The resulting optical potential is

an array of 1D tubes.

A two-dimensional optical lattice can be set up by simply intersecting two one-dimensional

lattices at some angle. For our experiments, the two lattices are set up with a relative angle

of about 90 degrees to form an array of 1D tubes, as shown in Fig. 3.5. We will follow the

same method as before to derive the optical potential of a two-dimensional lattice and its

trapping frequencies.

Consider two pairs of counter-propagating beams, one along the x-axis and one along the

y-axis. This two-dimensional lattice will form an array of 1D tubes with the axial direction

along the z-axis.

I2Dlat (x, y, z) =
8P

πw(x)2
e
− 2(y2+z2)

w(x)2 cos2 kLx+
8P

πw(y)2
e
− 2(x2+z2)2

w(y)2 cos2 kLy (3.34)

where w(j) = wj

√
1 + j2/j2R with beam waist wj and Rayleigh range jR = πw2

j/λ for the

beam along the jth direction.
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Following the same procedure in Eq. 3.20, the two-dimensional lattice potential can then

be expressed as

V 2D
lat = −α(λ)

2ϵ0c
I2Dlat (x, y, z)

=
Vlat

1 + x2/x2R
e
− 2(y2+z2)

w2
x(1+x2/x2

R
) cos2 kLx+

Vlat
1 + y2/y2R

e
− 2(x2+z2)

w2
y(1+y2/y2

R
) cos2 kLy

≈ Vlat

[
2− 4

w2
z

z2 −
(

2

w2
x

+
1

x2R
+ k2L

)
x2 −

(
2

w2
y

+
1

y2R
+ k2L

)
y2
] (3.35)

The radial and axial trap frequencies are

ωj =

√
2Vlat
m

(
2

w2
j

+
1

j2R
+ k2L

)
≈
√

2Vlatk2L
m

= 2ωrec

√
s⊥ = ω⊥ (3.36)

ωz =

√
4Vlat
m

(
1

w2
x

+
1

w2
y

)
= 2

λ

πw̄
ωrec

√
s⊥ (3.37)

where 2/w̄2 = 1/w2
x + 1/w2

y. Note that in the experiment, whenever we mention the BEC is

loaded into a two-dimensional lattice of s⊥ = 90, it means that both the x and y lattices are

at s = 90, such that Vlat = V x
lat = V y

lat = 90Erec.

3.4.1 Trapped 1D gases

A two-dimensional optical lattice can trap the atoms in an array of 1D tubes. The 1D regime

is achieved if all of the relevant energies are lower than the radial trapping frequencies ω⊥ of

the tubes so that the dynamics are only along the axial direction of the tubes. In particular,

the condition

µ, kBT ≪ ℏω⊥ (3.38)

must be fulfilled, where µ is the chemical potential and T is the temperature of the atoms.

For a weakly interacting 1D Bose gas in a harmonic trap, the chemical potential is given by

[47]

µ = ℏωz

(
3N

2
√
2

asaz
a2⊥

)2/3

(3.39)
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where ωz is the axial trapping frequency, N is the atom number, as is the scattering length,

az =
√

ℏ/mωz and a⊥ =
√
ℏ/mω⊥ are the oscillator lengths in the axial and radial directions

respectively.

The interaction between atoms will also be modified when trapped in a 1D geometry.

Strongly interacting one-dimensional bosons will repel each other and become impenetrable,

which is also known as a Tonks-Girardeau gas. If the radial extension of the wavefunction

is much larger than the characteristic radius of the interatomic potential, the 1D coupling

constant is [47, 48]

g1D = − 2ℏ2

ma1D
(3.40)

with

a1D = −a
2
⊥
as

(3.41)

where a1D is the 1D scattering length and m is the atomic mass. An important parameter

of a 1D gas is the ratio of the kinetic energy to the interaction energy

γ =
Eint

Ekin

=
g1Dn1D

ℏ2n2
1D/m

=
mg1D
ℏ2n1D

. (3.42)

For a high-density 1D bosonic gas with γ ≪ 1, the atoms are weakly interacting and can

be described by the mean-field theory. For low-density bosonic gas with γ ≫ 1, the system

becomes a Tonks-Girardeau gas where atoms acquire fermionic properties because of the

strong repulsive interaction. It is challenging to experimentally realize the Tonks-Girardeau

gas with a large γ. Although the interaction coupling constant, and thus the scattering

length, can be tuned using a Feshbach resonance, one must ensure that the 1D conditions

are still satisfied because the chemical potential also depends on the scattering length. The

requirement of a low-density gas also presents difficulty in measurement due to a lower

signal-to-noise ratio. Experimentally, TG gas with γ = 5.7 has been realized by trapping

a very low-density gas in a blue-detuned two-dimensional lattice [49]. By adding a spatial

modulation along the tubes with another lattice, TG gases with γ up to 200 has also been

achieved [50].
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3.5 Pulsed-Optical Lattice: Kapitza-Dirac Diffraction

In this section, we will discuss the theory of Kapitza-Dirac (KD) diffraction, which is an

important part of the quantum kicked rotor. Kapitza-Dirac diffraction governs the transfer

of amplitudes of the atoms to different momentum lattice sites during every kick of the QKR.

The Kapitza-Dirac effect was first predicted by Paul Dirac and Pytor Kapitsa in 1933

by considering the stimulated Compton scattering of an electron beam [51]. KD diffraction

is part of the bigger topic of atom optics, where an ultracold atom cloud is treated as an

optical beam and the role of light and matter are reversed. The phase coherence of ultracold

quantum degenerate gases allows us to treat it as some coherent optical beam and the atoms

are often coherently manipulated with a standing light wave playing the role of matter. This

also means that when a BEC interacts with itself or a standing light wave, it will exhibit

phenomena such as diffraction and interference. This method of coherently manipulating the

momentum states of atoms in atom optics is important in many applications such as atom

interferometers, atom kicked rotors, and atom lithography.

When a BEC is diffracted by the diffraction grating formed by a standing light wave,

two different scenarios can happen depending on whether the different momentum states

are resonantly coupled. In Bragg diffraction, the different momentum states are resonantly

coupled by the light and the atoms can oscillate between the different states. If the different

momenta are not resonantly coupled, diffraction can still occur if the interaction time is

short enough. This is also called the Kapitza-Dirac diffraction. Mathematically, Kapitza-

Dirac diffraction is within the limit of the Raman-Nath approximation, in which the atomic

motion during the short interaction time is negligible compared to the wavelength of the

standing light wave. The constraint on the interaction time tp can then be expressed as tp

has to be much smaller than the inverse recoil frequency 1/ωrec.

Next, we will follow the treatment in Ref. [52] to derive the effect of the KD diffraction

on the atoms. As we have seen in the section on quantum kicked rotor and one-dimensional
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optical lattice, the unitary operator of the standing wave interaction is

U(z, t) =
Vlat
2
f 2(t) cos 2kLz =

4Vdip
2

f 2(t) cos 2kLz

=
ℏΩ2

2∆
f 2(t) cos 2kLz

(3.43)

where ∆ = ωL −ω0 is the detuning of the standing light wave frequency ωL from the atomic

resonance ω0, Ω is the resonant single-photon Rabi frequency of this transition, and f(t)

is the temporal envelope of the electric field. Note that we neglected the kinetic energy

term since we are considering the Kapitza-Dirac limit or the Raman-Nath approximation.

Consider the initial state of an atom to be |g, 0⟩, i.e. it is in the ground energy level and

zero momentum state. The atomic wavefunction after the interaction or after a single KD

pulse is given by

|ψ⟩ = e−
i
ℏ
∫
dt′U(z,t′)|g, 0⟩

= e−
i

2∆
Ω2tp cos 2kLz|g, 0⟩

(3.44)

where tp =
∫
dt′f 2(t′) and the integral is over the interaction duration. Using the identity of

the Bessel functions eiα cos(β) =
∑∞

n=−∞ inJn(α)e
inβ, we can then write the wavefunction as

|ψ⟩ =
∞∑

n=−∞

inJn

(
Ω2

2∆
tp

)
ei2nkLz|g, 0⟩

=
∞∑

n=−∞

inJn

(
Ω2

2∆
tp

)
|g, 2nℏkL⟩.

(3.45)

The final state of the atoms is a combination of different multiples of 2ℏkL momentum states.

The interaction of an atom in a standing wave or optical lattice can often be thought of as

the atom absorbing a photon from one lattice beam and emitting a photon into the other

lattice beam, resulting in a net 2ℏkL change of momentum.

The probability of the atoms populating the 2nℏkL state after the diffraction is then

Pn = [Jn(ϕkick)]
2 with n = 0,±1,±2, . . . (3.46)

where Jn is the nth order Bessel functions and

ϕkick =
Ω2tp
2∆

=
Vlattp
2ℏ

(3.47)
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is the pulse area. Here, we use the label ϕkick instead of a simpler symbol for several reasons.

First, the KD diffraction is applied in the context of the quantum kicked rotor for our work,

so it may be more straightforward to think of this as the pulse area for every kick we apply

to our atom cloud. Second, since the QKR operator comprises a kick term and an evolution

term, the term ϕkick can be seen as the counterpart of the phase ϕfree accumulated by the

atoms during the free evolution time. It is also more convenient to express it in terms of

lattice depth Vlat instead of Rabi frequency Ω for lattice depth calibration, which will be

discussed later.
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Chapter 4

EXPERIMENTAL SETUP

The optical lattice is a new addition to our experimental setup for the work presented

in this thesis. This chapter discusses the construction of the three-dimensional lattice and

its depth calibration. The first two sections review the properties of ytterbium and the

fundamental physics of laser cooling and atom trapping. We then present the details of the

lattice laser setup, including the design decisions of the optics layout and the alignment of

the lattice beam to the atoms. Because of the high-power IR laser involved, we will provide

some guides on using the lattice and highlight the precautions needed. We then describe

how we use Kapitza-Dirac diffraction to calibrate the lattice depth. Finally, we will show our

observation of the superfluid-to-Mott insulator transition in the three-dimensional lattice.

4.1 Properties of Ytterbium

Ytterbium (Yb) is a lanthanide element with atomic number 70 ( [Xe]4f 146s2 ). It is an

alkaline-earth-like element with two valence electrons and has two suitable transitions (1S0 →
1P1 and 1S0 → 3P1) for laser cooling. It has several abundant bosonic and fermionic isotopes

for studying different types of physics. We use the bosonic isotope 174Yb for all the work

presented in this thesis because its large natural abundance (32%) and convenient scattering

length (5.55 nm) allow BECs with small initial momentum for the quantum kicked rotor

experiment.
174Yb has a nuclear spin of I = 0 and a ground state electronic spin of S = 0. The

ground state is insensitive to the magnetic field, hence making it an appealing choice for

precision measurements [53]. Fig. 4.1 shows the energy level structure of 174Yb. The two

main transitions we use are the 1S0 → 1P1 and 1S0 → 3P1 transitions. The singlet transition



35

(1S0 → 1P1) is at 399 nm and has a broad linewidth of 29 MHz. It is utilized for Zeeman

slowing and absorption imaging. The triplet inter-combination transition (1S0 → 3P1) is at

556 nm and has a narrow linewidth of 180 kHz that we utilize to load atoms into a magneto-

optical trap (MOT) directly. The narrow linewidth allows a lower Doppler temperature for

the atoms in the MOT. We modulate the

Figs. 4.2 and 4.3 show our laser setup for the 399 nm and 556 nm lasers. Both lasers are

derived from the Toptica-SHG Pro diode lasers and are frequency-stabilized using saturation

absorption spectroscopy. Each of the different beams in the setup is sent into an AOM that

controls the frequency and amplitude of the lasers. Most of our AOM setups are in a double-

pass cat’s eye configuration that allows a larger frequency tuning range when the light is

sent to the main experiment via optical fibers.
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Figure 4.1: Energy level structure of 174Yb. The relevant energy levels of 174Yb used in

this work are shown, and the primary transitions are indicated by the solid arrows. Note

that the energy level separations are not to scale and the level energies for 3PJ levels in the

parentheses have units of cm−1. The 1S0 → 1P1 transition is used for Zeeman slowing and

absorption imaging while the 1S0 → 3P1 transition is used for magneto-optical trapping. The

transition wavelength and linewidth are labeled next to the arrow.
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Toptica
TA-SHG PRO

overall
-85 MHz

λ/2

λ/2

λ/2

λ/2

λ/4

λ/4

λ/2
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+2(220) MHz
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vertical imaging 
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side imaging 
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Photodiode

Figure 4.2: A schematic of the 399 nm laser setup. The output of the Toptica laser is

about 220 mW and is divided into four beams − pump and probe beams for the saturation

absorption spectroscopy, slowing beam, and imaging beam. The slowing beam is from the

zeroth-order diffracted beam of the overall AOM, so its frequency can only be changed

through the settings of the spectroscopy setup. A hollow cathode lamp (HCL) is used for

saturation absorption spectroscopy. The imaging beam can be coupled into either the side

or vertical imaging fiber for different experiments.



38

Toptica
TA-SHG PRO200 mm
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λ/4

λ/4

λ/2

λ/2

λ/2

λ/2
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-200 MHz

λ/2
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Figure 4.3: A schematic of the 556 nm laser setup. The output of the Toptica laser is

about 500 mW and is divided into three beams − pump and probe beams for the saturation

absorption spectroscopy and the MOT beam. The pump beam and the MOT beam are sent

into an AOM respectively to shift the frequency of each beam. The MOT beam is sent to

the main experiment through a fiber. The light reflected off the first waveplate is used for

monitoring the wavelength.
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4.2 Laser Cooling and Trapping of Yb

In this section, we will summarize the basic principles of laser cooling and atom trapping.

We will also outline how these techniques are implemented in our experimental apparatus.

The reader is referred to Foot’s Atomic Physics [43] for more details on the physics of laser

cooling and trapping, and to the thesis by Anders Hansen [54] for details on our experimental

setup.

4.2.1 Atom source and Zeeman slower

Our vacuum chamber consists of several sections: the Yb and Li ovens, Zeeman slowers, and

the main chamber, as shown in Fig. 4.4. The metals are heated up to about 450 degrees

Celsius in the oven creating an effusive atomic beam that travels down the Zeeman slower

to the main vacuum chamber maintained at a pressure of ∼ 10−11 Torr. As the hot vapor

travels down the Zeeman slower, the atoms are slowed down by the radiation force from the

slower beam propagating in the opposite direction. The resonance condition for the slowing

process is maintained by the magnetic field produced by the solenoid of the Zeeman slower

to compensate for the changing Doppler shift as the atoms are slowed down, which can be

written as

ω0 +
∆µB(z)

ℏ
= ω + kv . (4.1)

Here, ω0 is the bare atomic resonance, ω is the slower laser frequency, v is the velocity of the

atoms, and ∆µ is the change in the magnetic moment due to the laser excitation. For our

setup, the magnetic field B(z) of the Zeeman slower is increasing towards the main chamber

and the slower light targets the σ− transition, giving ∆µ = −µB. The frequency of the

slower light is optimized to minimize the effective detuning δeff along the Zeeman slower

δeff = δlaser + kv − ∆µB(z)

ℏ
. (4.2)

Typically, the laser frequency and field are also chosen such that the atom velocity is nonzero

at the end of the slower so that the atoms can still travel to the center of a vacuum chamber
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for further cooling and trapping by a magneto-optical trap (MOT). Our experimental setup

also has a slower compensation coil on the opposite side of the Zeeman slower to cancel the

fringe field from the slower coils at the center of the MOT.

4.2.2 Magneto-Optical Trap (MOT)

Once the Zeeman slowed atoms arrive in the main chamber, they are trapped by the

magneto-optical trap (MOT). A MOT consists of three pairs of counter-propagating beams of

circularly-polarized light and a magnetic field gradient produced by a pair of anti-Helmholtz

coils. The velocity of the atoms at the end of the Zeeman slower coil should be optimized

such that the atoms are able to travel to the center of the MOT but still be slow enough to

be captured by the MOT.

For a given MOT beam with diameter D, if we assume that the atoms scatter photons

at the maximum rate Γ/2 across the entire beam diameter, the capture velocity is then

estimated to be

vcap ≃
√

2FmaxD

m
(4.3)

where Fmax = ℏkΓ/2 is the maximum radiation force experienced by the atoms, m is the

atomic mass, and k = 2π/λ is the wavenumber of the MOT light. For our MOT with

λ = 556nm, we estimate vcap ≃ 3 m/s for a beam diameter of D ∼ 10 mm. To compensate

for this small capture velocity, we add a frequency sweep of the MOT beams of 10MHz

peak-to-peak.

The opposite scattering forces keep the atoms always at the center of the MOT. The

force on the atoms along a direction say z-axis, is given by [43]

FMOT = F σ+

scatt(ω − kv − (ω0 + βz))− F σ−

scatt(ω + kv − (ω0 − βz)) (4.4)

≃ −2
δF

δω
kv + 2

δF

δω
βz (4.5)

= −2
δF

δω
(kv + βz) (4.6)

= −αv − αβ

k
z (4.7)



41

Figure 4.4: A schematic of the vacuum chambers. Our machine is constructed to trap both

Yb and Li. Atoms are heated and vaporized in each oven, and then slowed down in a Zeeman

slower together with a counter-propagating slower beam. Once the atoms are in the main

chamber, they are trapped in a magneto-optical trap (MOT) before they are cooled further

for our experiments. A physics textbook is shown for scale.
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where

βz =
gµB

ℏ
dB

dz
z (4.8)

is the Zeeman shift at position z due to the nonzero magnetic field. Eq. 4.7 shows that atoms

in a MOT behave as a damped harmonic oscillator with damping coefficient α and spring

constant αβ/k. Whenever an atom is displaced from the center of the trap, the imbalanced

scattering forces push the atom back.

Once the atoms are in the MOT (Fig. 4.5), we further cool and compress the MOT into

a compressed MOT (CMOT) by simultaneously ramping up the magnetic field gradient and

ramping down the detuning and the intensity of the MOT light. This is to increase the

phase space density of the atom cloud and to allow more atoms to be loaded into the optical

dipole trap. For our experiment, we typically have about 1× 108 atoms in a CMOT with a

temperature of 30 µK using less than 4 seconds of load time, as shown in Fig. 4.6.
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Figure 4.5: A photo of Yb MOT. A green blob of Yb MOT is floating in the vacuum chamber.

The green fluorescence is from the 1S0 → 3P1 MOT transition.
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Figure 4.6: Yb CMOT atom number vs load time measured on Jan 26, 2020.
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4.2.3 Optical Dipole Trap (ODT)

To cool the Yb atoms down to degeneracy, we need to load the atoms into an optical dipole

trap (ODT) for evaporative cooling. As already explained in the previous chapter, an optical

dipole trap is set up by illuminating the atoms with a tightly focused laser. The electric field

of the light induces a dipole moment on the atoms, and these dipole moments are then

attracted to the focus of the red-detuned laser beam, where the electric field is the strongest.

The potential depth of the ODT is given by

Vdipole = −αI = − ℏΓ2

8Isat

(
1

ω0 − ωL

+
1

ω0 + ωL

)
I (4.9)

where α is the polarizability of atoms, ωL is the ODT laser frequency, ω0 is the resonant

frequency, Γ is the linewidth of the transition, Isat is the saturation intensity, and I is the

intensity of the laser. Our ODT laser has a wavelength of 1064 nm and a maximum power of

about 50W. It is set up in a crossed-beam configuration: after the light is tightly-focused into

the chamber, it is recycled and refocused into the chamber again through another viewport,

with the two beams intersecting at an angle of about 64◦. We also modulate the center

position of the ODT beam, which we colloquially refer to as "painting", to increase the trap

volume and thus the evaporation rate at low depths. The readers can refer to Richard Roy’s

works [44, 45] for more details on the setup.

We typically trap about 1.2×107 Yb atoms in the ODT at about 20 µK with the maximum

laser power (45 W). We then cool the atoms evaporatively by lowering the laser power and

painting to spill the hottest atoms and let the remaining atoms rethermalize. This process

is repeated continuously and smoothly until quantum degeneracy is reached. We stabilize

the intensity of our ODT laser through an AOM and two feedback photodiodes − one for

coarse feedback used at high laser power, and one for fine feedback to allow more precise

control at low laser power where the delicate BEC is obtained. During evaporative cooling,

we ramp down the laser power exponentially in two stages (due to the different gain settings

on the two photodiodes), and the entire process takes about 10 seconds. We typically have

about 2.3× 105 atoms in a Yb BEC with a lifetime of more than 5 seconds. Fig. 4.7 shows
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the time-of-flight (ToF) absorption images of the Yb atom cloud at different ODT depths.

At high trap depth, the momentum of the thermal cloud has a Gaussian distribution after

the ToF, and as quantum degeneracy is approached, a bimodal distribution can be seen.

When the atoms are fully degenerate, the momentum of the BEC has a pure Thomas-Fermi

distribution [43].

Figure 4.7: Time-of-flight (ToF) absorption images of the Yb atom cloud at different ODT

depths and the corresponding momentum distribution. During the evaporation process, the

hot atoms are spilled out and the rest of the atoms rethermalize to a lower temperature. (a)

The momentum of the thermal cloud shows a Gaussian distribution. (b) The momentum

has a bimodal distribution near quantum degeneracy. (c) The fully degenerate BEC shows

a pure Thomas-Fermi distribution.

For the experiments presented in this thesis, once we obtain the BEC, we load it into a

two-dimensional lattice to control the interactions between the atoms. We then carry out

the kicked rotor experiments by exposing the atoms to a periodically-pulsed optical lattice

along the weak (third) axis.
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4.2.4 Absorption Imaging

Once the atoms are manipulated in the ODT or the optical lattice, we snap off all the

trapping potentials and let the atom cloud expand in the vacuum. After some time-of-flight

(ToF), we probe the atoms by passing resonant light through the atoms onto a CCD camera.

The atoms absorb part of the light and cast a shadow onto the camera. By analyzing the

spatial and momentum distribution of the atoms after the ToF, we can measure quantities

like atom number and temperature of the atom cloud. We have a side imaging and a vertical

imaging setup to probe the atoms from different directions. We use side imaging for daily

optimization of the atom number and vertical imaging for most of the quantum kicked rotor

experiments.
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4.3 Design and Construction of the Three-Dimensional Optical Lattice

In recent years, ultracold atoms in optical lattices have proven to be an effective tool

for quantum simulation of many-body systems [11, 55, 56], quantum computation [57],

and precision measurement [58]. We built a three-dimensional optical lattice for the work

presented in this thesis − one dimension for the kicks, and the other two forming 1D tubes

to control the interactions of the atoms. In this section, we will describe the full details of

the optical lattice setup including how the design decisions were made and implemented.

Our lattice laser is derived from a homebuilt external cavity diode laser (ECDL). Fig.

4.8 shows a schematic of the ECDL setup and Fig. 4.9 shows a photo of the actual

implementation. The homebuilt ECDL is controlled by Thorlabs current and temperature

controllers. With settings of 11 kΩ on the thermistor and 365 mA on the current, the diode

typically outputs about 100 mW of light with a wavelength of 1073 nm. Figure 4.10 shows

the characterization of the laser power for different diode currents. We optimize the optical

feedback of the laser diode and measure the lasing threshold current of the diode to be around

20 mA. The light from the ECDL is shaped and collimated using some cylindrical lenses and

then sent through an EOT optical isolator to prevent back-reflected light from damaging

the laser diode. A small portion of the light is sent to a wavemeter for monitoring the

wavelength of the light, and the rest of the light (about 80 mW) is directed to a commercial

fiber amplifier (Nufern NUA-1064-PD-0050-D0) through a polarization-maintaining optical

fiber, as shown in Fig. 4.11. The Nufern amplifier is capable of amplifying the seed light

up to 50 W, and is water-cooled to prevent it from heating up at a high power setting. The

power setting can be controlled using the Nufern software, as shown in Fig. 4.12. As with

any laser amplifier, it is a good practice to ensure that the amplifier is injected with a seed

beam when it is turned on, to prevent the amplifier from dumping all the power on itself

and breaking down.
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Figure 4.8: A schematic of the source of the lattice laser. The source light is from a homebuilt

ECDL with a wavelength of about 1073 nm, and the beam is collimated using some lenses.

A part of the beam is sent to the wavemeter for monitoring and the rest is sent to the Nufern

amplifier.
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Figure 4.9: A photo of the master laser for the optical lattice. The light is derived from a

homebuilt ECDL and sent to the Nufern amplifier through a fiber.
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Figure 4.10: Laser power versus diode current measurement of the lattice master laser. The

lasing threshold is about 20 mA.
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Figure 4.11: A photo of the Nufern amplifier and the optics at its output.

Figure 4.12: Graphical user interface (GUI) of the Nufern amplifier control software.
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Below are the steps to turn on the Nufern amplifier:

1. Turn on seed laser.

2. Open the water valve and make sure the water is going through the amplifier cooling

circuit.

3. Pull the red button.

4. Open up the Nufern control software on the computer. The GUI should display "NOT

READY". Make sure the power control setting is at 0%.

5. Turn the key to the "fire" position. The GUI should now display "READY".

6. Measure the power at the output of the amplifier and optimize the fiber coupling of the

seed light into the amplifier. It should read at least 1 mW, below which the amplifier

will not work. Make sure you remove the power meter once this step is done.

7. The GUI also displays the power of the seed light detected, which should have a similar

value (at least 1 mW). Also, check the temperature reading displayed in the GUI and

make sure the amplifier is not heating up.

8. Click the "ENABLE" button. You can now turn up the power control setting in the

GUI. You should start from a low power setting (about 10%) and make sure nothing

is burning in the beam path before going to a higher power setting.

To turn off the amplifier, simply follow the steps above in reverse.

Figure 4.13 and 4.14 show a schematic and a photo of the optics layout after the Nufern

amplifier. The output of the Nufern amplifier is collimated and shaped using a telescope,

and as a safety measure, we placed a lens tube around the focus of the light in between the

telescope. The light is then sent through a high-power isolator (Thorlabs IO-5-1069-HP),

followed by some mirrors and lenses. Figure 4.15 shows the power measured at different

locations after the amplifier as the power control setting of the amplifier is turned up. The

laser output of the amplifier can go up to about 55 W and the efficiency of the isolator is

more than 80%. The steep drop in the efficiency above 80% power control setting is likely

due to the bad spatial mode of the output light at the high power. Note that the quoted

maximum output of the amplifier is 50 W. We typically used a 70% power control setting
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for the work presented in this thesis.

After the isolator, some leaked light through one of the IR mirrors is coupled into a

Fabry-Perot interferometer (Thorlabs SA200-8B) for monitoring the frequency mode of the

laser. The light is then divided using TFPNs (CVI TFPN-1064-PW-1025-UV) into three

beams, one for each axis of the three-dimensional optical lattice. Along each lattice arm, the

light is sent through an AOM, followed by a TFPN to clean up the polarization, before it is

coupled into a polarization-maintaining fiber (Thorlabs PM980-XP) that directs the light to

the vacuum chamber.

The frequency of each of the AOMs is separated by 40 MHz to prevent interference

between the three lattices. The AOMs for lattice 2 and lattice 3 are driven and controlled

by our usual rf driver and circuit. Lattice 2 and 3 are also intensity stabilized to below

2% peak-to-peak noise level, with the error signal fed to the corresponding AOMs. The

rf control circuit for the lattice-1 AOM is slightly different. Its rf source is from a typical

MiniCircuit voltage-controlled oscillator but the amplitude and switch are controlled by an

IQ modulator (ADL5390-EVALZ), which allows a fast switching time and a quick power

response that we need for the kick pulses. While setting up the lattice laser, we noticed

that the thermal lensing effect caused by the high-power laser can affect the alignment of

the optics quite significantly. Particularly, to prevent the fiber from being damaged, we

optimized the position of the aspheric lens for fiber coupling at an intermediate power so

that the actual fiber coupling efficiency at high power is not too low.

After the lattice light source is set up and prepared, we set up the three-dimensional

optical lattices around the vacuum chamber. A typical optical lattice setup usually consists

of a pair of lenses that focus the light into the chamber and collimate it after the chamber and

retro-reflecting mirror. The design and construction of the optical lattice is a challenging

problem for us due to the crowded space around the vacuum chamber. We also had to

consider how each lattice arm is combined with the existing beams, particularly the MOT

and ODT beams. With the laser power available, we aimed for a beam waist of 100 µm for

each lattice beam. Once we had a rough layout of the optical paths, we estimated the path
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Figure 4.13: Optics layout of each lattice beam on the lattice table. The output of the

Nufern amplifier is collimated and sent through an optical isolator. The beam is then divided

into three paths, one for each lattice, using TFPNs and waveplates. Each lattice beams is

sent through an AOM and then fibered over to the main experiment table. The leaked

light through one of the IR mirrors is sent to a Fabry-Perot interferometer to monitor the

frequency mode of the light.
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Figure 4.14: A photo of the lattice optics setup after the amplifier. The light is divided using

TFPNs into three beams, one for each lattice arm.
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length and decided on the lenses needed to achieve the desired beam waist.

Figure 4.16: Image of the lattice-3 beam at the fiber output. The collimating aspheric lens

F260APC-1064 has a quoted beam diameter of 3.37 mm and we measured 3.33 mm.

We chose the collimating aspheric lens at the fiber output carefully to get the right initial

beam size. We imaged the beam at the fiber output to verify the beam size and also to

check the spatial mode of the beam. Figure 4.16 shows the image of the lattice-3 beam at

its fiber output, and the measured 1/e2 diameter is 3.33 mm, close to the quoted value of

3.37 mm. The collimator aspheric lenses we use for lattice 1, 2, and 3 are TC12APC-1064

(quoted beam diameter of 2.70 mm), F220APC-1064 (2.4 mm), and F260APC-1064 (3.37

mm), respectively.

After the light out of the fiber is collimated, it is directed along the designed path through

several optical components to form an optical lattice. Figure 4.17 shows the schematic of

the optics setup of lattice 1 and 2 placed on the breadboards around the vacuum chamber.

The output of lattice 1 (z-axis) is sent through a half waveplate and a TFPN to clean up

its polarization. The light reflected off the half waveplate is directed to a fast photodiode



57

(Thorlabs PDA20CS2) for monitoring the kick pulses. The beam is then focused by a lens

with a 300 mm focal length into the chamber after it is combined with the MOT beam using

a short-wave-pass dichroic mirror. The tiny portion of lattice light that leaks through the

dichroic mirror can be used as another monitoring beam but we found that its power is too

low for practical purposes. After the chamber, the MOT and lattice beams are separated

by another dichroic mirror, and the lattice beam goes through another lens and is then

retro-reflected by a mirror.

The lattice-2 (y-axis) beam also goes through a half waveplate and a TFPN for polar-

ization cleaning. A tiny portion of the output is reflected by a pellicle into a photodiode

(Thorlabs PDA30B2) for intensity feedback. A pellicle, instead of a waveplate, is used

because its reflection is insensitive to the polarization fluctuation that can cause intensity

fluctuation. The TFPN also serves the purpose of overlapping the lattice-2 beam with the

ODT beam. The two beams are then sent through a focusing lens and combined with the

MOT beam using a dichroic mirror. The optics setup after the vacuum chamber is similar to

that of the lattice-1 except the additional TFPN used to separate the ODT and the lattice

beams. Figure 4.18 shows the actual optics layout of lattice 1 and lattice 2 around the

vacuum chamber.

Figure 4.19 shows the schematic of the optics setup of lattice-3 (x-axis), which has a

vertical configuration. Similarly, the lattice beam goes through the polarization cleaning

optics and a focusing lens. The lattice beam is then combined with the MOT and imaging

beams using a dichroic mirror and reflected upwards into the vacuum chamber. It is then

sent through a lens, a dichroic mirror, and retro-reflected by a mirror. The dichroic mirror

separates the lattice and the imaging beams, and a flipper mirror is used to direct the MOT

light to its path during the atom loading. The leaked light through the dichroic mirror is

sent to a feedback photodiode (Thorlabs PDA30B2).

Aligning the lattice beam can be challenging due to the small beam waist (∼ 100µm)

and atom cloud (∼ 20µm). To find the position of the atom cloud, we typically overlap a

temporary imaging beam along the lattice beam path and take an image of the atom cloud.
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Figure 4.17: A simplified schematic of the optics near the vacuum chamber (Top view)

showing how the lattice beams are integrated into our setup. Each of the lattice 1 and

lattice 2 beams is sent through a TFPN to clean up its polarization before being combined

with the MOT beam along that direction through a dichroic mirror (DM). Part of the light

at the fiber output is sent into a photodiode for monitoring or intensity stabilization. Each

lattice beam is focused into the chamber using a focusing lens and then retroflected. The

lattice 2 beam is also overlapped with the ODT beam. The two lattice beams intersect at a

right angle.
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Figure 4.18: A photo of the optics layout of lattice 1 and lattice 2.

During this process, the lattice lens after the vacuum chamber is used as a collecting lens

and the retro-reflecting mirror is replaced by a focusing lens and a Mako camera. Once an

image is taken, the lattice beam is then aligned to the atom position on the camera. Since

lattice-2 also shares the same light path with the ODT beam, the alignment can also be

done by overlapping them together on the camera without having to image the atom cloud.

Figure 4.20 shows an image of the ODT beam and the lattice-2 beam on the Mako camera.

The ODT beam should remain untouched and the lattice-2 beam can be easily walked to

overlap with the ODT beam.

The fine alignment of the lattice forward beam has to be done by observing the response

of the atom number using the usual imaging setup while walking the pointing of the lattice
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Figure 4.19: A simplified schematic of the lattice 3 (x-axis) setup. The output of the fiber is

sent through a TFPN to clean up the polarization. After being sent through a focusing lens,

the beam is then reflected upwards from the main table into the vacuum chamber through

a dichroic mirror (DM) which also combines the beam with the vertical MOT beam. The

lattice beam is then retro-reflected using a mirror after the vacuum chamber. A tiny portion

of the light leaked through the mirrors after the chamber and is sent to a photodiode for

intensity stabilization.
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Figure 4.20: An image of the ODT beam and the lattice-2 beam at the same focused position.

The ODT beam looks elliptical because its center position is modulated ("painting"). This

image was taken using the Mako camera on March 28, 2020.

beam. To obtain a large signal of the effect from the lattice beam, we turn on the lattice

light to high power (about 3 W) during evaporation and observe the response of the BEC.

Figure 4.21 shows how the lattice-2 forward beam increases the atom number and the atom

temperature at the end of the evaporation. Without the lattice-2 light, we obtain the usual

pure BEC. When we turn on the lattice-2 light during evaporation, we trap twice as many

atoms at the end of the evaporation because of the additional optical potential from the

lattice beam, and the atoms are also hotter. These effects are also used to optimize the

position of the focusing lens.

Once the focus position and the pointing of the forward lattice beam are optimized, the

retro-reflecting mirror is installed to complete the lattice. The retro-reflected light is coupled

back into the lattice fiber itself, and the coupling is optimized by walking the retro-reflecting

mirror, the dichroic mirror, and the position of the lens after the chamber. This ensures that

the retro-reflected light is refocused onto the atoms. With the optical lattice completely set

up, we can expect to observe Kapitza-Dirac diffraction if we apply a short pulse of lattice

light to the atoms. Figure 4.22 shows some time-of-flight absorption images of the atoms

diffracted from the lattice grating. We can see that the BEC is diffracted into many orders

of momentum with different populations. This diffraction can also happen in two dimensions
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if we pulse on two optical lattices simultaneously.

When the lattice setup was completed, we encountered an interesting problem with the

lattice power supported by the optical fibers. We noticed that when the lattice light is retro-

reflected and recoupled into the fiber, the maximum power of the fiber output drops from

about 4 W to 1.5 W. We attribute this to the stimulated Brillouin scattering effect of the

optical fiber. The two counter-propagating light waves generate a traveling refractive index

grating within the fiber and effectively increase the reflection of the light waves and reduce

the power transmitted [59]. All of our lattice fibers have APC-APC connectors to reduce the

reflection caused by the inner surface of the fiber head, but this does not solve the problem

of lower fiber output because there are still two counter-propagating waves within the fiber.

However, we are not limited by the problem for the QKR experiment because we do not need

more than 1.5 W of lattice light in each dimension. In the future, this problem can be fixed

by adding an optical isolator at the output of the fiber to prevent the retro-reflected light

from going back into the fiber. Another approach is to slightly misalign the retro-reflected

light meanwhile ensuring that the light is still hitting the atoms and that the misaligned

beam does not damage the fiber head.
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Figure 4.21: Absorption images of the atoms showing the effect of the lattice-2 forward

beam. The images above are taken on March 28, 2020, using the Andor camera in the

vertical imaging configuration. (a) Without the lattice-2 light, the image shows the typical

BEC at the end of the evaporation. (b) When 3.5 W of lattice-2 light is kept on during

the evaporation process, twice as many atoms are trapped because of the additional optical

potential. We used this response to optimize the fine alignment of the forward lattice beam

to the atom cloud.
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Figure 4.22: Time-of-flight absorption images of the diffracted atoms. The BEC can be

diffracted in one dimension (left) and two dimensions (right) after a short pulse of lattice

light is applied.
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4.4 Lattice Depth Calibration

Once the optical lattices are set up and aligned to the atoms, we have to calibrate their

depths so that we know the relationship between the laser power and the lattice depth. We

calibrate our lattice depths using Kapitza-Dirac diffraction by applying a single pulse of the

lattice light to the BEC and measuring the population of the atoms in each momentum

order. As discussed in the previous chapter, the fractional population of the atoms in nth

order is given by Eq. 3.46,

Pn = [Jn(ϕkick)]
2 with n = 0,±1,±2, . . .

where Jn is the nth order Bessel function and ϕkick =
Vlattp
2ℏ is the pulse area with pulse width

tp, for a square pulse.

Figure 4.23 shows the depth calibration data of the three-dimensional lattice. We measure

the fractional population of the atoms in each momentum order as we vary the lattice laser

power. We then fit some Bessel functions [Jn(βP )]
2 to the data, where P is the laser power

and β is the variable to be fitted. From the fit, we can extract the beam waist of the lattice

using equation 3.47 and calculate the power-to-depth conversion. Table 4.1 summarizes the

measured beam waists and the power-to-depth conversions of the three optical lattices. For

everyday operations, we do a one-point calibration check; if the depth calibration drifted too

far, we typically walk the fiber mount and the retro-reflecting mirror to get it back.

Lattice beams Beam waist (µm) Power (mW)/Erec

Lattice 1 (z-axis) 98.93 6.855

Lattice 2 (y-axis) 101.17 7.169

Lattice 3 (x-axis) 120.62 10.190

Table 4.1: Beam waists and power-to-depth conversions extracted from the lattice depth

calibration.
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Figure 4.23: Lattice depth calibration of the three lattices. A short pulse of 8.5 µs is applied

to the BEC and the atom number fraction in each momentum order is measured after a 30

ms ToF. The solid lines are the Bessel function fits.
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4.5 Superfluid-to-Mott Insulator Transition

After the three-dimensional lattice is constructed and calibrated, we checked that our optical

lattice is operational by observing the superfluid-to-Mott insulator transition predicted by

the Bose-Hubbard model. The Bose-Hubbard model [60] describes the physics of spinless

bosonic atoms with repulsive interaction in a lattice. The Hamiltonian of the Bose-Hubbard

model is given by [46, 61–63]

H = −J
∑
⟨i,j⟩

â†i âj + µ
∑
i

n̂i +
U

2

∑
i

n̂i(n̂i − 1) (4.10)

where n̂i = â†i âi is the number of particles on site i, and ⟨i, j⟩ denotes the summation over

all neighboring sites i and j. The first term describes the hopping of the particles between

neighboring sites with the tunneling matrix element

J = −
∫
d3x w(x− xi)

(
ℏ2

2m
∇2 + Vlat(x)

)
w(x− xj) (4.11)

where w(x− xi) is the Wannier function. The second term describes the chemical potential

µ of the system. The third term describes the repulsive interaction between the atoms on

the same lattice site with

U =
4πℏ2as
m

∫
|w(x)|4d3x. (4.12)

There are two distinct ground states to the Bose-Hubbard Hamiltonian depending on the

relative strength between the onsite interaction U and the tunnel-coupling J , which can be

tuned with the lattice depth. If the tunneling term is dominant (J ≫ U), the ground-state

wavefunction for N bosons in a lattice is given by

|Ψ⟩ ∼

(∑
i=1

â†i

)N

|0⟩ . (4.13)

Each atom is delocalized over the entire lattice because it can easily tunnel to neighboring

sites. A macroscopic phase is well defined on each site and the system is superfluid. If the

onsite interaction is dominant (U ≫ J), the ground-state wavefunction is given by

|Ψ⟩ ∼
∏
i=1

(â†i )
n|0⟩ . (4.14)
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Each atom is localized to a site since extra energy is needed to overcome the interaction

energy if the atom tunnels to a neighboring site. In this case, the system has no macroscopic

phase coherence and it is a Mott insulator.

Figure 4.24 shows our observation of the superfluid-to-Mott transition using the three-

dimensional optical lattice. We load the BEC adiabatically into the three-dimensional lattice

with an exponential ramp to a particular depth and then diabatically turn off all the trapping

potentials. At low lattice depth, the system is in the superfluid phase and the macroscopic

phase coherence leads to a distinct interference pattern after the atoms are released from the

lattice. As the lattice depth is increased, the system becomes a Mott insulator due to the

suppressed tunneling and thus no interference maxima are observed.

We also recovered the superfluid from a Mott insulator by holding the insulator for 10

ms and then linearly ramping down the lattice depth. Although the coherence and the

interference are not fully recovered, we can still see some weak interference maxima around

the center cloud.
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Figure 4.24: Superfluid-to-Mott insulator transition. (Top) The experimental sequence of the

lattice depth. The red solid line is the ramp used to obtain the superfluid-to-Mott insulator

transition. The yellow solid line is the ramp used to recover the superfluid from a Mott

insulator. (Middle) Each square is a ToF absorption image of the atoms from a particular

lattice depth. The distinct interference pattern disappears as the lattice depth is increased,

indicating the transition from a superfluid to a Mott insulator. (Bottom) The superfluid is

partially recovered after the lattice depth is ramped down.
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Chapter 5

MANY-BODY DYNAMICAL DELOCALIZATION IN A KICKED
ONE-DIMENSIONAL ULTRACOLD GAS

Despite the extensive study on the quantum kicked rotor and dynamical localization,

the effect of interaction is still a long-standing question. This chapter will show that

interactions lead to sub-diffusive delocalization in a one-dimensional kicked ultracold gas.

We will first explain how we prepare and characterize our 1D systems, including measuring

the background heating rate and the transverse excitation. We will then examine the

quantum resonance and anti-resonance of a non-interacting QKR. Finally, we will present

the observation of the many-body delocalization of the one-dimensional kicked rotor and

show how the delocalization dynamics change with different experimental parameters.

This chapter covers the results reported in the publication See Toh et al., Nature Physics

18, 1297 (2022) [64]. The theoretical mean-field modeling of interaction effects was performed

by our theory collaborators − Ying Su, Xi-Wang Luo, and Chuanwei Zhang at The University

of Texas at Dallas.

5.1 Preparation and Characterization of the System

To quantify the interaction of our 1D systems, we need to calibrate and characterize how

the BEC is loaded into the 1D tubes and how they interact in the tubes. In this section,

we will present the details of the experimental setup for the one-dimensional QKR. First

of all, we need to measure the size of the prepared BEC to know its cross-section area and

thus how many sites (and thus how many 1D tubes) of the two-dimensional lattice are filled.

Figure 5.1 shows the trap frequency measurement of the ODT in which we obtain a BEC

before loading the BEC into the two-dimensional lattice. We diabatically change the center
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position of the ODT beam (i.e. using the "painting" setting) to displace the atom cloud in

the horizontal plane (yz-plane) and then observe how it oscillates in the original trap. We

measure the change of the atom cloud’s position with varying hold times and fit a sinusoidal

function to the data to extract the trap frequency along each axis. The vertical (x-axis) trap

frequency is measured with a similar method except the atom cloud is displaced by simply

releasing and recapturing the atoms. For all the kicked rotor described in this thesis, we

prepare a BEC containing 1.5 × 105 atoms of 174Yb in a crossed ODT and measured the

trap frequencies to be {ω0x, ω0y, ω0z} = 2π × {145, 16, 53} Hz. The corresponding chemical

potential is h× 1.1 kHz and Thomas-Fermi radii {2.4, 22, 6.6} µm.

The BEC is then transferred into a two-dimensional optical lattice formed by two pairs

of counter-propagating laser beams, where atoms reside in a set of 1D tubes with negligible

intertube tunneling, as shown in Figure 5.2(a). To suppress optical interference between

different arms of the lattice, we maintain orthogonal linear polarization for each pair of

lattices and separate their optical frequencies by 40 MHz using acousto-optic modulators.

The depths of the lattices are calibrated using single-pulse Kapitza-Dirac diffraction, and

we measure the lattice-beam waist to be {wx, wy, wz} = {121, 101, 99} µm, which are much

larger than the BEC size.

We load the BEC from the ODT to the two-dimensional lattice by ramping up the

lattice exponentially in 100 ms with an exponential time constant of 20 ms. We check

the adiabaticity of this ramp by immediately loading the BEC back to the ODT using the

same ramp in reverse and comparing the final BEC fraction with the initial value. Using

this method, we measure about 70% BEC fraction after the forward and reverse ramps,

suggesting that the BEC fraction in the two-dimensional lattice is about 85% [64]. This is a

lower bound because tunneling is strongly suppressed for lattice above s⊥ ≃ 20 and therefore

limits the coherence between tubes.

Our lattice has spatial period of 1073 nm/2 = π/kL and corresponding recoil frequency

ωrec = ℏk2L/2m = 2π × 1kHz. Each of the two transverse lattices has depth s⊥Erec. The

typical lattice depth we use for the 1D QKR experiment is s⊥ = 106, which has a transverse
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Figure 5.1: Trap frequencies of the optical dipole trap. We measure the trap frequencies of

the ODT in which we obtain a BEC before loading it into the two-dimensional lattice. The

solid lines are sinusoidal-function fits. The measured trap frequencies are {ω0x, ω0y, ω0z} =

2π × {145, 16, 53} Hz.
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direction. (b) Mean transverse energy ⟨E⊥⟩ as a function of s⊥ for no kick and 100 kicks with

sz = 80 and (tp, T ) = (2, 105)µs. The solid line shows the calculated transverse ground-state

energy and the dashed line that for 10% occupation of the first transverse excited state.

Error bars show 1 s.e.m (not visible when smaller than the marker size). (c−h) Time-of-

flight atom absorption images after 0 (left column) and 100 (right column) kicks for different

lattice depth s⊥. Each image spans the momentum range 10 ℏkL × 10 ℏkL.
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trap frequency of ω⊥ = 2π × 20.5 Hz for the central tube and an axial trap frequency of

ωz = 2π × 64Hz. The transverse oscillator length is a⊥ =
√

ℏ/mω⊥ ≃ 53nm.

From the measured Thomas-Fermi radii of the BEC, we know the cross-section area

overlapped with the lattice and estimate that the atoms are loaded into about 570 horizontal

1D tubes. From the initial axial size of the BEC of 27 µm for s⊥ = 106, we estimate a peak

particle number of Natom = 650 and an initial 1D peak density of n̄1D = 24µm−1 [64].

After the BEC is loaded into the two-dimensional lattice, we exponentially ramp down

the ODT in 50 ms with a time constant of 10 ms. We measure the background heating rate

of the atoms by measuring the growth of mean axial energy after some variable hold time

in the two-dimensional lattice of s⊥ = 106, as shown in Figure 5.3. The background heating

rate is 6Erec/s, which is negligible on the timescale (∼ 100ms) of our QKR experiments.

The lifetime of the atoms in the two-dimensional lattice is also measured in a similar way

by keeping track of the atom number. Figure 5.4 shows that the lifetime of the atoms in

the lattice is about 4 seconds. Also, the photon-scattering rate from the transverse lattice

is estimated to be < 0.1 s−1 for s⊥ = 106, suggesting that any observed residual heating is

from technical noise.

Once the 1D systems are prepared, we apply a series of standing-wave pulses along the

axial direction, with kick period T and pulse length tp, as shown in Fig. 5.2a. The kick

pulses are generated by triggering a function generator (Stanford Research Systems DS345)

in burst mode. The function generator will output a voltage pulse when triggered, and the

voltage is sent to the radio-frequency switch on the IQ modulator that drives the AOM

for the kicking-lattice laser beam. The length of each pulse can be controlled through the

frequency setting of the function generator. The duty cycle, and hence the kick period T

of the pulse, is set by the triggering function sent to the function generator. The triggering

function is programmed in Cicero using the equation

2.5× {sign(sin(2πft+ ϕ)) + 1} (5.1)

where f is the kick frequency 1/T and ϕ is an overall phase. The prefactor of 2.5 and the
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extra term of +1 are there so that the total voltage is non-negative and ranges from 0− 5V.

We probe the system by diabatically turning off all the optical potentials after some pulse

number np and taking a time-of-flight absorption image of the atoms. From the axial and

transverse momentum distributions of the atoms, we can calculate the axial and transverse

energies of the system by determining the number of atoms in each order of diffraction using

the equation

⟨Ez⟩ =
⟨p2⟩
2m

=
1

2m

∑
nNnp

2
n∑

nNn

=
1

2m

∑
nNn(2nℏkL)2∑

nNn

(5.2)

=
ℏ2k2L
2m

∑
nNn4n

2∑
nNn

= Erec
4
∑

nNnn
2∑

nNn

. (5.3)

where Nn is the number of atoms in the nth momentum state. For a continuous momentum

distribution, the sum is replaced by an integral over all the momentum states.

The strong confinement of the 1D tubes ω⊥ ≫ ωrec suppresses two-body scattering from

the axial to the transverse directions, as shown in Fig. 5.2b. With 100 kicks of sz = 80,

we observe less than 10% excitation in the transverse direction. Figure 5.2(c−h) show the

absorption images of the atoms after 0 and 100 kicks with different interactions controlled

through the transverse confinement s⊥. The transverse (y) momentum does not change much

with increasing pulses, consistent with the low transverse excitation. However, the axial (z)

momentum increases drastically, which is a sign of many-body dynamical delocalization.

5.2 Non-interacting QKR: Quantum Resonance and Anti-resonance

Before discussing the effect of interactions on dynamical localization, we will first look at some

special cases of the non-interacting QKR. The disorder in the Anderson model is emulated in

the QKR in the pseudorandom phases of different momentum sites. This pseudo-randomness

only holds if the phases are irrational multiple of 2π, or else they will result in quantum

resonances or anti-resonances.

The unitary operator of the QKR for one period consists of a kick term and a free

evolution term

U = e−iK cos θ/k̄e−ip2/2k̄ . (5.4)
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Let us examine the free evolution term that controls the phases of the different momentum

states |m⟩.

e−ip2/2k̄|m⟩ = e−i(mk̄)2/2k̄|m⟩ = e−im2k̄/2|m⟩ (5.5)

= e−im2(2πl)/2|m⟩ = e−im2πl|m⟩ (5.6)

= (−1)m
2l|m⟩ (5.7)

where we have written k̄ = 2πl with integer l. We can see that when l is even, the free

evolution becomes unity. This means that the effect of multiple pulses is the same as that of

a single larger pulse with the same combined pulse area. This is referred to as the quantum

resonance of the QKR. When l is odd, the phases acquired are different for odd and even m.

The odd m states acquire a multiplicative factor of −1, resulting in an oscillatory behavior

of the energy of the system. This is referred to as the quantum anti-resonance of the QKR

where the effect of a pulse is canceled by the next pulse.

Since the kick period T is the parameter we control experimentally, it is conventional

to define a timescale of the system TTalbot such that the kick period coincides with the first

quantum resonance. This can be derived using the resonance condition k̄ = 2πl and equation

2.17

T =
πl

4ωrec

=
l

2
TTalbot (5.8)

where the Talbot time corresponds to the first quantum resonance at l = 2

TTalbot =
π

2ωrec

. (5.9)

It is thus straightforward to show that kick periods of integer multiples of Talbot time

correspond to quantum resonances, while kick periods of half-integer multiples of Talbot

time correspond to quantum anti-resonances. The pseudorandom condition of the phases to

simulate the Anderson disorder is satisfied when the kick period is incommensurate with the

Talbot time.

The recoil frequency of the atoms in our lattice laser beams is ωrec = 2π × 1 kHz and

thus the Talbot time of our system is about 250µs. Figure 5.5 shows the observation of the
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Figure 5.5: Quantum anti-resonance and quantum resonance. The data show the absorption

images and the mean energy of atoms with increasing pulse number np for the quantum

anti-resonance (left) and the quantum resonance (right). The pulse length is tp = 5µs, and

the pulse area is ϕkick = 0.86. The solid lines are the theory curves solved with an initial

momentum width of 10 nK. These calculations were performed by Katie McCormick.
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quantum anti-resonance and resonance with a kick period of 125µs and 250µs, respectively.

The data are taken by applying some kicks to the BEC in the ODT, and the time-of-flight

absorption images show the momentum distributions of the atoms after some pulse number

np. We can see from the images that for the quantum anti-resonance case, the system

alternates between two different Floquet states and then reaches a steady state. This is also

shown in the mean energy of the system − it oscillates initially and then saturates at some

value. The short oscillatory behavior observed, instead of a long oscillation in the ideal case,

is due to the decoherence of the system from the initial momentum width and the weak

interaction of the BEC. On the other hand, for the quantum resonance case, the atoms are

diffracted up to large momentum states because of the increasing effective pulse area seen

by the atoms as the pulse number is increased.

Apart from the quantum resonances and anti-resonances, there are also fractional res-

onances when the kick period is a rational multiple of the Talbot time. These fractional

resonances are the results of the superposition of q copies of the initial wave packet, sep-

arated by 2π/q [65]. Figure 5.6 shows the mean energy of the atoms after 4 kicks as

a function of the kick period T . The large peak at 250µs is the quantum resonance

while the minimum around 125µs is the quantum anti-resonance. The other local maxima

around 62.5µs, 100µs, 156.25µs, and 187.5µs are the fractional resonances corresponding

to (1/4)TTalbot, (2/5)TTalbot, (5/8)TTalbot, and (3/4)TTalbot, respectively.
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5.3 Interacting QKR: Many-body Dynamical Delocalization

We will now present our observation of the dynamical delocalization in a kicked one-dimensional

ultracold gas in the presence of interaction [64]. As shown before, a classical kicked rotor

displays chaotic and diffusive dynamics above a critical kick strength [66, 67], while a

quantum kicked rotor with the same kick strength can display dynamical localization due

to quantum interference [68]. The mapping of the Floquet dynamics of the QKR to the

Anderson model [31] shows that the pseudorandom phases of the QKR simulate the disorder

and lead to dynamical localization.

While the dynamical localization of the QKR has been experimentally studied extensively

[19–25, 69], the effect of interaction on dynamical localization has remained unexplored till

now. The effects of interactions have been studied both experimentally and theoretically

in position space [70–72] but not in the momentum space. There are conflicting theoretical

predictions: mean-field calculations for interacting BEC predicts delocalization with sub-

diffusive dynamics [40, 73], while the low-energy approximation based on Luttinger liquid

theory of a kicked one-dimensional (1D) Lieb-Liniger gas predicts the persistence of dynam-

ical localization [35]. It is challenging to understand the interaction effect on dynamical

delocalization because the infinite long-range interaction in the momentum space is fun-

damentally different from the short-range interaction in position-space Anderson lattices

[35, 36, 40, 70–78].

Here we perform the first experimental study of the effects of interactions on dynamical

localization. We observe that interactions destroy the dynamical localization and induce

sub-diffusive dynamics. We control the contact interactions of our periodically kicked 1D

bosonic system with the transverse confinement of the two-dimensional lattice and study

the dynamical delocalization across various experimental parameters. The sub-diffusive

delocalization dynamics do not seem to depend on the various experimental parameters, but

the onset time of delocalization is earlier with larger interaction strengths or kick strengths.

We will also present the results of the theoretical models using the mean field and Hartree-



82

Fock-Bogoliubov approaches performed by our collaborators − Ying Su, Xi-Wang Luo and

Chuanwei Zhang at The University of Texas at Dallas.

Using the mean-field theory, the many-body dynamics of our system and the QKR

wavefunction Φ are governed by the non-linear Gross-Pitaevskii (GP) equation:

ik̄∂τΦ(θ, τ) =

(
− k̄2

2
∂2θ −K cos θ

∑
np

δ(τ − np) +
1

2
ω2
θθ

2 + g|Φ(θ, τ)|2
)
Φ(θ, τ) (5.10)

with the dimensionless parameters θ = 2kLz, τ = t/T , where k̄ = 8ωrecT is the dimensionless

effective Planck constant. The first term on the right describes the kinetic energy and

free evolution of the atoms. The second term describes the standing-wave pulses with kick

strength K = 4szω
2
rectpT , and the third term the harmonic confinement along the tubes

with dimensionless axial frequency ωθ = ωzT . The last term describes the nonlinear contact

interaction between the atoms with interaction constant g = 2ḡkLk̄T/ℏ = k̄2 kLas
(kLa⊥)2

.

We control the interaction strength gn1D through the transverse confinement of the 1D

tubes where n1D = |Φ(0, 0)|2 = n̄1D/2kL is the dimensionless initial peak density. Because of

the non-uniform load into the 1D tubes, we take into account the variation of atom number

in different tubes when calculating the interaction strength, and the wave function of the

system is normalized as
∫
dθ|Φ(θ, τ)|2 = Natom. Because we cannot tune the scattering length

of the Yb atoms using a Feshbach resonance, our weakest interacting system is a BEC in the

ODT without the two-dimensional lattice. In this case, we adjust the a⊥ in the interaction

constant to match the measured chemical potential of the BEC in the ODT, which gives us

an effective 1D interaction strength gneff
1D of the 3D BEC.

Figure 5.7 shows the effects of interactions on the dynamical localization. The weak

interaction case (gneff
1D = 3.9) is realized by kicking the BEC in the ODT. We can see

from the absorption images (Fig. 5.7 a) and the momentum distribution (Fig. 5.7 c,e)

that when the interaction is weak, the momentum distribution freezes after some initial

dynamics, indicating dynamical localization. This is also evident from the saturation of

mean axial energy ⟨Ez⟩ (Fig. 5.7 g) after some pulse number np. The exponential functions

in the momentum distribution plots show the localized function e−|p|/ξ with the theoretical



83

E
z

/E
re

c

np+1

gn1D = 18.7g

1
3
10
17

np

101100

101

100

N
or

m
al

iz
ed

 d
en

si
ty

 (a
rb

.)

-8 -6 -4 -2 0 2 4 6 8-8 -6 -4 -2 0 2 4 6 8
Momentum (ħkL)

0.0

0.5

1.0

0.01

0.1

1

0

20

40

Pu
ls

e 
N

um
be

r n
p

OD (arb.)

0 1

y

z

gn1D = 18.7

a b

c d

e f

gn1D = 3.9eff

gn1D = 3.9eff

Figure 5.7: Interaction-driven dynamical delocalization. (a−b) Sequences of time-of-flight

absorption images for localized (left column) and delocalized (right column) cases with

low and high interaction strength gn1D respectively. The kicking parameters used are

k̄ = 5.26, K = 5.3, and (tp, T ) = (2, 105)µs. (c−f) Axial momentum distributions after

some kick numbers np on a linear scale (c, d) and logarithmic scale (e, f). The dashed and

dotted lines are exponential functions with theoretical and measured localization lengths,

respectively. (g) Evolution of the axial kinetic energy. The solid line is a power-law fit, with

an exponent value of 0.36.
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localization length ξ = K2/4k̄2 = 0.25 in unit of ℏkL (dashed line) and the measured

localization length ξ = 0.92 corresponding to the measured saturation energy ⟨Ez⟩ = 1.7Erec

(dotted line). The difference between the measured and theoretical momentum distribution

arises from the non-zero interaction of the BEC and the narrow initial momentum width

compared with 2ℏkL. For the strong interaction case (gneff
1D = 3.9), the atoms populate

higher momentum states with increasing pulse numbers (Fig. 5.7 b,d,f), indicating dynamical

delocalization. The power-law fit to the energy growth (Fig. 5.7 g) also shows that the

delocalization dynamics is sub-diffusive with an exponent of 0.36. The striking contrast

between the two cases confirms that interactions do indeed destroy dynamical localization

and lead to sub-diffusive dynamics.

We study the dynamical delocalization with various parameters to understand their

effect on the sub-diffusive exponent and the onset time of delocalization. Figure 5.8a shows

the delocalization behavior for different kick strengths (tuned through sz) and interaction

strengths (tuned through s⊥). The dynamics respond strongly to kick strength K with

the delocalization beginning earlier with stronger K. Although our 1D tubes have an axial

harmonic confinement, it is not a prerequisite to observe the delocalization dynamics because

the onset of delocalization can happen within the first ten pulses for the largest K we used,

much earlier compared to the axial oscillation period (marked by the yellow vertical bar).

The monotonic growth of the mean axial energy with K is also evident in Figure 5.8b which

corresponds to a vertical cut of the data in Fig. 5.8a (fixed np = 15 and gn1D = 18.7).

Figure 5.8c shows the delocalization behavior with different interaction strengths con-

trolled through the lattice confinement s⊥. Stronger confinement increases the density of

the atoms in the tube and thus the interaction strength. We can see from the plot that

the system is localized with weak interaction strength and delocalized with large interaction

strength. As the interaction strength is increased, the delocalization is stronger and the

onset of the delocalization is also earlier. The monotonic growth of the mean axial energy

with gn1D is also evident in Figure 5.8d which corresponds to a vertical cut of the data in

Fig. 5.8c (fixed np = 100 and K = 2.6).
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We fit a power-law function E0n
α
p to the mean energy ⟨Ez⟩ to understand the sub-diffusive

character of the dynamics. The range of the fit is restricted by the atom loss and the axial

oscillation period. As shown in Fig. 5.9, the atom loss is significant when the mean kinetic

energy is above 10Erec due to the finite trap depth. The exact fit range chosen with these

restrictions is listed in Table 5.1, and the analysis of the sub-diffusive dynamics is shown

in Figure 5.10. Our fit results for α lie in the range of 0.36 − 0.80, indicating sub-diffusive

dynamics. This measurement is consistent with the prediction in Ref. [40], but larger than

the predicted value of 0.3 − 0.4 in Ref. [76]. We also do not observe any clear functional

dependence of the exponent on the kick strength or the interaction strength. There is,

however, a trend in the onset time of delocalization n∗
p, which we define as when the energy

of the system reaches 2.5Erec, i.e. E0(n
∗
p)

α = 2.5Erec. As shown in Fig. 5.10, the onset time

of delocalization is earlier with a stronger kick or interaction strength.
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1 standard error of the mean (s.e.m.).
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Figure 5.10: Analysis of the delocalization dynamics. Exponent α, prefactor E0, and the

onset time of delocalization n∗
p for the corresponding data in Fig. 5.8. The different color

(green) of the K = 1.3 data point indicates that the fitting range of the data goes beyond

the axial oscillation period. Error bars show 1 s.d. (not visible when smaller than the marker

size).

The colored lines in Fig. 5.8a,c are numerical mean-field calculations of the dynamics.

We find that for a given interaction strength gn1D, the system enters the delocalized phase

earlier when K is larger than a critical value Kc. This can also be seen from the phase

diagram in Fig. 5.9e where we plot the boundary curves that separate the localized and

delocalized phases using the mean-field Gross-Pitaevskii equation (GPE) and Hartree-Fock-

Bogoliubov (HFB) approaches. For a larger gn1D, the Kc is smaller, implying that dynamical

delocalization is easier with stronger interactions. The numerical simulation captures the
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dynamics better when the system is in the deep localization or delocalization phase but

deviates from the experimental data around the boundary of localization-delocalization

phases. This failure of the mean-field theory around the phase transition boundary is

potentially due to the depletion of the BEC fraction. Furthermore, for our system, the

real-space contact interaction maps to an infinite long-range interaction in the momentum

space leading to a strong competition between the disorder potential and the interaction-

induced infinite long-range hopping.

5.4 Delocalization Dynamics with Different Kick Periods and Atom Numbers

We also tuned other experimental parameters and found that the interaction-driven dy-

namical delocalization is a general feature of our system. Figure 5.11 shows the similar

delocalization behavior for different kick periods T ranging from 20 to 125µs while keeping

the kick strength constant. Particularly, we note that interaction-induced dynamical delo-

calization is also observed at the quantum anti-resonance condition (T = 125µs), where the

dynamics are oscillatory in the non-interacting case.

Apart from the transverse lattice depth, we can also control the interaction using the atom

number Natom. We repeat the experiment in a vertical-tube configuration and let some atoms

fall out of the tubes before applying the kicks. The ODT is not extinguished during the kicks

to keep the remaining atoms in the tubes. Figure 5.12 shows the delocalization dynamics of

the system with different atom numbers in the fixed transverse lattice depth. Consistent with

our other observations, the delocalization is stronger with larger kick strength or interaction

strength.
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5.5 Summary and Outlook

We have observed dynamical delocalization in a kicked one-dimensional ultracold gas in the

presence of interactions. Shedding experimental light on prior conflicting theoretical work, we

have observed that interactions do indeed destroy dynamical localization and systematically

studied it within our parameter space. We have found that the delocalization dynamics are

sub-diffusive with the onset of delocalization happening earlier with a larger kick strength or

interaction strength. However, we have not observed a clear dependence of the sub-diffusive

exponent on the kick strength or interaction strength. Our numerical simulations using the

mean-field approach capture the dynamics well except around the transition boundary of the

localization-delocalization phase. In the future, we can further investigate and characterize

the dynamics around the phase transition where we observe that the mean-field theory

fails. It will also be interesting to study a kicked Tonks-Girardeau gas, where the strongly-

interacting 1D bosonic gas is fermionized and predicted to be dynamically localized [35].
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Chapter 6

INTERACTION-DRIVEN DYNAMICAL DELOCALIZATION OF
THE MOMENTUM-SPACE ANDERSON INSULATOR

The flexibility of the quantum kicked rotor allows the engineering of higher dimensional

Anderson models. This chapter will first explain how we modify the quantum kicked rotor to

a quasiperiodic kicked rotor (QPKR) to simulate a higher dimensional Anderson model. We

will then present our observation of the interaction-driven delocalization of the momentum-

space Anderson insulator. We will describe how the sub-diffusive delocalization dynamics

depend on the different experimental parameters and show the Anderson transition in the

presence of interactions. Finally, we will show that the interaction effects are similar in 1D

to 4D Anderson models for our experimental parameters.

This chapter reports on the results currently in preparation for publication: J. H. See

Toh et al. "Interaction-driven delocalization of the Anderson insulator". The theoretical

mean-field modeling is performed by our theory collaborators − Mengxin Du, Ying Su, and

Chuanwei Zhang at The University of Texas at Dallas.

6.1 Simulating Higher Dimensional Anderson Model

The Anderson model shows that a particle in a 1D or 2D disordered medium will always be

localized due to quantum interference, but can be localized or delocalized in a 3D disordered

medium. The Anderson metal-insulator transition has been observed using QPKR that

simulates a non-interacting 3D (or higher D) Anderson model [27, 29, 41]. Extensive

experiments with ultracold atoms in spatially quasiperiodic lattices in one dimension have

also observed localization and delocalization in the presence of interaction [70, 72, 74, 79, 80].

However, the effect of interactions on the higher-dimensional momentum-space Anderson



93

insulator has not been studied so far. We will describe in this section how we engineer the

higher-dimensional Anderson model.

The greatest advantage of simulating the Anderson model in the synthetic momentum

space is the flexibility to scale up the dimension. This can be easily achieved by simply

modulating the amplitude of the kick pulses with incommensurate frequencies. Generalizing

the mapping between the QKR Hamiltonian and the Anderson model, a d-dimensional

Anderson model can be engineered by using d − 1 incommensurate modulation frequencies

[29, 81–84]. In this chapter, we will focus on the three-dimensional Anderson model where

the modulated kick strength of the quasiperiodic kicked rotor (QPKR) is

K(t) = K(1 + ϵ cosω2t cosω3t) (6.1)

where ω2 and ω3 (in unit of 1/T ) are the modulation frequencies and ϵ is the modulation

strength. To avoid quantum resonances, (k̄, ω2, ω3, π) must be incommensurate with each

other. Figure 6.1 shows a plot of the modulated kick strength with ω2 = 2π ×
√
2, ω2 =

2π×
√
3 and ϵ = 1. Similar to the 1D case, the pulses are generated by triggering a function

generator in burst mode. An aliased function of the modulated kick strength is used for the

trigger function to reduce the amplitude fluctuation during each pulse. The fast amplitude

response of the IQ modulator that drives the lattice AOM also plays a crucial role here to

achieve kick strengths to the desired accuracy.
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Figure 6.1: Kick-strength modulation to engineer a 3D Anderson model. The grey solid line

shows the function of the modulated kick strength with ω2 = 2π ×
√
2, ω3 = 2π ×

√
3 and

ϵ = 1. The blue points show the kick strength of the pulses at every kick period T = 105µs.

The black solid line shows the aliased function we use to trigger the function generator.

6.2 Dynamical Delocalization of the 3D Anderson Model

In this section, we will present our observation of dynamical delocalization of the 3D An-

derson insulator in the synthetic momentum space. The experimental setup is the same

as the 1D QKR experiment presented in the previous chapter; the only difference is the

amplitude-modulated kick pulses as discussed in the last section. The BEC is loaded into

the two-dimensional lattice and the interaction strength is controlled through the transverse

confinement of the lattice.

The system can be modeled using the mean-field GP equation

ik̄∂τΦ(θ, τ) =

(
− k̄

2

2
∂2θ+

1

2
ω2
θθ

2+g|Φ(θ, τ)|2−K(1+ϵ cosω2τ cosω3τ) cos θ
∑
np

δ(τ−np)

)
Φ(θ, τ)

(6.2)

where the kick strength is now modulated with two additional incommensurate frequencies ω2

and ω3. For all of the 3D Anderson model experiments, we use ω2 = 2π×
√
2, ω3 = 2π×

√
3,

tp = 4µs, and T = 105µs, as shown in Fig. 6.2a.

The absorption images in Figure 6.2(b-c) show our observation of interaction-driven
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delocalization of the momentum-space Anderson insulator. With weak interaction strength

gn1D = 3.9, the momentum distribution of the atoms freezes after some kicks, and the energy

of the system (Fig. 6.2d) saturates at 1.5Erec. However, with strong interaction strength,

the momentum distribution of the atoms becomes wider with increasing pulse number and

the energy of the system grows sub-diffusively.

Next, we further investigate the sub-diffusive dynamics of the interaction-driven delo-

calization with different experimental parameters. Figure 6.3a shows the evolution of the

axial kinetic energy for three different interaction strengths with fixed kick strength K = 2.5

and modulation strength ϵ = 0.4. The gn1D = 3.9 case corresponds to the BEC in the

optical dipole trap (s⊥ = 0), while the gn1D = 12.2 and 17.6 cases correspond to the BEC

in the two-dimensional lattice of depth s⊥ = 30 and 90, respectively. As the interaction

strength is increased, the system goes from localized to delocalized, indicating interaction-

driven dynamical delocalization. Figure 6.3b shows that in the presence of interactions,

stronger modulation strength ϵ leads to an earlier onset time of delocalization and higher

axial kinetic energy at later times. Similar behavior is also observed when we tune the kick

strength K, as shown in Figure 6.3c. The onset time of delocalization changes drastically

by one order of magnitude when the kick strength is changed from K = 1 to K = 4. We

fit a power law E0n
α
p to the delocalization data to extract the exponent α. The measured

exponents are in the range of 0.6− 1.0, with no obvious functional dependence on any of the

experimental parameters.

We define the onset time of delocalization n∗
p to be when the system energy reaches

2.5Erec, i.e. E0(n
∗
p)

α = 2.5Erec. To study how the onset time of delocalization depends on

the interaction strength and kick strength, we measure the evolution of the axial energy

at two fixed pulse numbers np=30 and 100 while varying gn1D or K, as shown in Figure

6.4(a-b). From the measured energy, we can then extract the prefactor E0 and exponent α,

and solve for n∗
p, as shown in Figure 6.4(c). Consistent with what we observed in Figure 6.3,

the onset time of delocalization is earlier with stronger interaction strength or kick strength.

We fit inverse power law 1/gnp
1D to the data in Fig. 6.4(c). We measure p ≃ 2, in contrast
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Figure 6.2: Observation of interaction-driven delocalization of the 3D momentum-space

Anderson insulator. (a) Experimental sequence of the modulated kick pulses with tp = 4µs,

T = 105µs, ω2 = 2π ×
√
2, ω3 = 2π ×

√
3, k̄ = 5.26, K = 4, ϵ = 0.4 (not to scale). (b-

c) Sequences of absorption images for (b) localized and (c) delocalized cases with different

interaction strengths. (d) Evolution of the axial kinetic energy corresponding to the data in

(b) and (c). The solid line is a power-law fit with an exponent of 0.72.
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Figure 6.3: Delocalization dynamics with different experimental parameters. The plot

shows the evolution of the axial kinetic energy ⟨Ez⟩ with pulse number np with different

(a) interaction strengths gn1D, (b) modulation strengths ϵ, and (c) kick strengths K. The

colored solid lines are the corresponding numerical simulation using the GP equation. The

black solid lines are power-law fits to the data.
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to the prediction of p = 1 in Ref. [41]. This is because our interactions are in the position

space instead of the momentum space considered in Ref. [41].

The divergence of n∗
p in Fig. 6.4(d) indicates the metal-insulator transition as the kick

strength is varied. Using a critical exponent ν = 1.59 numerically established in Ref. [29]

for a non-interacting system, we find that the onset time satisfies n∗
p ≃ 1/|(K −Kc)|ν with

Kc = 1.6 with the critical kick strength Kc demarcating the metal-insulator transition.

Leaving the critical exponent as a free parameter, our fit returns ν = 1.9 and Kc = 1.4.

The difference hints at how interactions alter second-order phase transition and could be

interesting for future work.
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Figure 6.4: Onset of delocalization. (a-b) Evolution of the axial kinetic energy with varying

(a) interaction strengths gn1D, and (b) kick strengths K at two different fixed pulse numbers

np = 30 and 100. (c-d) The onset time of delocalization n∗
p calculated from the corresponding

data in (a) and (b) respectively. The solid lines are inverse power-law fits with an exponent

p.
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6.3 d-dimensional Interaction-driven Delocalization

We also compare the interaction-driven delocalization of the d-dimensional Anderson model

in the synthetic momentum space from d = 1 to d = 4. In Figure 6.5, we plot the

modulated kick strength using different incommensurate frequencies for different dimensions.

The frequencies are chosen such that they give low saturation energy in a localized system,

but the choice would not affect the generality of the dynamics [85] as long as they are

incommensurate with each other.

Figure 6.6 shows the interaction-driven delocalization of the engineered Anderson insu-

lators in different dimensions d = 1− 4. The interaction gn1D = 17.6 used is strong enough

to dominate the system dynamics irrespective of the dimensionality. The measured sub-

diffusive exponents are in the range of 0.58 − 0.83 and do not have a clear dependence on

the dimension d. It will be interesting in the future to investigate the behavior versus d at

reduced values of interaction strength when variations with d have emerged.
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Figure 6.5: Modulated kick strengths for engineering higher-dimensional Anderson models.

The plots show some examples of the modulated kick strength with ϵ = 1 used for (a) d = 2,

(b) d = 3, and (c) d = 4 Anderson models. For d = 2, ω2 = 2π ×
√
5. For the d = 3 case,

ω2 = 2π×
√
2, ω3 = 2π×

√
3. For the d = 4 case, ω2 = 2π×

√
3, ω3 = 2π×

√
5, ω4 = 2π×

√
7.

The faint grey lines are the functions of the modulated kick strength. The blue points mark

the kick strength of the pulses at every kick period T = 105µs. The black lines are the

aliased functions we use to trigger the function generator.
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Figure 6.6: Interaction-driven delocalization in d-dimensional Anderson models in the

synthetic momentum space. Evolution of the axial kinetic energy for the d = 1−4 Anderson

models with weak interaction (red) and strong interaction (blue). For all cases, tp = 4µs,

T = 105µs, ϵ = 0.4. The black solid lines are power-law fits E = E0n
α
p with fitted exponent

α = {0.65, 0.70, 0.83, 0.58} for d = {1, 2, 3, 4}, respectively.

.
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6.4 Summary and Outlook

Using the flexibility of the QPKR, we engineer the 3D Anderson model in the synthetic

momentum space and observe the interaction-driven melting of the Anderson insulator.

We study the delocalization behavior with different experimental parameters and find that

the although the delocalization dynamics are sub-diffusive, there is no clear functional

dependence of the diffusive exponents on the various parameters used. However, we verify

that the onset time of delocalization is earlier with larger gn1D, K, or ϵ, and observe a

clear phase transition with varying K in the presence of interactions. We also show that

interactions can lead to dynamical delocalization in d = 1 − 4 Anderson models. Some

potential future works include detailed studies of the dynamics across the phase transition

and the interplay between dimensionality and interactions in the Anderson problem.



104

Chapter 7

CONCLUSIONS AND OUTLOOK

The work in this thesis has demonstrated that interactions destroy dynamical localization,

inducing subdiffusive dynamics. Using a quantum kicked rotor setup on a 1D gas (thus

suppressing transverse dynamics), we engineered the Anderson model up to d = 4 in

the synthetic momentum space and examined the delocalization dynamics with different

experimental parameters. Our measured values of the subdiffusion exponent are not universal

and also do not show any systematic dependence on experimental parameters. However, we

observed that delocalization starts earlier with stronger interactions, kicks, and modulations.

Our work sheds light on interaction-driven transport in a disordered medium. We hope that

our work will motivate further theoretical and experimental work on this interesting problem.

The difference between our observations and several theoretical predictions demands a

better understanding of interaction-driven delocalization dynamics. The failure of mean-field

theory to describe the dynamics close to the localization-delocalization transition boundary

suggests richer underlying many-body physics. More experimental work on the transition

is also needed to investigate if there is a novel critical phenomenon in the presence of

interactions. The apparent random distribution of the subdiffusion exponents could also

be studied in larger parameter space.

While the limited laser power and the lack of Feshbach resonance in Yb restrict us to a

finite range of interaction strength, the intertube tunneling at low lattice depth also prevents

us from finding out the critical interaction strength that triggers delocalization. The axial

confinement of the tubes also limits how long we can kick the system. One can improve the

setup by expanding the beam size of the lattice beam to reduce axial confinement. The ODT

alignment and center-position modulation can also be optimized to produce a BEC with a
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larger cross-sectional area to allow more tubes to be loaded. These improvements will reduce

the atom number density in each tube for the same lattice depth and allow better control

around the critical interaction strength. One could also consider using another atom species

with a Feshbach resonance that enables more control of the interaction strength. In fact,

this has been done concurrently with our work by the Weld group at the University of Santa

Barbara and similar observations were made [86]. Although the use of Feshbach resonance

obviates the need for a two-dimensional lattice, unwanted chemistry and dynamics in the

transverse direction may deteriorate the signal. We think that combining the advantages of

great control of scattering length using a Feshbach resonance and the suppressed transverse

dynamics in 1D tubes is a promising way to systematically study the delocalization dynamics

in a much larger parameter space. Even more ideally, a 1D ring geometry should be used,

where spatial diffusion effects are removed. This will also permit one to study if a kicked

Tonks-Girardeau gas will remain localized.

Our machine also supports experiments with 6Li, which has a broad Feshbach resonance

around 832 G . The lab is currently reviving the Li setup and attempting to study dynamical

delocalization around the BEC-BCS crossover. The change in the effective mass of the

particles across the crossover may lead to more exciting phenomena. One could also consider

loading Li into the optical lattice, which would also open up other experiment possibilities

such as the study of the Fermi-Hubbard model.
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